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1. Introduction

Dixit (1988) observed that the mathematical construct of
"regulated Brownian motion" developed by Harrison (1985) had
proved useful in economic models of decision-making under
uncertainty. In a recent note he provided a number of methods for
calculating expected discounted payoff functions based on such

processes. The purpose of this supplement is twofold:
-determine to what extent the first-degree conditions reached by
Dixit (his equations (12) and (13) or (12') and (13'}) are simply
a consequence of the definition of the expected discounted
payoff, or to what extent they can be interpreted as first-
order conditions of some optimization problem, as has been
suggested in Dumas(1988};
-extend Dixit's treatment to the case where there are fixed costs
of regulation as in Grossman-Larogue (1987).

Suppose x follows a Brownlian motion that is regulated

between two barriers 0 and u. For 0<{x<u, we have as usual:

(1) dx = H dt + ¢ dz.

At x=0, a costless and rewardless regulator dL is applied to stop
x from going below 0. At x=u another regulator dU 1s applied
which instantaneously takes x to a level wvs<u. O0Overall the

stochastic differential equation for x is:?®

*dL and dU are not well defined mathematical objects. The
stochastic differential equations contained 1in this note should
be viewed as short hand for their integral counterparts. L and U
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(L") dx = d dt + o dz + dL - dU.

The upper requlator dU vylelds a lump-sum reward dr. The
reward function dr = r(u-v) is defined over 10, +o[ and is chosen
to be continuous and differentiable at least once everywhere. The

value for 0 1is obtained by continuity; at 0 therefore the
function is assumed to be right-continuous and to have a right
derivative. r() is assumed to be a convex function:

rikxa + (1l-K)x=2} 2z kr(xa) + (1-K)r(x=).

Suppose f(x) 13 a strictly concave bounded flow payoff
function, and &é>0 the discount rate. Define the expected
discounted payoff or the performance of the u,v pollicy as:

-6t

(2) F(x;u,v) = E {Ig e % £(x.) at +dr | x, = x 1.

where x follows the stochastic differential equation (1'). We
need a method for calculating F(x;u,v) and, when u and v are

choice variable, a method for optimizing them.

2. Calculating F(x;u,v) for given u and v
F(x) is defined as the expected value of an integral the
kernel of which 1is a bounded flow. The trajectory of the

associated process F therefore cannot be discontinuous except

are defined as stochastic processes which are non negative and
non decreasing. In addition U 1is right-continuous; L |is
continuous and increases only when x=0,
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perhaps at the time when x=u and the regulator is applied. At
that time, the behavior ot F depends on the reward being
received. If the reward dr=r(u-vj is finite, a Jjump dF occurs,
with dF=-dr. If the reward is infinitely small, no jump occurs.

We write this requirement as follows:

(3) F(u;u,v) = r{u - v) + F{v;u,v).

This egquation has frequently been labelled the "value-matching"
condition.

In the special case considered by Harrilson (1985) and Dixit
(1988) where the reward dr 1is infinitely small (r(0)=0 but
r'(0)>0) and also the regqulator dU=u-v is of small magnitude, (3)

can be re-written and expanded as follows:=

F(u) r{du) + F(u - du};

or: F(uj r'(0) du + F(u) - F'(u)du;
which yields:

(3"} 0 = xr'(0) - F'(u;u,v).

We see that in the special case o¢of infinitesimal moves and
rewards, the value-matching condition (which usually involves the

function F 1itself as in (3)) takes the form of a condition

2We suppress the parameter arguments u,v in the first two
lines of equations.



involving the first derivative F'.?
At x=0 (where we have placed an infinitesimal costless
regulator), Harrison (1985) and DIxit (1988) have shown that one

must have:

Inside the =zone of no intervention (0<x<u), the process x
moves of its own accord (following (1)). The expected change in F
is brought about by the flow payoff £f(x) and the effect of

discounting:*
(5} 0 = f(x) - 6F(x) + F'(x) U + % F"(x) o=.

