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I. Introduction

Theories of consumption have evolved hand in hand with theories of
income, from the static Keynesian MPC to the unit root anomalies of Deaton and
Campbell. Recently, "long memory" stochastic processes, compromises between a
random walk and a finite order ARMA model, have become popular time series
models for macroeconomic data (Haubrich and Lo, 1988, Diebold and Rudebusch
1988, Sowell 1987). It seems natural for consumption studies to consider this
new class--the fractionally differenced processes.

This new approach has profound implications for the consumption
function. On the theoretical level a fractional process for income predicts
consumption exhibiting both Flavin's (1981) excess sensitivity and Campbell
and Deaton's (1987) excess smoothness. On the empirical level, the existence
of long memory in consumﬁtion——both in particular components and across
different countries--provides a new and intriguing set of puzzles.

This paper first calculates the stochastic properties of consumption when
income follows a fractional stochastic process, and shows how this may explain
both the excess sensitivity results and the excess smoothness results. It
then uses a recently developed improvement of the Rescaled Range Statistic and
finds long term memory in consumption. The remaining sections underpake Monte
Carlo simulations to assess the finite sample size and power of the test,

conduct cross country comparisons, and discuss possible explanations.

II. Fractional Methods

Intuition suggests that differencing a time series roughens it up while
summing it smooths it down. A fractional difference between O and 1 can be
described as a filter that roughens a series less than a first difference:

one that yields a series rougher than a random walk but smoother than white
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noise. This is apparent from the infinite-order moving average representa-
tion. Let X, follow

(1 - )4 X, = ¢ (1)

t

where ey is white noise, d is the degree of differencing, and L is the lag

operator. If d = O then X, is white noise, and if d = 1, X, is a random
walk. However, as Granger and Joyeux (1980) and Hosking (1981) show, d need

not be an integer. The binomial theorem provides the relation:

(-0 = o et (2)
k=0

with the binomial coefficient [d defined as:

k)

(i] Ed(d- 1)(d-2l){;“(d'—k+ 1) (3)

for and real d and non-negative integer k. Using this, the AR form of X
follows:

" .
A(L)X, = £ A LX = £ AX =€ (4)
£ oo S kK t-k t

with the AR coefficient expressed compactly in terms of the gamma function

o kedy . Ik - d)
by = GDTG) = r(-d)r(k + 1) ° (5)

Manipulating (5) yields the corresponding MA representation of Xi:

_ -d _ _ I'(k +d)
K= (1 - L) Ve = BL)ey By = sryF(k « 1) (6)

The time series properties of X, depend crucially on the difference
P t G€P

parameter ¢. For example, when d is less than 1/2, Xt is stationary; when d
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is greater than -1/2, Xt is invertible {Granger and Joyeux 1980, Hosking
1981). Likewise the autocorrelation properties of Xt depend on the parameter
d. The MA coefficients Bk tell the effect of a shock k periods ahead, and
indicate the extent to which current levels depend on past values. Using

Stirling's approximation, we know:

P

(1)

[ve)
4

B
Lo |
—
(=X
St

Comparing this with the decay of an AR(1) process highlights the central
"long memory" feature of fractional processes: they decay hyperbolically, at

rate k1‘d, rather than at the exponential rate pk of an AR(1).

III. Fractional Differencing and the Theory of Consumption

Fractional processes can seriously change how we think about the
consumption function. Long term dependence in Y,, income, will affect the
pattern of consumption in ways that mimic several of the anomalies
discovered. Likewise, finding fractional differencing in consumption would
have profound implications: by standard permanent income theory, it should
not be there.

One well-known set of paradoxes concerns the variability of consumption
relative to income. When income is represented as a trend plus ARMA process,
consumption looks too volatile, it displays "excess sensitivity" (Flavin,
1981); when income is represented as a difference stationary process,
consumption looks too smooth (Campbell and Deaton, 1987). Letting income
follow a fractional process has a potential to resolve this paradox. With a
fractional income process current shocks will persist much longer than with
any finite ARMA process. The shock thus persists longer than the conventional
trend plus stationary representation admits. Consumers, following the true

fractional process, look irrational to the econometrician. Another econo-
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metrician, estimating an income process with a unit root, will make the
opposite conclusion, assuming that a shock persists forever, whereas the true
{fractional) shock dies out, albeit slowly.

