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1 Introduction

The seminal work of Merton (1969) and Black and Scholes (1973) paved the way for the use of
continuous-time models in finance. The usefulness of the underlying mathematical techniques
has never been in doubt: the pricing of options and other contingent claims has relied heavily
on these techniques. When Sharpe (1978) developed the binomial approach, the option
pricing model became accessible to a much wider audience. Cox, Ross and Rubinstein (1979)
showed that a suitably defined binomial model for the evolution of the stock price converges
weakly! to a lognormal diffusion as the time between binomial jumps shrinks toward zero;
and they also showed in this case that the European option’s value in the binomial model
converges to the value given by the Black-Scholes formula. Cox and Rubinstein (1985) exploit
this approach to value American options on dividend paying stocks, and they also show how
to employ the binomial approach when some of the other assumptions made by Black and
Scholes are relaxed. In fact, Cox and Rubinstein demonstrate the connexion between the
continuous-time valuation equation (which is the fundamental partial differential equation
for the contingent claim) and the discrete time, one-period valuation formula developed
under the assumption of a binomial model for stock prices — both are descriptions of the

local behavior of the contingent claim’s value in relation to the underlying asset,.

In a normative sense, the binomial model has enabled users to valye contingent claims
in some restrictive settings where a closed form solution is unavailable. By the reasoning
provided in Cox and Rubinstein (and made explicit in Brennan and Schwartz (1978)) this is
formally equivalent to a numerical solution to the partial differential equation — the binomial
model provides one such solution, requires elementary methods in implementation and has

the splendid virtue of being pedagogically useful.

This is one reason why the stochastic differential equation defining the lognormal dif-
fusion has become the workhorse in option pricing models. Binomial approximation? and
valuation methods have been applied to other diffusions besides the lognormal (for example,
the constant-elasticity of variance or CEV diffusion in Cox and Rubinstein (1985, p. 362))

— however, it turns out that the binomial tree structures available in these cases are com-

1By weak tonvergence we mean convergence in distribution; see footnote 7 for a discussion employing
the notation used in this paper. The first part of the appendix provides the technical background for this
definition.

*Tom Nagylaki pointed out that our use of the term “binomial process” is an abuse of terminology: in
Cox, Ross, and Rubinstein (1979), the term was strictly correct, since the log of the stock price ai any time
period had a binomial distribution. This will not, in general, be the case for the diffusion approximations
proposed in this paper. In the finance literature, however, the term “binomial process” has come to refer

more generally to two-state models of the sort discussed in this paper (see, for example, Cox and Rubinstein
(1985) p. 361).



putationally complex in that the number of nodes doubles at each time step. And there
are still other diffusions employed in financial models (for example, for interest rates) for
which the availability of a computationally simple sequence of binomial processes would be
useful. We define a computationally simple tree (for an example, see Figure 1) as one where

the number of nodes in the tree structure grows at most linearly with the number of time

intervals.

This paper develops conditions under which a sequence of binomial processes converges
weakly to a diffusion, and demonstrates a procedure that can be used to find a computa-
tionally simple binomial tree, given the diffusion limit to which we wish to take the sequence
of such trees. In words, the conditions require that the instantaneous drift and the in-
stantaneous variance of the diffusion process are well-behaved, and that the local drift and
local variance in the binomial representation converge to the instantaneous drift and vari-
ance respectively; and because the sample paths of the limiting diffusion are continuous, we
also require that the jump sizes converge to zero in a sensible way. Thus, the upward and
downward jump, as well as the probability of an up-inove in the binomial representation are
chosen to match the local drift and variance. We meet the requirement that the tree be
computationally simple by ensuring that, within the binomial representation, an up-move
followed by a down-move causes a displacement in the value of the process that is the same
when the moves take place in the reverse order. This is achieved by employing a transform
of the process which takes the diffusion and removes its heteroskedasticity. Computational
simplicity is achieved for the transformed (homoskedastic) process, and the inverse transform
enables us to recover the original process. The sizes of the up and down moves, as well as
the probability of an up-move, can depend on the level of the process, the behavior of the
diffusion at certain boundaries, and on calendar time. The implementation of the binomial
method is straightforward. We compare known solutions for options and bonds to those

obtained numerically from the binomial model.

The paper is organized as follows. Section 2 develops the assumptions and presents the
basic theorem which enables the construction of a sequence of binomial processes; it also
gives the general conditions under which one can apply the transformation and construct
computationally simple binomial processes. Two examples, which demonstrate how one
can modify the binomial model to capture boundary behavior and retain computational
simplicity, are also given. Section 3 provides the justification for employing the binomial
model for valuation and also gives numerical solutions for three cases. Section 4 has some

concluding comments. The proofs and technical details are collected in the Appendix.



2 Stochastic Differential Equations and Simple
Binomial Approximations

In this Section, we state conditions for a sequence of binomial processes to converge weakly
to a diffusion, and develop a technique for constructing computationally simple binomial
diffusion approximations. We provide three examples: the Ornstein-Uhlenbeck process (for
which the binomial representation is well known (see Cox and Miller (1984)), the CEV
process introduced by Cox and Ross (1976), and the one-factor interest rate process of Cox,
Ingersoll and Ross (1979).

2.1 Binomial Diffusion Approximations

Suppose we are given the stochastic differential equation

dy, = p(y,t) dt + o(y,t) dW;, (1)

where {W;,t > 0} is a standard Brownian motion, u(y,t) and o(y,t) > 0 are the instanta-
neous drift and standard deviation of y,, and Yo is a constant. We wish to find a sequence
of binomial processes that converges in distribution to the process (1) over the time interval
[0,T]). We first take the sequence of binomial processes as given, and give conditions to
check whether the sequence converges to the diffusion (1). We then tackle the problem of

constructing a sequence of binomial approximations, given a limit diffusion.

To fix matters, take the interval [0, 7], and chop it into n equal pieces of length h = T/n.
For each h consider a stochastic process {+y:} on the time interval [0,T], which is constant
between nodes and, at any given node, either jumps up (down) some specified distance with
probability ¢ (respectively, 1 —gq). For example, if we set ¢ = 3 and the up or down jump size

equal to vk, it is well known that as n— 00, {sy:} converges in distribution to a Brownian
motion.

The sizes and probabilities of up or down jumps are specified as follows: define anly, hE),
Vit (y, hk), and Y (y, hk) to be scalar-valued functions defined on ' x [0, 00) satisfying

0<a(y,hk) <1 and - oo <Y (y, hk) < YjH(y, hE) < o0 (2)
for all y € R and all k£ = 0,1,2,...n. The stochastic process followed by .y is given by

R¥o = Yo, for all ha (3)



KUt = hYkh, kh <t <(k+1)h, (4)
Playgesiyn = Yy (hynks RE) Ak, wyni] = qulayn, hk), 5)
Playgesnn = Yy (h¥nk, BE) R, wyne] = 1 — ga(nynk, bk), (6)
Playsnyn = clbk, wyns] =0, for ¢ # Yyt (uyne, Bk), ¢ # Yy (aynk, hE).  (7)

——

The stochastic process y, is a step function with initial value Yo which jumps only at times
h,2h,3h,... At each jump the process can make one of two possible moves: up to a value
Y, or down to a value Y,". qu is the probability of an upward move. Y;F, Y, , and ¢, are
all allowed to depend on &, on the value of the process immediately before the jump (,yu),
and on the time index hk. By the statement in equations (3) to (7) the process described is
a Markov chain.

We apply a result® from Stroock and Srinivasa Varadhan (1979, Section 11.2) which
states conditions under which { 1y, }x)0 converges weakly to the y; process in (1). To use this
result we need assumptions about both the limiting stochastic differential equation and the
sequence of Markov chains defined above. The first two assumptions ensure that the limiting

stochastic differential equation (1) is well-behaved.

Assumption 1 The functions u(y,t) and o(y,t) are continuous, and o(y,t) is always non-
negative.

Assumption 2 With probability one, a solution {1:} of the stochastic integral equation

t t
Yi = Yo +]0 p(ys,8) ds +/[; o(ys, 8) dW,, (8)

ezists for 0 <t < oo, and is distributionally unique.5

3Variations and extensions of these results are found in Kushner (1984), and Ethier and Kurtz (1986),
Section 7.4.

“Most, but not all, of the stochastic differential equations commonly used in financial economics satisfy
Assumptions 1 and 2. Consider, for example, the Brownian Bridge bond price process used in Ball and
Torous (1983):

dt
T-—1
This process is defined on the time interval [0,T], where T is the maturity date of the bond. As t — T the
drift rate explodes, violating Assumption 1. As Cheng (1989) has shown, however, this bond pricing process
admits arbitrage.