The simple technical problem one faces 1is that of solving
the ordinary differential equation (5) subject to boundary
conditions (3) (or (3')) and (4). Call V(x) a particular solution
to (5). Then the general solution is:

{(6) F(x;A1,Az) = V{x) + A; exp(oix) + Az exXp{azX);

where A; and Az are two integration constants and ¢, and a= are

21t would be improper to refer to (3') as a '"smooth pasting
condition". At least, this 1label would not describe the correct
economic meaning of this eguation.

iWe suppress the parameter arguments u,v in equation (5).
That equation is not specific to a particular choice u,v.



the two real solutions {(of opposite signs) of the characteristic

equation:

koZ2a® + e - 6 = 0,

For given u and v, we can find A. and Az from (3) and (4)

or.:

(7y V(u) + Alexp(alu) + Azaxp(azu)

r(u - v) + Vi{vi + Alexp(ulv) + Azexp(azv);

(8) vi{o) + Alal + Aza = 0.

These define functions Ai.{(u,v) and Az(u,v}, and then we can write
the solution for F as F(x;u,v) by substitution into (6).
In the special case of infinitesimal moves and rewards, (3')

gives instead of (7):

u) - A o

(7' 0 = r'(0) - V'{u) - Aja 2

1 expl(a exp(a, u).

1 1 2 2

Again, the system (7')-(8) can be solved for A, and Az to obtain

the solution F(x;u,v)."

5What has been done so far does not rely on the assumptions
that £() 1is concave and r{} convex. But in the next section we
seek to optimize the regulator u,v. A pollicy of the postulated
form would not be optimal 1£f, for instance, r were strictly
concave. In that case, it would be optimal to ccontrol x at all
times and not simply when some barrler is reached. We do not
conslder that case here.



3. Optimizing the regulator

In this section we seek toptimize the choice of u and v
when the reward function r() 1is strictly convex, This is the
case, for instance, when a proportional reward is received but is

associated with a fixed cost of operating the regqulator. We do

not consider the questions of existence and uniqueness of the
optimum, or indeed whether it is globally optimal to regulate at
only one level u. We are only interested 1in writing first-order
conditions for u and v, for the cases where the optimal policy
takes the postulated form and the optimum exists. This 1s in line
with the stated goal of this note which 1is to distinguish
conditions such as (3), {3'} and (4) above, which are simply
offshoots of the definition (2) o0of the expected discounted
payoff, from other conditions which will properly be regarded as
optimality conditions.

It could be shown easily, as Dixit (1988} did in a special
case, that maximizing the performance F(x;u,v) with respect to u
and v is equivalent to maximizing Ai{u,v) or A=z{u,v) with respect
to u and v. In other words, the derivative of F(x;u,v) with
respect to u or v has the same sign for all values of x.
Improving boundary behavior increases the value of the
performance index everywhere. A change in u or v either shifts
the whole function F(x) up or shifts the whole of it down.

Using the fact that the partials of Ax and Az must be zero

for the optimum to obtain, we differentiate (7) (which holds for



any u and v) with respect to u and v, Keeping A, and Az constant:

{9y V'{u) + Alal exp(mlu) + Azqz exp(mzu) =r'{u - v}y,

(10) 0 = -r'{a - v) + V'(v} ¢ Alql exp(ulv) + Azaz exp(mzv};
or, considering (6):

{11 F'(u;u,v) = r'(u - v};

(12) 0 = -r'(u-v) + FP'{v;u,v).

In general, u is not edqual to v despite the similarity between
these two equations. This 1s because the function F({x} is not
generally strictly concave. The strict concavity is lost because
of the assumed strict convexity of the reward function r(}).
Conditions (11) and (12) are the first-order conditions we
were seeking., They serve to determine the two unknowns u and v.
They are denerally referred to as the "smooth-pasting”
conditions. They 1indicate that, not only 1is the time-path of F
continuous as one applies the regqulator (see section 2), but
also, for optimality, the time-path of F' must be continuous:
F'(u) = F'(v); the marginal indirect expected payoff function
takes the same value at the point one jumps from and at the point
one jumps to.% Moreover Dboth are equal to the marginal reward

received when going from u to v,

€See Grossman-Laroque(1987).
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4. The case of a purely proportional reward
After examining the situation of strict convexity of the

reward function r(), we now consider the limiting situation where
the reward 1is strictly proportional to the distance u-v. To

maintain homogeneous notations, the reward per unit distance will

be called r'. But r' is now a constant. Moreover r{(0)=0; there is
no tixed cost of regulation. These conditions plus the assumption
that the flow payoff £f(x) 1is a strictly concave function are
enough to gquarantee the strict concavity of the indirect expected
discounted payoff F(x).