To make the point more formally, consider the following example. Assume
the standard certainty equivalence framework (e.g., quadratic utility, see
Flavin 1981, Zeldes 1988) with a real interest rate of r = 0.01. We will
compare the variance of consumption under three different income processes:
AR(1), a fractional, and a random walk. Under any of these assumptions, we
can describe the path of consumption using a formula from Flavin (1981), shown
to hold for stationary and non-stationary process by Hansen and Sargent
(1981).

[1 + 201 + r)_kek]
AC, = £ (8)

t 1+r [1 -0l + r)—k¢k]

-

Where Ct is consumption, ek are the MA coefficient of Y., ¢ are the AR
coefficients, and & is the difference operator, & = (1 - L)Y, From this, we

can calculate the variance of ACt

-k
[1+2(1 +r) Gk] 2 2

. (9)
1+r [1 - o1 - P)-k¢k] £

var(aC_) = {
t
We now use equation 9 to compare the variance of éonsumption under three
different specifications for income. Consider an AR(1) with p = 0.9, a
fractional process with d = 1/2, and a random walk. Furthermore, normalize

ci to 1, and choose a real interest rate of 0.01. For the AR(1),

[P 2. 0.9 2 _
var(ACy) = [1 +r - p] B [1 + 0.01 - 0.9] = 0.00826 (10)'
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The corresponding expression for the fractional process does not have a
closed form solution, but since all terms are positive we can take a lower
bound by summing up the first 500 terms. Using this and equation 7, we find
the variance when income follows a fractional process:

var(ac,) = [H18012 . 0 01017 . (1)

Finally, expressing a random walk as an AR(1) with p = 1.0, we have

r
(i + o)1 -

2 1 + 2
1 =l ( r SR (12)
1 + r]

Equations (10)-(12) keep the variance of innovations constant, resulting
in different variances for income. However, we observe the {(sample) variance
of Ay. A more realistic approach keeps it constant and requires differing
innovation variances. Fortunately, this produces similar results.

Take as a base the random walk case, setting ci, the variance of

innovations, to 1, which also implies that the variance of income (sy) is 1.

For a (detrended) AR(1), var(dy) = Ui' If p = 0.9, normalizing var{(ay)

1+ p
to 1 requires oz = T_%§§' Likewise for a fractional process of Ay =

r{(1 - 2d) U2

5 For d = 3/8 (the variance is
{r(2 - &}

(1 - L)1'd , var{ay) = =

t
infinite for d = 1/2) this implies a o of 0.5113814,

Plugging these values into the consumption equations (10)-(12) yields a
variance of Ac of 1 for a random walk, 0.007847 for an AR{1) with p = 0.9, and
0.288196‘for the fractional process with d = 3/4. Fractional income still
produces consumption that looks too variable for an AR(1) and too smooth for a
random walk. Note that in the fractional case, the variance of income

innovations exceeds the variance of consumption even with non-stationary
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income. This clarifies the Campbell and Deaton claim that consumption vari-
ance should be higher; a unit root, not just non-stationarity, is required for
consumption variance to exceed income innovation variance.

Thus, fractional processes hold promise of explaining both excess sensi-

tivity and excess smoothness results by the intuitively appealing approach
that income is in fact more persistent than ARMA suggest, but not as long

lasting as unit root models claim. The caveat "holds promise" appears because

current estimation methods cannot accurately estimate the fractional process
in income. Furthermore, explicit tests (Haubrich and Lo, 1988) indicate that
income does not follow a fractional process. Still, several recent innova-
tions (Sowell 1987, Geweke and Porter-Hudak 1983) suggest that it is only a
matter of time before practical estimation is possible (Diebold and Rudebusch,
1988, Sowell, 1987).'

Fractional differencing also introduces a cautionary note in comparing
the variability of consumption and income. The most commonly used mechanism
generates a fractional process via aggregation of many AR(1) processes
(Bernamont 1937, Granger 1980, Haubrich and Lo 1988). Even if individuals
conform to the permanent income hypothesis, the aggregate values of
consumption and income may not: the representative agent approach breaks
down. A simple example will show that consumption appears too variable for
the observed aggregate income process.

