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1. Introduction.

Questions about the persistence of economic shocks currently occupy an important
place in macroeconomics. Most controversy has centered on whether aggregate time series
are better approximated by fluctuations around a deterministic trend, or by a random
walk plus a stationary or temporary component. The empirical results from these studjes
are mixed, perhaps because the time series representation of output may belong to a much
wider class of processes than previously considered. In particular, earlier studies have
ignored the class of fractionally integrated processes, which serves as a compromise between
the two stochastic models usually considered, and which also exhibits an interesting type
of long range dependence. This new approach also accords well with the classical NBER
business cycle program exemplified by Wesley Claire Mitchell, who urged examination of
trends and cycles at all frequencies.

Economic life does not proceed smoothly: there are good times, bad times, alternat-
ing periods of prosperity and depression, a “rhythmical fluctuation in activity.” Recurrent
downturns and crises take place roughly every 3 to 5 years and thus seem part of a non-
periodic cycle. Studying such cycles in detail has been the main activity of twentieth
century macroeconomics. Even so, isolating cycles of these frequencies has been diffi-
cult because the data evince many other cycles of longer and shorter duration. Wesley
Mitchell (1927, p. 463) remarks “Time series also show that the cyclical fluctuations of
most [not all] economic processes occur in combination with fluctuations of several other
sorts: secular trends, primary and secondary, seasonal variations, and irregular fluctua-
tions.” Properly removing these other influences has always been controversial. No less
an authority than Irving Fisher (1925) considered the business cycle a myth, akin to runs
of luck at Monte Carlo. In a similar vein, Slutzky (1937) suggested that cycles arose from
smoothing procedures used to create the data.

A similar debate is now taking place. The standard methods of removing a linear or
exponential trend assume implicitly that business cycles are fluctuations around a trend.
Other work [e.g. Nelson and Plosser (1982)] challenges this and posits stochastic trends
similar to random walks, highlighting the distinction between temporary and permanent
changes. Since empirically the cyclical or temporary component is small relative to the
fluctuation in the trend component [the random walk part], business cycles look more
like Fisher’s myth. This is important for forecasting purposes because permanent changes

[as in the case of a random walk| today have a large effect many periods later, whereas
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temporary changes [as in stationary fluctuations around a trend| have small future effects.
The large random walk component also provides evidence against some theoretical models
of aggregate output. Models that focus on monetary or aggregate demand disturbances
as a source of transitory fluctuations cannot explain much output variation; supply side
or other models must be invoked [e.g. Nelson and Plosser (1982), Campbell and Mankiw
(1987)].

However, the recent studies posit a misleading dichotomy. In stressing trends ver-
sus random walks, they overlook earlier work by Mitchell [quoted above|, Adelman, and
Kuznets, who have stressed correlations in the data intermediate between secular trends
and transitory fluctuations. In the language of the interwar NBER, they are missing
Kondratiev, Kuznets and Juglar cycles. In particular, in the language of modern time
series analysis, the search for the stochastic properties of aggregate variables has ignored
the class of fractionally integrated processes. These stochastic processes, midway between
white noise and a random walk, exhibit a long run dependence no finite ARMA model
can mimic, yet lack the permanent effects of an ARIMA process. They show promise
of explaining the lower frequency effects, the long swings emphasized by Kuznets (1930),
Adelman (1965) or the effects which persist from one business cycle to the next. Since long
memory models exhibit dependence without the permanent effects of an ARIMA process,
they may not be detected by standard methods of fitting Box-Jenkins models. This calls
for a more direct investigation of this alternative class of stochastic processes,

This paper examines the stochastic properties of aggregate output from the stand-
point of fractionally integrated models. We introduce this type of process in Section 2,
reviewing its main properties, advantages, and weaknesses. Section 3 develops a simple
macroeconomic model that exhibits long-term dependence. Section 4 employs a new test
for fractional integration in time series to search for long-term dependence in the data.

Though related to a test of Hurst’s and Mandelbrot’s, it is robust to short-term depen-
dence. We conclude in Section 5.
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2. Review of Fractional Techniques in Statistics.

A random walk can model time series that look cyclic but non-periodic. The first
differences of that series {or in continuous time, the derivative] should then be white noise.
This is an example of the common intuition that differencing [differentiating] a time se-
ries makes it “rougher,” whereas summing [integrating] it makes it “smoother.” Many
macroeconomic time series look like neither a random walk nor white noise, suggesting
that some compromise or hybrid between the random walk and its integral may be useful.
Such a concept has been given content through the development of the fractional calculus,
L.e., differentiation and integration to non-integer orders.! The fractional integral of order
between 0 and 1 may be viewed as a filter that smooths white noise to a lesser degree than
the ordinary integral; it yields a series that is rougher than a random walk but smoother
than white noise. Granger and Joyeux (1980) and Hosking (1981) develop the time series
implications of fractional differencing in discrete time. For expositional purposes we review

the more relevant properties in Sections 2.1 and 2.2.

2.1. Fractional Differencing.

Perhaps the most intuitive exposition of fractionally differenced time series is via their

infinite-order autoregressive and moving-average representations. Let X satisfy:
1-0)°X, = ¢ (2.1)

where ¢; is white noise, d is the degree of differencing, and I denotes the lag operator, If
d = 0 then X; is white noise, whereas Xt is a random walk if d = 1. However, as Granger
and Joyeux (1980) and Hosking (1981) have shown, ¢ need not be an integer. From the
binomial theorem, we have the relation:

(1--0)¢ = oo(—l)’c @) Lk 2.2)
2 () <

I'The idea of fractional differentiation is an old one, dating back to an oblique reference by Leibniz in 1695, but the subject
lay dormant until the 19th century when Abel, Liouville, and Rietnann, developed it more fully. Extensive applications have

only arigen in this century; see, for example, Oldham and Spanier (1974). Kolmogorov (1940} was apparently the first to notice
its applications in probability and statistics.
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where the binomial coefficient (ﬁ) is defined as:

d dd-1)(d-2)- - (d—k+1
() = 462k 23

for any real number d and non-negative integer k.? From (2.2) the AR representation of
X: is apparent:

o0 oo
ADXy = Y AL*X = Y a4x,, = ¢ (2.4)
k=0 k=0

where A = (—l)k(:). The AR coefficients are often re-expressed more directly in terms
of the gamma function:

B d\ (k-4
A = (_1)k(k) © T(-d)T(k+1) (2.5)

By manipulating (2.1) mechanically, X, may also be viewed as an infinite-order M A process
since:

Xt = (1 - L)_det = B(L)Et Bk = TZ)(;(—;%)]} . (2.6)

The particular time series properties of Xt depend intimately on the value of the differ-
encing parameter d. For example, Granger and Joyeux (1980) and Hosking (1981) show
that when d is less than %, Xt is stationary; when d is greater than —l, X is invertible.
Although the specification in (2.1) is a fractional integral of pure white noise, the extension
to fractional ARIMA models is clear.?