But, if F(x) 1is a strictly concave function, F'(x) is
strictly monotonic and equations (11) and (12) above, which are
still valid, 1imply: u* = v™.7 In mathematical terms, this means
that the optimal process U 1is continuous. The finding makes
intuitive sense: under purely proportional reward to regulation
there 1s no sense 1In taking discrete actions.® Infinitesimal
moves with infinitesimal rewards are optimal.

If u=v, however, not only do conditions (11) and (12) merge
into one condition, but we have also seen, under equation (3')
above, that this same condition holds identically for any choice
of the trigger point u. We seem to be left without any condition

for the optimal choice of u!

Fortunately, we can re-generate an optimality condition, as

7Stars denote optimal values.
®Except perhaps at t=0 if xg>u.
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optimizing F 1is equivalent to finding stationary values for A.
and A=z, (3') -- re-written explicitly as (7'} above -- can be
differentiated with respect to u, Keeping A, and Az constant, to

yield:

. " 2 2
(13) g = - V"{u) - Alal exp(ulu) - A2a2 exp(azu).

But we recognize the right-hand side of this equation as F"(u).

Hence, we have as an optimality condition:
{l4) F"(u;u) = 0.

This condition is what Dumas (1988) proposed to call a "super-
contact" or second-order smooth pasting condition, bhecause 1t is
expressed in terms of the second derivative of the unknown
function F.

In fact (14) is none other than the natural extension of
smooth-pasting conditions {(11) and (12) to the limiting case of
the infinitesimal regqgulator. Indeed re-write and expand (11) and

{12) as follows:

F'(u) = r'; g =-r" + F'(u - duj;
= -r' + F'(u}) - F"(u}du;
which yield: 0 = F"(u) as 1in (14). We see that in the special

case of infinitesimal rewards, where Iinfinitesimal moves are

optimal, the smooth-pasting conditions (which usually involve the
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function F' as in (11) and {(12)) take the form of a condition
involving the second derivative F".
Wwe have made an attempt at clarifying the geometry of these

conditions 1in the attached Figure. The underlying numerical
parameter combination 1include a purely proportional reward
function and is «chosen in such a manner that the solution

exists.® The fiqure contains three graphs.

The lowermost graph plots F(x;u,v}) for wu=1l and v=0.4
arbitrarily imposed. This regulator is not infinitesimal and is
far from being optimal in this proportional reward situation. The
boundary condition which 1is met by this curve is the value
matching condition (3): the vertical distance between points A
and B 1is equal to the reward per unit distance r' times the
distance between the trigger point and the target point of the
requlator: 1-0.4 = 0.6.

The intermediate graph of the figure plots F™(x;u} for u=1
arpbitrarily imposed, v*(u}=0.5 being optimally chosen for the
given u. This regulator 1s still not infinitesimal and iIs still
not optimal. The conditions satisfied by this curve are two in
number. The first condition is the value-matching condition which
holds between points C and D, similar to the one which held
between points A and B. It 1is not an optimality condition. The
second condition is that the line CD (of slope r') 1is tangent at

point D of abscissa v*(u). This is a smooth pasting condition

u=-0.7 oc=0.5 6=0.15 r'=1.2 ; f£(x) 1s chosen in
such a way that V(x)=sinx is a solution of the 0.D.E. (5) over
{(0,1]. £(x) has a maximum over that interval.
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such as (12) above. It represents a partial condition of
optimality.

The uppermost graph of the figure gives the performance of

the optimal requlator, which 1is indeed infinitesimal and is
applied at u*=v**=(0.65. The conditions satisfied by this curve

are two in number. At point E ot abscissa u*, the curve has a
slope egqual to r' (value matching turns into a condition
involving the tirst derivative but is not an optimality
condition}. At the same point, 1t has zero curvature {smooth

pasting turns into super contact and is an optimality condition).