® Assumption 2 is much weaker than the more familiar requirement of pathwise existence and uniqueness of
solutions to (1), in that a realization of the Brownian motion {W:} need not map uniquely into a realization
of the sample path of {Y;}; many realizations may be possible, sharing a common distribution on the space
of all continuous mappings from (0,00) into R! — see Ethier and Kurtz (1986) Section 5.3, and Liptser
and Shiryayev (1977) Section 4.4. Stroock and Srinivasa Varadhan (1979), Chapters 6, 7, 8, and 10 give

conditions which imply that Assumption 2 holds. A number of these conditions are summarized in Nelson
(1989, Appendix A).

dBt:—'

+ s dW;.



Under Assumption 2, the distribution of the random process {y; }o<icT is characterized by
four things:

a. the starting point y,,

b. the continuity (with probability one) of y; as a random function of ¢,

c. the drift function p(y,t), and

d. the diffusion function o*(y,1).

It { nyt}nio is to converge in distribution to {y,}, properties (a)-(d) must be matched in the
limit. Specifically, we require:

a’. that ryo = yo for all &,
b’. that the jump sizes of ,y, become small at a sufficiently rapid rate as h |0,

c’. that the drift of 4y, converges (in a sense to be made precise below) to u(y,t), and

d’. that the local variance of y, converge to o?(y,1).
Note that a’ is assured by (3). To ensure b, we make the following

Assumption 3 For all § >0, and all T > 0

lim  sup 'Y}:"(y,t) — y’ =0, (9)
MO fy|<0<t<T
lim  sup IYh_(y,t) — y' = 0. (10)

k10 y1<s0gicr
For ¢’ and d’, define for any & > 0 the local drift #x(y,t) and the local second moment®
o#(y,t) of the binomial process (3) - (7) by

Hh('y,t) = qh(yat*)[ylj-(yat*) — y] + (’11 - qh(y}t*))[yh—(yvt*) - y] and (11)

A= 2RO P 1D =52y

with ¢* = £ - [t/h], where [t/ 4] is the integer part of ¢ /h. The next assumption requires that
pn and of converge uniformly to ¢ and o2 on sets of the form ly| <6,0<t<T.

5This is not the local variance, because the moment is centered around ¥ and not around the conditional
mean. As k[0, however, the local variance and second moment approach the same limit.

5



Assumption 4 For every T > 0 and every 6 > 0,

im sup |up(y,t) — p(y, 1) =0, (13)
hlO s o<t<T

and

im  sup Iaz(y,t) - 02(y,t)| =0. (14)
R0 fy|<s0<t<T

Theorem 1 Under Assumptions I through {, { yy,} = {11}, where “=” denotes weak con-

vergence (i.e., convergence in distribution”) and {y;} is the solution of (1). O

As an example, consider the well-known Ornstein-Uhlenbeck process (the continuous

time version of the first-order autoregressive process), employed in the bond pricing model
of Vasicek (1977):

dyt = B(Q’ - yt) dt + O'dI’Vt, (15)

where 3 is non-negative, and y, is fixed. Define a sequence { ny: }no of binomial approxima-

tions to (15) with common initial value ¥, and

Yyt =y + oV, (16)
Yy (y,t) =y—ovh, (17)
and let
(1/2) + VhBla —y)/20 i 0<(1/2) + VRB(a —y)/20 < 1,
=30 if (1/2) + VAaB(a —y)/20 <0, (18)
1 otherwise.

The probability ¢, is chosen to match the drift; it is censored if it falls outside [0, 1. Tt is
straightforward to verify that Assumption 2 is satisfied (Arnold (1974), Section 8.3), and to

show that Assumptions 1 and 3 hold. The local drift and second moment are

ﬁ(a_y) if 0<Qh<1,
my) =14 o/Vh i g =1, (19)
—O’/\/E if g =0,

"“Convergence in distribution” means that the probability measures corresponding to the sequence
of {sy} processes converge weakly to the probability measure of the {y;} process in (1); this is in a
space of functions that are continuous from the right with finite left limits, endowed with the Skorohod
metric (the Appendix provides further definitions). Weak convergence implies, for example, that given
times t1,t3,...t, > 0, the joint distributions of LIS S VR TA converge to the joint distribution of
(Y1) ¥ts, .- 1.) as h 1 0. More generally, weak convergence implies that if J(-) is a continuous functional,

then f({sy:}) converges in distribution to J{{w:)) as A | 0. For a discussion of the tmplications of weak
convergence, see Billingsley (1968).




and

oi(y) = o’ (20)
By definition, for any 6§ > 0, ¢ converges uniformly to % on the set |yl < § as & | 0.
Therefore the local drift of the binomial process {sy:} converges uniformly on compact
sets to the instantaneous drift of the stochastic differential equation; and the local second
moment identically equals the instantaneous variance, so Assumption 4 holds. We then
apply Theorem 1 to conclude that {,y,} = {y:} as A |0,

The intuition underlying the construction of a simple binomial sequence is uncomplicated.
Suppose, following the suggestion in Cox and Rubinstein (1985), Section 7.1, we use the
binomial jumps described by

Yh.+
qn

1-gx
V-

as the basic building block for a binomial tree, where

Yt =y + Vho(y,2), (21)
Yy =y - vho(y,1), and (22)
= 5+ Va(y,0)/20(0,1). (23)

In (21)-(23), h is the time interval between jumps, and g3 is the probability of a jump to
Y,;F. The total displacement is Vh[—a(y,t) + o(Yy ,t + h)] if an up move follows a down
move, and it is Vh[o(y,t) — o(Y;F ¢ + h)] if a down move follows an up move. In general,
these are not equal, so the branches of the binomial tree do not re-connect and the number
of nodes doubles at each time step. However, whenever Assumptions 1-4 are satisfied by
this binomial sequence (which is often the case), weak convergence will follow. But such a
computationally complex tree is useless for purposes such as option pricing: after only 20
periods, the process could take more that a million different values, and after 40 periods
more than a trillion values. A computationally simple binomial representation would allow

the process to take at most 21 and 41 values after 20 and 40 periods respectively.

The definitions in (21)-(23) lead to a computationally complex tree because the step-

sizes are proportional to the state-dependent conditional standard deviation a(y,t). Note,

7



however, that if o(y,¢) is constant, as it was in the approximation developed above for
the Ornstein-Uhlenbeck process, then the displacements are equal — so computational sim-
plicity is retained. This suggests that a transformation that purges the original stochastic
differential equation (1) of conditional heteroskedasticity will permit us to construct a com-
putationally simple tree.

2.2 Retaining Computational Simplicity: The basic intuition

To this end, consider a transform X(y,¢) which differentiable twice in y and once in ¢. We

have by Ité’s Lemma

- 3X(yht) l 2 62X(yht) 6X(yiat)
W) = (s P 4 L, o T X0 | XY ,
0X (y, ¢
+ (e 250 -
Now choose X(y,1) to satisfy
v dZ
Xwo= [ 75 (25)

on the support of y. Then the term a—);(}ﬂa(y,t) dW, in (24) becomes dW,, and the instan-
taneous volatility of the transformed process z, = X (y:,) is constant. In this case, we can
develop a computationally simple binomial tree for = where the second moment of the local
change in « is constant at every node. To arrive at the sequence of binomial processes on y,
we transform from z back to y by defining

Y(2,0) = {y: X(y,) = a}. (26)

It is easy to see that % = o(y,t), and by Assumption 1, this means that Y(z,t) is weakly
monotone in z for a fixed ¢. Then we can use the transform in (26) to define a tree for y
which takes the form shown in Figure 2, so that

Vitz,t)=Y(z+Vh,t+h)  and (27)

Yh—(w1t) = Y(I - ﬁat + h) (28)

Note that the tree for y has inherited the computational simplicity that the tree for z displays.
Using the fact that %(af—’tl = o(Y(z,t),t), a Taylor’s series expansion of Y} and ¥} around
h =0 yields

Yi¥(z,1) = Y(2,t) £ o(Y (2, ), 8)VR + O(h), and (29)
o5(Y(2,4),t) = 0X(Y(a,1),2) + O(VR). (30)

8



This shows that the local second moment of ,y, converges to the instantaneous variance
o*(y,t) as h | 0. Finally, to get the local drift to match the drift of the limit diffusion, we
need
pr(, 1) = p(y,t) 81)
uniformly on {(y,t) : |y|,t < 6} for every § > 0. We tentatively choose
_ hu(Y(z,1),8) + Y(z,t) — Yy (2,1)
RS AT P B v o R
which, if it is a legitimate probability (i.e., between 0 and 1) sets the local drift ezactly equal

to the drift of the limiting diffusion (1). This device — the use of a transform, its inverse and

(32)

the choice of the probability ¢, — enables one to construct a computationally simple binomial
approximation. It turns out to be a useful device in many commonly employed diffusions in
finance, where a transformation like (25) is readily available. A straightforward example of
this transformation is for the lognormal diffusion, where #(y,t) = py and o(y,t) = 0 y. The
transformation is simply X(y) = o~ !logy, and the inverse transformation is Y(z) = e°=.
This was the transformation employed by Cox, Ross, and Rubinstein (1979) to obtain a
computationally simple tree. Such transformations can be made for other diffusions, even if

their drift and diffusion functions depend on t.

