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ABSTRACT

Expected returns over long and short horizons are modeled using two
approaches: an equilibrium asset pricing model and a vector autoregression
(VAR). Empirical properties of returns that are consistent with the
equilibrium model's implications include (i) an annual "equity premium" of
about six percent (ii) a U-shaped pattern of autocorrelations of returns with

|
respect to investment horizons and (iii) a humped pattern with respect to
investment horizon for the R-squared in projections of stock returns on
predetermined financial variables. Parameters estimated in a monthly VAR for
returns and these financial variables also imply autocorrelations, R-squared
values, and conditional expected returns that are close to those computed with
actual long-horizon returns. Simulations indicate that such a VAR is a

reasonable approximation to the equilibrium model for representing the

properties of expected short- and long-horizon returns.



1. Introduction

Empirical evidence indicates that expected returns on stocks and bonds
vary through time. Much of this evidence is characterized either by
autocorrelations of returns or by regressions of returns on various
predetermined variables.1 The length of the holding period over which a
return is computed, or the return "horizon," seems to affect the nature of
this tevidence in significant ways. For example, the sample autocorrelations
of returns on indexes of NYSE stocks are positive and in the range of 0.1 to
0.2 for horizons of one month [e.g., Fama and Schwert (1977)], but sample
autocorrelations for horizons of five years are negative and in the range of
-0.2 to -0.5 [e.g., Stambaugh (1986) and Fama and French (1988)]. 1In essence,
the pattern of autocorrelations is U-shaped with respect to return horizon,
Regressions of one-month stock returns on predetermined variables often
produce R-squared values less than 0.02 [e.g., Keim and Stambaugh (1986)],
whereas regressions of longer horizon returns (several years) on similar
predetermined variables often produce R-squared values in excess of 0.30
[e.g., Fama and French (1987)].

Given the apparent sensitivity of evidence about time-varying expected
returns to the length of the return horizon, a parsimonious framework capable
of integrating the existing empirical evidence would be useful. Such a
framework could focus the efforts to pursue economic explanations for the
behavior of expected returns. This study investigates two approaches to

modeling the behavior of expected returns over both short and long horizons.

1A partial list of the studies reporting such evidence includes Fama and
Schwert (1977), Hall (1981), Huizinga and Mishkin (1984), Fama (1984), Rozeff
(1984), Keim and Stambaugh (1986), Campbell (1987), Fama and Bliss (1987),
Fama and French (1987, 1988), Poterba and Summers (1989), Lo and MacKinlay
(1988), and Huberman and Kandel (1988).

2This U-shaped pattern is also discussed by Poterba and Summers (1989).
Lo and MacKinlay (1988) find positive autocorrelation in one-week index
returns.
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The first approach is based on an equilibrium asset-pricing model
containing features similar to those in models developed by Lucas (1978),
Mehra and Prescott (1985), and Abel (1988). We propose a model with time-
additive utility and time-varving conditional moments of the monthly growth
rate of output. Implications about the behavior of asset returns over various
invegtment horizons are derived, and numerical examples of these implications
are provided.

The examples are constructed for a set of parameters chosen to mimic
roughly some of the empirical characteristics of asset returns. Our objective
here is not to investigate whether various sample estimates, such as
autocorrelations of long-horizon returns, are significantly different from
zero or another value implied by a given choice of the model's parameters.
Rather, we simply view such sample estimates as empirical benchmarks for
selecting the model’s parameters. This approach is similar to that of Mehra
and Prescott (1985), who attempt to calibrate a pricing model using sample
estimates without addressing the statistical precision of those estimates.

An important reason for investigating a specific equilibrium model in
this context is to gain additional insights about the extent to which the
negative autocorrelations of long-horizon stock returns can be accommodated by
explanations devoid of "fads" or other deviations from fundamental value.
Poterba and Summers (1989) and Cochrame (1988), for example, discuss some of
the properties that equilibrium expected returns would most likely possess in
such explanations. The analysis here allows us to characterize other features
of the equilibrium as well as the properties of expected stock returns.

The second approach uses a vector autoregression (VAR) to model the

3For example, the statistical precision and reliability of
autocorrelations of long-horizon returns is considered by Fama and French
(1988), Richardson (1988), and Cecchetti, Lam, and Mark (1988).
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monthly time-series behavior of returns and other financial variables.a
Various properties of long-horizon returns can be derived as functions of the
parameters of the monthly VAR. We estimate a first-order VAR and then use the
parameter estimates to illustrate several of the model’s implications for
long-horizon returns.

Both modeling approaches appear to be capable of capturing much of the
observed behavior of expected returns over various investment horizoms. For
example, Fama and French (1988) observe a U-shaped pattern of negative first-
order autocorrelations of equity returns with respect to return horizons
beyond one year. We use the equilibrium model to demonstrate that this
pattern is consistent with positively autocorrelated conditional means and
variances of output growth. Using the same parameters for the equilibrium
model, we also derive the (theoretical) R-squared values in regressions of
equity returns for various horizons on several financial variables: a
dividend-price ratio, a low-grade-versus-high-grade yield spread, and a short-
term-versus-long-term yield spread. The patterns of the R-squared values
across investment horizons are similar to those obtained empirically using
similarly defined financial variables [e.g., Fama and French (1987)].

The VAR model is estimated using monthly data on returns and three
financial variables similar to those just described. Autocorrelations for
long-horizon returns implied by these models are similar to the sample
autocorrelations. That is, the same U-shaped pattern is obtained, with small
positive autocorrelations at the shortest horizons and large negative
autocorrelations at horizons of several years. The R-squared values in

regressions of returns on the financial variables implied by the VAR

aGampbell and Shiller (1988) use a vector autoregression to investigate
stock-price volatility and its relation to the forecastibility of long-
horizon returns,
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estimates are similar to the R-squared values produced in actual regressions--
small for short horizons but larger for longer horizons.

The apparent adequacy of a simple VAR representation for stock returns is
consistent with the conclusion of Lo (1988) that stock returns do not exhibit
"long-term dependence" but instead can be accommodated by a class of models
thatiinclude finite-order ARMA processes. A VAR can provide a parsimonious
representation for a set of more complex univariate ARMA processes.

