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OPTIMAL DYNAMIC TRADING WITH LEVERAGE CONSTRAINTS

I. INTRODUCTION

We solve for the optimal dynamic trading strategy of.an investor who faces
two constraints. The first constraint is a limitation on his ability to borrow
for the purpose of investing in a risky asset, i.e, the market value of his
investments in the risky asset X, must be less than an exogenously given
function of his wealth X(W). The second constraint is the requirement that the
investor’'s wealth be non-negative at all times, i.e., wtzo. We assume that the
investor has constant relative risk aversion A, and that the value of the risky
asset follows a diffusion with drift py+r (where r is the risk free rate) and

. < - 2 . .
per unit time variance ¢~ . In the absence of the first constraint,

X = (p/az)*W/A. We prove that in the presence of the above constraints the

optimal investment is X

I

Min[(,u/az)*W/a, X(W)]. The coefficient a is not in
general equal to A, and represents the extent to which the investor alters his
strategy even when the constraints are not binding because of the possibility
that the constraints will become binding in the future.

If A<l, then a<A, and if A>1, then a>A. Thus, for example, a risk neutral
investor (i.e., A=0) will not lever his wealth to the highest feasible amount
X(W), but instead acts as if he is risk averse at low levels of wealth. The
fact that the shape of the investment opportunity set depends on wealth causes
the risk aversion of the indirect utility function to differ from the risk
aversion of the direct utility function, even at levels of wealth where the
investment opportunity set is independent of wealth.

We present a number of applications of our results. The most direct

application is for an investor who must put up margin for his investment in
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stocks or futures. Another example involves an investor who can borrow on
personal account and use some of the proceeds to invest in the risky asset.

A more complex application involves a pension Fund which has a liability
stream which it must finance out of the capital of the Fund. The Fund cannot
borrow to lever its investment in the risky asset. Furth;r, the market wvalue
of the Fund's investments must not fall below the value of its liabilities.
Black and Jones (1987), Perold (1986) and Black and Perold (1987) have
recommended a Constant Proportion Portfolio Insurance (CPPI) strategy for the
management of a Fund with the above constraints. Their recommendation is
exactly of the same form as the solution to our optimal control problem except
that they de not explain how the investor should choose the proportionality
factor or equivalently the coefficient a. Our analysis shows that the
effective degree of risk aversion a, of the Fund, cannot be separated from the
constraints which impinge on the Fund. In particular, we compute the benefits
to a Fund from using our strategy, relative to the benefit of using a myopic
CPPI strategy which sets alpha equal to A. We show that the benefits from
using the correct alpha are on the order of 25% of the value of the Fund. That
is, it can be extremely costly to choose a strategy which does not adjust today
for the possibility that leverage constraints may be binding in the future.

Another application of our result concerns risky project selection by a
firm subject to borrowing constraints. Consider a project with returns
uncorrelated with the market, and an expected return in excess of the risk free
rate. One might guess that a firm would act in a risk neutral fashion toward
the project and fully lever all of its capital for investment in the project.
Our result implies that the firm will not do so if it cannot be certain that it

can raise new capital in the future. For example a firm with 1$ in equity which
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can borrow 2% at the risk free rate to invest in a project with an expected
return higher than the risk free rate may not borrow the full 2$ because of the
possible inability to borrow 4$ in the future which would be required to keep
its investment in the project a constant proportion of its capital.

Section 2 presents a simple exampie of the risk neutfal case to show how
the leverage and solvency constraints interact to cause the indirect utility
function of wealth to be sufficiently concave as to cause the risk neutral
investor to act in a risk averse manner. The fact that he cannot take advantage
of high levels of wealth by investing the same proportion of wealth at high
levels of wealth, lowers his marginal utility of wealth when wealth rises.
Section 3 sets up the general framework. Section 4 presents analysis, while
Section 5 presents applications and conclusions. Proofs appear in the

Appendix.



IT A SIMPLE EXAMPLE

To understand how leverage constraints affect optimal investment
strategies, consider the example of a risk neutral investor who has access to
the following investment opportunity set. The investor may put money into a
project will double it in the "good event" {(probability .1) or reduce it by 10%
in the "bad event" (probability .9). Hence, the expected return is 1% i.e.,
.1*100%+.9%(-10%). The investor has access to 3 independent draws. His initial

net wealth, W. is $100.

0
Assume that the investor can borrow at a zero interest rate to invest in
the project but must repay his loan with probability one. If we let Xt be the
dollars invested in the project and Wt be the net wealth at time t, then the no
bankruptcy constraint is the condition that Wt+120 if the bad event occurs,

i.e. .9Xt2Xt-Wt, since Xt-Wt is the amount owed at t+l and .9Xt is the capital

remaining if the bad event occurs. Hence the no bankrupcy constraint is

K. = 100 {solvency). (2-1)

It is east to verify the fact that if (2-1) is the only constraint, then the
investor will follow a fully leveraged strategy whereby he always invest 10
times his wealth in the risky project.

Now assume that in addition to (2-1), there is an absolute limit of $900

on how much he can borrow. Hence his investment must satisfy the additional

constraint

X =W_+ 900. (2-2)
t t

Constraints (2-1) and (2-2) can be combined:



7

X< X(Wt) = Min(lOWt, wt+900). (2-3)

It might be conjectured that the risk neutral investor will continue to lever
as much as feasible, i.e. to the point where xt=§(wt). We will show below that
this constrained fully leveraged strategy (CFLS) is not optimal, even for a
risk neutral investor,

Let Vt(W) be the maximized value of the expected utility of final wealth
when there are t periods to go and when current wealth is W. Vt(W) satisfies

the Bellman equation:

Vo (W) = Max {.1vt(W+xt+1) + .9vt(w-.1xt+l)] (2-4)
t+1
subject to Xt+1SX(W).
VO(W)EW.
It is immediate that Xl(W)=§(W), and
1.1W if WwW=<100
v (W) - (2-3)

1.0lw + 9 if W=100,

that is, with one period to go, he follows the CFLS strategy. However, this
strategy has caused his indirect utility function to become strictly concave as

indicated in (2-5) and Figure 1. The fact that he cannot take advantage of high

levels of wealth by investing a constant proportion of wealth in the project

lowers his marginal utility of wealth when wealth rises.

A slighly tedious but direct caleculation shows that XQ(W)=§(W), i.e. the
CFLS is optimal when only two periods remain. That is, even though Vl(W) is

concave, it is not sufficiently concave to cause the investor to deviate from
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. 1. .
the risk neutral strategy.  Direct computation shows that

1.21w if W =< 100/11

L.111W+.9  if 100/11 < W < 100
V(W) = (2-6)
1.093W+2.7 {if 100 < W =< 1900/9

1.0201W+18.09 if 1900/9 < W.