Our specification of Y,Y;', ¥, and qgr has been tentative, since these functions often
have to be modified in individual cases. For example, since g; is a probability, it must lie
between zero and one, whereas the value implied by (32) may not. We must sometimes also
allow z to jump up or down by a quantity greater than v/& in order to maintain the drift
rate. Furthermore, the diffusion may have a boundary at 0 (or some other value). At such
a boundary o(-,¢) = 0 and the transformation (25) may need to be modified. The next task
is to formally state sufficient conditions for a sequence of computationally simple binomial
processes to satisfy the conditions of Theorem 1. This is the focus of the next section: to

implement the transformation just outlined in a general way.®

2.3 Retaining Computational Simplicity: A general treatment

The principal complications that arise in implementing our strategy come from singularities
in o(-,-); for example, o(y*,t) = 0 for some y*. Such singularities are usually associated
with boundaries on the support of the process, and often arise in financial economics; for
example, with limited liability and in the absence of arbitrage zero must be a lower boundary
for stock prices and nominal interest rates.

8Readers less interested in the technical development of the approximations may wish to skip to Section
2.4, which presents simple examples of the technique.



There is a large variety of possible boundary behaviors (see Karlin and Taylor (1981)), so
it is necessary to confine our attention to the cases likely to be most useful in finance. First,
we consider the case in which o(-,-) has no singularities on %! x [0,00). (This is the case,
for example, for the Ornstein-Uhlenbeck diffusion considered earlier.) Then, we consider the

case in which ¢(0,t) = 0 and g(0,1) > 0 for all t, implying a lower boundary at zero on the
support of the limiting diffusion.

CASE 1. No Singularities in o(y, )

As in Section 2.2, we define the X (y,t) function, along with z values corresponding to
extreme values of y

X(y,1) = / " dz]0(2,1), (33)
2(t) = Jim X(u.1), (34
2h(t) = yEEnoo X(y,1). (35)

The following assumption is convenient, and can be relaxed at the expense of simplicity.
Assumption 5 zY(t) and z2(t) are constants.

The definition of the inverse transform in (26) is now modified to read

y: X(yt)=z if st <<V
Y(z,t) ={ oo if z2V<zg (36)
—00 if =<2t

We retain the definitions of Y;¥(z,) and gn(z,t) given in (27), (28) and (32) respectively,
except that we censor the g4(z,?):

0;(z,t) = max {0, min[1, g, (x, )]} (37)
This specifies the sequence of binomial approximations for this case.®

Our strategy is as follows: we will apply Theorem 1, so we must verify its four assump-
tions. Recall that the first two conditions relate to the stochastic differential equation which
serves as the limit, and the last two relate to the sequence of binomial approximations (which
now must involve the transformation introduced to buy computational simplicity). To verify

Assumptions 1 and 2 for the current Case, we employ Assumptions 6 and 7.

®Note that if & is very large, it is possible that the steps are such that both Yh"' and Y,~ are infinite. We
assume that we ean choose A small enough to avoid this, so that g, is well-defined.
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Assumption 8 u(y,t) and o*(y,t) are continuous everywhere. For every R > 0 and every
T > 0, there is a number Ar g > 0 such that

0< inf o(y,t) — ATp. (38)

"~ 0<i<TyI<R

(38) is a non-singularity assumption — it ensures that o(y,t) is bounded away from zero
except at ¢t = oo and/or |y| = co. Note that in this case Y(z,t) is a strictly monotone

increasing function of z for fixed t.

We must also ensure that the process for y does not explode to infinity in finite time.
Stroock and Srinivasa Varadhan (1979, Theorems 10.2.1 and 10.2.3) provide two sufficient
conditions for non-explosion. One of these, a Lyapunov condition, is given in the Appendix.

For now we explicitly rule out this behavior:

Assumption 7 All solutions of (1) share the property that forallT, 0<T < oo,

lim P ( sup |y | > B) =0. (39)
0<t<T

B—oco

To verify that Assumptions 3 and 4 hold, expand Y;*(z, t)—Y(z,t) and Yy (z,8) - Y (z,?)
as functions of v/ in a Taylor’s series around vh=0:

Yif(X(y,),t) —y = £Vho(y,1) + O(h).

As in Section 2.2, this gets the local variance right and the stepsizes small as A | 0. Since
o(y,t) is bounded away from zero on bounded sets (by Assumption 5), it is unnecessary to
truncate g, on bounded sets (y,t) when & is small — so the drift matches as well. This
15 the line of the argument in the proof. In order for the Taylor’s series argument to go
through, however, we need regularity conditions on the diffusion function o?(y,t) and the

transformation Y'(z,t). This is the basis for the next assumption.

Assumption 8 The first and second order partial derivatives'®
Ty, Jtaayta Tit, Ym Y;!I) Y;: },tta Yr’t

are well-defined and locally bounded' for all (y,1) € R! x [0, 00).

The theorem for Case 1 can now be stated.

!9The definitions of these partial derivatives are collected in the Appendix.
"By “locally bounded” we mean bounded on bounded (v, 1) sets.
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Theorem 2 Let Assumptions 5-8 hold. For k > 0, define the z-tree as in Figure 1, with
1ZTo = X(Y0,0), and the transitions for the T process given by
wZik + Vh  with probability g} (azak, hk)
ATh(k+1) = { wZhe — VR with probability 1 — a; (hzrk, hk)
Define the y-tree as in Figure 2. That is, for h > 0, define ny, = Y(hznk, hk) for hk <
t < h(k+1). By construction, {,y;} is computationally simple. Then {ry:} = {9} as k)0,
where {y,} 1s the solution to (1). ]

(40)

CASE 2. A Singularity at y=0: o(0,t) =0, u(0,t) >0

In this case the diffusion coefficient vanishes at a lower boundary (zero), but the drift
rate might serve to “return” the process above it. This would be a reasonable specification
for a process on the price of an asset or on the nominal interest rate. To handle this case,
we must modify some of the definitions and assumptions given earlier. The lower limit for z

is redefined as
zh(t) = lim X (y, 1), (41)
¥l0

and the inverse transform (which is now a weakly monotone function of z) defined in (26)

as
y: X(y,t)=z if el <z<aV
Y(z,t) =4 oo if sV<z (42)
0 if z<zk

As before we assume that 22 and zV don’t depend on t.

An important aspect of Case 2 relates to the stepsizes: thus far they are (approximately)
proportional to oy, t). But if o(y, ) is very small near y = 0 and #(y,t) is not small, we may
need to take multiple jumps in this region in order to match the drift of the limit diffusion.
Choose =2 > zl, and define the function JI(z,1) as

the smallest, odd, positive, integer j such that
JH(z,t) = Y(z+jVht+h) =Y (z,t) > w(Y(z,t),8) - h, if z<2P (43)
1 if z>2z8.
J¥(z,1) is the minimum number of upward jumps that keeps the jump probability g, less
than one without censoring; and it is odd so that the jump moves the process to an existing
node on the tree. By permitting these multiple jumps in a restricted region near (), we retain
computational simplicity; at large values of y (corresponding to z > zP) we disallow multiple
upward jumps, because if J; is unbounded it might increase the number of nodes at a rate
rapid enough to affect computational simplicity. Similarly, define J; (z,t) by
the smallest, odd, positive, integer j such that
Ji(zt) = either (a) Y(z,t) = Y(zx— jv/h,t + b) < u(Y(z,1),t) - h (44)
or (b)) Y(z—jvhit+h)=0.

12



Ji (2,1) is the minimum number!? of downward jumps that either keeps the probability g,
positive (without censoring) or forces the down-state value for Y,” to zero. The transitions

in the value for y are then restated as
YiE(z,t) = Y (z £ JE(2,1) - VR, L+ h), (45)
and we retain the definition of g}, given in (32) and (37).
Note that Assumption 6 is incompatible with o(0,t) = 0 and a replacement must be

found to guarantee that Assumptions 1 and 2 are satisfied. The following Lipschitz condition,

combined with Assumption 7, guarantees that Assumptions 1 and 2 are satisfied:

Assumption 9 Let o(y,t) and u(y,t) be continuous on R* x [0,00). There ezists an in-

creasing, non-negative function p(u) from [0,00) into [0,00) such that

p(u)y >0 for uw>0, and (46)
1
lim / [p(w)]~? du = oo. (47)
Further, for every R >0 and T > 0, there exists a number Arp > 0 such that
sup lo(y",8) —a(y,t)| — Arrp(ly —y*[) <0,  and (48)
lv*|<Rly]<R0LKT
sup le(y™st) — p(y, )] ~ Arrly -y < 0.3 (49)

ly*{<R|yI<RO<ILT

To carry out the Taylor’s series argument and to handle the singularity at y = 0, we alter
Assumption 8 as follows:

Assumption 10 On every compact subset of {(y,1): 0 < y < 00,0 <t < 00}, 04,0, Oy, Oy
ezist and are bounded, and o(y,t) is bounded and bounded away from zero. There exists a
A > 0 such that for every T > 0,

osts%%f;:ysa (¥ 1) > 0.