The AR and MA representations of fractionally differenced time series have many
applications, and illustrate the central properties of fractional processes, particularly long-
term dependence. The MA coefficients By, tell the effect of a shock & periods ahead, and

ZWhen d is an integer, {2.3) reduces to the better-known formula for the binomial coefficient

convention that (") =1 and (g) = 0.
% See Hosking &981) for further details.

d
E{d—R}i" We follow the
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indicate the extent to which current levels of the process depend on past values. How fast

this dependence decays furnishes valuable information about the process. Using Stirling’s
approximation, we have:

Bk ~ —fm (27)

for large k. Comparing this with the decay of an AR(1) process highlights a central
feature of fractional processes: they decay hyperbolically, at rate kdhl, rather than at the
exponential rate of p¥ for an AR(1). For example, compare in Figure 1 the autocorrelation
function of the fractionally differenced series (1 —L)%473x, = ¢ with the AR(1) X; =
0.9X;_1 + €. Although they both have first-order autocorrelations of 0.90, the AR({1)’s
autocorrelation function decays much more rapidly. Figure 2a plots the impulse-response
functions of these two processes. At lag 1 the MA-coefficients of the fractionally differenced
series and the AR(1) are 0.475 and 0.900 respectively; at lag 10 they are 0.158 and 0.349,
and at lag 100 they are 0.048 and 0.000027. The persistence of the fractionally differenced
series is apparent at the longer lags. Alternatively, we may ask what value of an AR(1)s
autoregressive parameter will, for a given lag, yield the same impulse-response as the
fractionally differenced series (2.1). This value is simply the k-th root of By and is plotted
in Figure 2b for various lags when d = 0.475. For large k, this autoregressive parameter
must be very close to unity.

These representations also show how standard econometric methods can fail to detect
fractional processes, necessitating the methods of Section 4. Although a high order ARMA
process can mimic the hyperbolic decay of a fractionally differenced series in finite samples,
the large number of parameters required would give the estimation a poor rating from the
usual Akaike or Schwartz Criteria. An explicitly fractional process, however, captures that
pattern with a single parameter d. Granger and Joyeux (1980) and Geweke and Porter-
Hudak (1983) provide empirical support for this by showing that fractional models often
out-predict fitted ARMA models.

The lag polynomials A(L) and B(L) provide a metric for the persistence of X;. Sup-
pose X; represents GNP, which falls unexpectedly this year. How much should this change
a forecast of future GNP? To address this issue, define Ck as the coefficients of the lag
polynomial C(L) that satisfies the relation (1 - L)X, = C(L)¢, where the process X;
is given by (2.1). One measure used by Campbell and Mankiw (1987) and Diebold and
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Rudebusch (1988) is:

00

o0
lim B, = C. = C(1). 2.8
Jm By ;; % (1) (2.8)

For large k, the value of B; measures the response of X, ; to an innovation at time t,a
natural metric for persistence. From (2.7), it is immediate that for 0 < d <1,C(1) =0,
and asymptotically there is no persistence in 2 fractionally differenced series, even though
the autocorrelations die out very slowly.® This holds true not only for d < % (the stationary
case), but also for % < d < 1, when the process is nonstationary,

From these calculations, it is apparent that the long run dependence of fractional
processes relates to the slow decay of the autocorrelations, not to any permanent effect.
This distinction is important; an IMA(1,1) can have small but positive persistence, but
the coefficients will never mimic the slow decay of a fractional process.

The long-term dependence of fractionally differenced time series forces us to modify
some conclusions about decomposing time series into “permanent” and “temporary” com-
ponents. Although Beveridge and Nelson (1981) show that non-stationary time series may
always be expressed as the sum of a random walk and a stationary process, the stationary
component may exhibit long range dependence. This suggests that the temporary compo-
nent of the business cycle may be transitory only in the mathematical sense and is, for all
practical purposes, closer to what we think of as a, long non-periodic cycle.

The presence of fractional differencing has yet another implication for the Beveridge-
Nelson (BN) approach. Nelson and Plosser (1982) argue that deterministic detrending
may overstate the importance of the business cycle if secular movements follow a random
walk. However, if the cylical component is an AR(1) with a nearly unit root, McCallum

{1986) shows that the BN decomposition will assign too much variance to the permanent

4But see Cochrane (1988) and Quah (1988) for opposing views.

® There has been some confusion in the literature on this point. Geweke and Porter-Hudak (1983) argue that c(1) > a.
They correctly point out that Granger and Joyeux (1980) have made an error, but then incorrectly claim that (1} = 1/T(d).
If our equation (2.7) is correct, then it is apparent that C(1) = 0 [which agrees with Granger (1980) and Hosking (1981)].
Therefore, the focus of the conflict lies in the approximation of the ratio [(k + d)/T(k+ 1) for large k. We have used Stirling’s
approximation. However, a more elegant derivation follows from the functional analytic definition of the gamma function as
the solution to the following recursive relation [see, for example, Iyanaga and Kawada (1980 Section 179.A)]:

Plz+1) = zI'(x)
and the conditions:
. T{z+n)

1) =1 1 —_— =
(1) n—voo n*I'(n)
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or trend part and understate the contribution of the temporary component.® But suppose
the temporary component follows the fractionally differenced time series (2.1). A decom-
position in the spirit of BN, i.e., differencing the series the appropriate [fractional] number
of times, leaves no temporary component. However, taking first-differences of the series as
Plosser and Schwert (1978) suggest will obviously overstate the importance of the cyclical

component. Therefore, the presence of fractional noise may reverse McCallum’s result.

2.2. Spectral Representation.

The spectrum, or spectral density [denoted f(w)] of a time series specifies the contri-
bution each frequency makes to the total variance. Granger (1966) and Adelman (1965)
have pointed out that most aggregate economic time series have a “typical spectral shape”
where the spectrum increases dramatically as the frequency approaches zero [f(w) = =
as w — 0]. Most of the power or variance seems concentrated at low frequencies, or long
periods. However, prewhitening or differencing the data often leads to “over-differencing”
or “zapping out the low frequency component”, and often replaces the peak by a dip at 0.
Fractional differencing yields an intermediate result. The spectra of fractional processes
exhibit peaks at O [unlike the flat spectrum of an ARMA process|, but ones not so sharp as
the random walk’s. A fractional series has a spectrum richer in low frequency terms, and
more persistence. We illustrate this by calculating the spectrum of fractionally integrated
white noise, and also present several formulas needed later on.