The VAR approach to modeling, advanced notably by Sims (1980, 1981),
does not attempt to specify the underlying equilibrium structure of the
economy but instead pursues a reduced-form econometric representation. A
question often debated among macroeconomists is whether a given VAR
representation can represent the behavior of the economy across various states
ag well as a more structural model.6 A similar question is addressed here in
the context of our two approaches to modeling expected returns over short and
long horizons. We examine the implications about short- and long-horizon
returns produced by a large-sample VAR estimation using data simulated from
the equilibrium model. We find that, for the specific equilibrium model
entertained here, the implications produced by the VAR estimation are close to
the true implications of the equilibrium model.

The remainder of the paper is organized as follows. In order to provide
a context in which to consider the implications of the models to be developed,
section 2 provides a brief summary of some empirically observed properties of

returns over short and long horizons. Section 3 presents the equilibrium

SSee, for example, Granger and Newbold (1977) for a summary of the

relations between the multivariate and univariate representations.

6Kocherlakota (1988a) provides a summary of these issues and addresses
some inference problems inherent in both the VAR approach and in more
structural approaches.



5
model and its implications for the behavior of expected equity returns for
short and long horizons. These implications are then illustrated for a
specific choice of parameter values. Section 4 estimates the VAR model and
then examines the implied behavior of returns over various horizons. Section
5 reports results of simulations that address the adequacy of a first-order
VAR representation of the equilibrium model. Section 6 presents conclusions

and suggests directions for future research.

2. Sample Estimates

Before proceeding to the models, we first provide a brief review of some
of the previously observed empirical properties of stock returns over short
and long horizons. This evidence, we believe, provides a useful context in
which to view many of the results of our modeling efforts. Let rt,N denote
the continuously compounded real return on the equally weighted NYSE index for
the N-month period starting at the beginning of month t.7 Figure 1 displays

sample estimates of corr(r that is, the first order

£,N' Teen N
autocorrelation of N-month returns. The estimates are based on monthly data
for the period from December 1926 through December 1985 (709 observations) and
use overlapping observations in the same manner as Fama and French (1988).8
Figure 1 displays the same U-shaped pattern reported in previous studies. The
sample autocorrelations are positive for horizons of one, two, and six to ten

months, negative and decreasing up to the horizon of 54 months, and increasing

toward zero at longer horizons,

7 : N ] . .

Month t is the month beginning at time t-1 and ending at time t. The
monthly change in the natural logarithm of the Consumer Price Index is
subtracted from the continuously compounded nominal return.

8The estimates are not bias adjusted. Fama and French (1988) report
simulation evidence suggesting that the bias in the estimated autocorrelations
is, in general, not severe when the true autocorrelations are similar to those
displayed in the figure.



We turn next to regressions of rt,N’ the N-month return, on a set of
predetermined variables. One striking characteristic of the results reported
by previous studies is the behavior of the R-squared in these regressions.
Although the R-squared statistic is generally viewed as, at best, a useful
descriptive statistic, the magnitudes obtained in recent studies using long-
horizon returns have been objects of significant attention by researchers in
finance. Let X denote a vector of variables observed at the end of month t.
For this exercise, we construct X, to contain essentially the same three

variables used in the regressions of Fama and French (1987):9

(yBaa - yAaa)t : the difference at the end of month t between Moody’s

average yield on bonds rated Baa and bonds rated Aaa.

(yAaa - yTB)t the difference at the end of month t between the Aaa
yield and the yield on a U.S. Treasury Bill with maturity closest to

one month.

(D/P)t : for the equally weighted portfolio of NYSE stocks, the ratio

of dividends paid for the twelve months ending at t to the price at

the end of month t.

Figure 2 displays, for various return horizoms (N), the sample R-squared

9Similar variables have also been used by other researchers to predict
asset returns. For example, Rozeff (1984) finds that dividend-price ratios
predict stock returns, and Keim and Stambaugh (1986} find that (among other
variables) the difference in yields between low-grade bonds and Treasury Bills
predicts stock and bond returns. Contemporaneous changes in similar variables
have also been used as common risk factors in empirical investigations of
multifactor pricing models. In the latter context, Chen, Roll, and Ross
(1986) use return spreads between (i) low-grade and high-grade bonds and (ii)
long-term high-grade bonds and Treasury Bills.
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value in regressions of r on As observed in previous studies, the

t,N xt~1'
R-squared is small in regressions using monthly returns, approximately 2%. As
the return horizon increases, however, the R-squared increases steadily, to
approximately 40% at a four-year horizon. [The values in figure 2 correspond
closely to the results reported by Fama and French (1987).] Keeping in mind

this tglimpse at some of the existing evidence, we now turn to the task of

modeling.

3. An Equilibrium-Based Analysis of Returns over Short and Long Horizons

The primary objective of this section is to use an equilibrium model to
obtain implications about the behavior of expected returns over horizons of
different lengths. This objective plays a role in our choice of some
specific features of the model, but the general framework is quite standard
and incorporates many features of similar models used previously by

researchers to examine expected returns for single-period horizons.

3.1 The Model and Its Implications

We employ a representative-consumer, endowment model in the framework of
Lucas (1978), where the physical stock of capital is fixed and aggregate
consumption c equals aggregate output ht in each period t. The consumer

maximizes expected utility over an infinite horizon,

E( x gt Ule ) ) , (1)

where f§ (>0) is a rate of time preference. To this framework we add the

loLike the autocorrelations, the R-squared values are not adjusted for any
finite sample bias and, therefore, provide upward biased estimates of the true
R-squared, due primarily to the autocorrelation in the residuals caused by the

use of overlapping observations.
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following assumptions, which are similar to those contained in models

developed by Mehra and Prescott (1985) and Abel (1988).

(Al) The utility function exhibits constant relative risk aversion,

Ule) = ——= 0<a<w . (2)

(A2) Let At+1 denote the one-period growth rate in output, 1.e.,

Bevr = Aesale 3

The quantity ln(At+1) is, conditional on information at time t, distributed

. . 2
normally with mean B and variance o

(A3} The pair (pt ai) follows a joint stationary Markov process with a
finite number of states, §. Let S, denote the state for (pt oi) at time t,
where s, can take values 1, ..., S, Let & denote the transition matrix with

(1,j) element

¢ij = Prob(st+l =i s, = 1) (4)

Let n denote the vector of steady-state probabilities, i.e., x, =

1

Prob(st = 1). Let A(i) denote the random growth rate drawn from the

conditional distribution in which s = {.

