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ABSTRACT

Much of financial theory neglects transactions costs, Perhaps the most
successful implementation of it -- 1.e, continuous-time portfolio choice and
option pricing -- is downright inconsistent with the existence of any
transactions cost at all. Nonetheless prima facie evidence from the trade is
that transactions costs are a source of concern for portfolio managers. The
presence of practically any friction in financial markets qualitatively

changes the nature of the optimization problem; for it produces the need
sometimes to do nothing and sometimes to act, an issue which, of course, does
not arise in frictionless situations.

The investor considered here does not consume along the way. He accumulates
wealth until some terminal point in time. At that point he consumes all. His
objective is to maximize the expected utility derived from that terminal
consumption. We postpone the terminal point infinitely far into the future to
obtain a stationary portfolio rule. The optimal portfolio policy which we
find is in the form of two control barriers between which portfolio
proportions are allowed to fluctuate before some trade is resorted to.

We show how to calculate these two barriers exactly.



1. Introduction

Much of financial theory neglects transactions costs. Perhaps the most
successful implementation of it -- i.e. continuous-time portfolio choice and
option pricing -- is downright inconsistent with the existence of any
transactions cost at all. For instance, the hedging strategy proposed by Black

and Scholes to value derivative assets is not rationally feasible when
portfolio adjustment is not costless. Similarly, other reasonings adopted to
justify alternative pricing methods1 do not seem to be immediately applicable
when transaction costs impinge on investment returns. When they are applied,
straightforward continuous adjustment of the portfolie composition would lead
to infinite transactions costs in a finite time period.

Nonetheless prima facie evidence from the trade is that transactions costs
are a source of concern for portfolio managers. We include in this category of
cost not only brokerage fees, but also any cost of analysis, information cost
and any expense incurred in the process of deciding upon and placing an
order. Delays in execution which cause prices at which one trades to be
different from those at which one plamned to trade may in some way be included
as well. Recent literature on these questions include Perold (1988), Amihud
and Mendelson (1988) and Hasbrouck and Schwartz (1988).

The assumption we make here is that these costs are of a proportional
nature, although there would be no added analytical difficulty in assuming
that they are fixed in nature, or of a mixed character. Proportionality means
that the cost incurred is proportional to the size of the trade.

The presence of practically any friction in financial markets qualitatively

See for example Cox, Ross and Rubinstein (1979).
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changes the nature of the optimization problem; for it produces the need
sometimes to do mothing and sometimes to act, an issue which, of course, does
not arise in frictionless situations. Recently Constantinides (1986) has
proposed an approximate solution to the portfolio choice problem under
transactions costs (see also Taksar et. al. (1988) which treats the
logarithmic special case, Davis and Norman (1987) and Kamin (1973)). The

investor in Constantinides' problem maximizes the expected value of his
infinite-horizon utility function. Portfolio policies are computed numerically
under the assumption (this is the nature of the approximation) that the
investor in each period consumes a fixed proportion of his wealth.

In the present paper we examine a somewhat simpler problem.2 The investor
considered here does not consume along the way. He accumulates wealth until
some terminal point in time. At that point he consumes all. His objective is
to maximize the expected utility derived from that terminal consumption. We
postpone the terminal point infinitely far into the future to obtain a
stationary portfolio rule. In contrast to Constantinides, our alternmative
leads to an exact solution.3 The assumption that the investor does not consume
as he goes and cares about the achieved terminal wealth seems quite realistic
when modelling the behavior of a trader employed by a financial institution.

The paper is organized as follows: in section 2 we set up the

portfolio-selection model. In section 3 we derive the necessary conditions

2A similar formulation has independently been adopted in Grossman and
Vila (1989).

3Our solution is not a special case of Constantinides’ solution. Since he
imposes that the investor's rate of consumption out of wealth be constant over
time, one might think that setting that rate of consumption equal to zero
would produce our solution. It does not: Constantinides’ solution is
degenerate in that case.



which must be satisfied when it is optimal to refrain from trading, as well as
the optimality conditions which must prevail at the random times when trading
takes place. In section & we obtain an analytical solution. In section 5 we
run some comparative statics exercises. Section 6 concludes and suggests

applications.

9 The portfolio selection model

We analyze the behavior of an investor, whose planning horizon is infinite
and whose objective is to maximize the expected utility of his final
consumption. No consumption takes place along the way, and it is assumed that
his preferences are represented by a utility function u(c), where c is
terminal consumption.