Given X; = (1— L)_det, the series is clearly the output of a linear system with a white
noise input, so that the spectrum of X; is:7

1 2 .
flw) = m% where z=e ™ og?= E[é%] . (2.9)

The identity (1 — 2% = 2[1 — cos(w)] implies that for small w we have:

=
E
I
[y
3
s
.
o
i
9
o

(2.10)

[S]
5

This approximation encompasses the two extremes of a white noise [or a finite ARMA

$That an AR(I) with coeffictent 0.99 is in any sense “temporary” is arguable.
TSee Chatfield (1984, Chapters 6 and 9).
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process| and a random walk., For white noise, d = 0, and f(w) = ¢, while for a random

walk, d = 1 and the spectrum is inversely proportional to w?. A class of processes of

current interest in the statistical physics literature, called 1 /f noise, matches fractionally

integrated noise with d = %

3. A Simple Macroeconomic Model with Long-Term Dependence.

Over half a century ago, Wesley Claire Mitchell (1927 p.230) wrote that “We stand
to learn more about economic oscillations at large and about business cycles in particular,
if we approach the problem of trends as theorists, than if we confine curselves to strictly
empirical work.” Indeed, gaining insights beyond stylized facts requires guidance from
theory. Models of long range dependence may provide organization and discipline in the
construction of economic paradigms of growth and business cycles. They can guide future
research by predicting policy effects, postulating underlying causes, and suggesting new
ways to analyze and combine data. Ultimately, examining the facts serves only as a prelude.
Economic understanding requires more than a consensus on the Wold representation of
GNP; it demands a falsifiable model based on the tastes and technology of the actual
economy,

Thus, before testing for long run dependence, we develop a simple model where ag-
gregate output exhibits long run dependence. It presents one reason that macreeconomic
data might show the particular stochastic structure for which we test. It also shows that
models can restrict the fractional differencing properties of time series, so that our test
holds promise for distinguishing between competing theories. Furthermore, the maximiz-
ing model presented below connects long-term dependence to central economic concepts

of productivity, aggregation, and the limits of the representative agent paradigm.

3.1. A Simple Real Model.

One plausible mechanism for generating long run dependence in output, which we will
mention here and not pursue, is that production shocks themselves follow a fractionally
integrated process. This explanation for persistence follows that used by Kydland and
Prescott (1982). In general, such an approach begs the question, but in the present case

evidence from geophysical and meteorological records suggests that many economically
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important shocks have long run correlation properties. Mandelbrot and Wallis (1969),
for example, find long run dependence in rainfall, riverflows, earthquakes and weather
[measured by tree rings and sediment deposits].

A more satisfactory model explains the time serjes properties of data by producing
them despite white noise shocks. This section develops such a model with long run depen-
dence, using a linear quadratic version of the real business cycle model of Long and Plosser
(1983) and aggregation results due to Granger (1980). In our multi-sector model the out-
put of each industry (or island) will follow an AR(1) process. Aggregate output with N
sectors will not follow an AR(1) but rather an ARMA(N,N-1). This makes dynamics
with even a moderate number of sectors unmanageable. Under fairly general conditions,
however, a simple fractional process will closely approximate the true ARMA specification,

Consider a model economy with many goods and a representative agent who chooses
a production and consumption plan. The infinitely lived agent inhabits a linear quadratic
version of the real business cycle model. The agent has a lifetime utility function of

U= Zﬂtu(Ct) where C; is an Nx1 vector denoting period-¢ consumption of each of the
N goods in our economy. Each period’s utility function u(C}) is given by:

1
u(Cy) = Ch — EC;'BCt (3.1)

where ¢ is an Nx1 vector of ones. In anticipation of the aggregation considered later, we

assume B to be diagonal so that C{BC; = §° b,-,-Cﬁ. The agents face a resource constraint:

total output Y; may be either consurmed or saved, thus:

Ct + S = Y, (3.2)

where the 7, j-th entry S;;¢ of the NxN matrix S; denotes the quantity of good 5 invested
in process ¢ at time ¢, and it is assumed that any good Y;: may be consumed or invested.

QOutput is determined by the random linear technology:

Y; = AS + €; (3.3)

where ¢; is a (vector) random production shock whose value is realized at the beginning of
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period ¢ + 1. The matrix A consists of the input-output parameters a;;. To focus on long-
term dependence we restrict A’s form. Thus, each sector uses only its own output as input,
yielding a diagonal A matrix and allowing us to simplify notation by defining a; = a,;. This
might occur, for example, with a number of distinct islands producing different goods. To
further simplify the problem, all commodities are perishable and capital depreciates at a
rate of 100 percent. Since the state of the economy in each period is fully specified by that
period’s output and productivity shock, it is useful to denote that vector Z; = [Y] ¢!},
Subject to the production function and the resource constraints (3.2) and (3.3), the

agent maximizes expected lifetime utility:

o0
_ T—t _
1}%?:}{ EU|z) = %?E[ gﬁ u(Y; — Sy)

Z } (3.4)

where we have substituted for consumption in (8.4) using the budget equation (3.2). This

maps naturally into a dynamic programming formulation, with a value function V(Z;) and
optimality equation:

Vi) = Mec{ ulti-S0) + BV (Z)i2 b (3.5)

With quadratic utility and linear production, it is straightforward to discover and verify
the form of V(Z,):

V(Y,e) = Y + Y'PY + R + E['T¢| (3.6)

where ¢ and R denote Nx1 vectors and P and T are NxN matrices, whose entries are fixed
constants given by the matrix Riccati equation that results from the recursive definition of
the value function.® Given the value function, the first order conditions of the optimality
equation (3.5) yield the chosen quantities of consumption and investment /savings and, for

the example presented here, have the following closed form solutions:

8See Sargent (1987, Chapter 1} for an excellent exposition.
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b, Bga; — 1
S, = 3 Y, + 58 3.7
“ b —28P,a2"" " b~ 24P,a? (3.7)
28 P.a? a; — 1
Cig = o 5 ﬁq,a,z (3.8)
ZﬂP,‘az- - b,; ZﬂP‘-az; — b'i
where:
a; — /(1 +4B)a? — 4
4Ba;

The simple form of the optimal consumption and investment decision rules comes from
the quadratic preferences and the linear production function. Two qualitative features
bear emphasizing. First, higher output today will increase both current consumption and
current investment, thus increasing future output. Even with 100 percent depreciation, no
durable commodities, and i.i.d. production shocks, the time-to-build feature of investment
induces serial correlation. Second, the optimal choices do not depend on the uncertainty
present. This certainty equivalence feature js clearly an artifact of the linear-quadratic
combination.

The time series of output can now be calculated from the production function (3.1)

and decision rule (3.7). Quantity dynamics then come from the difference equation:

a;b;

Yier = 2V + K + ey (3.10)
1 bz—2ﬁPta,:2 2 1 2
or
Yier1 = oYy + K; + ¢4, (3.11)

where K; is some fixed constant. The key qualitative property of quantity dynamics
summarized by (3.11) is that output ¥;, follows an AR(1) process. Higher output today

2.6 -11 - 1.89



implies higher output in the future. That effect dies off at a rate that depends on the
parameter a;, which in turn depends on the underlying preferences and technology.

The simple output dynamics for a single industry or island neither mimics business
cycles nor exhibits long-run dependence. However, aggregate output, the sum across all
sectors, will show such dependence, which we now demonstrate by applying the aggre-
gation results of Granger (1980,1988). It is well-known that the sum of two series, X,
and Y;, each AR(1) with independent error, is an ARMA(2,1) process. Simple induction
then implies that the sum of N independent AR(1) processes with distinct parameters has
an ARMA(N,N-1) representation. With over six million registered businesses in America
(CEA, 1988), the dynamics can be incredibly rich, and the number of parameters unman-
ageably huge. The common response to this problem is to pretend that many different firms
(islands) have the same AR(1) representation for output, which reduces the dimensions of
the aggregate ARMA process. This “canceling of roots” requires identical autoregressive
parameters. An alternative approach reduces the scope of the problem by showing that
the ARMA process approximates a fractionally integrated process, and thus summarizes
the many ARMA parameters in a parsimonious manner. Though we consider the case of
independent sectors, dependence is easily handled.