It can be seen from Figure 1 and (2-6) that VZ(W) has become even "more
concave" that Vl(W). The fact that high levels of wealth cannot be
proportionally invested in the risky asset (because of (2-2)) leads marginal
indirect utility to fall.

We now show that V2(W) is sufficiently concave that X3(W)<§(W) for some W,
i.e. CFLS is not optimal when 3 periods remain. Take W=100, then from (2-3),
following CFLS would involve setting X3(100)=1000. We show that this is
suboptimal by showing that his objective is decreasing at ¥X,=1000: With 3

3

periods remaining, X3 is chosen to maximize
- = 2-7
1V, (100+X,) + .9V, (100 1Xg) = Hy(Xy). (2-7)
Note that VZ(W) is differentiable at W=1100 and W=0. From (2.6),
Hé(lOOO) = (.13(1.0201) + (.9)(-.1)(1.21) = -.00689. (2-8)

It follows from (2-8), that there ig an X3 less than E(W) which impreves upon

b 2
X3=X(W).

1 . .

It can be shown that this statement is true for any parameter values,
i.e. if the investor is risk neutral the CFLS strategy is optimal when there
are two periods remaining.

2 . . . . . . .

Dybvig (1988} offers an Interesting analysis of inefficient dynamic
strategies. In particular, he show that insufficient diversification over time
leads to inefficiency. Dybvig presents a general criterion for a strategy to be



3. THE MODEL

A. The investment problem:

We consider the decision problem of an investor with an horizon of
investment of T years and who seeks to maximize the expec&ed utility of his
final wealth. The investor can distribute his funds between two assets. One
asset (e.g. a bond) is riskless with rate of return r. The other asset is a

stock with value P.- We assume that:

ASSUMPTION 1: dp /p_ = (p+r)de + adb (3-1)

where p and ¢ are positive constants and bt is a normalized brownian motion. We
assume that there are no transaction costs involved in buying or selling these
financial assets.

The investor's strategy must satisfy two constraints. First, his final
wealth must be non-negative. Second, the dollar amount Xt invested in the risky
asset at t, must be less than or equal to an exogenous function E(Wt) of his

wealth Wt at t. We assume that:

ASSUMPTION 2: X(W) = k(W+L) (3-2)

where k and L are non-negative constants.
The formulation above is general enough to encompass several interesting

examples. For instance, if the investor has access to a fixed credit line L,

optimal for some utility function in a frictionless market. By contrast, our
goal is to derive the optimal dynamic strategy for a particular utility
function in the presence of leverage constraints. Nevertheless, his examples of
inefficient strategies are similar in spirit to the example presented herein.
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then i(wt):wt+i' If the investor needs only to put down a certain fraction f of
his stock purchases and can borrow the remaining at the risk free rate r, then

KW )=(1/DW .

We will use the following notation: Wt is the wealth to invest at date t.
X(Wt) = k(wt+f) is the maximum dollar amount that can be invested in the risky

asset at date t. Xt is the actual amount invested.
With this notation, the two constraints above can be written as:
W.o=0 for all t, (3-3)
X, < i(wt) for all t. (3-4)

The dynamics of Wt are given by:
= 3-5
dwt W dt + pX, dt + 2 dbt. (3-5)

The objective of the investor is to maximize the expected utility of the final
wealth, Eu(WT). We assume that the utility function exhibits constant relative

risk aversion:

ASSUMPTION 3

U(WT) = T WT for some A>0, A=l.

The logarithmic utility (A=l) will be analyzed as a separate case in section 4.

B. Conditions for optimality:

The investor maximizes Eu(WT) subject to the dynamics {(3-5) and to

constraints (3-3) and (3-4). Let J(W,t;k,L) be the value function, i.e. the
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supremum of the expected utility that the investor can achieve given that his
wealth at time £ is W and that i(-) is characterized by the parameters k and L.
Let X(W,t;k,f) be the dollar amount invested in the risky asset as a function
of wealth, time and of the parameters k and L.
Assuming that the value function, J(+) is twice différentiable in W and
once continously differentiable in t, J(+) satisfies the partial differential

equation below, which is known as the Bellman equation:

2
a 2
0=J + rWJ, + max { X I+ —— X7 J ) (3-6)
t W X<X (W) w2 WW

where Jt, JW’ JWW denote the partial derivatives of J. To understand (3-6),

note that J(W,t;k,L)=max E.J(W
X

t+At,t+At;k,L). Therefore,

0 - L max E_[J(W ,t+At; Kk LY-J(W, t;k,L)].

At X t t+At

If we take the limit as At=+0 of the right hand side then we obtain the drift of

J(Wt,t;k,i), and thus (3-3) follows. J must also satisfy:

- 1 1-A
) _ 3-7
J(W,T;k,L) T2 Vr , (3-7)
J(O,t:k,L) = 0 if a<l (3-8)
lim J(W,t;k,L) = -= if A>1. (3-9)
W-0

Without the cash flow constraint thi(wt), the investor’s problem reduces to
the standard problem studied by Merton (1971). Proposition 3-1 summarizes the

results of Merton. Merton proved that the optimal strategy consists in
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investing a fixed proportion of the wealth in the risky asset. This proportion
(u/Aaz) increases when the excess return on stocks over the risk free rate, u,
increases, when the volatility ¢ decreases and when the relative risk aversion

A decreases,

Proposition 3-1. (Merton 1971) If there is no credit constraint (formally

ﬁsm), the optimal investment is:

X = & W, (3-10)

The value function is:

1-A
Py = oMTE) W with (3-11)
1-a
2
no= (@ o+ o) (1. (3-12)
207 A

If i(W)=k(W+E)2 (p/AoZ)W, then the leverage constraint (3-4) is not binding and
the solution to (3-5) is the solution to the unconstrained problem (i.e. (3-

10)-(3-12)).