Furthermore, Y;., Yy, Yu, Yot exist for all (y,1) € [0, o) X[0,00) and are bounded on bounded
sets. For allt > 0,0(0,t) =0 and u(0,t) > 0.

'2Using Assumption 9 it is easy to show, given z,1, h, that J}} and J; exist and are finite.
131t is easy to show that the square root diffusion

dr=x{p—r)dt+o/rdW
discussed in Section 2.4 satisfies Assumption 9, using p(z) = +/z. On the other hand, the “double square

root” process in Longstaff (1989)
dr = &(p ~ /1) dt + o/r dW
satisfies (48) (again using p(z) = \/Z) but does not satisfy (49),

13



Assumption 10 weakens Assumption 8 by allowing o,(0,t),0,(0,1), 7,.(0, ), and 04(0,t) to
be infinite. We also impose the restriction that a, be positive in some neighborhood of y = 0.
Note, however, that Y;;(0,1), ;(0,1), ¥;,(0,t), Y;,(0, ) must still be finite.

The theorem for Case 2 can now be stated.

Theorem 8 Let Assumptions 5, 7, 9, and 10 hold, and assume Yo > 0. Define pzpp and y,
as in Theorem 2, replacing relations (35) and (36) with (1) and (42) respectively, and using
(45) to define Y;E. Then {4y} = {1} as k1 0; and if 2B < oo, {ny:} is computationally
simple by construction. Further, 0 bounds the support of rYe and y: from below:

P (Osi&fw W < 0) oy (Dsi&fooyt < 0) =0. O (50)

Between them, Theorems 2 and 3 show how to construct computationally simple approx-
imations for diffusions encountered in many applications in finance. The obvious extension
of the results of Theorems 2 and 3 is to cases where an upper boundary also applies: for
example, in modelling the price of a discount bond. An upper boundary where the drift
p 1s non-positive and the standard deviation ¢ is zero can be handled by modifying the
arguments in Case 2 of Section 2.3. These modifications are straightforward, and they will

generally require the use of multiple downward jumps near the upper boundary.

2.4 Examples

The CEV Stock Price Process

In this model the stock price is assumed to follow
ds; = s, dt + asy dW,, 0<y<1, (51)

where s; is positive. Here o(0) = 0; and as long as v > 3 (which we assume hereafter) the
process is trapped at zero once it gets there, and the regularity conditions of Theorem 3 can
be shown to hold. Our z—transform is given by
8 Sl-"‘y
X(s) = 0-1/ ZVdZ =
a(1-1)

We define zp = X(s¢), and draw out our z-tree as in F igure 1. The inverse transform is
given by'?

(52)

S(z) = { [o(1 — 7);,;]3‘1_1 if z>0, (53)

0 otherwise,

“Bates (1988) independently developed a similar transformation in the context of pricing American options
on futures contracts.
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which corresponds to Figure 2, with S replacing Y. We employ the definitions for the
multiple jumps Ji& given in (43) and (44), replacing Y with S; and we define the functions

SH(z) = S(z + JFVh), and (54)

Si(z) = S{z — J7 Vh). (55)

It remains to specify the probability ¢,. For > 0 set

= S(2) +5() - Si (@)
A O EEN O I

(56)

Then define ¢, by

g if >0 aend 0<gq <1

gp=14 0 if either <0 or ¢ <0 (57)
1 af gr > L.

These definitions ensure that g, is a legitimate probability and that if s, reaches 0 it

stays trapped there. We now apply Theorem 3 to the sequence of binomial processes for s.

Corollary 3.1 Define the sequence of {4s;} processes by (52) - (57) and (3) to (7), replacing
Y With 13:. As h10, {ns;} = {s:}, the solution of (51). |

The CIR diffusion on the short rate

Consider now the autoregressive “square root” interest rate process used by Cox, Ingersoll,
and Ross {1979)!%:

dr = k(g ~ r)dt + o/r dW, (58)
with £ > 0,4 > 0, and the initial value of r = rq, a non-negative constant. The necessary

X(r) = f ' a‘f/ZE - zf (59)

with 2o = X{r¢). Zero is a lower boundary for r. As outlined in Section 2.3, we define the

inverse transform

transformation is

R(z) E{ oz if >0 (60)

0 otherwise.

Because the drift in (58) does not vanish as r | 0, 0 is not an absorbing state for r unless
either & or y equals zero. This illustrates why it was necessary to introduce multiple jumps
in Section 2.3. Suppose that we are at node c in Figure 3. At this node, z < 0, so R(z) = 0.
The usual upward jump of vk would take us to node k, at which R(z) still equals zero.

Clearly, if there is a positive drift in the process at r = 0 (which is true if x and p are

'SBall (1989) develops a different binomial approximation for this diffusion; he exploits knowledge of
properties of the conditional distribution of the interest rate,
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dr = k(g — r)dt + or dW. (65)

There is no known closed form for the conditional distribution of r; for this process, but

the binomial approximation would allow us to price contingent claims for which there is no

known pricing formula.

'Note that at large values of r (and hence of z) the drift is negative, and we avoid multiple upward jumps
in that region.

16

3 Applications of the Binomial Method to Valuation
Models

In this Section, we examine models for option values and for default-free bonds, employing
the binomial model described in Section 2 for the relevant diffusions. Unfortunately, the
theorems in Section 2 speak strictly to the weak convergence of the sequence of the binomial
models to the underlying diffusion, and do not directly apply to the convergence of values
of options and bonds'”. In this Section, however, we adapt Theorems 1 and 3 to prove
convergence of binomial bond and European option prices to their diffusion limits. In both
applications below (which follow the diffusions studied in Section 2.4), we provide numerical

evaluations of the binomial method.

3.1 Option Pricing

The CEV diffusion defined in (51) is an example where a computationally simple binomial
tree can be constructed and employed in option valuation. Furthermore, since a formula for
the value of European call options on a non-dividend paying stock is available in this case,
(Cox and Rubinstein (1985) p. 363) the results can be readily verified.

Let the stock price be s, and let r > 0 be the coustant, continuously compounded riskless
interest rate. The valuation procedure for the European call option, following the arguments
in Black and Scholes (1973) and Merton (1973) requires that the call value C(s, T'—t) satisfies
the partial differential equation (PDE)

%(7232"’6',,, +rsC, —rC = -G, (66)

subject to standard terminal and boundary conditions. The binomial method leads to the

requirement that at every node, the call values satisfy the one period valuation formula



leading to relation (67) is well known — it requires the comstruction of a non-anticipating,
self-financing portfolio of the risky asset and a riskless asset which delivers the option’s payoff
at maturity (see Cox and Rubinstein (1985)).

Before passing to the numerical solutions, we present the argument justifying the bi-
nomial method for European option pricing: Theorem 4 below shows that the sequence of
solutions to the difference equation (67) converges to the solution of the PDE, subject to
the appropriate boundary conditions. Unfortunately, we have not been able to extend this
theorem to cover American options rigorously. When we permit premature exercise and
hence a free boundary, the binomial procedure has performed well in experiments, but there
is no guarantee that it always will,

It is well known that the value of the drift rate u(s,t) does not affect the option value;
within the binomial representation of the stock price process, u(s,t) affects the probabil-
ity of an up-move, but this probability does not enter the valuation procedure for the call
option. The valuation procedure depends on the pseudo-probabilities (see Cox and Rubin-
stein (1985), and Harrison and Kreps (1979) for the connexion to the equivalent martingale
measure). As this argument shows, the local mean and second moment of the binomial rep-
resentation of § must pass to the drift and variance rate for the risk-neutralized diffusion.