Comnsider the case of N sectors, with the productivity shock for each serially uncorre-
lated and independent across islands. Furthermore, let the sectors differ according to the
productivity coefficient a;. This implies differences in a;, the autoregressive parameter for
sector 1’s output ¥;;. One of our key results is that under some distributional assumptions

on the a;’s aggregate output Y? follows a fractionally integrated process, where:

Y o= ) Y. (3.12)

To show this, we approach this problem from the frequency domain and apply spectral
methods which often simplify problems of aggregation.® Let f (w) denote the spectrum
[spectral density function] of a random variable, and let 2 = ¢, From the definition of

the spectrum as the Fourier transform of the autocovariance function, the spectrum of ¥,
is:

2
1 g,
i) = g (3.13)

?See Theil (1954},
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Similarly, independence implies that the spectrum of Y2 is

N
fw)y = ) filw). (3.14)
=1

The a;’s measure an industry’s average output for given input. This attribute of the
production function can be thought of as a drawing from nature, as can the variance of
the productivity shocks ¢;; for each sector. Thus, it makes sense to think of the a;’s as
independently drawn from a distribution G(a) and the ¢;’s drawn from F(a). Provided

that the ¢;; shocks are independent of the distribution of a;’s, the spectral density of the
1t )

sum can be written as:
N 2 1
= —F . ——dF 3.15
1) = el [ ar(e) (3.15)

If the distribution F(a) is discrete, so that it takes on m (< N) values, Y2 will be an
ARMA (m,m - 1) process. A more general distribution leads to a process no finite ARMA
model can represent. To further specify the process, take a particular distribution for F,
in this case a variant of the beta distribution.l® In particular, let a? be distributed as

beta(p, q), which yields the following density function for a:

2 azP—l(l — az)q"lda 0<a<i1
dF(a) = { Plpg (3.16)
0 otherwise

with p,¢ > 0.11 Obtaining the Wold representation of the resulting process requires a little

more work. First note that:

1 1+ az 1+ az

/|1 - az? =
/= ez 2(1~a?) |1 - az 1-az

(3.17)

where 2z denotes the complex conjugate of z, and the terms in parentheses can be further
expanded by long division. Substituting this expansion and the beta. distribution (3.16)

into the expression for the spectrum and simplifying [using the relation z + 3 = 2 cos({w}]
yields:

1 oo
flw) = /(; [2 + 22 o cos(kw)] ﬁ—(;iT)aZpil(l —a®)¥ %4q | (3.18)

k=1

19 Granger (1980) conjectures that the particular distribution is not essential,
11 Por a discussion of the variety of shapes the beta distribution takes as p and ¢ vary, see Johnson and Kotz (1970).
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Then the coefficient of cos(kw) is:

1 9ok
/0 T - @) (3.19)

Since the spectral density is the Fourier transform of the autocovariance function, (3.19) is

the k-th autocovariance of Y. Furthefmore, the integral defines a beta function, so (3.19)

simplifies to 8(p + k/2,¢ —1)/8 (p,q). Dividing by the variance gives the autocorrelation

coefficients which reduce to

P(p+q—-1) TI(p+£)
T(e) Tp+k+q+1)

o(k) = (3.20)

which, again using the result from Stirling’s approximation T(a+k)/T(b+k) ~ k30 is
proportional (for large lags) to k19, Thus, aggregate output Y? follows a fractionally
integrated process of order d = 1 — % Furthermore, as an approximation for long lags,
this does not necessarily rule out interesting correlations at higher, e.g. business cycle,
frequencies. Similarly, co-movements can arise as the fractionally integrated income process
may induce fractional integration in other observed time series. This has arisen from a
maximizing model given tastes and technologies.1?

In principle, all parameters of the model may be estimated, from the distribution of
production function parameters to the variance of output shocks. Though to our knowledge
no one has explicitly estimated the distribution of production function parameters, many
people have estimated production functions across industries.!® One of the better recent
studies disaggregates to 45 industries.!4 For our purposes, the quantity closest to o is the
value-weighted intermediate product factor share. Using a translog production function,
this gives the factor share of inputs coming from industries, excluding labor and capital.
These range from a low of 0.07 in radio and TV advertising to a high of 0.811 in petroleum
and coal products. Thus, even a small amount of disaggregation reveals a large dispersion

and suggests the plausibility and significance of the simple model presented in this section.

3.2. Fiscal Policy and Welfare Implications.

Taking a policy perspective raises two natural questions about the fractional properties

of national income. First, will fiscal or monetary policy change the degree of long-term

12 Two additional peints are worth emphasizing. First, the beta distribution need not be over (0,1) to obtain these results,
only over (a,1). Second, it is indeed possible to vary the 4,'s 8o that «; has a beta distribution.

13 Leontief, in his classic study (1976) reports own-industry output coefficients for 10 sectors: how much an extra unit of food
will increase food production. These vary from 0.06 (fuel) to 1.24 (other industries).

14 Jorgenson, Gollop and Fraumeni (1987).
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dependence? Friedman and Schwartz (1982), for example, point out that long run income
cycles correlate with long run monetary cycles. Secondly, does long-term dependence have
welfare implications? Do agents care that they live in such a world?

In the basic Ramsey-Solow growth model, as in its stochastic extensions, taxes affect
levels of output and capital but not growth rates,!® so tax policy would not affect the
fractional properties. However, two alternative approaches suggest richer possibilities.
Recall that fractional noise arises by aggregating many autoregressive processes. Fiscal
policy may not change the coefficients of each process, but a tax policy can alter the
distribution of total output across individuals, effectively changing the fractional properties
of the aggregate. Secondly, endogenous growth models often allow tax policy to affect
growth rates!® : the tax reduces investment in research and future growth. Hence, the
autoregressive parameters of individual firm’s output could change with policy, and with
them aggregate income.

Unfortunately, implementing either approach with even a modicum of realism would
be quite complicated. In the dynamic stochastic growth model, taxation drives a wedge
between private and social returns, resulting in a suboptimal equilibrium. This eliminates
methods which exploit the Pareto-optimality of competitive equilibrium, such as dynamic
programming. Characterizing solutions requires simulation methods because no closed
forms have been found.!? Thus, it seems clear that fiscal policy can impact upon fractional
properties, but also that explicitly calculating the impact would take this paper too far
afield and should best be left for future research.

People who predict output or forecast sales will care about the fractional nature of
output, but fractional processes can have normative implications as well. Following Lucas
(1987), this section estimates the welfare costs of economic instability under different
regimes. We can decide if people care whether their world is fractional. For concreteness,

let the typical household consume Cy, evaluating this via a utility function:

= tCt — B 1
— t — -
U = E[Eﬁl_a] ZI_JE[Ct ]. (3.21)
=0 t=0
Also assume:
>0
InC: = (1+))_ éxLrn, (3.22)
k=0

158ee Atkinson and Stiglitz (1980).
16 For example, Romer (1986) and King, Plosser and Rebelo (1987).
'7 See King, Plosser and Rebelo {1987) and Baxter (1988).
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where 7 = In¢;. The A term measures compensation for variations in the process ¢(L).