ASSUMPTION 4: We assume in the sequel that the leverage constraint is binding

for at least some values of W i.e:
2 3-
g > Aok (3-13)

Since X(.)=k(W+L), it follows from (3-10) and (3-13), that the cash flow
constraint (3-4) will be binding, typically when the wealth of the investor is
large. The inequality (3-13) will hold if the expected return on stocks in
excess of the risk free rate 4 is large, if the volatilty ¢ is low, if the

availability of credit is poor or if the risk aversion of the investor is

small.
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In the presence of leverage constraints, one natural candidate for an optimal
strategy is the myopic strategy where the investor invests the minimum of two
quantities: (a) what he would have invested ignoring the leverage constraint
and (b) the maximum level of investment E(W). Formally the myopic investment

strategy is defined by:

X YOPIC ()~ ninf (u/ac®IW, X)) = min[(u/act)W, k()] (3-14)

When following the myopic strategy, the investor ignores the cash flow

constraint until it is binding. We will show that the myopic strategy is not
optimal in general: The optimal investment while the credit constraint is not
binding is affected by the fact that the credit constraint may be binding in
the future. However, as shown below, when L=0, the myopic strategy is indeed

optimal, because under Assumption 4, the leverage constraint is binding for all

W.
Proposition 3-2. If L=0, the optimal investment is

X(W,t;k,0) = kW, (3-15)
the value function is:

A(T-t) W

J(W,t;k,0) = e with (3-16)

A = (1-4) (r+pk-

k7). (3-17)

Proof: J(W,t;k,0) defined above satisfies the Bellman equation (3-6) and the

boundary conditions (3-7)-(3-9) s

The next Proposition provides useful comparisons between J(W, t:k,0), J7(W, )

and J(W,t;k,L).
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Proposition 3-3. Let J(W,t;k,i) be the value function if the cash flow

constraint is given by X(.)=k(W+L):
1] J(W,t:k,0) < J(W, 65k, L) < IO, 6) (3-17)

i1] J (W,t;k,L) < J (W+L,t:k,0) (3-18)

Proof: (3-17) follows from the fact that the set of feasible strategies
increases when i(.) increases, W being constant.

(3-18) follows from the fact that a investor with wealth W+L and
constraint X(W)=kW will have a larger feasible set than a investor with wealth

W and constraint i(W)=k(W+i).///

Proposition (3-3) implies that the expected utility, J(W,t;k,L) is bounded even
if the investor is risk neutral (note that when A=0, J° is infinite while
J(W,t:;k,L) is not by Proposition (3-1)). Furthermore, from (3-17) and (3-18) it
tollows that the 'growth rate’ of J(+) as (T-t) goes to infinity is A, the
"growth rate’ of J(W,t:k,0). To be precise, we define V(W,t;k,L) as the

"discounted" value function when t years are left to invest i.e.

V(W,t;k,L) = J(W,T-t;k,L) e AT (3-19)
where A is defined by equation (3-16).
From Propositions 3-2 and 3-3, if follows that:
1-A - 1-a
W L T (W+L) 3-20
T S V(W,tik,L) < T A ( )

Hence V is bounded independently of t. The growth rate of the expected utility

is independent of the constant L and can therefore be computed by setting 1-0
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(Proposition (3-2)) We have not been able to compute the discounted value
function V(W,t;k,f) (unless f=0) associated with the finite horizon case.
However, we have been able to do so for the investment problem with infinite

horizon, i.e. under the definition

V(W:k,L) = 1lim V(¥,t:k,L). (3-21)

t—w

Proposition 3-4. V(W;k,i) exists and is continuous for W>0.

Proof: (See appendix A).

The solution to the infinite horizon problem is given in the next Section.
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4. A STATIONARY PROBLEM

The Beilman equation for the finite horizon probiem is a partial
differential equation with two boundary conditions. As far as we know, there is
no explicit solution to this equation. Furthermore, the fact that the problem
is time-dependent makes it difficult to analyze. The key idea of this part is
to consider a limiting problem "far away" from T, by computing V(W:k,L) (see
proposition 3-4}. The limiting problem is time- independent and therefore it is

easier to solve.

A. Tong-run criteria.

Suppose that the objective of the manager is to maximize:

1-A

-t wt
liminf E [ e _ } (4-1)

1-A

L=
subject to:

L 4-2
W=z 0 and X, = k(W +L), (4-2)

where X is given in (3-17). The objective (4-1) deserves some comments. We are
considering a investment problem where the investor maximizes the expected
utility of final wealth and where the horizon is infinite (i.e very long). The
term e T ig a scaling factor which guaranties that the limit in (4-1) is not
trivial (i.e is not 0 or infinity). Note that for every finite horizon, the
presence of the scaling factor e-At does not affect the optimal policy. Another
possible interpretation, in the case where the investor is acting on behalf of
another agent, is that the investor is evaluated according to his long-run
performance compared to hisg expected long-run performance with a simple

"proportional" strategy (X=kW). Indsed, if the investor follows the
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proportional strategy, his expected performance is:

1-A 1-A . (see proposition 4-2)

Criterion (4-1) is equivalent to maximizing the ratio of expected utilities:

Expected utility under strategy X(W)
| Expected utility under strategy kiW|

i1.e. maximizing

wi'A
"R
liminf (4-3)
- yL-A
|eAt 0 |
1-A

Let R(W;k,L) be the value function associated with the stationary problem
(4-1). R is the value function associated with a well defined optimization
problem and can be interpreted that way. However, the following proposition
states that the stationary problem is the limit of the non stationary one. This
gives another interpretation of R: R(W:k,L) is the limit of the finite horizon

"discounted" value function, V(W:k,L).

1-A Tyl-A
sy . W I (W+L)
Proposition 4-1. i] v < R{W;k,L) < 1-A
ii} R(W;k,L) = V(W;k,L) = 1lim V(W,c;k,L)
o

Proof: see appendix B.

We now derive the Bellman equation associated with problem (4-1} and derive

sufficient conditions for optimality.
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B. The Bellman equation:

Let V(W;k,f} be the value function. By the optimality principle:
VO D) = max E [V kD) | W= 1, (4-4)

for any stopping time 7.
] 2, .
By assuming that V is twice continuously differentiable (C°) in W and by

letting 7 go to zero, (4-4) yields the Bellman equation:

_ . - 1 2.2 =
. - . . L . 4-5
A V(W:k, L) rW Y (W;k,L) + max {_fx Ve(Bk L) + —= o X7V Wk, L) ) (4-5)
X<k (W+L)

where Vw and VWw denote partial derivatives of V.

Since problem (4-1) is stationary, V() is time independent. Hence, the Bellman
equation is an ordinary differential equation as opposed to a partial
differential equation. The optimal investment in the risky asset is:

BV (Wi k, L)

aszw(w;k,i>

X(W:k,L) = min { - ¢ k(W+L) } (4-6)

The next proposition gives sufficient conditions for a function to be the value

function.

* —
Proposition 4-2. Let V (W;k,L) be a function defined for W>0 such that:

*
i] V is twice continuously differentiable in W.

*
ii] V satisfies equation (4-5).

1-A =.1-A
‘s W * = (W+L)
iii] Ta— =V (%kD) T
iv} If Wt is the wealth process under the investment (4-6) then:
W +i)l-A l-a
lim ¢ py —E 2 0t ) _,
1-A 1-A )
£t
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Then V is the value function V associated with problem (4-1) and X(W;k,L)

defined by (4-6) is the optimal investment,

Proof: (see appendix C).

— 7. - - 1-A
(Wt+L)1 A wtl A L
. - . —_ i _ d A>
Remark: If A<l, then { 1-A 1-a } is less than 1A an 0 so

{iv) is a trivial condition.