If the payoff on the contingent claim depends only on the final stock price, which is true
for European options, Theorems 1 or 3 can be used to price the claim. Here we start with a
stock price process of the form

ds; = p(se,t) dt + (s, 1) dW, fixed S0, (68)

and its risk-neutral counterpart:
ng =r: St dt + O'(Sg, t) dm, SD = 3¢. (69)

Suppose (69) satisfies'® the assumptions of Theorem 3. We then create an approximation
»S¢ to the process for St. To accomplish this, define the tree for {xS:} as in Theorem 3
(replacing y with & where necessary). In order to preclude arbitrage between the stock and
the riskless asset in each economy (indexed by k), we now permit upward jumps everywhere

so that 2% = oo in (43): by doing so we avoid the undesirable feature of having to truncate

3The process (68) itself should not permit arbitrage, and the use of the equivalent martingale measure
relies on this; see Harrison and Kreps (1979). One implication of the no-arbitrage requirement is that
#(0,¢) = 0.
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the probabilities in each economy. Define!?

the smallest, odd, positive integer j such that
+ — ’ ] 3
iz, 1) = { S(z+jvVh,t + k) — exp(rh) - S(z,t) > 0, (70)
Ji(a,0) = the smallest, odd, positive, integer § such that (1)
PEUEN S —ivE 4 b - exp(rh) - S(z,t) < 0
Define also (e —5(o.)
T, t)e" -8~ (£t . +
=y B@as @ S S >0 (72)
otherwise,

where p;, is the risk-neutral probability implied by the arbitrage argument of Cox and Ru-
binstein ( 1985). To rule out arbitrage 0 < p, < 1 globally for the process for ,&;, and this
1s guaranteed by (70)-(71). We define Pn to be the probability of an upward jump for the
{+8:} process.

Using the arguments in Cox, Ross, and Rubinstein ( 1979) that the absence of arbitrage
implies that the prices at time 0 of European Put and Call options on ,8, with expiration
at date T' (which is an integer multiple of A) and striking price K > 0 are given by

e’ 7. gg'h[(ff - hST)+] and e777. EO,h [(hST - K)+]

respectively; here &, is the risk-neutralised, time 0 expectations operator. Theorem 3 allows
us to conclude that {, 57} = {Sr}. Finally, since the terminal payoff for the put is uniformly
bounded in A (i.e., the put price is always less than the exercise price K), Theorem 25.12 in
Billingsley (1986} allows us to conclude that =7 . Eonl(K — 18r)H]) — 7. &[(K — Sr)t]
as k0.2 This is the basis for the following

Theorem 4 2! Let the process (69) satisfy the conditions of Theorem 3. Define the rS: as
indicated above. Then {,S,} = {S:}, the put value

e~ 7. go'h[(K — hST)+] — e T, 8@[([( - ST)"']
and the call value

e Eonl(1Sr - K)*) = T LI(Sr—-K)t. o

Note that the jumps defined in Jf are consistent with a no-arbitrage condition in each of the sequence of
economies indexed by h. Note also that a binomial approximation for 8 can be designed using the arguments
in Sections 2.2 and 2.3, but this is unnecessary for our purposes here.

2This result extends to European calls as well, since European put-call parity allows us to conclude that
€T Eonl(aSr — K)o~ . £[(Sy — K)t].

1This theorem is related to recent results of He (1989), who considers convergence of prices of a contingent
claim with a terminal payoft function g(sr) satisfying Lipschitz conditions. His results also apply to the
multivariate case. On the other hand, he imposes severe restrictions on the stock price process, excluding,
for example, the CEV stock price process. Boyle, Evnine and Gibbs (1989) develop a discrete distribution
to approximate the multivariate lognormal diffusion and apply it to contingent claims valuation,
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Duffie and Protter (1988) pose a related question: suppose the stock price process (for
any given h) is {,s,}, and it converges weakly to {s;} as A | 0 for some limit process {s;}.
To price an option on {n$:}, suppose we set up the hedge portfolio incorrectly — we use the
hedging rule that would be correct if the underlying stock price process were {s;}. Duffie
and Protter show that under certain conditions, the risk introduced by using the incorrect
hedging rule vanishes as A 1 0. This is a reassuring result, since any model’s description of
stock price movements is at best approximately correct. Our Theorem 4 is concerned with

ezact arbitrage pricing®? for a sequence of stock price processes {ns:} and its limit process

{s¢}.

With American options, we cannot rely on Theorem 4, and are forced to indicate how
the discrete valuation equation (67) converges to the PDE in which now premature exercise
might be optimal. In order to show how the discrete valuation is related to the PDE, expand
the call’s value?? C(SF,T—t- k) in a Taylor’s series around (5,7 —t), retaining terms of

order h or greater:

C(SH,T—t—h) = Cls, T-t)+ (Sf - s)C,

oot =P Cu] L KO g 4 o),

(73)
and similarly for C(S7,7 — ¢ - k). Substitute these expressions into (67), divide through
by &, and take h to zero; we pass to the PDE. This connexion between the two valuation
equations follows the argument given by Cox and Rubinstein (1985, pp. 208-9). It allows
us to interpret the binomial model as a numerical method for the solution of the PDE.

This argument is not rigorous, but it suggests the usefulness of the binomial method in

s,T

the valuation of American options. We can calibrate the approximation by comparing the
American option values to the values obtained from an alternate numerical procedure, such
as the method of finite differences.

To check the numerical accuracy of the binomial method for the CEV process, we chose
the following parameters: (i) an annual rate of interest of 5%, (ii) values for  of 0.5 (the
square root diffusion) and 0.875 (the average of the values reported by Gibbons and J acklin
(1989)), (iii) three values of a, chosen such that the initial, annualized instantaneous standard
deviations correspond to 0.2, 0.3, and 0.4. We fix the initial stock price at $40, and for each

*2We have required exact arbitrage pricing in each economy (indexed by k) in the definitions i (70)-
(72), in the spirit of the development in Cox, Ross and Rubinstein (1979). These definitions do not ensure
computational simplicity in every case; however, in the CEV application given below simplicity is achieved
for conventional parameter values. Of course, a simple binomial approximation to (68) can be readily found
from the methods in Section 2.

BBecause we're assuming a nondividend paying stock, this value also applies to American call options.
For American puts, however, the one period valuation formula in (67) must be replaced by the immediate
exercise value if the latter dominates —- and hence an optimal exercise policy found as part of the problem,
thus constituting a free boundary.
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combination of parameter values, we compute the option values at striking prices of $35, $40
and $45. Table 1 displays the results for European Calls and American Puts. Formula values
for European options under the square root diffusion are available in Cox and Rubinstein,
p- 364. For comparison, we computed the values of European call options for v = 0.875 and
for all the American puts numerically, using the implicit finjte difference method to solve
the PDE. The binomial method gives answers accurate to within $0.01-$0.02 for the chosen
maturities of 1 and 4 months, as long as 50 time intervals are used. The approximation
deteriorates as the maturity is lengthened, and the binomial method gives coarse answers

for 5 time steps at these parameter values, 4

3.2 Bond Pricing

The diffusion in (58) proposed by Cox, Ingersoll and Ross (1979) is one of several models for
the nominal short term interest rate which can be employed to value a stream of default-free
cash flows. The binomial valuation method imposes that the value of this stream at any
stage is equal to the expected future value (at the two subsequent nodes) discounted at the

risk-adjusted rate. In general, the one-step binomial tree can be represented as

Pt pt

an

P r-

where P is the value of the claim, and r is nominal short term rate of interest, and the
suffixes + and - apply to these quantities at the subsequent time node, after an up and
down move respectively.?® The valuation method states that

p_ 9 P+~ g)P]
(14 7r*h) ’

**The binomial routine, with the transformation defined as in (53) - (55) and the jumps defined in (70)
- (71), was implemented in GAUSS on a personal computer. Valuations of at-the-money American Puts
(with 4 months to expiration, ¢ = 0.4 and y = 0.875) with the binomial model required 0.22, 4.01 and 66.57
seconds for values of 2 at 3, 50 and 250 respectively. Accuracy comparable (within 0.1 cents) to the valuation
with n at 50 was obtained by a solution to the PDE for the American Put using the implicit method of finite
differences, reported in Table 1, in 93.6 seconds. These figures for accuracy and execution time should not

be taken as representative at all parameter values. The GAUSS code for the binomial method used in the
tables is available from the authors on request,

*Note that since P moves nversely with r, P* < P < p-

(74)
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where 7* is the risk-adjusted discount rate, r* =r+r.g(t,T—t), and r -g(t, T —t) represents
the instantaneous risk premium. We assume that it is a bounded, continuous function of the
time index ¢ and the time to maturity T' — ¢, satisfying g(t.T —t) > -1, thus ensuring that
r* is non-negative. If g(¢, T — t) =0, then the Local Expectations Hypothesis applies.?6

The value P at any node must be augmented by any cash distribution that might occur
at that node; in the numerical example below we value a discount instrument, and therefore
there are no cash distributions. Again, one can rearrange the one period valuation equation,
expand P* and P~ in a Taylor’s series around P(r,T —t), and pass to the PDE, which is

the valuation equation for this asset.

As was the case for the CEV European option pricing model, we can use a version?’ of
Theorem 3 to show that for a discount bond, the sequence of bond prices produced by the
binomial model converges to the bond price produced by the diffusion limit. This would
then justify the use of the binomial method in this context.