With #; normally distributed with mean 0 and variance 1, the compensating fraction A

between two processes ¢ and ¢ is:

1+A = exp [%(1 — o) Z(wi — qb%)] . (3.23)
k=0

Evaluating this using a realistic ¢ = 5, again comparing an AR(1) with p = 0.9 and
fractional process of order 1/4, we find that A = —0.99996 [this number looks larger than
those in Lucas because the process is in logs rather than in levels].18 For comparison, this
is the difference between an AR(1) with p of 0.90 and one with p of 0.95. This calculation
provides a rough comparison only. When feasible, welfare calculations should use the

model generating the processes, as only it will correctly account for important specifics,

such as labor supply or distortionary taxation.

18 We calculate this using (2.7) and the Hardy-Littlewood approximation for the resulting Riemann Zeta Function, following
Titchmarsh, 1951, sec. 4.11.
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4. R/S Analysis of Real Qutput.

The results of Section 3 show that simple aggregation may be one source of long—term
dependence in the business cycle. In this section we employ a method for detecting long
memory and apply it to real GNP. The technique is based on a simple generalization of a
statistic first proposed by the English hydrologist Harold Edwin Hurst (1951), which has
subsequently been refined by Mandelbrot (1972, 1975) and others.!® Our generalization
of Mandelbrot’s statistic {called the “rescaled range” or “range over standard deviation”
or R/S] enables us to distinguish between short and long run dependence, in a sense to be
made precise below.

We define our notions of short and long memory and present the test statistic in Section
4.1. In Section 4.2 we present the empirical results for real GNP Section 4.3; we find long-
term dependence in log-linearly detrended output, but considerably less dependence in
the growth rates. To interpret these results, we perform several Monte Carlo experiments

under two null and two alternative hypotheses and report these results in Section 4.3.

4.1. The Rescaled Range Statistic.

To develop a method of detecting long memory, we must be precise about the dis-
tinction between long-term and short-term statistical dependence. One of the most widely
used concepts of short-term dependence is the notion of “strong-mixing” due to Rosenblatt
(1956), which is a measure of the decline in statistical dependence of two events separated
by successively longer spans of time. Heuristically, a time series is strong-mixing if the
maximal dependence between any two events becomes trivial as more time elapses between
them. By controlling the rate at which the dependence between future events and those of
the distant past declines, it is possible to extend the usual laws of large numbers and central
limit theorems to dependent sequences of random variables. Such mixing conditions have
been used extensively by White (1982), White and Domowitz (1984), and Phillips (1987)
for example, to relax the assumptions that ensure consistency and asymptotic normality of
various econometric estimators. We adopt this notion of short-term dependence as part of
our null hypothesis. As Phillips (1987) observes, these conditions are satisfied by a great
many stochastic processes, including all Gaussian finite-order stationary ARMA models.

Moreover, the inclusion of a moment condition also allows for heterogeneously distributed

1% See Mandelbrot and Tagqu (1979) and Mandelbrot and Wallis (1968, 1965a—).
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sequences [such as those exhibiting heteroscedasticity|, an especially important extension
in view of the non-stationarities of real GNP.

In contrast to the “short memory” of weakly dependent |i.e., strong-mixing| processes,
natural phenomena often display long-term memory in the form of non-periodic cycles.
This has lead several authors, most notably Mandelbrot, to develop stochastic models
that exhibit dependence even over very long time spans. The fractionally integrated time
series models of Mandelbrot and Van Ness (1968), Granger and Joyeux (1980), and Hosking
(1981) are examples of these. Operationally, such models possess autocorrelation functions
that decay at much slower rates than those of weakly dependent processes, and violate
the conditions of strong-mixing. To detect long-term dependence [also called “strong
dependence” |, Mandelbrot suggests using the range over standard deviation (R/S) statistic,
also called the “rescaled range,” which was developed by Hurst (1951) in his studies of
river discharges. The R/S statistic is the range of partial sums of deviations of a time series
from its mean, rescaled by its standard deviation. In several seminal papers, Mandelbrot
demonstrates the superiority of R /S to more conventional methods of determining long-run
dependence [such as autocorrelation analysis and spectral a,na,lysis].20

In testing for long memory in output, we employ a modification of the R/S statistic
that is robust to weak dependence. In Lo (1988}, a formal sampling theory for the statistic
is obtained by deriving its limiting distribution analytically using a functional central limit
theorem.2! We use this statistic and its asymptotic distribution for inference below.

Let X; denote the first-difference of log-GNP; we assume that:

Xt = p+ g (4.1)

where u is an arbitrary but fixed parameter. Whether or not Xt exhibits long-term memory
depends on the properties of {¢;}. As our null hypothesis H, we assume that the sequence

of disturbances {¢;} satisfies the following conditions:

20 5ee Mandelbrot (1972, 1975), Mandelbrot and Taqqu (1979), and Mandelbrot and Wallis (1968, 1969a—c}.

21This statistic is asymptotically equivalent to Mandelbrot’s under independently and identically distributed abservations,
however Lo (1988) shows that the original R/S statistic may be significantly biased toward rejection when the time series is
short-term dependent. Although aware of this bias, Mandelbrot (1972, 1975) did not correct for it since his focus was on the

relation of the R/S statistic's logarithm to the logarithm of the sample size, which involves no statistical inference; such a
relation clearly is unaffected by short-term dependence.
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(A1) Ele] = Ofor all t.

(A2)  sup; E[le;}] < oo for some 8 > 2.
A 2 _ li 1 n 2 : 2
(A3) o¢° = limp oo E ;( j=1 ej-) exists and 0“ > 0.

€4 ¢ 18 Sirong-mixing wi mixing coelncients o al satisly:
A4 is st ixing with mixi flicients oy, that satisfy:22

Condition (A1) is standard. Conditions (A2} through (A4) are restrictions on the maximal
degree of dependence and heterogeneity allowable while still permitting some form of the
law of large numbers and the [functional| central limit theorem to obtain. Note that
we have not assumed stationarity. Although condition (A2) rules out infinite variance
marginal distributions of ¢; such as those in the stable family with characteristic exponent
less than 2, the disturbances may still exhibit leptokurtosis via time-varying conditional
moments [e.g. conditional heteroscedasticity]. Moreover, since there is a trade-off between
conditions (A2) and (A4), the uniform bound on the moments may be relaxed if the mixing
coefficients decline faster than (A4) requires.?3 For exammple, if we require to ¢; have finite
absolute moments of all orders [corresponding to § — oo], then oy, must decline faster
than 1/k. However, if we restrict ¢; to have finite moments only up to order 4, then «y
must decline faster than 1/k?. These conditions are discussed at greater length by Phillips
(1987), to which we refer interested readers.