Assumption 1: The utility function is of the power form:
(1] u(e) = <'/v,

with v constant, y < L.
Assumption 2: Given this functional form, we can formulate the investor'’s
problem as:

(2] lim max E e PT % [e(T))7;

T-->+o o

where EO is the expectation operator conditional on time-0 information, T is

the horizon and 8 is a discount rate which will be chosen later to insure

& : : . . . . .

This functional form implies constant relative risk aversion equal to
1 - vy. The characteristics of HARA functions are listed, for example, in
Merton {(1971).



boundedness of the optimized value of the objective function.
The economy is characterized on the real side by a unique consumption
good, used as numeraire, and on the financial side by two assets. In

particular, there is available:

a riskless asset (cash), whose accumulated amount at time t, denoted x(t),

increases in value, if trading does not take place, according to the following

equation {(Assumption 3):

(3] dx(t) = rx(t)dt,

where r is the rate of interest, assumed to be constant;

a risky asset with an accumulated value5 y(t) which follows -- again in the
absence of portfolio adjustments -- the stochastic differential equation

(Assumption 4):

(4] dy(t) = ay(t)dt + oy(t)dz,

with @ and ¢ constants, dz a white noise. One may question whether such a
process for asset prices would be compatible with general equilibrium in a
world where financial transactions entail costs. But this issue will have to
await further research.

The investor acts as a trader in the markets for borrowing, lending and

5
y is the number of shares held at time t multiplied by the price of
gach share.



for the risky asset y. In these markets he takes prices as given and chooses
quantities without restrictions, but incurs transactions costs.

As far as the cost of exchanging financial assets is concerned:
Assumption 5: the conversion ratio denoted s (s < 1) is taken to be the same
in either direction: an amount sg* of y can be purchased by giving up an
amount q*% of x; similarly, an amount sq of X can be obtained by selling an

amount q of y.

Problem [2] has to be solved subject to the constraints [3] and [4] and to
the rules for financial trading.

1f there were no transactions costs, problem [2] could be dealt with
according to Merton (1969). We could define the derived undiscounted value (or

Bellman) function at time t€:

(5] J*(W; t) = lim max E e—ﬂ(T-t) ! [W(T)]7;
T-->4eo  © M

where W would be the investor's wealth:6 W =x + y, with dynamics given by:
6] dW = (rx + ay)dt + oydz.

*
We look for a stationary solution J (W). It must satisfy the Hamilton-Jacobl

equation:

6 From now on, we will almost always write X and y instead of =(t) and
y(t) for the primitive asset holdings.
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* % * 22
(7] Max (- J + J (rx + ay) + Jipo ¥ /2y =0,

X,y
s.t. xty=W

Considering the homogeneity of the objective function [5] and of the

* %* *
constraint [6], J must be proportional to W'/y. Writing J in the form: J (W)
= HxW'/vy, and substituting this function into the homogeneous differential

equation [7], it is found that there exists a real number H # 0, if and only

if an appropriate choice of f§ is made:7

(a - 1)°

(8] B =y - 5* where: § = - % v 5
(L -v) o

The corresponding optimal portfolio strategy would then be to keep y/x at a

%
value 4§ equal to:

* a - T
(9] g =

(1-7)02-a+r

In what follows, we choose parameter values in such a way that:

(10] 0< -2 <1,

(1-v)a”

thereby guaranteeing that x > 0 and y > 0 in the absence of transactions

It is not possible to determine the number H on the basis of equation
[7] alone. The value of H would fall out of the terminal condition in the
following manner. First, solve for the finite-horizon value function J(W, t),
imposing the terminal condition that, at the horizon point T, one has: JW, T)
= [W(T)]"/v. Then let T go to infinity. When 8 is chosen as in (8], H=1.

Q



costs. We assume (Assumption 6) that condition [10] suffices to also guarantee

x, y > 0 in the presence of transactions costs.

1. Repulating the portfolio

When trading costs of the type outlined above are present, Constantinides

(1986, section III) has proved in a discrete-time framework and has assumed in

2 continuous-time one that the optimal investment policy is of the following
type: exchange a small amount of the riskless for the risky asset whenever the
portfolio ratio § = y/x falls below some fixed level 2 to be chosen optimally,
and do the reverse if it exceeds the control level u. That the optimal trade
size should be infinitely small is a postulate which makes sense considering
the proportional nature of the transactions costs. It means that we are
seeking the optimal regulator of the portfolio, among the class of
infinitesimal regulators.