Consider the value at time 0 of a pure discount bond that pays $1 at time 7. The binomial
pricing procedure implies (given b = T/n)

hPO =1- Eo';, [exp {—hnz::l (hrjh + hrjh . g(j‘h, (n —j)h))}J . (75)

In continuous time, we have (see Cox, Ingersoll and Ross (1981))

Py=1-E, [exp{—foT(rt-l—rt-g(t,T—t)) dt}]. (76)

To show that , Py — P, as h 10, we first define the stochastic process ,y;, by

rYo = 15 (77)
WYt = w¥rn, kh <t < (k+1)h, and (78)
RY(k+1) = 1Ynk XD [~k - (arag +5 rog - g(kB, (n — k)h))]. (79)

It is easy to check that

n=1

WYT = exp | —h 3 7 (wrin +4 s - g(Gh, (n — J)R)) (80)

7=0

*For a discussion of the risk premiums which are consistent with a no-arbitrage condition, see Ingersoll
(1987) Chapter 18.

*"While Theorem 1 dealt only with univariate Processes, more general theorems are readily available —
see Stroock and Srinivasa Varadhan (1979, Section 11.2), Ethier and Kurtz (1986, Section 7.4) and Nelson
(1989, Theorem 2.1}. The significant change is that the local second moment is a matrix, and is required to
converge to the instantaneous covariance matrix of the diffusion.
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wFo = Epu[nyr). (81)

r¥r is uniformly bounded from above by 1 and below by 0, so if the vector?® Markov process
{nm, AT:} converges weakly to a well-behaved diffusion, then , P, = Eonlnyr] converges to
Po = Eolyr] as h | 0. With this as background, the following Theorem justifies the recursive
valuation procedure in the binomial model:

Theorem 5 Suppose that the interest rate process takes the form
dry = p(ry,t) dt + a(r,, t) dW, (82)

where ro is @ non-negative constant and p(,+) and o(-,-) satisfy the conditions of Theorem 3.
Define the process {,y,} as in (77)-(79), and construct the approzimating binomial sequence
{nr¢} as in Theorem 3. Then {hys, a1e} = {ye, e}, where {r,} is the solution to (82) and y,
satisfies

dyt——-—ytrt{l+g(t,T—-t)} dt, yoz]_
Further, Py — P, as hlo. O

We examined the numerical accuracy of the binomial model in valuing a discount bond
with a face value of $100 using the CIR interest rate process. The parameter values were
set as follows: (i) The value of & was varied from 0.01 to 0.5. A value of zero produces a
martingale; (ii) The value of o was varied from 0.1 o 0.5; (iii) The long run mean y was fixed
at 8%; and (iv) g(t, T — t) =0, so the Local Expectations Hypothesis holds. These values
cover {and go well outside) the range of parameter values reported for nominal Treasury
securities by Pearson and Sun (1989). Two initial values of the interest rate, rg, were chosen:
5% and 11%. The maturities of the instruments chosen were 1, 6, 12, and 60 months. The
binomial method was implemented in GAUSS for values of n, the number of steps, ranging
from 5 to 200. Cox, Ingersoll and Ross (1985) provide a formula for this bond’s value.

Table 2 reports the computed values. The column under “CIR” reports the known
solution value for the parameters in that row. The binomial procedure provides accurate
solutions, especially for short maturity bills. For given values of n and the bill’s maturity,
the error increases as o increases, as is to be expected: in the limiting diffusion process, the
distribution of r, for any t is continuous, and our approximation replaces this with a discrete
distribution. For any given h, the higher o is, the further apart are the values that we let
17t take, making the approximation more coarse,

28 ibid.
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The binomial method can be quickly adapted to compute values for contingent claims
on fixed income securities. Because the procedure is relatively flexible, it can be employed
for alternative diffusion processes as indicated in Section 2.

4 Conclusion

Sharpe’s insight, in the development of the binomial approach, has led to the use of the
binomial model in many normative applications in finance, especially in option pricing.
Its simplicity and its flexibility are considerable virtues. Unfortunately, the approach has
been restricted in its use to those situations in which the underlying asset’s price follows
a lognormal process in continuous time. This paper presents conditions under which a
sequence of binomial processes converges weakly to a diffusion, and shows constructively
how one can employ a transformation to produce computationally simple binomial processes.
The transformation is relatively straightforward: the construction of the binomial process
requires the sizes of the up and down jumps (and the associated probability) to be such that
its local drift and second moment converge to the drift and variance of the desired diffusion,
and that the jump size goes to zero as the jumps become more frequent. The diffusion’s
behavior at the boundaries will, in general, require us to modify the transformation and

allow multiple jumps in the binomial tree,

In the context of financial models (especially option pricing models), the binomial method
numerically solves a partial differential equation for the value of some asset. The methods
in this paper permit one to solve such PDEs for alternative underlying diffusions; and these
methods might be useful in other contexts as well. For example, we might wish to put a
diffusion process on aggregate consumption, and derive bond pricing formulae by looking
at the expected marginal rates of substitution of a representative consumer-investor. The
methods in this paper are most useful in such cases, especially when an analytical solution
to the problem remains elusive.

APPENDIX

The Formal Setup in Section 2

Let D be the space of mappings from [0, c0) into R! that are continuous from the right
with finite left limits; D is a metric space when endowed with the Skorohod metric (Billingsley
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(1968)). For each h > 0, let M;; be the o-algebra generated by kk, nyo, hys, RY2h -« - BYkh,
and let B denote the Borel sets on ®!. Let an(y, hk), Y,F (y, kk), and Y, (y, kk) be scalar-
valued functions defined on [0,00) x ®! satisfying (2), (3) for all y € R! and all k =
0,1,2,...n.

Let P, be the probability measure on D such that the following hold with probability 1
for k=0,1,...n:

Palayo = wo] = 1, (83)
Pulaye = ayrn. kb <t < (k+1)R] =1, (84)
Ph[hy(k+1)h = n+(hyhk,hk)leh] = qu(nynr, hk), (85)
Pulayeriyn = Y5 (hynes RE) Min] = 1 — a (nyns, k), (86)

Pulayeeyn = clMrp) =0 for ¢ # YF(hyhk, hk), c # Y. (hyhk, hE). (87)

Lyapunov Condition Sufficient for Assumption 7

The following is a Theorem in Stroock and Srinivasa Varadhan (1979, Theorem 10.2.1),
justifying Assumption 7:

Assume there exists a non-negative function #(y,t) that is differentiable with respect to t
and twice differentiable with respect to Y, such that for each T > 0,

nf ¢(y,t) = 0, (88)

lim i
Ju|—o0 0<i<T

and a positive, locally bounded function A(T) such that for each T > 0, for all y € R! and
allt,0<t<T,

Od(y,t) 1 5  F(y,t) , 9é(y,1)
p‘(y: t)"_a—y_"_ + 20 (yvt) ay2 + o < ’\(T)gﬁ(yat)' (89)
Then Assumption 7 holds. a

The Partial Derivatives in Assumptions 8 & 10

The following definitions apply to the partial derivatives (needed in the Taylor’s series

. . . 2
expansion) and employed in Assumptions 8 and 10: a, = %:i)-, o = Qﬂa’t’—’ﬂ, Oyt = 2%;'7’11,

Oy = %‘iyg'—'tl, Oy = 3—2;—5.‘@. And the corresponding partial derivatives for Y(z,1) are readily
computed, using the implicit function theorem; we give two of these which are needed below,
Y (z,1)

= a(y,t) (90)
Jz o=X(y,t)

Y,

1]
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2
L (91)
Oz T=X(y.t)

Yo

If the functions oy, 0; ete. are not well-defined or are infinite at a point (y*,t), we can often
extend these definitions in the obvious way by taking limits. For example, if a(y*,t) = 0 but
o,(y*,t) = oo, then define Yor(y™,t) = limy_ o Y, (v, t), if this limit exists.

Proofs

PROOF OF THEOREM 1: The proof is a direct application of Nelson (1989), Theo-
rem 2.1, which is itself an adaptation of results in Stroock and Srinivasa Varadhan (1979).
Assumptions 1, 3, and 4 are equivalent in the current context to Nelson (1989) Assump-
tion 1. Our Assumption 2 is the equivalent of Nelson (1989) Assumption 4. Nelson (1989)
Assumptions 2 and 3 are trivially satisfied. The Theorem then follows directly. Q.E.D.