5. Related conditions

Several authors have proposed first-order conditions of
optimality which apply mostly teo proportional rewards and
infinitesimal regulators 1in the above or similar contexts. Wwhile
different from those we have proposed above, these conditions are
of course related.

Dumas (1888) and Dixit (1988) have proposed a condition
involving the level reached by the unknown performance index at
the point of intervention. Dumas (1988) observed that the
performance index can be extended outside the =zone of no
intervention to reflect the 1initial situation where x might
concelvably be above the intervention level u. In that case it is
best to move x 1in one shot to the level u (this 1is the only
exception to the infinitesimal character of the requlator). Hence

the performance index outside the area is equal to its value on
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the boundary I'(u) pilus r' times x-u -- a straight line. Since the
super contact condition (l4) above says that the function inside
the area has a zero second derivative at the point x=u, that

condition implies that the second derivative of F {in addition to

the tunction 1itself and 1its first derivative, as we saw) is

continuous at that point. If that is so, the 0.D.E. (5) applies

not only inside the area (0<x<u) but also at the boundary point
x=u, where it is verified equally well by the two pieces of F(x),
that which 1is valid 1inside and that which is valid outside the
area.*® Inserting the latter into the 0.D.E., one finds that the

performance level at that point is:

(15) F(u) = Hl8LIE-

Dixit (1988) interprets this condition by saying:
"At [(the] optimally set barrier, the expected present value
of the optimally controlled process is simply the
capitalized value of staying at the barrier forever. The
reduction in the flow profit that would result from crossing
the (] barrier exactly equals the cost of operating the
regulator to prevent such crossing.."

At that polnt the capitallzed value of staying at the barrier

forever is given by the flow payoff stream f£(u) plus the marginal

boundary reward which one expect to receive repeatedly 1if x has

an upward drift pu>0. 1If x has a downward drift (u<0), however,

the term r'M reflects the shadow expense which would have to be

incurred in order to fight the drift and stay at the boundary.

*9The 1last two sentences are distinctly incorrect in the
case of strictly convex rewards and non infinitesimal regulators
{section 3 above). See Grossman-Larogue (1987).
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Bertola (1987) -- studying alsc the case of proportional

(costs) rewards -- writes an optimality condition for u which

would read:**

) dt | X, =u ]l ="',

t 0

(16) £ 1]y %% £1x
This condition says that one must equate the the marginal cost
and benefit of cutting back x when 1t reaches the 1level u. The
marginal benefit (right-hand side) 1is the marginal reward
obtained when cutting x. The marginal cost should be computed as
the marginal present value of future payoffs foregone because of
one unit of X removed at the present time. Instead, the left-hand
side of (16) 1is evidently -equal to the present value of the
marginal flow payoff foregone because of one unit of x removed at
all future times. A proof of equality between these two
guantities when x follows a requlated Brownian motion is supplied
in the appendix to Bertola (1987). But in fact there is equality
between the two marginal gquantities only for an optimally
requlated Brownian motion. If the reader refers to Bertola's
appendix, he will notice that his proof, which 1is based on an
integration by part of the left-hand side of (16}, at one point

invokes, without apparent Justification, a boundary condition

**I am grateful to Francisco Delgado for helpful discussions
on the subject matter of this paragraph.
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wnich 1s none other than our super-contact condition (14).3%*=
Condition (l6) is therefore a derivative condition based on super
contact.

Harrison (1985), in his original treatise on regulated
Brownian motion (chapter 6), considers, as we have, a two-sided
requlator placed at levels 0 and u, of which only the upper level

u is belng optimized. One difference with our setting is that
the lower regulator at 0, while not being optimized, is
nonethless costly with a purely propertional cost. The cost per
unit of distance at that point is denoted c¢'. Furthermore f{x) is
particularized to being a linear function: f£(x) = hx. Using (7')
and (8) (with a right-hand side replaced by c¢'), Harrison solves

explicitly for the function F{x;u):

. . . h hu .
(17) F(x,Al,Az) = s X + 62 + Alexp(alx) + Azexp(azx),

where Ai and Az are given by:

(18) Alalexp(alu) + Azazexp(mzu) =r' - h/0;

(19) Alal + A2u2 = c' - h/8.