Conditions (A1) — (A4) are satisfied by many of the recently proposed stochastic
models of persistence, such as the stationary AR(1) with a near-unit root. Although the

distinction between dependence in the short versus long runs may appear to be a matter

??Let {e:(w)} be a stochastic process on the probability space {01, 7, P) and define:

«(4,8) = sup |P(ANB)-~P(AP(B))] ACFBCF
{ACA,BEB)}

The quantity «(A4,8) iz a measure of the dependence between the two o-flelds 4 and B in 7. Denote by B} the Borel o-field
generated by {e,(w),...,e:(w)}, Le., Bt = o(e,(w),. .o &e{w)} C 7. Define the coefficients oy as:

oy = sqpa(Bim,B;ﬁ_k).
i

Then {e:(w)} is said to be strong-mixing if limg_, o, az = 0. For further details, see Rosenblatt (1956), White (1984), and the
papers in Eberlein and Taqqu (1986).

?3See Herrndorf (1985). Note that one of Mandelbrot’s (1972} arguments in favor of R/S analysis is that finite secong
moments are not required. This is indeed the case if we are interested only in the almost sure convergence of the statistic.
However, since we wish to derive its limiting distribution for purpeses of inference, a stronger moment condition is needed.
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of degree, strongly dependent processes behave so differently from weakly dependent time
series that our dichotomy seems most natural. For example, the spectral densities of
strongly dependent processes are either unbounded or zero at frequency zero. Their partial
sums do not converge in distribution at the same rate as weakly dependent series. And
graphically, their behavior is marked by cyclic patterns of all kinds, some that are virtually
indistinguishable from trends.24

To construct the modified R/S statistic, consider a sample X 1 X2,...,Xn and let X,

denote the sample mean ;1;23 X;. Then the modified re-scaled range statistic, which we

shall call @p, is given by:

k k
- 1 . _
A ) [lgka‘sxn;(xf ~ %) - 15Mk1£n§(XJ_X")] (4.2)
where
n q n
COIEIEVE R SLRES SOOI (D DICES SRS SR Yol
1=1 J=1 t=7+1
! J
= &2 + 2) wie)d, wi(g) = -7 a<n
=1

and 42 and 4; are the usual sample variance and autocovariance estimators of X. Qr is
the range of partial sums of deviations of X ; from its mean, normalized by an estimator of
the partial sum’s standard deviation divided by n. The estimator &y, (¢) involves not only
sums of squared deviations of X, but also its weighted autocovariances up to lag q; the
weights w;(q) are those suggested by Newey and West (1987), and always yield a positive

2(¢).2% Theorem 4.2 of Phillips (1987) demonstrates the consistency of on(q)

under the following conditions:

estimator &

24 3ee Mandelbrot {1972) for further details.
25 #2(g) is also an estimator of the spectral density function of X, at frequency zero, using a Bartlett window.
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(A2)  sup; E{|e]?#] < oo for some 8 > 2.

{(A5)  As n increases without bound, ¢ also increases without bound such that g ~

o(nl/4).

The choice of the truncation lag ¢ is a delicate matter. Although ¢ must increase with
[but at a slower rate than] the sample size, Monte Carlo evidence suggests that when ¢
becomes large relative to the number of observations, asymptotic approximations may fail
dramatically.2 However, g cannot be chosen too small otherwise the effects of higher-order
autocorrelations may not be captured. The choice of ¢ is clearly an empirical issue and
must therefore be chosen with some consideration of the data at hand.

If the observations are independently and identically distributed with variance ag, our
normalization by &, (g) is asymptotically equivalent to normalizing by the usual standard
deviation estimator s, = [% 250X~ X2)2]1/2. The resulting statistic, which we call Qn,
is precisely the one proposed by Hurst (1951) and Mandelbrot (1972):

k

k
n [1<k<n,z( ) 1Sh2, : (Xj B X")] ' (44)

To perform statistical inference with the standardized re-scaled range Qn/\/n, we
require its distribution. Although its finite-sample distribution is not apparent, a large-
sample approximation may be obtained.?’” To derive the limiting distribution of the

@n/+/n, we consider the behavior of the following standardized sum:
414 = 1 S 0,1 4.5
n(r) = m [nr] 7 €0, ] (4. )

where S;, denotes the partial sum E j=1¢; and [n7] is the greatest integer less than or equal
to n7. The sample paths of Wy (7) are elements of the function space D[0,1], the space
of all real-valued functions on {0,1] that are right-continuous and possess finite left limits.
Under certain conditions, it may be shown that Wr(r) converges weakly to a Brownian

motion W(r) on the unit interval, and that well-behaved functionals of Wy (r) converge

?¢ See, for example, Lo and MacKinlay {1988).
27 This is derived in Lo {1988); for expositional completeness, we restate those results here without proof.
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weakly to the same functionals of Brownian motion.28 Following convention, we use the
symbol ‘=’ to denote weak convergence. Since we shall make extensive use of these two

results in deriving the limiting distribution of @n, we state them here for reference:

Lemma 4.1. [Herrndorf (1984)] If {¢;} satisfies assumptions (A1)-(A4) then as n in-
creases without bound, Wy(r) = W (r),

Lemma 4.2. [Continuous Mapping Theorem] If Wy(r) = W(r) and h is a functional

on D[0,1] that is continuous except on a set Dy C Do, 1] of Wiener-measure zero, i.e.
P(W € D) =0, then h(W,) = h(W).

Using these results, we may derive the limiting distribution of the modified rescaled range

in four easy steps, which are summarized in:2°

Theorem 4.1. If {¢;} satisfies assumptions (A1), (A2'), (A3) — (A5), then as n increases
without bound we have:

k
LSy x R
(a) W (XJ' - Xn,) = W(r) — W(l) = W (r) .

k
(8) Max _IWZ(XJ'_X“) = Max W°(r) = M°

1<k<n Gn(q) et 0<r<1
1 k
- . . - WO E o
© M oz (X %) > M WO0) = m

1
\/_RQn

Part (a) of Theorem 4.1 follows from Lemmas 4.1, 4.2 and Theorem 4.2 of Phillips (1987),

and shows that the partial sum of deviations of X; from its mean converges to the celebrated

28 See Billingsley (1968, 1971) for further details.

39 Mandelbrot (1975) derives similar limit theorems for the statistic Q. under the more restrictive i.i.d. assumption, in which
case the limiting distribution will coincide with that of @,. Since we wish to expand our null hypothesis to include weakly
dependent disturbances, we extend his results via the more general functional central limit theorem of Herrndorf {1984, 1985).

Note, however, that Mandelbrot (1975) also derives limit thecrems for @n when the sequence {e;} is strongly dependent (e.g.
fractional Brownian motion, etc.).
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Brownian bridge W°(r) on the unit interval, also called “pinned” or “tied-down” Brownian
motion because W(0) = W°(1) = 0. That the limit is a Brownian bridge is not unexpected
since the terms in the partial sum are deviations from the mean and must therefore sum
to zero at k = n. Parts (b)-(d) of the theorem follow immediately by applying Lemma
4.2 to (a). Part (d) is the key result, as it allows us to perform large sample statistical
inference once we obtain the distribution function for the range of the Brownian bridge.
Since the joint distribution of the maximum M° and minimum m°® of the Brownian bridge

is well-known [see Billingsley (1968)], the distribution function of their difference may be
readily obtained:3?