PROOF OF THEOREM 2: Since Assumption 1 is obvious, our first task is to verify
Assumption 2. By Stroock and Srinivasa Varadhan Theorems 7.2.1 and 10.2.1, and Ethier
and Kurtz (1986) Corollary 5.3.4, Assumptions 6 and 7 together are sufficient to ensure that
Assumption 2 is satisfied. Next, expand Yi(z,t) — Y(z, k) as a function of z = VE in a
Taylor’s series around /& = 0. For z& +vVh <z <zl — Vh we have, for some 5, 0 < n<1

= (z,t h 023 (z,
YiE(2,1) = Y(z,t) = +VR 3_}’%&_) b 9 g(zz, )
‘ z=0 z z=nvh
h
= [:t\/fIY; + Qh}é] ly(,,_,t),t t3 [Y;x + 4vh (Ye + Yo+ \/i_ﬂ’;t)] Y (et b2 h) 2k (92)

Note that Y, = o(y, t). Assumption 8 guarantees that Y:, Y.z, Yii, Vi exist and are locally
bounded, so it follows that

YiE(2,t) = Y(z, k) = £VEo (Y (2, 0),8) + O(h) (93)

where the O(h) term vanishes uniformly on sets of the form {(z,2) : (Y(2,t),t) € F}, with F
any bounded subset of ! x [0, co]. This establishes convergence of the local second moment
oi(y,t) to o(y,t) uniformly on compact sets, and also verifies Assumption 3. As in Section
2, the convergence of the local drift #4 to g uniformly on compacts is ensured if 0 < gn < 1.
Rearranging (32), we have

(Vi (2,8) - ¥ (2,1))
h

and using (93), this is equivalent to

(Vi (2,8) = Y, t))
h ¥

0 < ga(a,t) <1 < u(Y(z,1),t) <

(94)

_a’(Y(z', i), t)
h

i Om sy (e, s TEDD o)

26



where the O(1) terms are bounded on bounded (y,t) sets. Since u is locally bounded and ¢
is locally bounded away from 0 (by Assumptions 5 and 6), we have y;, = p for sufficiently
small A on any bounded (y,1) set, concluding the proof. Q.E.D.

PROOF OF THEOREM 3: Again, Assumption 1 is obvious. Assumption 2 follows the
argument in the proof to Theorem 2, except that we use Stroock and Srinjvasa Varadhan’s
Theorem 8.2.1 in place of their Theorem 7.2.1. It remains to verify Assumptions 3 and 4
and (50). Consider (50) first: 4y, is non-negative for all k and ¢ by construction. Assume
for the time being that for all y < 0,u(y,t) = u(0,2) > 0 and o(y,t) = a(0,2) = 0. Define

fy)=—y* I(y <0) (95)

where I(y < 0) is an indicator function that equals one when ¥ < 0 and zero otherwise.

Since f(y) is twice differentiable and y, > 0, we have by It6’s Lemma

£ = = [ 31, < 0) (42u(yer5) + 110* () ds — [ 31 < 00Zo(y.,s) W, (96)

Since pu(y,s) > 0 and o(y,s) = 0 for y < 0, and since J(y) is continuous a.s., we have

t
flye) = —/0 3(ys < 0)ylu(y,,s)ds <0 a.s.

But by its definition in (95), f(y,) > 0. We conclude therefore that fly:) =0 a.s. for all ¢
Since, by 1t6’s Lemma, the path of f(y.) is continuous a.s., we have

inl f(y:) =sup f(y:) =0 a.s., (97)
£>0

120

and therefore

1r21£ e 20 a.s. (98)

Note that our assumption that #(y,s) > 0 and o(y,s) = 0 for y < 0 was not essential, since
(97) and (98) imply that if y, starts non-negative, it stays non-negative with probability one.
All we need is for 4 and ¢ to be continuous at y =0, and p(0,5) > 0 and ¢(0, s) = 0. This
concludes the proof of (50).

As before, Assumption 3 follows when we show that YE -y = O(\/E) uniformly on
compacts, which will follow from the verification of Assumption 4. First we verify that i

converges to 1 uniformly on compacts. As before, this holds as long as
(Y (2,8) - Y(a, ) Y (z,t) - ¥(z,1))
h h

for small A uniformly on compacts. In regions bounded away from y = 0, (99) holds by virtue
of the argument in the proof to Theorem 2. In the neighborhood of y = 0 the upper inequality

< ul(Y(z,t),t) + (1) < ( (99)
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is satisfied because J; was chosen to do so. The same holds for the lower inequality, except
when Y,” = 0. In this case we require

- % < p+o(1). (100)
Assumption 9 implies there exists a Ar,p such that |u| < yAr p. Rearranging (100) we require

1
— (AT,R + E) y < o(1),

which clearly holds for small k.

Finally, we must verify that o} — o? uniformly on compacts. First we consider values of
y bounded away from 0. Choose a function c(h, A) such that for every A, 0 < X < oo,

. : o(y,t)
lim inf ——— =00
R0 0<i<he(hN<y<h
and
lim e(h, A) = 0.
hlo
Assumption 10 guarantees that such a function exists. Define the set

Qh,A) = {(y,6): 0t <A, c(h,A) < y < A}.

By the same Taylor’s series argument as in the proof of Theorem 1, we can show that on
Q) ) .
oW - %2 <u<on) 2
By the construction of Q(4, A), 75 0 as hl0,sothat JEf — 1 uniformly on Q(A, ). We
then have
YE(X(y,1),1) -y = £Vho(y, ¢) + O(h), (101)

implying that of — 6% — ¢ uniformly on compacts outside a shrinking neighborhood of

y = 0. We are left to check convergence of o# when y = 0 or when y lies in some shrinking
neighborhood of 0.

Now consider the case y = 0. Then y = Yy =0(0,¢) = 0 < p(0,¢). Here J;! is selected
to the smallest odd positive integer that satisfies # < Y} /h, implying that Yt = o(v/R) and
that 950 — 4(1).

+_- 2
To show that 67 — o2 on every shrinking neighborhood of y = 0, we show that LY"—hyL

! Y -y !2
and *-2-—2 converge to ¢2 in this region. As before, expand ¥t and Y, as functions of V&
in a Taylor’s series around v/ = 0. For some 7,A,0 <A <1,0< 5 <1 we have

h

Vit (e, 1) = Y(z,0) = [} VRY, + Y[, .+ 5 Yes +O0(h*?) (102)

of l
(=t) Y(z+nvVht4n2h) t+124
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and

W)=Yt = [ VA +2my][, 42

+O(R*?), (103)
Y (z— M ht+22R) 44 A28

where the A=3/20(1%/2) is bounded uniformly on compact sets.
Now consider the convergence of (Y;” — y)?/h. By (103) we have
Yo —y=Y(e-Jivhi+h)—y = - Jio(y, VR + O(R),
where J; is constrained to satisfy
~ Jio(y,t)Vh 4+ O(h) < ph. (104)
If Ji # 1 it is because of (104), in which case
Yy —y=uh+e

where ¢ is an overshooting error and arises because Jy, is constrained to be an odd integer.
From (103) however, it is easy to check that € is bounded by —20(y, t)V'k + O(h). Therefore

Vi - y < |uh + 20(y, t)VE + O(h)|

(5 -

T — ' (y,t) =3°(y,1) + O(Vh). (105)

But we’re considering values of y in a shrinking neighborhood around 0, and o¥(y,t) = 0
as y — 0, so the LHS of (105) converges to 0 as required. A similar argument (using (102)
shows the convergence of (Y} — ¥)%/h. Q.E.D.

so that

PROOF OF COROLLARY 3.1: To satisfy the conditions of Theorem 3, we must extend

the process to the whole real line by defining the new stochastic differential equation
ds; = ps,dt + ols,|* dW,, (106)

which coincides with (51) when s > 0. Assumption 5 is trivially satisfied. Use A\ =
max flo? + 2u,1) and #(S) = S2 + max[o?,1]. in the Lyapunov condition given earlier,
which satisfies Assumption 7. When v > %, Assumptions 9 and 10 are readily verified, with
p(z) = 27, and Theorem 3 applies. Q.E.D.

PROOF OF COROLLARY 3.2: Again, we must extend the diffusion to all of ! in order
to apply Theorem 3. Therefore define the diffusion

dr = k(g —r)di + a\/]r-'dﬂf, (107)
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with the same positive initial value ry, For verifying Assumption 7, we use the Lyapunov
condition and set A\ = max [1,10% + 26(p + 1)]], and $(r) = max][l,|o? + 25p(] + r?. As-
sumption 9 is easily verified with p(z) = /z, and Assumptions 5 and 10 are easily verified.
The theorem now follows as special case of Theorem 3. Q.E.D.