Now impose the super-contact condition at x=u:

2 2 _
(20) Alal exp(alu) + A2a2 exp(uzu) = 0.

*2This is condition [***] in his appendix. In Bertola's
appendix the left-hand side of (16) above, as a function of u, is
denoted £().
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Eliminating A: and Az between (18-20) leads to:

g

which 1s preclsely Harrison's condlition (6.3.13, page 108)
obtained by a completely different "policy improvement"
reasoning. In the reverse, Harrison himself (see the proof of
corollary 6.3.15 page 108) establishes that (21} 1implies that
F"{u}=0. In other words, his conditions 1implies super contact.
The two conditions are therefore equivalent in his special case.
Finally it is probably useful to zrelate the guestion of
optimal regulation which we have been tackling with the simpler
problem of "optimal stopping". In that problem a Brownian motion
is again allowed to fluctuate between barriers 0 and u but when
one barrier is reached a reward 1is received (or cost incurred)
and the program stops. The position of the barrier(s) is to be
optimized. This is the problem which is encountered 1in financial
economics when determining the optimal exercise of an option
before maturity (see Samuelson and McKean (1967}, Merton (1973)).
Te illustrate the derivation of optimality conditions, consider
the same Brownian motion (1) which we have been using with x
preducing a flow payoff £f(x) for as long as the program lasts.
Continue to apply to the process a costless regulator dL at x=0.

But if and when x reaches the upper value u we stop the program
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and the person receives a reward r(u). Within the interval 0<x<u,
the unknown performance function F(x) still satisifies the 0.D.E.

(5) and at the lower barrier 0 the boundary condition is still
(4). But the boundary condition at x=u is now: F(u;u)=r(u). Re-

writing this condition explicitly, we get:

{22) V{u) + A exp(alu) + A_ exp{o.u) = r{u).

1 2 2

The boundary conditions (4) and (22) suffice to determine the two
integration constants Aix and A-.

Now we choose optimally the stopping point u. To this end,
differentiate (22) with respect to u, keeping A: and A: constant
to reflect optimality, as is now customary. The result is:

{23} V'{u) + A,a, explo

1% u) + Ao exp(azu) = r'(u}.

1 272

(24} or: F'{u;u) = r'(u).

Equation (24) is the "smooth-pasting" condition of optimality of
Samuelson (1965), McKean (1965), Merton (1973, tootnote 60} and
Krylov {1980, page 39). It 1is formally identical to condition
(11} above. 1In essence the problem of optimal stopping is only
half of the problem of optimal regulation: in it one only has to
decide when (i.e. from where) to move and not where to move to.
The latter aspect is imposed by the reward structure. Furthermore
optimal stopping i3 half of the problem of optimal discrete
regulation (of section 3). That is why smooth pasting remains a
condition involving the first derivative of the performance
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index, and not the second c¢ne as it does when optimizing an
infinitesimal regulator.

Conversely optimal regqgulation can be viewed as an extension
of optimal stopping where the optimal stopping reward r(u) is
Max. F(u;u,v) itself. This statement 1s Indicative of the manner

in which Grossman-Laroque (1987) extended the optimal-stopping

literature to solve a problem of optimal discrete regulation.

6. Conclusion
This note put torth two basic ideas:

-value matching 1s not an optimality condition; smooth pasting
is;

-in the case of a discrete requlator value matching is expressed
in terms of the performance function 1ltself and smooth pasting in
terms of its first derivative. But in the case o0of an
infinitesimal regulator the order of differentiation moves up one
notch: the value-matching condition involves the first derivative
of the performance function (which misleadingly makes (it look
like a smooth-pasting condltion} and the smooth-pasting condition

now involves the second derivative, leading to "super-contact".*3

*37he increase in the degree o¢f differentiation results from
the same mathematical rules which cause co¢ne to extend a Taylor
expansion to the second degree when the first-degree terms
cancel out.
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