We now solve for the optimal investment X(W;k,i).

C. Optimal investment

From equations (4-6), it follows that the optimal investment will be equal
to (p/az)*Vw/(-wa) in the unconstrained domain U defined by
)
B W -
U= 1{ W such that — —— < k{W+L} }
2 -V
o WW

and to k(W+i) in the constrained domain € defined by

v
C = { W such that —% —VW— > k(W+L) .
a

*
In Proposition 4-3 below, we show that U is of the form 10,W [, i.e. the
leverage constraint in not binding for low levels of wealth and binding

thereafter. Furthermore, we show that the value function V exhibits constant

relative risk aversion in U and that

l-a
V(W) = KO i in W belongs to U (4-7)
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where KO is a positive constant and a is the positive root of the second degree

equation:

r o’ + e £y o - £ o o, (4-8)
2
2c 2g

2
Proposition 4-3. Assume that the value fuction is C°.

*
i) The unconstrained domain U is an interval ]JO,W [ and in U, V is of the type

l-a
K0 f—a where a is the positive root of equation (4-8).

ii) The optimal investment is:

X(W) = min [ Lz W, k(W+L)] (4-9)
aag

iii) o lies between 1 and A.

iv) For each W, X is larger (respectively smaller) than the myopic strategy if

A 1s larger (respectively smaller) than 1.

v) X increases with u; X decreases with A and o.

vi) X increases with r if A>1 and decreases with r if A<l.

vii) If A=0, then o>0 which implies that even a risk neutral investor will not

invest k(W+E) In stocks for low values of W.

Proof: see appendix D.

We have not been able to prove that the value function is indeed twice
continuously differentiable for any value of u, o, r and A. Proposition 4-3°

below lists the cases where smoothness is rigourously proven.
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. 2
Notation: § = u/ke” - A.

Proposition 4-3'. Assume that r=03. If A>1 and A+26>A6 or if A<l then the value

function is 02
Proof: see appendix E.

D/ The cost of myopia

In Proposition 4-3 above, we have shown that the myopic strategy is not
optimal. It is interesting to know "how bad" the myopic strategy is. For this
purpose, let H(W:;k,L) be the long-run performance if the manager follows the

myopic strategy. H is a solution of the differential equation:

.2
WO+ _H oyt Ho if W< (4-10a)

A = rW +
HW 2A a

2
WO+ uk(BDH, + —%wkz(w+i)2 Ho if wh (4-10b)

AH

2 —
where W is the "switching point" under the myopic strategy [(u/Ac )sz(ﬁ+L)]

- 2T (= £ .
5 2

To simplify the analysis, let us assume that r=0 in which case an explicit
solution to (4-10) can be given (see appendix D). We know that H<V (since the
myopic strategy is not optimal). To measure the improvement of our strategy

over the myopic strategy, let us define the function ¢:

The case r=0 is not as restrictive as it sounds. This case will have a

natural interpretation in the portfolio insurance problem (see part section
54).
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V(W;k,L) = H(W(1+4(W/1)) k., L) . (4-11)

Thus the investor is indifferent between starting with wealth W and
following the optimal strategy and starting with wealth W(l+¢) and following
the myopic strategy. Since V and H are hemogenous with reépect to (W,L), #(.)
is a function of W/L. The values of ¢ for different levels of risk aversion A,
expected excess return g, standard deviation ¢ and level of W/L are displayed

in the following table.

INSERT TABLE 1

The table above shows that taking credit constraints into account
substantially improves the performance. The extent of the improvement is a
decreasing function of the risk aversion A and of the ratio W/L. For instance,
in the extreme case where the investor is risk neutral, the myopic strategy
requires him to follow a stop-loss strategy that is to invest k(W+L) in stocks
and to switch to bonds whenever his wealth reaches its lower bound 0. Our
results show that the stop loss strategy is too risky especially when W is

small compared to i.4

See Dybvig (1988) for another interpretation of the inefficiency of the
stop loss strategy.
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E/ The logarithmic case

The case of the logarithmic utility fuention (u(W)=LogW) can be studied as
1-A
the limit of the constant relative risk aversion 1A when A tends to 1. It

can be seen from equation (4-8) that as A tends to 1, a tends to 1 and hence
the optimal strategy defined by equation (4-9) converges towards the myopic
strategy (a»l). The optimal strategy for A=1 can also be derived by a direct

analysis of the logarithmic case.

Let us assume that u(W)=LogW and consider the following optimization

problem:

max { liminf E(—% Log WT)} (4-12)

L=
subject to dynamics (3-5) and to constraints (3-3)-(3-4).

Let F(W;k,i) be the value function of problem (4-12). Again, we assume that

2 . . ] . ..
uw>ko”, i.e. that the credit constraint is binding.

2
Lemma 4-A: T(W;k,L) = r + uk -kz—%— = A if w0. (4-13)

T'(0;k,L)

-0,

Proof: By the same argument as in proposition (3-3), we have:
T(W;k,0) < I'(W;k,L) < T'(W+L;k,0).
I'(W;k,0) is the long run performance of the propertional strategy X=kW, i.e.:

LWk, 0) = lin — E Log We = A+ lin —%— Log W = A (if W>0). ///

T—ew T—w

We now consider the following problem which is the version of (4-1) in the

logarithmic case:
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Z(W;k,L) = max { liminf E( Log W - AT) b . (4-14)
T

L+

subject to dynamics (3-5) and to constraints (3-3)-(3-4).

Lemma 4-B below extends the results of proposition (4-1) to the logarithmic

case,

Lemma 4-B: 1i] Log W = Z(W;k,L) < Log(W+f).

ii] Z(W;k,L) = lim {(J(W,T-t;k,L) - At} where J(W,T-t;k,L) is the

t-w
value function of the finite horizon program.
Proof: The proof is the same as for proposition (3-4) and (3-1). ///
By the optimality principle: Z(W:k,L) = max ( E (Z(W ;k,L) - Ar ). By letting r
T
go to zero, and by assuming that Z(W:k,L) is C2 in W, we get the Bellman
equation:

A=W Zw(w;k,i) + max {pX Zw(w;k,f) P S X

X<W+L 2

2 kL ;
ZW(W,k,L)} : (4-15)

Propositions 4-4 and 4-4' below extend the results of proposition 4-3 and 4-3°'

to the logarithmic case.

Proposition 4-4. If the value function of program (4-3) is Cz, then the Myopic

investment strategy is optimal.

Proof: See appendix D,

Proposition 4-4': If r=0 then the function defined by (4-5)-(4-8) is the wvalue

function of program (4-3). The Myopic investment strategy is optimal.