If individuals face an AR(1) income process

Yeoq = 0%p * 8¢ (13)

'For an estimate of income with a view to explaining consumption
anomalies in the spirit of this section, see the interesting (independent)
work of Diebold and Rudebusch 1989.
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then by (8) consumption is

r
ACt -1—1"'?-—061‘_’ . (14)

Now we invoke the aggregatioh theorems to generate a fractional
difference in aggregate income. If p2 is distributed across individuals
according to Beta distribution B(p, g), and each individual's shock e, is
independent of others, aggregate income Y, will follow a fractional process of
order 1 - (q/2). Choosing p = q = 1 picks out a particularly simple Beta
distribution, the uniform. Aggregating the many individual consumptions c,

together produces the aggregate Ct:

- r
6 = [ 7o 2ede - (15)
Integrating (15) and collecting terms results in the variance of ACt when

we aggregate up from individuals who face an AR{1} income stream:
2 2
var(ACt) = 2r + 2r-lnr - 2r°1ln(1 + r) . (16)

The uniform distribution makes it easy to calculate the variance of
consumption for an agent facing the aggregate income stream. Since d = 1/2,
we use eguation-(9), again with an interest rate of 0.01, to compute
vaf(Aft). Comparing (16) with (10) shows that consumption will look.
excessivély variable relative to income since 0.018 > 0.008. On an abstract
level this result is well known: aggregation can introduce serious biases.
The present context makes the problem particularly acute because the most
plausible method of generating fractional processes is by aggregating. If
income follows an ARMA (2, 2), one may perhaps pretend that aggregation
problems do not arise. When income follows a fractional process, it signals

that aggregation is playing a major role.
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IV, Testing for Fractional Differencing

Permanent income theory predicts that consumption should be a random walk
(Hall 1978). Other theories, involving liquidity constraints or habit
formation, often imply otherwise. In this section we search for a particular
alternative, for fractional differencing, using the methodology developed in
Haubrich and Lo (1988) and in Lo (1988). Finding a fractional process in
consumption means rejecting the standard random walk form of the permanent
income hypothesis. It may be consistent with other theories, say a liquidity
constrained consumer forced to consume his long term dependent income.

The test statistic we use is the modified rescaled range or R/5
statistic, based on a statistic originally developed by Hurst (1951) and
popularized by Mandelbrot (1975). The statistic tests whether a process X
shows long term dependence or not. More formally, we express the null

hypothesis for a process defined as
X, = u+ ¢ 17)

where u is an arbitrary but fixed constant. As the null hypothesis H, assume

that the disturbances {et} satisfy the conditions

(c1) E[st] = 0 for all ¢t .
(c2) sup, E[IEtIB] ¢ = for some B > 2 .
n .
(c3) 2 =1im  E[} (1 ¢,)?] exists and ¢ > 0 .
Nne»>w n 3:1 J
(C4) {et} is strong-mixing with mixing coefficients a, that satisfy:
@ 1-‘3_
z L g L=,
k=1
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Conditions (C2)-(C4) allow dependence and heteroskedasticity, but prevent
them from being too large. Thus, short term dependent processes, such as
finite order ARMA models, are included in the null hypothesis, as are models
with conditional heteroskedasticity. Unlike the statistic used by Mandelbrot,

the modified R/S used here is robust to short term dependence. A deeper
discussion of these conditions appears in Phillips (1987) and Haubrich and Lo
(1988), which interested readers should consult.

To construct the modified R/S statistic, take a sample X,, X2...Xn, with

sample mean in’ choose q lags, and calculate:

K k
1 - . -
Q = = Max £ (X, -X)- Min £ (X, -X)]}
n = 3,(q) [1Sk5n J=1[ 3~ %) lsksn =1 9 D
where
2 1 0 -2 2 19 n
5 =1 - 2 - . -X 18
8 (q) = - 151(XJ X )"+ Z j£1wj(q){i:§+1(x1 Xn)[xl_j b 08
= ai + 2 g w, ()% w.(q} = 1 - —_%_T g <n
1219 3 q

Intuitively, the numerator in (18) measures the memory in the process via
the partial sums. White noise does not stay long above the mean: positive
values are soon offset by negative values. A random walk will stay above or
below O for a long time, and the partial sums (positive or negative) will grow
quickly, making the range large. Fractional processes fall in between.
Mandelbrot (1972) refers to this as the "Joseph Effect" of seven fat and seven

lean years. The denominator normalizes not only by the variance, but by a
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weighted average of autocovar'iances.2 This innovation over Hurst's R/3
provides the robustness to short term dependence.

The partial sums of white noise constitute a random walk, so Qn(q) Erows
without bound as n increases. A further normalization makes the statistic

easier to work with and interpret:

v (@) = Q(@)//TaT . (19)

Haubrich and Lo derive the asymptomatic distribution of V, calculating
the mean and standard deviation of approximately 1.25 and 0.27. Table 1
presents fractiles of the distribution of V and confidence intervals about the
mean. Figure 1 plots the distribution and density. Note that the
distribution is skewed, with most of its mass between 3/4 and 2.