Theorem 4.2. The distribution and density functions of V.= M° — m°, respectively
Fy (v} and fy(v), are given by:

Fry) = var 3 {ku-aiw(ak) - kqs(ﬂk)} (46)

k=—o00

fr(v) = 2v2r Z { — (k+ 2)ag)dlax) + k(k—l—l)ﬁkqb(ﬂk)} (4.7)
k=—o0o
ap = 2kv B = 2k+1)v  $(z) = %e_%mz

Using Fy, critical values may readily be calculated for tests of any significance level. The
most commonly used values are reported in Table 1. The moments of V are a.Iso easily
computed using fy; it is straightforward to show that E[V] = \/- and E[V?] = 6 , thus
the mean and standard deviation of V are approximately 1.25 and 0.27 respectively. The
distribution and density functions are plotted in Figure 3. Observe that the distribution

is positively skewed and most of its mass falls between % and 2.

8 Feller (1951) obtains similar results under the more restrictive assumption of i.i.d. disturbances.
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4.2. Empirical Results for Real Output.

We apply our test to two time series of real output: quarterly postwa.f real GNP from
1947:1 to 1987:4, and the annual Friedman and Schwartz (1982) series from 1869 to 1972.
These results are reported in Table 2. The first row of numerical entries are estimates of
the classical rescaled range V,, which is not robust to short-term dependence. The next
eight rows are estimates of the modified rescaled range Vi(g) for values of ¢ from 1 to 8.
Recall that ¢ is the truncation lag of the estimator of the spectral density at frequency
zero. Reported in parentheses below the entries for Va(q) are estimates of the percentage
bias of the statistic Vy, and is computed as 100 - [(V/ V() - 1].

The first column of numerical entries in Table 2 indicate that the null hypothesis of
short-term dependence for the first-difference of log-GNP cannot be rejected for any value
of g. The classical rescaled range statistic also supports the null hypothesis. The results
for the Friedman and Schwartz series are similar. When we log-linearly detrend real GNP,
the results differ considerably. The third column of numerical entries in Table 2 show
that short-term dependence may be rejected for log-linearly detrended quarterly output
with values of ¢ from 1 to 4. That the rejections are weaker for larger ¢ is not surprising
since additional noise arises from estimating higher-order autocorrelations. When values
of ¢ beyond 4 are used, we no longer reject the null hypothesis at the 5 percent level of
significance. Finally, using the Friedman and Schwartz time series, we only reject with the
classical rescaled range and with Vy(1).

Taken together, these results confirm the unit root findings of Campbell and Mankiw
(1987), Nelson and Plosser {(1982), Perron and Phillips (1987), and Stock and Watson
(1986). That there are more significant autocorrelations in log-linearly detrended GNP is
precisely the spurious periodicity suggested by Nelson and Kang (1981). Moreover, the
trend plus stationary noise model of GNP is not contained in our null hypothesis, hence
our failure to reject the null hypothesis is also consistent with the unit root model.31 To

see this, observe that if log-GNP y; were trend stationary, i.e.:

Yy = a + Bt + (4.8)

where 7; is stationary white noise, then its first-difference X is simply X; = 8 + ¢; where

€ = 1t — N¢—1. But this innovations process violates our assumption (A3) and is therefore

not contained in our null hypothesis.

31 Of course, this may be the result of low power against stationary but near-integrated proceages, and must be addressed by
Monte Carlo experimentas.
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To conclude that the data support the null hypothesis because our statistic fails to
reject it is, of course, premature since the size and power of our test in finite samples is

yet to be determined. We perform illustrative Monte Carlo experiments and report the
results in the next section.

4.3. The Size and Power of the Test.

To evaluate the size and power of our test in finite samples, we perform several illus-
trative Monte Carlo experiments for a sample size of 163 observations, corresponding to
the number of quarterly observations of real GNP growth from 1047:2 to 1087:4.32 We
simulate two null hypotheses: independently and identically distributed increments, and
increments that follow an ARMA(2,2) process. Under the i.i.d. null hypothesis, we fix
the mean and standard deviation of our random deviates to match the sample mean and
standard deviation of our quarterly data set: 7.9775 x 102 and 1.0937 x 103 respectively.

To choose parameter values for the ARMA(2,2) simulation, we estimate the model:

(1-$1L—¢2L%y: = p + (1+6:L+6,L%¢ & ~WN(0,02) (4.9)

using nonlinear least squares. The parameter estimates are [with standard errors in paren-
theses|:

$1 = 0.5837 6; = -—0.2825
(0.1949) (0.1736)
¢2 = —0.4844 6, = 0.6518
(0.1623) (0.1162)
g = 0.0072
(0.0016)
62 = 0.0102

Table 3 reports the results of both null simulations.

®2 All simulations were performed in double precision on a VAX 8700 usin,

¢ the IMSL 10.0 random number generator DRNNOA;
each experiment was comprised of 10,000 replications.
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It is apparent from the “I1.D. Null” Panel of Table 3 that the 5 percent test based on
the classical rescaled range rejects too frequently. The 5 percent test using the modified
rescaled range with ¢ = 3 rejects 4.6 percent of the time, closer to its nominal size. As the
number of lags increases to 8, the test becomes more conservative. Under the ARMA(2,2)
null hypothesis, it is apparent that modifying the rescaled range by the spectral density
estimator & (q) Is critical; the size of a 5 percent test based on the classical rescaled range
is 34 percent, whereas the corresponding size using the modified R/S statistic with ¢ = 5
is 4.8 percent. As before, the test becomes more conservative when q is increased.

Table 3 also reports the size of tests using the modified rescaled range when the
lag length g is chosen optimally using Andrews’ (1987) procedure. This data-dependent
procedure entails computing the first-order autocorrelation coefficient #(1) and then setting

the lag length to be the integer-value of M,,, where:3®

_ 3an\ /3 4p2
M, = a = P 4.10
" ( ") e O 419)

Under the i.i.d. null, Andrews’ formula yields a 5 percent test with empirical size 6.9

percent; under the ARMA(2,2) alternative, the corresponding size is 4.1 percent. Although
significantly different from the nominal value, the empirical size of tests based on Andrews’
formula may not be economically important. In addition to its optimality properties, the
procedure has the advantage of eliminating a dimension of arbitrariness in performing the
test.

Table 4 reports power simulations under two fractionally differenced alternatives: (1—

L)det = n¢ where d = 1/3,—1/3. Hosking (1981) has shown that the autocovariance
function (k) of ¢ is given by:

T(1 - 2d)T(d + k) 11
M@ra-ara-atn° €33 (4.11)

ve(k) =

Realizations of fractionally differenced time series [of length 163] are simulated by pre-
multiplying vectors of independent standard normal random variates by the Cholesky-
factorization of the 163 x 163 covariance matrix whose entries are given by (4.11). To
calibrate the simulations, 0,27 is chosen to yield unit variance ¢’s, the {€:} series is then
multiplied by the sample standard deviation of real GNP growth from 1947:1 to 1987:4,

and to this series is added the sample mean of real GNP growth over the same sample

33 In addition, Andrews procedure requires weighting the autocovariances by 1 — —-’— F=1,.

and West's (1987) 1 — 4 (7 =1,...,q), where g is an integer and M,, need not be

-+ [M,]) in contrast to Newey
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period. The resulting time series is used to compute the power of the rescaled range; Table
4 reports the results.