(A4) Given S the distribution of s 1 1s independent of At+l’ At’

t+

At-l’

Given the assumptions above, the state of the economy follows a Markov
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process. There are an infinite number of states, each represented as (c, s),
where, at time t, c.=¢ and S. = s. There are an infinite number of values
for consumption (0 < ¢ < ©), but the number of values for s, which represents
the conditional moments of consumption growth, is finite.

We use this model to derive prices of various types of financial claims
as wall as conditional moments of returns on various assets. For the
financial claims considered here, either their prices depend only on s and not
on ¢ (as in the case of riskless bonds) or their prices are homogeneous of
degree one in ¢ fas in the cases of aggregate wealth, risky debt, and levered
equity). The latter property is similar to that exploited by Mehra and
Prescott (1985).11

Consider a riskless bond representing a claim on one unit of output to be
received in N periods. It is easily shown that the price of this bond depends
only on s. For example, let p(Fz)(c, i) denote the price of a two-period bond
at time t when the current state is (c, i). The states in the next two
periods are represented as (cx(i), j) and (cA(i)A(j), k). Applying the well
known relation that the riskless rate (plus unity) equals the expected ratio

of marginal utilities, discounted by the pure rate of time preference,

U [eA(i)A(G)]
b e 1y - 8% : | c, i) (5)
U [c]

ﬁz EC A G ™ @ | i) (6)

In computing the price of the bond, it is convenient to represent the

llThe condition for equilibrium, analogous to that given by Mehra and

Prescott (1985), is that the limit of A™ is zero as m becomes infinite, where

the (i, j) element of A is ﬁ¢ijE{A(i)l'“|i}.
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expectation in (6) as an iterated expectation and then make use of the

independence assumption (A4):

P, 1) - RO TG 5 ) |t 7

= BPECEOW B | 1) (8)
2 .. - 5 Y
= BE{MI) ) T 4..Ex() (9)
. ij
j=1
, S S ) Y
= 8% E E 4.4 EO(D) FVeE(A(G) N (10)
j=1 k=1 *J

The form of the expression in (10) extends easily to additional periods, as

summarized by the following proposition.

(FN)

Proposition 1., Let p denote the S-vector of prices of the N-period

riskless claims in each of the § states. Then

(T _ N, (11)

where tg is an S-vector of ones, ¥ is the $ X S matrix with (i,j) element

Y
¢ij = B ¢ij E{x(i)} ™) . (12)

and WN denotes the Nth power of the matrix W.lz

2.2
12Note that, given (A2), for any m, E{A(i)m} = exp(pim + O.SJim }, where

p. and 0? denote the conditional mean and variance of In[A(i)].
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Next consider the value of aggregate wealth when the state of the economy

(4)

is (¢, 1). Let p (c,i) denote this price. It can be shown that a result
gimilar to that in Mehra and Prescott (1985) also obtains in this case. That
is, there exists wi such that p(A)(c,i) = w.c.

Proposition 2. p(A)(c,i) =w.c, where v, is the ith element of the §-
t

vector w, given by

w - (I - H)'chS , (13)

and H is the S x S matrix with (i,j) element

l-a
= i 14
hij 8 ¢ij Efa(i)™ ) . (14)

We next consider a risky one-period bond that promises to pay, at the end
of one period, a fraction § of current aggregate wealth. That is, if the

current state is (¢, i) and the state in one period is (A(i)c, j), the payoff

onl the risky bond will be

min[ pM (A(Dye, ) + e, P, 11 (15)
Let p(B)(c, i) denote the price of this bond.
Proposition 3. p(B)(c, i) = crg. s and g is the ith element of the S-

vector g = Yas, where Y is an SxS matrix with (i, j) element

. L 1- -
Yi; = ¢ijE{m1n[A(1) %1+ Wi, ML) C'e)wi]} . (16)
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Levered equity is defined, for a given #, as the residual claim on output
and capital net of the risky bond defined above. That is, if p(L)(c, i)

denotes the value of the levered equity, then p(L)(c, i) = p(A)(c, iy -

B ,
p( )(c, i1). From propesitions 2 and 3

p Mo, 1 = enwy - gy a7

The prices of aggregate wealth and levered equity [proposition 2 and
equation (17)] are both expressed as the product of current consumption and a

quantity depending only on s, the state for (pt, 02). This multiplicative

t
form suggests a decomposition of the natural logarithm of the price as the sum

of two components, one stationary and the other nonstationary. With levered

equity, for example,

nip™ e, D1 = 1In(e) + Intw, - g) , (18)

and it is clear from the assumptions and the previous discussion of the model
that In(c) is nonstationary and ln(wi - gi) is stationary. The same type of
decomposition holds for the price of aggregate wealth.13 Fama and French
(1988) and Poterba and Summers (1987) also consider decompositions into
stationary and nonstationmary components, but their analyses assume that the
nonstationary component is a random walk with increments that are independent
of innovations in the stationary component. In (18), however, the first-

differences of the nonstationary component ln(c) are autocorrelated,

13The model of Mehra and Prescott (1985) also admits this sort of
decomposition. In their model, both components depend on realized consumption
growth.
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conditionally heteroskedastic, and correlated with innovations in the
. 14
stationary component, ln(wi - gi).

The Appendix gives, for both aggregate wealth and levered equity, the

conditional means and conditional variances of returns in each state of the
economy for investment horizons of various lengths. As shown in the Appendix,

- 2
the donditional moments of returns depend only on s, the state for (pt, ot),

and not on c¢. Also given in the Appendix are unconditional means, variances,
and first-order autocorrelations of returns for various investment horizons.
The calculation of these unconditional moments is facilitated by the fact that
the conditional moments depend only on s,

The model also provides implications about the goodness of fit, or R-
squared, of linear projections of return on various financial variables. For
this analysis we define three financial variables that also depend only on the
state s. These variables correspond roughly to the three financial variables
used in the empirical work in the paper. The dividend-price ratio in state
(c,i), dp(i), is defined as the ratio of conditional expected consumption to

the price of levered equity:

sy - SEAMIL BB (19)
P (e, 1) i i

The default spread in state (c, i), ydef(i), is defined as the yield to
maturity on the risky bond in proposition 3 minus the one-period riskless

rate:

14This dees not imply that our model cannot yield a decomposition more
similar to those entertained by these studies.
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@y, .
. fp (c, 1) 1
ydef(i) = -
e, iy PP oy
W,
- § = . ———1—— (20)
Bt gEO(E) )

An N-period term spread in state (c, 1), yterm(i), is defined as the yield

spread between the one-period riskless bond and an N-peried riskless bond:

vterm(i) = [ (21)

(Recall from proposition 1 that the prices in (21) do not depend on c¢.) In
the example given below, we set N = 240 (months) .