Proof: See appendix E.
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5. APPLICATIONS

A. Optimal Tnvestment for a Leveraged Constrained Pension Fund:

One direct application of our model is the portfolio choice of an
institutional investor subject to: (1) a prohibition agaiﬁst borrowing for the
purpose of investing in the risky asset, and (2) subject to meeting a capital
requirement to finance exogenous liabilities. For instance, it is not unusual
for the manager of a pension Fund to face the following two constraints. First,
the Fund has to make some deterministic payments to the participants of the
Fund without going bankrupt. These payments are composed of a flow Ve (0=t=T)
and of a one shot payment Y_ at date T. Second, the Fund cannot borrow to

T

it cannot invest more than the

T

finance its investment in the risky asset i.e.

value of the fund in the risky asset.

Notation: Ft is the value of the stocks and bonds owned by the fund at t.

Lt is the present value at t of the manager's future liabilities, i.e:

T
L = J v er(t_s)ds + Y er(t_T) (5-1)
t s T
t
W_=F_~- L 1is the net wvalue of the fund.

X_ is the dollar amount invested in the risky asset.

With this notation, the capital requirement and the borrowing constraint can be

respectively written as:

W= 0 for all t, (5-2)

X < F for all t. (5-3)
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The dynamics of Ft are given by:
= - 5-4
dF (rF, y.) dt + uX_ dt + oX_db . (5-4)
In addition, we have:

FT(+) = FT(_)- Yo (5-5)

where FT(-) (respectively F refers to the fund’s value before

T(+)

{respectively after) the payment Y_. Assuming that the objective of the manager

T
is to maximize the utility of the final value of the fund at T(+), we can

redefine the problem in terms of Wt, the net value of the fund. The dynamics of

Wt are given by

- 5-6
dwt W dt + pX_dt + aXtdbt. ( )

By definition WT(+) = WT(-)' The manager maximizes:
j : 5-7
Eu(W,) subject to: W20 and X <W +L . (5-7)

The results of Section 3 can be applied to solve (5-7) explicitely (when T is

very large) for two interesting cases:

case 1: yt=§; YT=§/r. In this case, the Fund pays the interest §=rYT as a flow
and the principal YT at the end. When T is very large, the liabilities are
a perpetual payment, one interpretation being a constant volume of pension

payed continuously. In this case, Lt=f. Hence, this case can be dealt with by

using our model for k=1, 1>0.

- rT
case 2: yr=0, YT=Ler . In this case, the pavment is made onlv at T. One
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interpretation is that the Fund capitalizes an annuity at time 0 which begins
. . - rt i
payment at time T. In this case, LtzLe . We can see, by redefining the

variables to eliminate r, that case 2 is =a particular case of case 1. Indeed,

-rt rt

' . [ - . f— -re : W’ .
let Lt Lte ; Wt Wte ; Xt Xte . The dynamics of ¢ are:

' ' ' 5-8
vy uX7 dt + oX/ db . (5-8)
The constraints imposed on the Fund

' ' ' 5-9
X, < W+ L and W = 0. (5-9)
Hence this case can be dealt with by using the model in part 1 for k=1; L>0;

r=0.

B. Portfolio Insurance:

The constraint discussed above will "insure" that the value of the fund Ft
does not fall below Lt' It thus solves the leveraged constrained optimization
problem for a fund desiring to expose its capital to the risky asset but limit
its downside risk. It is a formalization of the Constant Proportional Portfolie
Insurance strategy suggested by Black and Jones (1987), Perold (1986), and
Black and Perold (1987)5. Grossman (1988) has argued that this "insurance" will
not be feasible when a significant fraction of the population attempts to use

it. In particular, the assumption that the volatility ¢ is constant , will be

inconsistent with general equilibrium if such strategies are widely adopted.

See Brennan and Solanki (1981) for the general form of optimal portfolio
insurance contracts,
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B:Investing on Margins:

The constraint X<k(W+L) is faced by most investors. If an investor's omnly
source of capital is his portfolio wealth, then L=0 and 1/k represents the
margin rate. On the other hand, the investor may also be able to borrow against

his human capital using an unsecured loan with a credit line denoted by L/k.

C: Constrained Capital Budgeting:

An implication of our analysis is that a firm with the cpportunity to
invest in a project with no market risk wiil not necessarily do so even if the
project has an expected return higher than the risk free rate, and even if it
has enough capital to make the investment.

To see this, consider the following example: A manager has access to a
sequence of projects with a one year horizon. All projects undertaken in the
same period are fully correlated: Let it be the return on the t-th period
project. If the manager invest Xt dollar in the t=th period project, his payoff
is Xtﬁt' We assume the ﬁt's to be i.i.d. so that projects undertaken at
different dates have independent payoffs.

Suppose that the value of the firm’s debt is D, and the value of the
firm's equity is E If the firm cannot issue new securities, our result implies
that the value maximizing size of the project as a function of the value of the

equity is:

X(E) = min(sE, E+D)

where s=u/a02; 4 is the expectation of E(ﬁt); 02

is the wvariance of ﬁt and a is
given by equation (4-8). When E is small, X(E)<E+D and the firm will not invest

in high yielding projects even though it has the current capital to do so. In

effect, it is keeping a reserve to finance investment in future projects.
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Similarly, a bank facing a fixed limit to the amount it can borrow from
the Federal Reserve Bank will not borrow the maximal amount even if it could
make investments with a higher expected return than the risk free rate. In
particular if the deposit/equity ratio is high, the bank will not make all the
loans which are feasible, because it is effectively risk éverse. The risk
aversion arises out of its inability to fully benefit from the state of nature
in which the loans have a high payout, since it will not be able to lever its

wealth for reinvestment.
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6. CONCLUSION

We have provided explicit solutions to optimal portfolio problems
containing leverage and minimum portfolio return constraints. Numerical
solutions show that it is possible to substantially improwve upon the myopic
strategies which ignore the constraint until it binds. The improvement is
associated with the fact that an optimal portfolio deviates from the myopic
proportion (u/Aoz) at wealth levels below the point where the leverage
constraint is binding. This deviation occurs because the leverage prevents the
indirect utility function of wealth from "inheriting" the constant elasticity
of the direct utility function. The cash constraint causes risk aversion to
shift towards one.

An interesting fact is that, under an optimal policy, the leverage
constraint causes the investor to behave as if had a constant risk aversion o>0
in the region where the leverage constraint does not bind {(and this region
exists even if A=0). Hence, even a risk neutral investor will not choose a stop
loss strategy (where he invests all of his wealth in the risky asset and sells
only when his wealth hits the floor).

In the case where A<l, the investor behaves in a more risk averse manner,
when he uses his human capital (i.e. unsecured) loans to finance his investment
in the risky asset. An implication of this magnified risk aversion is that
margin restrictions on borrowing to finance equity investments increase the

required rate of return earned by equity in general equilibrium.
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APPENDICES

APPENDIX A

Proof of Proposition 3-4: The discounted value fuction V(W,t:;k,L) has a limit

when t tends to infinity. Furthermore, this limit is a continuous function of W

for W>0.