We must verify that, among infinitesimal regulators, one with fixed
control barriers u and £ is indeed optimal and we must determine the level of
these barriers. This is done below by means of the theory of optimal regulated
Brownian motion, as exposited by Harrison (1985).8

Portfolio rebalancing is modelled mathematically as follows. Define two
processes U and L with these properties:

U and L are continuous non decreasing processes;

U increases only when # reaches the value u;

8 This approach is very much related to the optimal-stopping literature
(Krylov (1980)) which has already been applied to the field of Finance by
Grossman-Laroque (1987). The mathematical theory of the instantaneous control
of Brownian motion can be found in Benes, Shepp and Witsenhausen (1980} and
Harrison and Taksar (1983). Regulated Brownian motion has been applied to
problems in Economics by Bertola (1988), Dixit (1988), Dumas (1988a, b).

9



I increases only when § reaches the value L.
Tn order to take account of portfolio readjustments, equations [3] and [4]

are amended as:

(11} dx = rx dt + sdU - dL;

[12] dy = ay dt + gy dz + sdL - dU;

where 1 - s is the rate of transactions costs and U and sL are interpreted as

cumulative sales and purchases of equity since time 0. The stochastic
differential equations [11} and [12] reduce to {3] and [4] at such times where
no rebalancing takes place (8 # u or 2y,

The problem of maximizing [2] subject to [11] and [12] has two state
variables x and y. Its undiscounted value function J(x, ¥) --defined exactly
as the function J* was in [5], but subject to the new constraints [l1] and
[12]-- is once again homogeneous of degree y. It 1is assumed (Assumption 7) to
be twice continuously differentiable in y and once continuously differentiable
in Xx. A transposition of Harrison’s9 results to the present setting leads to

the following properties of the value funetion J:

y/x = &

[13a} Jx(x, y) = s Jy(x, v) when ¢

1]

[13b] s Jx(x, y) = Jy(x, y) when 4 y/® = u,

9See Harrison (1985) Chapter 5. See also the note by Dumas (1988).

lOWhen § = £, x is reduced by dL and y is inereased by sdL. When this
happens, there can be no jump in the value of the problem (value matching):

J(x, vy = J(x - dL, y + sdL).

Expanding the right-hand side leads to equation [13a].

10



Conditions [13a] and [13b] mean that the indirect utility function must
present a marginal rate of substitution between y and x equal to 1/s when y =
tx, and equal to s when y = ux. They are a mechanical result of the postulate
that the optimal policy is of the infinitesimal-regulator type; i.e. they hold
the minute regulation is applied at u and 1, regardless of whether these
quantities are chosen optimally or not.

Considering the homogeneity of the function J, this function satisfies
properties [13a] and [13b] along two rays y = 2% and y = ux whose slopes are
independent of y and Xx.

The optimality of the control limits u and 2 will be imposed by means of
two necessary conditions, derived in Harrison and Taksar (1983)ll and labelled

"super-contact conditions” by Dumas (1988c). These are extensions to the case

of the infinitesimal regulator of the traditional "smooth-pasting conditions”

of Samuelson (1965), McKean (1963}, Merton (1973, £fné0) and Krylov (1980):12

2 )
[l4a] 0 = -Jxx(x, y) + s ny(x, y} = -s Jyx(x, y) + s Jyy(x, ¥

at 0§ = y/x = £;

1proposition 5.11 page 449. See also the discussion which precedes
proposition 5.11.

12 . . . .
Smooth pasting roughly says that the derivatives of the value function
must take the same value at the point where the regulator is applied (trigger
point) and at the point to which one arrives as a result of the regulation

(target point). For instance, when § = £, x is reduced by dL and ¥y increased
by sdL:

J (x, ¥) = s Jy(x, y) =
Jx(x - dL, y + sdL) = s Jy(x - dL, y + sdL).

Expanding terms directly leads to [laal.

- -



[14b]) C = 52 Jxx(x‘ y) - s ny(x, y) =s Jyx(x’ y) - Jyy(x’ v),

at # = y/x = u.