Since the above three financial variables depend only on the state s, it
is straightforward to compute, ;N’ the multiple correlation coefficient
between the expected levered-equity return for an N-period horizon, Ré?&, and
the three financial variables. The implied R-squared in a projection of Ré?;
on these three variables is then equal to (;N)2 times the ratio of the

variance of the conditional expected return to the variance of the return.

3.2 A Numerical Example

In this section we illustrate numerically several of the model’s
implications about the behavior of returns for various horizons. We define a
single period as 1 month, and we compute implications fer return horizons up
to 120 months. We choose parameters to vield implications that coincide
reasonably well with characteristics of the data, but we do not claim (and in

fact we doubt) that these choices necessarily calibrate the model to give the
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best "fit" across a number of dimensions. In principle, one could specify a
list of moment conditions and estimate the model, but this task is beyond the
scope of the present study. Our objective here is simply to sketch out one
type of equilibrium model that seems capable of capturing much of the

behavior of returns over short and long horizoms.

'The example is constructed by specifying (i) the Markov process for the

conditional moments of consumption growth, (ii) the parameters of the utility
function, o and 8, and {iii) the wvalue of 4 for defining levered equity. The
assumed process for consumption growth rates has the same unconditional mean
and variance, when stated on an annual basis, as do the annual values used in
Mehra and Prescott (1985). The example is also constructed so that the
riskless rate and the premium on levered equity implied by the model are equal
to those used as the empirical benchmarks in Mehra and Prescott (1985). 1In
addition, we attempt to.mimic roughly the overall empirically observed
patterns with respect to investment horizon of autocorrelations and R-squared
values in regressions of returns on the three financial variables.

A nine-state Markov process is specified for the conditional moments of
consumption, (pt, ai). In addition to the unconditional mean and variance of
consumption growth, the other parameters specified in constructing the Markov
process are (i) the variance of the conditional mean consumption growth, (ii)
the variance of the conditional variance of consumption growth, (iii) the
autocorrelation of the conditional mean, and (iv) the autocorrelation of the
conditional variance. Thus, six parameters are specified in constructing the
transition matrix.

We use a procedure that allows these six parameters to imply a unique

transition matrix for any given number of states for s. We assume that He and

2,
ai are independent of each other. A joint Markov process for e and o is
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constructed by first constructing Markov processes for each parameter. These
processes are formed as discrete approximations to first-order autoregressions
for e and ln(ai) with normally distributed errors. The transition matrix can
then be calculated easily, given the assumed independence. This technique is
similar to that of Tauchen (1986). The assumption that e and ag are
independent is made for tractability in constructing the example and is not a
necessary feature of the model.

Table 1 reports the values and probabilities specified for the Markow
process for the conditional moments of consumption growth, and panel A of
table 2 reports the parameters sumtarizing the consumption process_l One
value that does not match its analogue in Mehra and Prescott (1985) is the
autocorrelation of consumption growth rates. They use an annual
autocorrelation of -0.14, whereas our assumed process has a monthly
autocorrelation of 0.001l. The conditional mean growth rate has an
autocorrelation of 0.9178, but its variance accounts for a small fraction of
the total variance in consumption growth (accounting for the low
autocorrelation in the actual growth rate). The conditional variance of the
growth rate has a monthly autocorrelation of 0.432.16

The parameters of the utility function are specified as a = 28.55 and

B = 0.99975, and ¢ is set equal to 0.413 (so the equity is approximately 60%

15The "annualized" values (table 2) for the means and variances are
simply the monthly values multiplied by 12. Thus, given that the monthly
growth rates are neither independently nor identically distributed, this gives
only an approximation to the true annual values. Mehra and Prescott's numbers
describe simple percentage growth rates, whereas ours describe continuously
compounded growth rates.

16Six parameters are specified in constructing the Markov process, as
discussed earlier, but panel A of table 2 displays nine values, Three of
these values are determined by the other six. Specifically, (i) the mean
conditional growth rate, (ii) the mean conditional standard deviation, and
(iii) the autocorrelation of actual growth rates are determined by the six
parameters listed earlier.



17
of aggregate wealth). This value of the curvature parameter o is high by
traditional standards. Indeed, Mehra and Prescott recognize that higher
values of o can produce the benchmark interest rate and equity premium, and

they restrict o to be less than 10.
A central argument for a lower value of a, cited by Mehra and Prescott

and Many others, is that sample estimates of the ratio of expected excess
return to variance of return, the “price of risk" computed by Friend and Blume
(1975), are generally less than 2.0. Friend and Blume interpret the price of
risk, divided by a proportion of risky assets demanded between 0.5 and 0.8, as
a measure of relative risk aversion. While this calculation may be useful in
the case of independently and identically distributed rates of return, such a
relation does not necessarily hold in other settings.l7 We note that the
price of risk for equity in our example is low--somewhat lower, in fact, than
typical sample estimates. Kocherlota (1988b) obtains a similar result using
@ = 13.7 and a value of B greater than unity (8 = 1.14 for annual periods).
Higher values of o are also entertained by Black (1988) in a continuous-time
model with a time-additive utility and a time-varying price of risk. Black
concludes that the model allows both the equity premium and the average price
of risk to be calibrated to sample estimates. Although he does not propose a
numerical value for @, Black observes that it "must be much larger than one."
Numerous other studies report estimates of relative risk aversion that
vary significantly, depending on (i) the specification of the asset pricing
model's implications, (ii) the sample period, (iii) the frequency of the data
(monthly, quarterly, or annual), (iv) the use of real or nominal gquantities,

and (v) adjustments for temporal aggregation. Studies using monthly

17Brown and Gibbons (1985) assume identically and independently
distributed consumption growth rates in their approach to estimating the
coefficient of relative risk aversion.
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consumption data often obtain estimates of relative risk aversion below unity
[e.g., Hansen and Singleton (1982, 1983)], while other studies that use
quarterly or annual data and attempt to account for temporal aggregation have
obtained estimates of 100 or more [e.g., Grossman, Melino, and Shiller (1985),

Naik and Ronn (1988).]18

'If the reader has strong priors that o is low, then our inability (and

others’) to produce reasonable empirical implications in models with time-
additive utility and low values of a could be viewed as evidence against such
equilibrium explanations of observed return behavior.19 Given the imprecision
associated with estimates of a, however, we are reluctant to exclude
equilibrium explanations solely because these explanations include a higher
value of o than traditionally believed to be "reasonable."