- Step 1: V(W,t;k,L) is non decreasing in t. To see this, let t and h

be two non-negative numbers. By the optimality principle:

J(W,T-t-h;k,L) = max E[J(WT_h.T'h;k,L)|WT_t_h=W}

Which implies that:
. = _ . T _At =

VW, tthik, L) = max E{V(W,  ,hjk,L)e Vp ™

By proposition 3-3:
1-A
- “roh e L
U, tihik, D) > max E( — Vg o) = VO, Tk, D).

- Step 2: Since (3-20) shows that V(W,t;k,L) is bounded, it follows

that V(W;k,L)=lim V(W,t;k,L) exists for W>0. Futhermore V(W;k,L) is a concave

L0
function as pointwise limit of concave functions. Thus V(W:k,L) is continuous

for W>0.///
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APPENDIX B

Proof of proposgition 4-1:

Part (i) follows immediatly from (3-20). We now demonstrate part (ii).

- Step 1: By investing X=kW, the investor gets an expected long run

1-A
Yy
1A

1-a
utility of

, hence R(W;k,f)z

- Step 2: R(W;k,f)sV(W;k,i). Indeed,

1-A
= -t wt
R(W;k,L) = max liminf E (e 1A } s.t., (3-23-(3-4).
T
Hence:
_ e W _
R(W;k,L) <= liminf max E {e N )= V(W;k,L).

=0

- Step 3: R(W:k,L) = V(W,t;k,f) for every t. Indeed, by the
optimality principle:

1-4a

R(W;k,i) = max E[e-At £

R(Wt;k,i)|wo=W]. Since R(Wt;k,f)z we get that:

1-4 7

R(W;k,L)=V(W, t:k,L).

_1-A
(W+L)

- Step 4: From step 2 and step 3, R=V which yields R(W;k,L)< 1-A
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APPENDIX C

Proof of proposition 4-2,

* 2 . . .. . .
Let V be a C° function satisfying the conditions of proposition (4-2); define

* - * —
V (0;k,L)=1im V (W;k,L) and

W-0
%
X(W) = min(k((W+L): Eﬁ ). (C-1)
Ie) _VWW

Let y(W) be a feasible control OSy(W)sk(W+i) and let Wt be the wealth process

under control ¥y.
== 1 _2
th = rWt dt + py dt + ay dbt if W >0, (C-2)

* -At
Let ht=V (Wt)e . By Tto’s lemma:

% -At * At 2 ]
= . >0
dht Aht dt + Vwe dwt + 1/2 wae o'y dt if W . >0,
* * * * 272 -At * At
dht = {-AV + rwa + uVWy + 1/2 wa gy ) e dt + ¢ Vi, e y dbt .{C-3)
Hence since V. satisfies the Bellman equation (3-5):
* =Xt
C-4
dh, =0V e y(W.) db_. (C-4)
This yields:
* - * - -

V (W;k,L) = E(V (Wt;k,L)e At|w0=w1 (C-3)
where the inequality in (C-5) is replaced by an equality if y(.)=X{(.). By
condition (iii):

1-aA
* = Wt -At
V(Wik,L) = M Bl —;5— e | Wy=W1. (C-6)

t—4co

* *
So V. is greater than the value function V. The last thing to show is that V =V

- - * T
i.e. that the investment strategy X (C-1) generates a performance of V (W;k,L).
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By (C-5) and condition (iii):

wi-A At * = (Wtﬂ“)l_A -AL 7)
— e = : _— W =W) . (C-
E( ——; e T | Wgmin= Vi(Wik,1) = E( 4o e "7 W W)L«
(C-7) and condition (iv) yields:
1-aA
Vi w;k,I) - lim E Y Ay
( ] ’ ) - im [ l'A 0_ .

t=m
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APPENDIX D

Proofs of propositions (4-3) and (4-4).

Let V be the value function, we first prove the following lemma.

Lemma D1: lim V(W:k,L)

i

0 if a«,

w=0

lim V(W;k,L) = -w if A>1,

W-0

lim Z(W;k,i) = -w (logarithmic case).
w0

Proof: Let t be a positive number. Let X(+) be a feasible investment strategy.

Let gX(W) denote the first time 7 such that wT=O given that W.=W and that X(-)

0

is followed.

-Ainf(t,fx)

V(W:k,L) = sup E[¥( k,L)e ] over X(s) (D-1)

Winf(t,gx);

where V(W;k,L) = V(W:k,L) if W>0 and

i

w(W) if  wW=0.
If u{0)=0 then V+(O;k,i)=limV(W;k,i)20 (from proposition 3-11]). Hence letting
W=0
i + - -At -
WO=W go to zero in (D-1) we get V (0;k,L)<e ~ 'V (0:k,L) and therefore
v (0:%,1)-0.
If u(0)=-« then, since V(W;k,L)>-» for W>0, prob[W,

inf(c,¢0)
inf(t,gx):t. Therefore if V+(O;k,i)>-oo then by letting W go to zero in (D-1) we

=0|WO=W)]=O. Thus,

get that V+(0;k,i)=e_ltv+(0;k,f). Since V+(O;k,f) must be negative {proposition

3-1i}), we have a contradiction. As a conclusion V+(O;k,i)=u(0).///



37

Lemma D-2: If the value function is Cz, then the investment strategy given by

(4-9) is optimal.

Proof: i/ A general solution to the Bellman equation can be given in U (the

unconstrained domain). Indeed when:

- _VW < k(WD)
g WW
v
AV =r U+ _EE — -
20 WW

Let us define the variable Y such that (see Karatzas et al. (1986) for a

similar transformation):
Y =V ) (D-2)

W(Y) 1s a smooth function of Y when W belongs to U. Using that

V(9 W) - e yot (D-3)

we can rewrite the Bellman equation:

2
AV(W(Y)) = r W(Y) ¥ %+ £ 5 % yi-@ WY . (D-4)
2

Differentiating (D-4) with respect to Y yields the linear equation below:

2 i 5 W 2
0 =4 a(r - £ — . s & WY) - ra” 2o+ £ yun(y) (D-5)
2 2 Y 2
20 20 2
using (4-8), the general solution to (D-95) is:
W=RY+RYS (D-6)
1 2
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2r0202

with: ¢ = (D-7)

where R1 and R2 are constant on any connected subset of U.