We apply this test to several consumption series: Quarterly real total
consumption, durables, non-durables, and services. The data range from 1959:1
to 1988:4 and are taken from the NIPA files on WEFA. We calculate v, (q) for
the first difference of the log of these variables. The results are reported
in table 2. The first column of numerical entries are the estimates of the
classical V statistic which is not corrected for short term dependence. The
next columns contain estimates of the modified Vn(q) for lag values of 1, 2, 3
and 5,

Table 2 shows that the evidence for long term dependence occurs for
service expenditures. Both the classical statistic and the modified statistic
reject the null hypothesis of only short term correlation. Increasing the
number of lags decreases both the power and the size of the test, so it is

also not surprising that the test does not reject at three lags or above.

2These weights define the Bartlett window. Newey and West, 1087,
enumerate the advantages of this specification,
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Still, this finding of fractional differencing in consumption services raises
several interesting anomalies. Why is there long term dependence in services
and not in other consumption data? How can long term dependence occur in
consumption without occurring in income? What mechanism causes the fractional
exponent?

The distribution reported above is asymptotic; the small sample
properties of the test may differ considerably. Simulation methods provide a
standard assessment of the actual size and power in small samples. Table 3
reports the results of size and power simulations, each panel using 10,000
independently generated series. Against a fractional process with d = 1/3,
the test shows considerable power, even though this drops off rapidly as lag
length increases. The size calculations are for three processes included in
the null. Panel B reports the results when the null is an I1ID process, which
is the null from permanent income theory. Panels C and D report size for
AR(1) nulls with autoregressive parameters of 0.5 and -0.25. (Components show
both positive and negative first order autocorrelation.) These give an ideé
of how well the test distinguishes long term dependence from short term
dependence. For two or fewer lags, actual size of the test appears larger
than the theoretical 5%. Even so, services show long term dependence at a
conventional level of 10%. Like power, size decreases quickly, and beyond 2

lags it is not surprising that the test does not reject the null.

V. Cross Country Comparisons

The U.S. results are suggestive but not fully persuasive. Imperfect size
and power mean that any test sometimes accepts and sometimes rejects when it
shouldn't. A& standard solution is more data: in this case, other countries.

I check for long term dependence in four data sets from three countries:
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annual data on income and consumption in the U.K. from 1870 to 1965, and
quarterly consumption and its components in the U.K., Canada and France.

The annual data, index numbers from Feinstein (1972), allow a truly long
term look at consumption. Long term dependence seems more naturally a
hypothesis about a near century of data than about post-war sub-samples. Most
national accounts divided consumption into its components only recently. Only
Canada, the U.K., and France have component series long enough for a test with
reasonable size and power. Checking for long term dependence in less than
twenty years of data seems perverse.

Tables 4, 5 and 6 show the results of applying the modified Rescaled
Range Test to data from the United Kingdom, Canada, and France. Results for
the historical British series appear in the first two rows of Table 4. The
other series start in 1959 and 1963 and run through 1988. The Canadian data
starts in 1960, and the French in 1967, though some components start later.

In only one case, France, do GDP or total consumption show long term
dependence. The U.S., U.K., and Canada show no such dependence. Long term
dependence appears in total consumption in the one place it also appears in
GDP. This suggests a general lack of memory in GDP and total consumption, but
it also points out strong differences across countries. Conventional theories
do not predict different behavior for France,

One puzzle arises because long term memory frequently shows up in
consumption components, but not in output. One plausible story, after all, is
that consumption closely follows output, either because of liquidity
constraints or because of general equilibrium considerations. This has no
plausibility when services are fractionally differenced and GDP is not.

.Two related puzzles arise in looking at the long term dependence

properties of consumption components. Why services, and why not durables?
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Service expenditures emerge as significant in three of the four countries,
strongly so in two. Undoubtedly some services, such as divorces and

appendectomies, have permanent features, but it seems surprising that services
should consistently show more evidence of long term dependence when other
components do not. The most likely component was probably durable goods,
which both theoretically and empirically exhibits strong serial correlation.
It shows up significant only once, using the classical Rescaled Range, which
does not control for short term serial correlation. This could easily reflect
the MA{1) component expected from Mankiw (1982),

No patterns emerge from the other components. Non-durables are
significant only once, in Canada. Certainly some variation arises from the
size and power of the test, but it also suggests that the time series
properties of consumption and its components differ markedly across countries.
Future work ought to exploit those differences, and compare stochastic
structures across countries,