The observed empirical properties of stock returns can also be captured
by the model using a lower value of a if the variance of aggregate consumption
is made higher. For example, GCecchetti, Lam, and Mark (1989) investigate a
model with time-additive utility and constant relative risk aversion, and they
find that the equity premium implied by the model matches the Mehra-Prescott
empirical benchmark for e« = 1.40. In their specification, however, the

marginal rates of substitution are computed using real dividends on the

18Grossman, Melino, and Shiller describe their estimates over 20 as "too
large to be plausible," but they do observe that their highest estimates of
risk aversion are accompanied by their weakest evidence against the pricing
model’s overidentifying restrictions. Naik and Ronn argue that the higher
values of relative risk aversion are consistent with reasonable real interest
rates and equity premiums. Hall (1988) concludes, based on an empirical
examination of consumption and asset returns, that the intertemporal
elasticity of substitution is probably quite low. If utility is additively
separable, this result also implies a high degree of relative risk aversion
(although Hall does not argue for such a conclusion).

9 - . . . qs

For an approach to resolving the equity-premium puzzle with utility
that is not time additive but instead incorporates "habit formation" see
Constantinides (1988).
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Standard and Poor's Composite Index. They report for this series an annual
standard deviation of the growth rate equal to 0.1359, about four times
higher than the standard deviation of annual consumption growth (0.0357) used
here and in Mehra and Prescott (1985).

Panel B of table 2 reports some implied properties of returns in our
numenical example. The riskiess real rate of interest has an (annualized)

mean of about 0.8% and a standard deviation of 4.1%. There is no true sample
counterpart in the U.S., since one-month index bonds do not exist, but Mehra
and Prescott (1985) report a real return on nominally riskless securities with
the same mean and a standard deviation of 5.7%. As compared to the real
return on the S&P 500 reported by Mehra and Prescott, the model’s real return
on levered equity has the same mean (by construction) but a higher standard
deviation (27.7% wversus 16.5%). The ratio of expected excess return to
variance (price of risk) equals 1.31 for aggregate wealth and 0.80 for levered
equity. Note that, for the monthly return on levered equity, both the
conditional mean and the conditional standard deviation have autocorrelations
of approximately 0.77,.

The risky bond used for the default yield spread, ydef(i) in (20), is
defined for ¢ = 0.95, i.e., the bond promises to pay 95% of the current total
wealth. TImplied properties of the three financial variables are given in
panel C of table 2. Comparisons to sample estimates must be crude, since
these variables correspond only roughly to those used here and elsewhere in
empirical investigations. The implied first-order monthly autocorrelations of
these variables range from 0.74 (term spread) to 0.92 (dividend-price ratio),
and these are similar to autocorrelations observed by others for gimilar
variables.

The implied first-order autocorrelation of the monthly return on levered
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equity is -0.04. Therefore, this specification of the model does not imply
the positive autocorrelation of monthly stock index returns found in the data,
As displayed in figure 3, however, the autocorrelations implied by this
specification (solid curve) decline up to horizons of about two years, to
almost -0.3, and then they increase gradually toward zero for longer horizons.
Thus, for investment horizons beyond several months, the implied pattern of

autocorrelations coincides at least roughly to that found in the data (cf.
figure 1).

We were unable to find parameter specifications for the model that result
in positive autocorrelations at short horizons but negative autocorrelations
at longer horizons. The model entertained here is restrictive in a number of
respects, however. One feature of the model that could be important in this
regard is the assumption (A4) that unexpected consumption growth does not
impact the change in the conditional moments of consumption growth. [A
similar assumption appears in the model of Abel (1988).]20

Figure 3 also displays the implied autocorrelations obtained for two
lower values of relative risk aversion, @ = 10 and @ = 2. As relative risk
aversion declines, ceteris paribus, the pattern of autocorrelations flattens
toward zero. For a sufficiently low a, between 1 and 2 in this case, the
implied autocorrelations for all return horizons become positive. {Of course,
the riskless rate, equity premium, etc. also change with a.)

Figure 4 displays the R-squared that the model implies for a projection
of Ré?% on the three financial variables defined above. The R-squared implied
for this specification of the model (solid curve) is low for the one-month

horizon (0.02), increases to 0.13 at approximately a two-year horizon, and

then declines toward zero. Although the implied R-squared does not reach

20 . 2 .
We confined our search to cases where by and o are independent.
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values as high as the sample estimates, the pattern of low values for short
horizons and higher values for longer horizons is similar to that found in the
sample estimates (cf. figure 2). Figure 4 also displays the implied R-squared
for the two lower values of a considered in figure 3. As a declines, the
implied R-squared values move toward zero for all investment horizons.

'In addition to high risk aversion, another feature of the model that
plays a key role in determining the above patterns is the monthly
autocorrelation of the conditional expected consumption growth rate, which we
denote as p# for this discussion. As reported earlier in table 2, p‘u = 0.92
in the example. Figure 5 displays autocorrelations of returns for various
horizons implied by that value as well as three other values of pp: 0.5, 0.0,
and -0.5 (maintaining all other original specifications). For ,.9’u = 0.5, the
pattern of return autocorrelations is U-shaped but reaches its minimum at a
shorter horizon (four months). For lower but non-negative values of pu the U-
shape disappears and the negative return autocorrelations increase
monotonically toward zero (e.g., p“ = 0.0). Negative values of p’u (e.g.,
-0.5) also produce the largest negative return autocorrelations at one month
but they approach zero with some oscillation.

Similar effects of pp are found in the implied R-squared values, which
are displayed in figure 6 for the same four values of p# used in figure 5.