ii/ U contains some non empty interval ]0,W[. Otherwise, lim X(W)zkL and in a

W-0
neighbourhood of 0, V satisfies the differential equation:
= 02 2 =2
= A D-8
AV = xr WV o+ pk(WHL) Vot VK (WHL) (D-8)
e
If A>1, and lim X(W)>0 , E 1A © = -o, The same reasoning holds in
the logarithmic case.
If A<l then 1im V(W) = 0 (from lemma (D-1) and by (D-8),
W-+0
Vi L
lim X(W) < lim pz v < 2 which yields a contradiction.
W=0 W-0 leg W
~ P 2 -1
Hence, in an interval ]0,W][, W=R1Y and X = p/aazw, Therefore W=L{{po /ka)-1] ~.
iii/ We now prove that U=]0,W[. Per absurdum, suppose that there exists an
interval JW;,W,[ included in U such that (X(W,)/k)-W =(X(W,)/k)-W =L. We
define: Y1=Y(Wl) and Y2=Y(W2). For Y in the interval ]Yl’Y2[’ the following
relationships hold:
o ] -§ -
() - — { RiY - €R,Y } , (D-9)
ao
X(Y) Iz i -§
L E Y - - - D-10
T(Y) ” W(Y) = Ry ( 5 1) v Ry (—5—&+1) YY", ( )
foles ao
2 2

V(Y) = "%‘ { Ry (r + L =) Y - R, (1 +¢€ 72—3) y o€ } , (D-11)
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()<L | (D-12)
B(Y)) = w(Yz) =L . (D-13)

If Rl>0 and R220 then ¥ is increasing which contradicts (D-13).

If RISO and R220 then U<0 which contradicts (D-13).

If R;>0 and R,=<0 then X(W)zp/a02W2k(W+f) from the previous section. Hence
(D-12) 1is violated.

If RISO and R250 then W is non-positive.

In all cases, we have a contradiction which implies that there is exactly one

switching point between U and C.///
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APPENDIX E

Proof of propositions (4-3'Y (4-4'Y: the case r=0.

When r=0, it is possible to sclve explcitely for the value function V of
problem (4-1). The method is to "guess" a solution and to show that the
conditions of the verification theorem (proposition (4-2)) hold. First, we know
that if the value function V is twice continuously differentiable, then the

* . . .
unconstrained U is an interval ]0,W [ and that in this interval V is of the

form
wl-a
= i E-1
1Y KO 1o with ( )
2
7
2 2
o - . 2a _ (A + 5)2 (E-2)
e N A+ 26 + 6§
2a

X(W;k,L) = 4+ y -k W (E-3)

1t oo A+d L. (E-4)

kaa 5 + 62

Furthermore, when r=0, the general solution of the Bellman equation in C is:
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(w+i)1'A
1 1-A

V(W:k,L) = K + K, (w+i)'(A+25)

From Proposition 4-1, Wl-A/l—A < V(w;f,k) < (W+f)1-A. Hence:

K, = lim (1-A)V(w;i,k)/w1'A = 1 and K,=0.

W

(E-3)

In addition, if V is twice continuously differentiable then by continuity of V

*
and V., at W :

W
26 + 1 , (w*+'£)'A
Ky = 5 + 1 = % o
W
5 % - 1426
—= — *
K (1+8) (A+25) (W +L) =

(E-6)

(E-7)

Propogition 4-3' gives conditions under which (E-1)-(E-7) is indeed the value

function when r=0.

Similarly, we can compute the performance of the myopic strategy H by

solving the differential equation (4-10).

wl—w
If W<l then # =K ,
3 l-w
A — - (A+28)
If W2ll then H - T - R, (WD) ;
1 12 172
where w = (—§—+A) - { (—§—+A) -8 } :

= 2a { 1. <1-A)A(5;A/2> }
(A+8)

(E-8)

(E-9)

(E-10)

(E-11)

Finally, it is also possible to solve for the value function Z of the

logarirthmic problem.
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Z(W:k,L) = _1+28 log W + B iF W= = (E-12)
2 6
(1+68)

Z(W;k,L) = Log (W+L) - D <w+i)'(1+25) i W (E-13)

) * — 1426
: D= % E-14
With : D (T+6) (178) (W +L) ‘ ( )

2 . 5

- B E-15
B Log (1+68) + 7 Log W 148y (1128) ( )

(1+8)

We will now show that the functions V and Z computed above are solution to the
control problems and that the function H is the performance of the myopic

strategy.

Lemma El: Let FA(W,t) be defined as:

=.1-A 1-aA
A _ (W+L) W -t .
F(W,t) = { 1A 14 } e if  A=1,
1 —_
F'(W,t) = Log(W+L) - LogW

If the investor follows the myopic strategy and Wt is the resulting wealth

preocess: lim E FA(Wt,t) = 0,

£t

2
If the investor follows strategy (4-9) and A<l or (2u-ac )e>Au then

lim E FA(Wt,t) _ 0.

o

=1-A At

Proof of lemma El: i) If A<l, then F'(W,t) < e *t and the lemma is

1-A
trivial.

ii) A>1: In this case A>a>l. Suppose that the manager follows the investment

strategy X(W) and call F=FA(Wt,t). By Ito’'s lemma:

2
g 2
= - L -1
dF(t) { AF + pXFw s X Fww } dt + aXFW db(t). (E-16)
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E(dF(t)) = - E(F(t) g(W)) dt

AF, - uXF - (02/2)X2FWW
Where g(W) = (E-17}

F

Note that g(.) does not depend on t. We will show that g(W) is bounded away

z -gt which tends to
from zero (g(W)zg>0). This implies that E(F(t)|F(0))< F(0)e B WHTeh beH

zero when t tends to infinity. g(W) is a continuous function. To prove that it
is bounded away from zero we need to prove that

g(W)>0; lim g(W)=0 and lim g(W)=O0.
W-0 W

2 (A—l)&2 2
— =T U

Lim g(W) = k 5

W-0

>0 if X is the myopic strategy.

Lim g(W)= (A-1) - = (Aw-—2 + k) } if X is the strategy (4-9).
W-0 ao

Lim g(W)>0 under condition E-18 below:
A+ 26 > A . (E-18)

We now consider the behavior of g when Wow.

{ (u+Dy ALyl } ~ (1-a) WA Log(1+ —%—) when W-o.

{ ) A -y } ~ (-a) ¥R Log(l+ =)  when H-w.

{ ey AT L w'A'l} ~ AL AT Log(14 ~%u) when W

Hence, Lim g(W) = kp-Akzaz/Z >0 if X is the myopic strategy strategy or
W
strategy (4-9).