The results of the cross country comparison should give us additional
confidence in the test. It could fail either by having no power, and never
finding any fractionally differenced series, or by being too sensitive to
short-term patterns, and rejecting everywhere. The test finds some long
memory, in a rather interesting pattern; it neither always rejects nor always
accepts the null. The strong pattern of no long memory in output, total
consumption, or durables seems particularly persuasive. Mistaking short term
for long term persistence is the greatest weakness of the R/S test, especially
its classical variation. It is too sensitive to deviations from white noise
that are officially part of the null. Yet it does not reject the null for

output and most classes of consumption components.
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The simulation results confirm this. With no lags, the test has both
good power and a large size. It should find long term dependence, if
anything, too often. With more lags, the size and power of the test decrease

rapidly. When a weak test with a small size consistently rejects, it's a good

sign something is there.

VI. Potential Explanations

Finding that services consumption displays long-term dependence presents
a new anomaly. Services show such dependence while durables, non-durables and
output do not. This does more than reject the random walk hypothesis; it
presents a new stochastic structure needing explanation. It also rules out
some explanations, such as postulating a fixed marginal propensity to consume
out of a fractionally differenced income stream. The simulations and patterns
across countries rule out small sample biases as an explanation.

Creating long term dependence via aggregation (mentioned above in section
I11) presents only a very partial answer. Thus, consider the standard Euler

equation for the consumption choice problem

t - _5_, 1
Elu'(e,, )1 = g u'(e,) (19)

where u is the utility function, and 8 and R denote the discount factor and
the interest factor (one plus the rates). For quadratiec utility, this reduces

to an AR(1) consumption process,

—

ct+1 =

T

1 B
ey + B - 8) - p g (20)

b is a constant from the utility function.
The variance of the error term is in general not independent of 8, so we
cannot immediately apply the Granger theorem. A simple trick will surmount

the difficulty. Let a draw from nature give the individual not only a value
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of [%} but also the mean and variance of his income shock process. This can
be chosen to cancel the connection between the shock and g arising from the

maximization problem, Invoking the aggregation result (Granger, 1980) yields

that if (%]2 is distributed as a 8(p, q) distribution, consumption will be a
fractionally differenced process with order d = 1 - 9. For differenced

2

consumption, this produces a d ¢ 0, which explains only the least interesting
empirical finding, for only the U.K. durables show any significant evidence of
d ¢ 0. The more striking evidence of long term dependence indicates d > 0.
Different preferences hold some possibility of inducing long memory in
consumption, perhaps because knowing so little we can rule little out. If not
producing long memory directly, it may introduce a process that works via
aggregation. Habit formation is another possibility. Probably a
representative agent modél would not produce a fractional series; the standard
Ryder-Heal (1973) preferences give the past a geometrically declining weight,
which does not fit the slower hyperbolic decay of a fractional process.
Again, however, it may make aggregation possible. Providing one of the few
closed form solutions, Sundaresan (1989) derives optimal consumption when
utility depends on last period's consumption. Consumption still follows a

random walk if the interest rate equals the rate of time preference.

ViI. Cénclusion

There are really two reasons to consider consumption from the standpoint
of fractional differencing and its related long term dependence. First, if
income follows a long memory process, consumption responds to an income stream
unlike those previously considered, and so the relation between income and
consumption should look strange. The examples in section 3 show that
fracﬁional differencing can produce many of the interesting anomalies

observed. The impact must be somewhat muted, however, both because closed
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form predictions and accurate estimation techniques are hard to come by, and
because serious tests suggest that income does not show long term

dependence. The examples further show, however, that when dealing with
fractional differences working only with aggregate quantities is particularly
dangerous: aggregation problems cannot be assumed away, because aggregation

causes fractional differencing.

Secondly, consumption of services shows long term dependence. Though
consistent with previous work showing consumption is sensitive to past changes
in income (Flavin 1981, Deaton and Campbell 1987), it adds a new anomaly.
Output and other components do not show long term dependence. Services alone
show up significant in different countries. Why services occupy this unique

position remains a puzzle.
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Table 1a

Fractiles of the Distribution Fy (v)

P(V<y) 005 | 025 | 050 ] .100 | .200 300 [ 400 | .500
v 0.721 | 0.809 | 0.861 | 0.927 | 1.018 | 1.090 | 1.157 | 1.223
PV <) 543 600 | 700 | 8OO | 900 | 950 [ 975 | 995
v “\ ’ g_ 1294 | 1374 | 1473 | 1.620 | 1.747 | 1.862 | 2.098