Considering that the horizon of the objective function [2] is infinite, it
is legitimate to restrict our search to the steady-state solution, defined as

- . 13
the solution for which the control limits £ and u are independent of time -,
in addition to being independent of y and x. We assume (Assumprion 8) that
these steady-state control limits are identical to those one converges to as

the horizon T tends to +o. Assuming steady state, it is possible to provide an

14

explicit solution for J{x, y) over the domain x £y 5 ux; this will be done
in the next section.
Inside the cone, the Hamilton-Jacobi equation for J -- reflecting the

conditionally expected drift of the value of J when x and y obey [3] and [&4]

-- is:
115] - ,BJ + Jrx +J ay + J y20'2/2 =0 I < < ux
X y yy =y=E

The boundary conditions applying to equation [15] are those on the marginal

rates of substitution and on the second derivatives written above as [13-14].

1 .

3 See Constantinides (1986, section III) and Dumas (1988, section 3)}. As
a far as the value function J is concerned, we later choose the discount
factor 8 in such a way that J is stationary as well.

14 Outside the cone the indirect utility function is a power funetion
{(with v exponent) of x + sy or y + sX --depending on the side being
considered. This indirect utility function is relevant only if initial
conditions place the portfolio outside the cone. During the later course of
the optimal program, the portfolio will never be positioned outside the cone.

12



4. Analvtical solution for the optimal policy

We exploit the homogeneity of degree v of the value function in order to

state that:

116] I(x, y) = x'1(8),

where 8 stands for #(t), with #(t) = y(t)/x(t). Substituting [16] into
it is found that the I function must satisfy the following reduced

Hamilton-Jacobi equation:

02521 (9)

2 =48 =

[17] §T + 6(a - T)I'(8) +

TN o
[l
o

A
E

where § stands for:
§ = - f + ry.
We reserve till later the choice of an appropriate value for B (and §).

The boundary conditions [11-14] transform into:

, IER{ONRY . _y ICw)
(18a][18b] I' (L) = T Iru) =95 5
S

(19a][19b] I"(&) = Ll;ll_%LL&l é; —_— L%;%l*%éig)s.
1+ <

The characteristic equation corresponding to [17] (obtained, as usual

means of the trial solution: I(8) = Hk) is:

[20] 0 =6 + ki - T - 02/2 )y o+ k2 02/2 ,

11
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where k is an unknown; the solutions (real or imaginary) are called kl and k2.

The discriminant of [20] is:

[21] A=(a-1- 02/2)2 -2 602.

Ve define the critical value SC of § for which the discriminant 4 changes

sign:

If later we are led to choose § < BC, this will cause the discriminant A to be
positive, leading to the roots kl and k2 being real. If, to the opposite, § is
chosen greater than EC the roots will be imaginary.

The general solution form for the unknown function I(f#) is:

[23) 1(6) = C, 8 +C,8°,

where Cl and 02 are two integration constants to be chosen in such a way as to
satisfy the boundary conditions {18, 191.

It may be more convenient to avoid imaginary numbers. So, we perform the

usual groupings defining trigonometric functions to get:

T J



28] 1(8) = 87 (A silv In(8)] + B colv In(D)] ),

where:

and where si[] and co[] stand for the sine (resp. hyperbolic sine) and cosine
(resp. hyperbolic cosine) functions, used when A is negative (resp. positive).
A and B are two new constants of integration.

The borderline case where é = 60, or A =0, -- which is unlikely to obtain

-- would generate a different kind of solution:

[25] I(8) = C1 Bk + C2 In(8) Gk,

where k is the single root of equation [20].

The four boundary conditioms (18a,b, 19a, b] would appear to be all we
need to solve for the four unknowns A, B, £ and u. In fact, as is evident from
the conditions [18, 19] and from the form of the general solution [241, the
corresponding system of equations is homogeneous in A and B. In order to avoid
the trivial solution A = B = 0, we shall have to impese that some determinant
he equal to zero. This will provide a restriction on the as yet arbitrary

constant § (see below equation [28]). The two unknowns A and B will remain

1c



determined only up to an arbitrary factor.15

It is easy, in order to obtain an equation system for 1 and u, to eliminate
A and B between the pair of equations [l8a, 19a] on the one hand and the pair
[18b, 19b] on the other. But the same equation system can be obtained by

substituting the boundary conditions into the PDE. Defining for convenience:

2/s us
[26)] & = — g = —
2 1+ 2/s u 1 + us

we obtain actually the same second-degree equation to be satisfied by €y and
by T

(271 0 =6+ v e(a- 1) + é v(y-1) o 2

We impose, of course, that the discriminant of this equation be positive, as
there can be no physical interpretation to portfolio control limits being
complex numbers,16 and we interpret the lower real root as £y and the higher
one as ¢ . The control limits £ and u are then obtained from £ and £y by

inverting the definitions [26].