For pu = 0.5, the hump occurs at a shorter horizon (four months). Then as pp
declines the hump disappears and R-squared declines monotonically (e.g.,

p'u = 0.0). Finally, the R-squared starts at its highest value for one-month
but moves toward zero with oscillation (e.g., pp = -0.5),

The autocorrelation of the conditional standard deviation of the
consumption growth rate, which we denote P, appears to play an interesting

secondary role. When conditional mean growth rates vary, as they do in the
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example, then changing #p, Produces little if any effect on either the return
autocorrelations or the R-squared values. When the conditional expected
growth rate ig constant, however, then changing P, produces patterns and
magnitudes for the return autocorrelations and R-squared values that are
virtually identical to those produced by the corresponding values of pp. In
fact, we can construct an alternative example that produces very similar
implications to -those reported for the original example by specifying a

tonstant conditional expected growth rate and Py = 0.9.

4. A VAR Apvroach to Modeling Returns for Various Horizons

In this section we estimate a first-order vector autoregression using
monthly time series of four variables--stock index returns and three other
financial variables. The estimates obtained are then used to derive a number

of implications about the behavior of returns over various horizons.

4.1 Definition and Estimation of the VAR

Let rt,N and X, be the same quantities defined earlier in section 2.
That is, rt,N is the N-period continuously compounded real return on stocks,
and X contains three financial variables--a dividend-price ratio, a low-
grade-versus-high-grade yield spread, and a short-term-versus-long-term yield
spread.

Let

yt
et

Table 3 reports sample means, standard deviations, and pairwise

correlations for the four variables in Y. (The yield-related variables are
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stated as percent per month.)

Define the first-order wvector autoregression (VAR),

Yo = 8y * G Yeo1 t Ve . (22)

wheré E[ut]yt_l] =0, E{utut_s‘} =0 for s # 0, and the eigenvalues of G are
assumed to be less than unity in absolute value.

Table 4 reports ordinary least-squares estimates of the parameters in the
VAR model. The estimation is based on monthly data for the period from
December 1926 through December 1985 (709 observations). Table 4 also shows
the first six autocorrelations of the residuals from each of the four
equations, and they are, in general, close to zero. We do not present
extensive diagnostic tests of the adequacy of this first-order VAR for
representing the behavior of the monthly time series used here. Our primary
objective in this study is to investigate the extent to which simple models
can capture the observed behavior of returns for various investment horizons.

If this basic approach appears to be useful, then future research should

consider alternative time-series models.

4.2 Implications of the Estimated VAR

Although the VAR is defined and estimated in terms of one-month-ahead
forecasts, the parameters of the model can be used to obtain implications
about the behavior of expected returns for longer horizons. To illustrate
this point, consider the expected return for a five-year horizon. The
estimated parameters reported in table 4 can be used to obtain implied values

for the coefficients in a regression of the five-year return, on y

Tt 60 t-1’

the lagged values of the four variables in the VAR. Figure 7 plots the

implied expected returns for five-year horizons (stated on a per-month basis)
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obtained from the VAR. Also shown are the fitted expected returns obtained by
regressing directly the five-year return rt,60 ony, ; (using monthly
observations of overlapping five-year returns). The expected returns implied
by the VAR(1) model coincide closely with the expected returns estimated
directly in the regression.

We illustrate below several additional ways in which the VAR gives
implications about the behavior of expected long-horizon returns. In order
that the reader not be burdened unnecessarily with algebraic manipulation, we
simply present the results of our analyses graphically and omit the underlying
formulas. All of the computations follow directly, however, from the

estimated parameters reported in table 4.

4.2.1 Autocorrelations of Returns

We consider next the first-order autocorrelation for returns over N-

month horizons, corr(r Figure 8 plots, for horizons of one month

£, N Teen, N
through ten years, the autocorrelations implied by the VAR. Also displayed
for comparison are the actual (unadjusted) sample autocorrelations shown
earlier in figure 1. Note that the VAR implies properties for

corr(rt,N, rt-N,N) that correspond to properties of the gsample estimates
reported in previous studies. The implied autocorrelation begins at 0.15 for
l1-month returns, becomes negative at a 4 month horizon, declines to -0.30 at a
42-month horizon, and then moves back toward zero for longer horizons.
Although the implied long-horizon autocorrelation does not reach as low a
value as the actual sample autocorrelation, the overall pattern of the implied
autocorrelations is quite similar to that of the sample autocorrelations.

For short horizons (small N), the implied autocorrelations are positive, and

this implication is consistent with previous evidence indicating positive

autocorrelation in short-horizon stock-market returns [e.g., Fama and Schwert
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(1977) and Lo and MacKinlay (1987)].

None of the values shown are adjusted for finite-sample bias, which is
present in the sample autocorrelations as well as in the estimates of the
parameters reported in tables 3 and 4. It may be the case that such biases
have different effects on the implied autocorrelations and the sample
autocorrelations, so precise comparisons based on figure 9 should be made
cautiously.

Given that the VAR model includes the lagged one-month return as a
predictive variable, it may not be surprising that the model yields an
implied autocorrelation for one-month returns that closely resembles the
sample estimates. We have also examined a restricted VAR in which (i) the
change in the Baa-bond yield appears as an additional variable and (ii) the
coefficient on the lagged monthly stock return is constrained to be zerc in
the stock-return equation. In other words, the lagged stock return is not
allowed to contribute directly to predicting the following month‘s stock
return. The estimated parameters of this restricted version of the VAR model

also imply positive autocorrelations for short horizons.