For small values of ¢, tests based on the modified rescaled range have reasonable
power against both fractionally differenced alternatives. For example, using one lag the 5
percent test against the d = 1/3 alternative has 58.7 percent power; against the d = —1 /3
alternative this test has 81.1 percent power. As the lag length is increased, the test’s
power declines. Note that tests based on the classical rescaled range is significantly more
powerful than those using the modified R /S statistic. This, however, is of little value when
distinguishing between long-term versus short-term dependence since the test using the
classical statistic also has power against some stationary finite-order ARMA processes.
Finally, note that tests using Andrews’ truncation lag formula have reasonable power
against the d = —1/3 alternative but are considerably weaker against the more relevant
d = 1/3 alternative.

The simulation evidence in Tables 3 and 4 suggest that our empirical results do indeed
support the short-term dependence of GNP with a unit root. Qur failure to reject the
null hypothesis does not seem to be explicable by a lack of power against long-memory
alternatives. Of course, our simulations were illustrative and by no means exhaustive;
additional Monte Carlo experiments must be performed before a full assessment of the
test’s size and power is complete. Nevertheless our modest simulations indicate that there
is little empirical evidence in favor of long-term memory in GNP growth rates. Perhaps

the direct estimation of long-memory models would yield stronger results and is currently

being investigated by several authors.34

5. Conclusion.

This paper has suggested a new approach to the stochastic structure of aggregate
output. Traditional dissatisfaction with the conventional methods — from observations
about the typical spectral shape of economic time series, to the discovery of cycles at all
periods — calls for such a reformulation. Indeed, recent controversy over deterministic
versus stochastic trends and the persistence of shocks underscores the difficulties even

modern methods have of identifying the long run properties of the data.

34 See, for example, Diebold and Rudebusch (1988), Sowell (1987a,b), and Yajima (1985,1988).
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Fractionally integrated random processes provide one explicit approach to the prob-
lem of long-term dependence; naming and characterizing this aspect is the first step in
studying the problem scientifically. Controlling for its presence improves our ability to iso-
late business cycles from trends and to assess the propriety of that decomposition. To the
extent that it explains output, long-term dependence deserves study in its own right. Fur-
thermore, Singleton (1988) has recently pointed out that dynamic macroeconomic models
often link inextricably predictions about business cycles, trends, and seasonal effects. So
too linked is long-term dependence: a fractionally integrated process arises quite naturally
in a dynamic linear model via aggregation. This model not only predicts the existence of
fractional noise, but also suggests the character of its parameters., This class of models
leads to testable restrictions on the nature of long-term dependence in aggregate data, and
also holds the promise of policy evaluation.

Advocating a new class of stochastic processes would be a fruitless task if its members
were intractable. In fact, manipulating such processes causes few problems. We con-
structed an optimizing linear dynamic model that exhibits fractionally integrated noise,
and provided an explicit test for such long-term dependence. Modifying a statistic of Hurst
and Mandelbrot gives us a statistic robust to short-term dependence, and this modified
R/S statistic possesses a well-defined limiting distribution which we have tabulated. Illus-
trative computer simulations indicate that this test has power against at least two specific
alternative hypotheses of long-memory.

Two main conclusions arise from the empirical work and Monte Carlo experiments.
First, the evidence does not support long-term dependence in GNP. Rejections of the short-
term dependence null hypothesis occur only with detrended data, and is consistent with
the well-known problem of spurious periodicities induced by log-linear detrending. Second,
since a trend-stationary model is not contained in our null hypothesis, our failure to reject
may also be viewed as supporting the first-difference stationary model of GNP, with the
additional result that the resulting stationary process is weakly dependent at most. This
supports and extends the conclusion of Adelman that, at least within the confines of the

available data, there is little evidence of long-term dependence in the business cycle.
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Figure 1.

Autocorrelation functions of an AR(1) with coefficient 1/3 [solid line| and a fractionally-
differenced series X; = (1— L)_det with differencing parameter ¢ = 0.25 {dashed lines]. Al-
though both processes have a first-order autocorrelation of 1/3, the fractionally-differenced
process decays much more slowly.
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Plot of the impulse response function [solid line| of the fractionally differenced time series
Xe=(1- L)_det for differencing parameter d = 0.25. The dashed line represents the value
of an AR(1)’s autoregressive parameter required to generate the same k-th order autocor-
relation as the fractionally differenced series. For large k, the autoregressive parameter
must be very close to unity.
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Table 1a. Fractiles of the Distribution Fy {v).

PV <v) .005 .025 .050 .100 .200 .300 400 .500

v 0.721 0.809 0.861 0.927 1.018 1.090 1.157 1.223
PV <) 543 .600 .700 .800 .900 .950 975 .995
v \/_g? 1.294 1.374 1.473 1.620 1.747 1.862 2.098

Table 1b. Symmetric Confidence Intervals About the Mean

P(VE-7<V <VE+1) g

.001 0.748
.050 0.519
.100 0.432

500 0.185




Table 2

R/S analysis of real GNP; yget_ indicates log-linearly detrended quarterly real GNP from 19471 to
1987:4, and Ay? indicates the first-differences of the logarithm of real GNP. ygi. and Ay"S are
defined similary for the Friedman and Schwartz series. The classical rescaled range V,, and the
modified rescaled range V,,(g) are reported.’

S VY Y S A 4
v, 1.25 1.00 4.23* 2.83%
Va(1) 1.07 0.94 3.02¢ 2.10%
(%-Bias) (17.2) (6.6) (40.0) (35.2)
Va(2) 0.97 0.93 2.49* 1.79
(%-Bias) (29.0) (7.3) (69.6) | (58.5)
Va(3) 0.93 0.95 2.19* 1.62

(%-Bias) | (346) | (4.7) (93.5) (74.9)

Via(4) 0.92 1.00 1.98* 1.52
(%-Bias) | (363) | (-0.1) (113.5) | (86.8)

Va(5) 0.92 1.07 1.83 1.45
(%-Bias) (36.1) (-6.4) (130.7) (95.7)

Vi (6) 0.92 1.10 1.72 1.40
(%-Bias) (35.3) (9.3) (145.7) | (102.7)

Va(T) 0.93 1.12 1.63 1.36
(%-Bias) (344) | (-10.8) (159.0) | (107.9)

Va(8) 0.94 1.14 1.56 1.34
(%-Bias) (33.2) | (-12.7) (170.9) | (111.5)

* Under the null hypothesis H jconcitions (A1), (A2'), (A3)-(AS) of the paper], the limiting distribution of Valq) is the range
of a Brownian bridge, which has & mean of m Fractiies are given in Table 1; the 95 percent confidence interval with equal
probabilities in both tails is {0.809, 1.862]. Entries in the %-Bias columns are computed as [(?,.,_/V,. {(q))4/2 - 1} - 100, and are

estimates of the bias of the classical R/S statistic in the presence of short-term dependence. Asteriska indicate significance at
the 5 percent jevel.
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