We must now prove that g(W) is non negative.



g(W) = —%— {(W+E)1-A HI + Wl_A HZ} e_'\t where
2 2 2, 2
k™A X k" Ao X
= L LU E-19
Hp=ku - = “raen t 2 { K (W+L) } and (E-19)
2.2 2
kAo X Ao X .2
- . A a0, A .20
H2 kp + 5 + u 0 5 { 0 } . (E-20}

Since Xsk(w+i}, and u>kA02, Hl decreases with X/k(w+f) and

2,2 2.2
kAo k™ Av
Hl = kuy - 5 - ky + > = 0.
H, is decreasing in 2 iff X is greater than s
2 W W Ao

2
Hence if X is the myopic strategy strategy: H2(W) = HZ(O) = 620 /24 > 0,

(W)). Under condition

Goveo

(E-18), H2(0)>0. Furthermore, lim H2(W) =0. As a conclusion under condition (E-

If X is strategy (4-9) then HZ(W) = min(HQ(O), lim H

18), lim E F(W_,t) = 0.
T
W

iii) A=1: A similar approach yields that lim EFl(Wt,t)=0.
Lemma EZ2: i] The function V defined by (E-1)-(E-7) satisfies:

wl-A
1-aA

(w+i)1'A
1-A

< V(W) =<

i1i] The function H defined by (E-8)-(E-1l) satisfies:
Wl—A
1l-a

(W+Dy LA
1-a

< H(W) <

iii] The function Z defined by (E-12)-(E-15) satisfies:

1-a - 1-A
<« 7N <w
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Proof of lemma E2: The proof is presented at the end of this appendix.

T

Lemma E3: If W=W :
-g ¥V

E rol £
£

Proof: From (E-5)-(E-7), we get that:

5 g T }(l+25)

- 1 + —
4V - s LW r L (A+5) >1.
ot LYY 5 Wi 1) (128
WW A+ T+s (A+256+1) { i—;—if}

The same computation holds for A=1.

Lemma E4: r= 0 i/ If A<l or A>l and A+6>A§ , the value function is V and

{(4-9) gives the optimal investment.

ii/ If A=1, H is the payoff of the myopic strategy.

iii/ If A=1, Z is the value function and the myopic strategy is optimal.
Proof: i/ & 1ii/ follow from proposition 4-2,

ii/ can be proven by a argument similar to the one in appendix C {see C-7).

Proof of lemma E2

. L4 *
i/ a/ V(W) = A if W=W we must prove that:
1 L 1 1-a .
KO T-a W > T-a W (E-21)

- I3 * - . - *
Since a lies between 1 and A, is suffices to verify (E-21 for W=W. That is by

(E-4) and (E-6):

(25+1) (A+26+6%) w ! W l-a 1 5e6%  1-a
(6+1) (1-2) (A+267 - F1a (T = 1. (-
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Since I%K (l+x)1-As I%X + x (by concavity of I%K (l+x)l-A), a sufficient
W* A+ S
condition is (by using that = > )
W+ L A+26+6
2 z
(14+6) " (A+268) > (A+25) + & (E-22)
which is verified.
If WzW*, we must check that:
= 1l-a 1-a
(W+L) = = (A+2§) W
~ 1A + KZ(W+L) = 1A
=.1-a l-a
. (W+L) W = =, -A
Since 13 - 12 > L (W+L)
it suffices to show that:
Lz s D28 iy % 5

Tesyarzsy ~ M
As AI(W) = A1<W*) we must check that:

§

_ *  —
Lz (W+ 1) Hqoyars)

that is (1+6) (A+28)>(A+26)+6 which helds.

- 1-a
L) E-23
b) V= o (E-23)

L s
When Wz=W (E-23) is obvious given (E-7). When W=W we must prove that

= 1-A

(W+L) 1 26+1 * o= -A o l-a
-4 = Ta (T W WO W
that is:

Lo, 1 { (25+1) (A+§) [ W4T ]I'A [ W }1fa (E-24)

i-a 7 1l-Aa (&8+1) (A+28) W+L W*
+*
The right hand side of (E-24) is increasing for W<W (take the logarithm and

differentiate) therefore we need only to show that:

1 1 (285+1) (A+8) .
12 = 1a (5+1) (A+26) which heolds.
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1-A
i) a/ H = —IEEH-
wl-w wl-A
For W< § we must prove that K3 T7a = 1o It suffices to prove it
for W=l i.e.
1 1+ 25 o1 A S N GO L-a
1-a A+ TlalaLt 1-aA A+§ )

A+25+'T(1-w)

A sufficient condition is that:

1 1+ 26

L-a A+25+—é§2(1—w)

1 )
— - - 5
= 1- 3 (E 25)

Since w lies between 1 and A (E-25) holds. Indeed it suffices to check (E-25)
for w=1 and w=A (by monotonicity of homographic functions) which is

straightforward.

For Wzﬁ, we must prove that:

(w+i)l‘A ) whA > ¥ (W+i)-(A+25)
1-A 1-a = 4
Since:
= 1-A 1-A
(W+L) W - = -A
o - T > L (W+L)

we must prove that:

L = (W+E)‘25 K,

which needs to be verified only for W=l

We must now check that:

§ A 1
1> (A+6) (1-A) 1-w
1+ A+26 A (E-26)
l-w A+é
o . 2
(E-26) can be verified by using the fact that w lies between A and _é_i%_
A+

which is straightforward to verify.
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(w+f)l—A
1-a °

As in i-b/ it suffices to check that the inequality holds for W=fi. Since H

iib/ H=

is continuous this is equivalent to showing that K4 is non-negative which in

A2+5

turn results from the fact that w lies between A and P

*
iii/ a/ Z = LogW . For W=W , we must check that:

52
e LogW + B = 0
(1+6)
which needs to be proved only for V=W that is:

5
Log (3+8) = 5v1935)

which holds
*
For W= W it suffices to prove thact :

1-2%

— % - -
L= E (W +L) which is straightforward.

b/ Z < Log(W+L).
* _
For W=W , Log(W+L) - Z(W) is non increasing. Therefore it suffices to verify

*
the inequality for W=W which is also straightforward.



TABLE 1

r=20

k=1

A = relative risk aversion.

i = expected excess return on stock.

o = standard deviation of stock returns.
W/E = net wealth/credit line.

¢ = improvement of the optimal strategy over the Myopic Strategy.

A * m X o ¥ W/l x ¢
***'k7‘.’**3‘.’***‘ki*********‘k***i****1‘.’*******ZE***'k'k**********i***************
o X X o 65
o ¥ 1o+ X 208 % 10% X 3
3 3 x ol
8] ¥ 5% 3 20% * 50% x 9%
* P % %
3 o % 5 7%
o % 108 % 208 % 508 X
* * * %
X o i ¥ 2%
o ¥ 208 ¥ 208 3 503 X
X 3 % 3
.5 1 5% i 20% i 10% i 10%
* ki % %
% i % 10 X 25%
5% 10s E 0 o208 % 3 X
3 3 X ¥
.5 i 20% i 20% i 10% i 35%
* * * *
¥ 3 X 3 54
9 x 10% x 20% x 10% *
* * * *
X 3 X ki 55
2 ¥ 1e % 208 % 108 X
o * * *
* * * *
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