4.2.2 PRegression R-squared

Figure 9 displays the value of the R-squared implied by the VAR model
for regressions of returns on the three predetermined variables in X 1 That

is, in the regression

T = a + a,, X + u , (23)

r
the R-squared is the value of var(aNxt_l)/var(rt N) implied by the VAR. This

211f the zero restriction is imposed but the additional yield-change

variable is not introduced, then the implied one-month autocorrelation is
slightly negative.
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R-squared value is computed for return horizons (N) ranging from one month to
four years. Also shown in figure 9 is the actual (unadjusted) sample R-
squared value obtained by regressing rt,N on x_ 4 using overlapping
observations, displayed earlier in figure 2. The R-squared values implied by
the VAR exhibit properties similar to those of the sample values. For
example, the values begin at 0.02 for a l-month horizon and increase to 0.23

for a 34-month horizon.22

4.2.3 Impulse Response Functions

One potential benefit of the VAR model is that it permits a deeper
analysis of the manner in which changes in the predetermined variables impact
expected future returns for various horizons., One framework that appears to
be especially useful in this analysis is that proposed by Sims (1980, 1981).
This approach computes the response of a given variable, in this case rt+n,l’

to a set of orthogonal shocks in each variable in the system,

The VAR model allows Tosn. 1 (the return in month t+n) to be written as

rt+n,1 (24)

where 65 is a vector containing four elements, with E[&s} = 0, var{Es} =I,
and cov[fs, Es—j} = 0 for all j = 0. The elements of Et are constructed as
follows. The first element Elt is the shock in period t to the first variable
in X, - The second element E2t is the shock to the second variable in X, that

is uncorrelated with Elt; the third element €3t is the shock to the third

variable that is uncorrelated with §1t and §2t’ etc. Thus, the construction

2As in the analysis of autocorrelations, the R-squared value implied by
the VAR is not adjusted for any finite sample bias.
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of Et depends on the ordering of variables., We order the variables as in the

vector Ye defined above, so that the fourth element of Et is the shock to T

that is uncorrelated with shocks to any of the variables in X

The response of r 1 to the shocks (or "impulses") in the variables in

t4n

period t is represented by the parameter vector ﬂn. That is, 91n is the

response of r 1 to a one-standard-deviation shock at period t in the first

t+n

variabie, 62n is the response to the orthogonalized one-standard-deviation
shock in the second variable, etc. The values of Hin for various n represent
the "impulse response function," the responses of returns in various future
months to a one-standard-deviation (orthogonalized) shock to variable i at
time t.

Figure 10 plots the responses of monthly returns to shocks in each of the

four variables in Y.- Responses of r

to shocks in the first variable,
t+n,1

(yBaa yAaa)t’ are negative for the first two months, positive and increasing
for the next three months, and then monotonically decreasing, converging to
zero in about four years. The responses to shocks in the variable

(yAaa - yTB)t that are uncorrelated with the shocks in the first variable are
positive for almost two years and then decline monotonically toward zero. The
responses to shocks in the variable (D/P)t that are uncorrelated with the
shocks in the first two variables are very similar to those of the first
variable, but the decline to zero takes almost six years. The responses to
shocks in the fourth variable, the shocks in re that are uncorrelated with the
shocks in the other variables, are positive and decreasing for the first two

months, negative and decreasing for two more months, and then increasing

monotonically, reaching zero in about two years.

4.2.4 Decomposing the Autocorrelation

The infinite moving average representation in (24) can also be used to
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analyze the contribution of each of the predictive variables to the
autocorrelation of r. N’ the return for an N-month horizon. First note that,

since

N-1
r = Y r_ ., , (25)
' t,N j=p .1
the N-horizon return can be written as
@ r
= 26
Ce.N Nu  + .E " Et+N-j : (26)
j=1
Equation (26) can be rewritten as
4
ey - Nt _Z C1,t4N-1 (27)
i=1
where
=]
- 28
1 -1 jél 7i,jfi,t+N-j (28)

Since the elements of 55 are mutually uncorrelated by construction, equation
(28) expresses the N-month return as a sum of four orthogonal components. By
decomposing the return in this fashion, the autocovariance of r_ g can be

similarly decomposed:

~

= ) cov(r (29)

covir
(t

N Teen w eN Si,e-1)
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Each term on the right-hand side of equation (29) represents the portion of
the autocovariance of rt,N that can be attributed to the covariance between
rt,N and past (orthogonalized) shocks to a given variable in the system.
Dividing each side of (29) by Var(rt,N) gives the autocorrelation as a sum of
four components.

'Figure 11 displays, for various return horizons (N), the four components
of the autocorrelation in rt,N' The solid line represents the autocorrelation
of rt,N implied by the VAR, which was displayed previously in figure 8. The
other four curves in figure 11 sum to this total autocorrelation. Perhaps the
most striking result of this exercise is that shocks to the dividend-price
ratio appear to make the most important contribution to both the positive

autocorrelation in short-horizon returns as well as to the negative

autocorrelation for the longer horizons.

5. Evaluating a VAR Approximation to the Equilibrium Model

This section uses simulations to study (i) the ability of the VAR
discussed in section 4 to approximate the equilibrium model in section 3 and
(ii) the small-sample bias in the estimates presented. As in previous
sections, we focus on the autocorrelations of returns and the regression R-
squared values for various investment horizons.

Data for this section’s analyses are generated by simulating the
equilibrium model with the parameter values specified in the numerical example
of section 3.2. Two types of simulations are conducted, small-sample and
large-sample. 1In a small-sample simulation, 100 independent samples are
generated. Each sample includes 709 observations of the continuously
compounded monthly return on levered equity and the three financial variables
defined in the model: a dividend-price ratio, a low-grade-versus-high-grade

yield spread, and a short-term—versus—long-term vield spread. The estimated
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statistics of the 100 samples are averaged to obtain "average small sample"
values. We also generate a data set of 70,900 observations and denote its
statistics as "large sample" values.

The simulation results for the autocorrelations are presented graphically
in figure 12, and figure 13 displays corresponding results for the regression
R-squared. The solid line in each figure represents the true values implied
by the equilibrium model, shown previously in figures 3 and 4, for
autocorrelations of simple returns and R-squared values in regressions with
simple returns. The sample estimates in section 2 and the VAR estimation in
section 4 use continuously compounded returns, however, and we have not
obtained analytical expressions for the equilibrium model’s autocorrelations
and R-squared values with continuously compounded returns. Therefore, we
simulate 70,900 monthly observations and calculate the autocorrelations and
the R-squared values in the same manner used to compute the statistics
reported in section 2 using actual data. As can be seen in figures 12 and
13, these values are very close to the exact values for simple returns.

A different large-sample simulation is used to assess the VAR as an
approximation to the equilibrium model. We estimate the VAR using the
simulated 70,900 monthly observations and then calculate the autocorrelations
and R-squared values implied by the estimated VAR parameters. The implied
autocorrelations are very close to the large-sample estimates obtained above
and to the true values for simple returns obtained from the equilibrium
model. However, the R-squared values for long horizons implied by the large-
sample estimates of the VAR are larger than the R-squared values calculated in
the large sample above.