PROOF OF THEOREM 4: {:8:} = {8} foliow by direct application of Theorem 3.
Convergence of the put price follows from Billingsley (1986), Theorem 25.12, because of the
uniform boundedness of the put’s terminal value at 7. Convergence of the call price then
follows from put-call parity. Q.E.D

PROOF OF THEOREM 5: We need to employ a multivariate version of Theorem 1,
which is available in Nelson (1989, Appendix A). Assumption 1 of Theorem 1 (now requiring
continuity of the drift function as a vector and the diffusion function as a matrix) is obviously
met., The local drift of Ry 1S

y - (exp(~r-[1 —gh(t,T —Olh=-y —9(t.T 1)) -y + O(h), (108)

where O(h) vanishes uniformly on compacts. The loca second moment of ,y, is

y* - exp(=r-[1 — g(t,T = 8)] - h) — 1)?
h

which also implies that the jump size vanishes uniformly on compacts. And the local cross-
moment of y and r vanishes, satisfying Assumptions 3 and 4. All that remains to invoke the
multivariate version of Theorem | is to prove that the multivariate analog of Assumption
2 holds. We have already seen in Theorem 3 that {,r, = re}; and that Assumption 2 js
satisfied by the {r,} process. Note that there is no feedback from the y back to r. For any
realization of the sample path of {r},

= O(h). (109)

yt=exp{—f0t[r,+r,-g(s,’f—t)] ds}, (110)

exists and is unique as a Riemann-Stieltjes integral. From Theorem 25.12 in Billingsley
(1986), Py — Fo, as required. Q.E.D.
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Table 1. Values of American Call and Put Options on Stock for the CEV Process
Non Dividend Paying Stock, Binomial Method
Stock Price = 40; Interest Rate = 5%
Strike Price K = 35, 40, 45

Panel A: Call Option Values
Gamma(y)=0.5 Gamma(y)=0.875
(T —t) 1 Month 4 Months 1 Month 4 Months
n 5 50 oo 5 30 oo 5 a0 PDE| 5 50 PDE

35 | 5.142 5.149 5.15 [ 5.798 5.777 5.19 | 5.142 2.148 5,147 | 5.773 5.759 5.759
0.2 40 |1.049 0.999 1.00 {2249 2152 2.17 1.049 0.998 0.990 | 2.250 2.151 2.153
45 | 0.012 0.018 0.02 [ 0.491 0.466 0.47 | 0.016 0.021 0.021 | 0.526 0.495 0.489
3515212 5.231 5.23[6.352 6.311 6.31 | 5.207 5229 3.218 | 6.310 6.264 6.255
0.3 40| 1.531 1454 1.46 |3.199 3.051 3.00| 1.531 1.454 1.446 | 3.200 3.050 3.057
4510.103 0.141 0.14 | 1.213 1.186 1.18|0.109 0.156 0.154 | 1.260 1.238 1.225
355434 5412 542(6.935 6966 6.99 | 5,404 5390 5.387 | 6.876 6.896 6.903
0.4 4012012 1.911 1.92]4.149 3951 3.98 2012 1.911 1.901 | 4.149 3.949 3.961
4510416 0.389 0.38 [ 1.901 1.990 2.00 | 0.447 0.413 0.401 | 1.961 2.068 2.061

Panel B: Put Option Values

Gamma(y)=0.5 Gamma(y)=0.875
(T —1t) 1 Month 4 Months 1 Month 4 Months

n 5 50  PDE 5 50 PDE 5 50 PDE 5 50 PDE
o K

35 1 0.000 0.007 0.008[0.243 0.221 0.293 [ 0.000 0.006 0.007 [ 0.218 0.202 0.203
0.2 40 {0.900 0.849 0.842 | 1.656 1.570 1.570 | 0.900 0.849 0.842 | 1.656 1.571 1.571
45 | 5.000 5.000 5.000 | 5.058 5.063 5.060 | 5.000 3.000 5.000 | 5.085 5.082 5.078

351 0.070 0.090 0.088 [ 0.797 0.761 0.751 ] 0.065 0.081 0.079]10.755 0.714 0.706
0.3 40| 1.382 1.305 1.296 | 2.610 2.466 2.470 1.383 1.305 1.297 | 2.613 2.468 2.471
45 15.032 5.044 5.042 | 5.691 5.641 5.628 | 5.038 3.056 5.052 | 5.743 5.693 5.680

3510293 0272 0.270 [ 1.380 1.423 1.430 0264 0.249 0.248 [ 1.322 1.352 1.359
0.4 40 1.865 1.761 1.751 |3.565 3.367 3.374 1.865 1.761 1.751 | 3.565 3.367 3.374
45 | 5,286 5.256 5.245 | 6.384 6.400 6.395 3.317 5.282 5.269 | 6.449 6.479 6.472

Notes:
1. The diffusion corresponding to the CEV is defined as dS = uSdt 4+ 057 dz.

2. The value of 7 is set so that the annual standard deviation (¢/)i5 0.2, 0.3 and 0.4 at the current
stock price of 40. That is, 057 = 40¢’. There are n steps in the binomial method.

3. For v = 0.5, the column under n = oo for calls corresponds to the formula value of a European

call option for the square root process; the values are taken from Cox & Rubinstein [1985,
p364].

4. The column under n=PDE corresponds to the numerical solution of the partial differential
equation for the option, using the implicit, finite difference method. The mesh interval along

the time dimension was 0.5 days, and the mesh interval along the stock price dimension was
20 cents.
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Table 2. Values of Discount Bonds for the Cox, Ingersoll, & Ross Term Structure Model, using the
Binomial Method

Kappa Sigma Maturity n=

K o Months rg 5 50 100 200 CIR
0.01 0.1 1 0.05 99.5843 99.5841 99.5841 99.5841 99.5841
0.01 0.1 1 0.11 99.0884 99.0877 99.0877 99.0877 99.0876
0.01 0.1 6 0.05 97.5351 97.5290 97.5287 97.5285 97.5284
0.01 0.1 6 0.11 94.6818 94.6570 94.6556 94.6549 94.6542
0.01 0.1 12 0.05 95.1427 95.1192 951179 95.1173 95.1166
0.01 0.1 12 0.11 89.7158 89.6235 89.6183 89.6157 89.6131
0.01 0.1 60 0.05 78.7935 78.3999 78.377T1 78.3665 78.3451
0.01 0.1 60 0.11 60.5034 59.2818 59.2092 59.1727 59.1358
0.1 0.1 1 0.05 99.5835 99.5832 99.5832 99.5832 99.5832
0.1 0.1 1 0.11 99.0892 99.0886 99.0886 99.0886 99.0886
0.1 0.1 6 0.05 97.5092 97.4973 97.4967 97.4963 97.4960
0.1 0.1 6 0.11 94.7067 94.6877 94.6866 94.6860 94.6855
0.1 0.1 12 0.05 95.0430 94.9975 94.9950 94.9937 94.9924
0.1 0.1 12 0.11 89.8079 89.7367 89.7327 89.7307 89.7287
0.1 0.1 60 0.05 76.9130 76.0941 76.0486 76.0236 76.0000
0.1 0.1 60 0.11 61.6259 60.5878 60.5255 60.4942 60.4628
0.1 0.5 1 0.05 99.5837 99.5833 99.5833 99.5833 99.5833
0.1 0.5 1 0.11 99.0894 99.0889 99.0888 99.0888 99.0888
0.1 0.5 6 0.05 97.5310 97.5287 97.5287 97.5293 97.5194
0.1 0.5 6 0.11 94.7531 94.7384 94.7375 94.7370 94.7349
0.1 0.5 12 0.05 952109 952503 95.2522 95.2535 95.1632
0.1 0.5 12 0.11 90.1275 90.0911 90.1109 90.1101 90.0762
0.1 0.5 60 0.05 84.2543 87.1194 87.3946 87.4445 83.4832
0.1 0.5 60 0.11 72.9138 75.1890 75.3230 74.7616 72.5572
0.5 0.5 1 0.05 99.5804 99.5793 99.5793 99.5792 99.5792
0.5 0.5 1 0.11 99.0927 99.0928 99.0929 99.0929 99.0929
0.5 0.5 6 0.05 97.4201 97.3993 97.4159 97.3959 97.3843
0.5 0.5 6 0.11 94.8543 94.8598 94.8616 94.8618 94.8562
0.5 0.5 12 0.05 94.8006 94.9097 94.8167 94.9745 94.6592
0.5 0.5 12 0.11 90.4403 90.5151 90.5191 90.5427 90.4269
0.5 0.5 60 0.05 76.6883 76.0322 83.2037 86.9128 74.8289
0.5 0.5 60 0.11 72.5554 75.1403 73.2344 77.4502 68.6361

Notes:

1. The diffusion employed in the Cox, Ingersoll & Ross model is dr = K —r)dt + o/rdz.
2. The value of y, the long run mean rate, is set at 8%. rp is the initial value of the interest rate.

3. The Local Expectations Hypothesis is applied to the valuation of a pure discount bond with a
face value of $100, using the number of time steps indicated by n in the binomial model.

4. The column under ‘CIR’ indicates the value given by the formula in Cox, Ingersoll and
Ross(1985) for the corresponding parameter values.
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