Table 1b

Symmetric Confidence Intervals about

the Mean

P(\f% —7<V<'\/g +y) ¥
.001 0.748
.050 0.519
100 0.432
500 0.185




Table 2
R/S Analysis of Consumption

Series Vn(()) Vn(l) Vn(Z) Vn(3) Vn(S)
Total C 1.607 1.478 1.379 1.287 1.193
Durables 0.989 1.031 1.105 1.016 0.983
Non-Durables 1.405 1.254 1.191 1.117 1.067
Services 1.936* 1.899%* 1.829* 1.718 1.595

All Data: Quarterly Real Expenditures, Seasonally Adjusted, 1959:1-1988:4.
*Significant at 5% level.
V_(q) calculated on first differences of logs.
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Table 3
Size and Power Simulations

A: POWER AGAINST d = %

N Q PWR 1% PWR 5% PWR 10%
100 0 0430 0.603 0.684
100 1 0.192 0373 0478
100 2 0.065 0214 0.326
100 3 0011 0.114 0.209
100 5 0.001 0.012 0.062

B: IID NULL SIZE RESULTS

N Q SZE 1% SZE 5% SZE 10%
100 0 0.031 0.089 0.153
100 1 0.020 0.071 0.126
100 2 0.013 0.054 0.106
100 3 0.008 0.041 0.085
100 5 0.003 0.021 0.053

C: SIZERESULTS AR{1) e=0.J

N Q SZE1% SZE 5% SZE 10%
100 0 0.201 0.380 0.450
100 1 0.029 0.114 0.191
100 2 0.004 0.045 Li01
100 3 0.003 0.027 0.070
100 5 0.003 0.022 - 0.052

D: SIZERESULTS AR(1) e=-0.25

N q SZE 1% SZE 5% SZE 10%
100 0 0.153 0.308 0414
100 1 0.034 0.104 0.176
100 2 0.015 1.067 0.123
100 3 0.008 0.039 0.085
100 5 0.001 0.015 0.041

Each panel uses 10,000 independently generated series of 100 done with Fortran on a VAX 8700. The programs are a
miner modification of the ones wriiten by Lo for Haubrich and Lo (1988).
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Table 4
United Kingdom

Series Va(0) Va(1) Va(2) Va(3) Va(3)

Income 1.140 1.021 0.954 0.927 1.149
Consumption 1.506 1.337 1.349 1.375 1.505
GDP 1077 | 1213 1.274 1.310 1.375
Total C 1.315 1.440 1.429 1.353 1.334
Durables 0.660% 0.780 0.882 0.860 0.962
Non-Durables 1.209 1.302 1.305 1.268 1.260
Services 1.809* 1.708 1.593 1.470 1.305

(i) Annual Data 1870-1965: Feinstein 1972.

(ii) Quarterly Data Central Statistical Office. Real, Seasonally Adjusted, 1959:1-1988:111.
Services and Non-Durables, 1963:1-1988:I11.

*Significant at 5% level.
V (q) calculated on first differences of logs.
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Table §

Canada
Series Va (0) Va(1) Va(2) Va(3) Va(S)
GDP 1.628 1.492 1.439 1.381 1.366
Total C 1.634 1.650 1.610 1.523 1.450
Durables 1.184 1.298 1.300 1.250 1.290
Non-Durables 1.705 1.955% 2.112% 2.016* 1.900*
Services 1.389 1.334 1.336 1.315 1.225

All Data: Real, Quarterly, Seasonally Adjusted CANSIM, Statistics Canada, 1960:1-1988:I11.

*Significant at 5% level.
V_(q) calculated on first differences of logs.
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Table 6

France
Series Va (0) Va(1) Va(2) V. (3) Va(5)
GDP 1.699 2.023% 2.073* 1.975* 1.889*
Total C 1.828* 1.856* 1.894* 1.797* 1.760
Durables 1.039 1.043 1.078 1.091 1.129
Non-Durables 1.019 1.110 1.440 1.398 1.430
Services 2.046* 2.039%* 1.877% 1.796* 1.630

All Data: Real, Quarterly, Seasonally Adjusted. Data Stream Inc., from OECD Quarterly

National Accounts.

*Significant at 5% level.
V_(q) calculated on first differences of logs.

GDP, Total C, Durables 1967:1-1988:11

Non-Durables 197(:1-1988:11
Services 1969:1-1988:11
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