5As in the frictionless case, the value of that factor would fall out of
the terminal condition of the finite-horizon problem, as one postpones the
horizon to infinity (see footnote #7). The procedure is not implementable in
the case where transactions costs are present since we do not have an
explicit solution for the finite-horizon problem. Fortunately, the missing
factor is irrelevant for all practical purposes.
16 . o i
This restriction sets an upper bound on the unknown value of §. This
upper bound turns out to be equal to § , defined in [8], which is the value of
§ which applies in the frictionless case. One is not surprised to find that
the value of § should always be on one side of the frictionless value.

10



At this stage, we have been able to determine, for any given value of the
separating constant &, the form of the general solution which depends on two
anknown constants A and B, as well as the corresponding values of 2 and u. We
must now choose § in such a way that it is possible to find A and B. This is
accomplished by writing that the determinant of the linear system made up of
the two boundary conditions [18] is equal to zero. Rewriting [18a, b] in the

form:

2 IR =y I(A) €9 ul'(u) =9 I(w €

we obtain the following entries for this determinant:

(28]
-x si{v In(£)] + v colv () : -x colv In(2)] - v silv ()]
- oy silv An(d)] €y ; - vy cofv in(£)] £,
) si[v fn(w] + v colv fn(w)] i -A eolv fa(w] - v sily n(w)]
- vy silv in(u)] €4 ; - ¥ cojv In(u)] 4

Equating this determinant to zero generally produces Two roots. One of them
is the trivial solution § = EC which should be disregarded.]'7 We have not

proven that equating this determinant to zero mnecessarily produces a second,

17It should be disregarded on the grounds that, when § = § , the solution
ig of the type [25], not [24]. Such a solution would generate a determinant
different from [28]. In order for this other determinant to be equal to zero
precisely for the value § = § , a very special combination of parameter values
would have to be chosen. The analysis of this borderline situation is uninteresting.

1 =¥



non trivial seolution for 6.
The non trivial root can be found by numerical iteration. Figure 1l depicts
the value of the determinant as a function of § for the following numerical

hase case:

[29] a - r =10.05 «vy=-1; 02 =0,04; s =0.99.

This base case in the absence of transactions costs (s = 1) would produce an
optimal policy 6* =~ 1.67 (or a weight on the risky asset equal to H*/(l + 9*)
= 0.625) and a value of 6* - 0.015625. Under 1% transactions costs, the root
is found to be in the imaginary domain (A < 0; §_ < 6 < §%; 5, = 0.01125):

§ = 0.014713; £ = 0.811094; u = 3.848747;

implying a weight in the portfolio allocated to the risky asset fluctuating
between £/(1 + £) = 0.44785 and u/(l + u) = 0.79376, which is a tolerance 2zone
of 27% on the upper side and 28% on the lower side of the theoretical

optimum,

5. Comparative analysis

We now examine deviations from the numerical base case [29] in the dimensions
of increasing transactions costs, increasing risk aversion and increasing

risk.

5.1. Varying the size of transactions costs

Not surprisingly, as is illustrated in Figure 2, increasing the size of

18We choose here the same base case as in Constantinides (1986).

18



transactions costs (lowering the parameter s) widens the region of no
transactions. This is especially true for low transactions costs: even a value
of s extremely close to 1 already causes portfolio control limits appreciably
to separate. The reason for this phenomenon is well known, because the

Brownian motion is an infinite variation process, costs accompanying frequent
rebalancing, even levied at a small rate, would quickly outweigh the benefits

of precisely optimal diversification. The applicable caveat is, of course,
that we have no reason to believe in the first place that asset prices should
follow a process with unbounded variation when trading is subject to
transactions costs.

At all levels of transactions costs, the region of no transactions is
markedly wider than that obtained by Constantinides {1986). The difference
between the two results is shown on Figure 2. Also, there is no tendency for
increased transactions costs to bias the portfolio one way or the other. As is
quite visible on Figure 2, this result contrasts with that of Constantinides
who found that "transactions costs shift the region of no transactions towards
the riskless asset”. Both differences in results can be ascribed to the fact
that, in Constantinides’ model, consumption was taking place along the way,
and not just at the terminal time and, furthermore, that consumption came out
of the riskless asset only. When a steady flow of consumption expenditures
must be met out of the existing cash on hand, there is both less room for
fluctuations in the amount of cash available and more need to bias the

portfolio in favor of cash, than when consumption is postponed to infinity.

5.2. Varying risk aversion

Figures 3 and 4 give two similar views of the way in which increasing risk

Ela)



aversion affects portfolio choices. Basically, there is very little
interaction between risk aversion and transactions costs. Figure 3 provides a
neasure of the width of the portfolio weight band [w/(1 +u), /(1 + £)] as a
function of risk aversion. It is apparent that the width of that band is
nearly constant, in fact slowly decreasing as one scans risk aversions ranging

from 0.4 to 2.7.

A similar message can be read on Figure 4 which controls for the effect of
risk aversion on what would have been the optimal frictionless portfolio (see
equation [91); u/ﬂ* and £/6* are slowly decreasing again as one increases risk
aversion,

These results are qualitatively the same as those of Constantinides (1986).

5.3. Increasing risk

Broadly the same conclusions are reached for an increase in risk as for an
increase in risk aversion. Figure 5 shows that the width of the band [u/(1l
+u), 2/(1 + £)] is approximately constant around the optimal frictionless

value, as 02 is gradually increased.

6. Conclugsion and applications

The exact solution to the portfolio management problem which we have
obtained is in the form of two control barriers. These set the maximum and
minimum allowable degrees of imbalance in the portfolio which will be
tolerated before any action is taken. We have obtained numerical results for
the position of these barriers. The optimal policy identified here calls for
wider bands of tolerated imbalance in the portfolio than had been suggested by

Constantinides (1986). Also, the band is not biased in favor of cash, and the

aFal



more so as one increases transactions costs, as was true in Constantinides'’
model. The comparative static analysis, however, yields conclusions broadly
similar to those of Constantinides. Ours are exact results while previous work
has only produced approximate solutions.

Several major applications and extensions of our exact solution can be
envisaged., The first would be a contribution to the economics of the dealer

function.]'9 The investor we have considered here trades infrequently and in
small quantities. For a price, however, he should be willing to absorb
{positively or negatively) finite chunks of the risky asset when a customer
comes by who desires to make a finite trade. These prices at which he would be
willing to trade finite quantities would be his bid and ask prices. In this
theory the determinant of the bid-ask spread would be purely the instantaneous
volatility of returns, the size of transactions costs and the inventory of the
dealer. A missing determinant, which was examined by Ho and Stoll (1981)

would be the rate of random customer arrivals. There is hope that this added
variable can also be incorporated in the optimization plan.

A second application would be an extension of the application just
mentioned. Ultimately it must pay for the customer to place his order with the
dealer rather than transact directly in the market. Also dealers must be
allowed to trade with each other. Ultimately the equilibrium dynamics of the
price in the presence of frictions must be determined, rather than postulated
as they were here.

A third application of this exact solution would be to price derivative
assets in the presence of transactions costs, when investors adopt optimal

portfolio strategies, in continuocus time. Our objective would be to find the

19On this count see: Treynmor (1981), Ho and Stoll (1981), Treynor (1988).

1



bid- and ask-prices of a European call option in an intertemporal setting.

As has been amply demonstrated by Figlewski (1989), it is not true, in the
presence of transactions costs, that a replicating argument would provide the
right option price.20 Instead it would be appropriate to amalyze the portfolio
strategy of an investor who acts as a trader (and pays transactions costs) on

the primitive asset market and as a dealer in the option market.

Recently, Leland (1985) has proposed a replicating strategy for
option pricing which implies finite transaction cests and still generates
with probability one a payoff equal to that of the option. Unfortunately, the
frequency of portfolio revisions in his model is exogenously given, instead of
being optimally chosen with respect to transactions costs. As a consequence,
his formulation does not match the optimal investment strategy with
proportional transaction costs which has been outlined by Constantinides
(1979,1986). Merton (1988) also studies the problem of option pricing with
transactions costs: he formulates a two-period replicating strategy in a
binomial context, but does not extend it to an arbitrary number of periods
and, consequently, is not in a position to determine the limiting wvalue of the
option price when time is allowed to become continuous. At any rate, pricing
by replication is questionable in the current context: when transactions costs
are present, an exact replication is not generally the most efficient method
of manufacturing an option. Following the purchase or sale of an option, an
intermediary would not typically choose to fully offset that transaction by
means by sales and purchases of the underlying asset. A strategy of full
offset would be unnecessarily costly and would not be pursued. It cannot
consequently provide the price of the option under pure competition; it can
only provide a lower or an upper bound on the price. In our view the option
cannot be priced outside an optimal portfolio-investment framework.
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