We conduct another simulation to assess the small-sample bias in the

statistics. For each of the 100 generated data sets of 709 observations, we
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calculate the autocorrelations and the R-squared values in the same way used
with the actual data in section 2. The dashed line in each of figures 12 and
13 represents the average over the 100 data sets of these small-sample
statistics. Note that, for long horizons, the average small-sample
autocorrelations are much lower (larger negative) than those in the large-
samplle simulation, and the average small-sample R-squared values are much
higher than those in the large-sample simulation.

A final simulation is conducted to examine the behavior of the VAR-
implied autocorrelations and R-squared values computed from small-sample
estimates of the VAR parameters. We estimate a VAR model for each of the 100
simulated data sets and compute the implied autocorrelations and R-squared
values. Figures 12 and 13 plot the averages of these statistics (over the
100 data sets). The average implied autocorrelations are very close to those
implied by the large-sample estimation of the VAR, to the true
autocorrelations of the simple returns, and to the autocorrelations of the
continuously compounded returns obtained in the large sample. The R-squared
results are somewhat unexpected. The average implied R-squared values are
smaller than those implied by the large-sample VAR estimates, but they are
almost identical to those for the continuously compounded returns calculated

in the large sample and to the true values for simple returns,

6. GConclusions

A number of the empirically observed properties of expected stock returns
for various investment horizons appear to be consistent with an equilibrium
pricing model that includes (i) positively autocorrelated conditional means
and variances of consumption growth and (ii) risk aversion that is high by
traditional modeling standards. The high risk aversion in this model does

not, however, imply a "price of risk" above what is typically estimated.
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Other properties of returns that are consistent with the model include (i) an
annual "equity premium" of about six percent (ii) a U-shaped pattern of
negative autocorrelations of returns with respect to investment horizons
beyond several months, and (iii) a humped pattern with respect to investment
horizon for the R-squared in projections of stock returns on predetermined
financial variables--a dividend price ratio, a default yield spread, and a
term yield spread.

The equilibrium model analyzed here also implies values in each state of
the economy for the conditional expected return and the conditional variance
of return for various investment horizons. The states of the eCOTemy are
characterized by the conditional moments of consumption growth. Kandel and
Stambaugh (1989) examine the model’s implications across states of the economy
for the same parameter values used here in the numerical example. They find
that the tendency for estimates of the price of risk to be higher during
recessions, when coupled with business-cycle variation in estimates of the
moments of consumption growth, appears to be consistent with the equilibrium
model .

Empirical properties of expected long- and short-horizon stock returns
also appear to be represented well by a first-order vector autoregression
(VAR) for monthly returns and these three financial variables. Parameters
estimated for the monthly VAR can be used to obtain implications about (i)
expected long-horizon returns, (ii) the autocorrelations of returns for
various horizons, and (iii) the R-squared values in regressions of short- and
long-horizon returns on the financial variables. The values for these
statistics implied by the estimated VAR parameters are close to the sample
estimates computed with actual long-horizon returns. Simulation evidence

suggests that such a VAR is also a reasonable approximation to the equilibrium
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model in terms of capturing the properties of expected short- and long-horizoen

returns.
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APPENDIX
This appendix gives moments of returns, as implied by the equilibrium
model in section 3, for investment horizons of arbitrary length. We first

give the conditional means and variances of returns on aggregate wealth and

levered equity, and then we use these conditional moments to obtain
uncorditional means, variances, and autocorrelations. Proofs of the
propositions are omitted but are available upon request to the authors.

Using proposition 2, the one-period simple rate of return on aggregate
wealth, where the economy goes from state (c, 1) to state (cA(i), J), 1s given

by

cA(i) + w.ca(i)
r(AD) ] -1 (1a)
ow,
i
A(L)Y(L + w,)
- . : (2a)
W,
i
Note that the conditional distribution of R(Al) depends only on i. Following

a line of reasoning similar to that invoked in (7) through (10) leads to

conditional means and variances for rates of returns over various horizons.

Proposition Al. Let E(AN) denote the S-vector of conditional expected N-

period (simple) rates of return on aggregate wealth in each of the S states,

1 <s=<8,

g (AN _ MNLS S (3a)

S 3

where M is an SxS matrix with (i, j) element
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Moo= 4B —— (4a)

AN)

Proposition A?. Let V( denote the vector of conditional variances of

N-period (simple) rates of return on aggregate wealth in each of the S states.

Then24

v ey (5a)

where Q is an SxS matrix with (i, j) element

(w, + 1)°
95 = $3;EO@7) —5— . (6a)

Given the definition of levered equity and the relations in (15) and
(17), the one-period rate of return on the levered equity, where the economy

goes from state (¢, i) to state (eA(i), j), is given by

max{0, A(L)(L + w,) - fw, ]
R(Ll) _ ] 1 -1 . (7a)

w, - M
1 gl

As with the returns on aggregate wealth analyzed earlier, the conditional
distribution of R(Ll) depends only on i. Using an approach similar to that
followed in developing the previous propositions, we obtain the conditional

means and variances of returns on the levered equity for various investment

4The symbol "*" denctes a Hadamard matrix product. If [a..] and [b,,]
. 1 1]
denote the elements of mxn matrices, then {aij]*[bij] = [aij'bij .
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horizons.

. IN
Proposition A3. Let E( ) denote the S-vector of conditional expected N-

period (simple) rates of return on levered equity in each of the S states,

1l <5 =<38§.

(L) N (8a)

where T' is an S$xS matrix with (i, j) element

E{max[0, A(L)(1 + w,) - fw,])
y.. = ] L : (9a)
) Yi T By

Proposition A4. Let V(LN) denote the vector of conditional variances of

N-period (simple) rates of return on levered equity in each of the S states.

Then

v - =g - {(rNLS)*(rN:.S)] , (10a)

where E is an SxS matrix with (i, j) element

E{(max {0, A(i)(1 + Wj) - Bwi])zl

(1la)

.. = ¢.. 2
ij ij (Wi ) gi)

We also examine the unconditional moments of returns on aggregate wealth

(AN), AN) denote the unconditional mean and

and on levered equity. Let E and ﬁ(
variance of the N-period simple rate of return on aggregate wealth. Given the

conditional moments provided in propositions Al and A2, unconditional means
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and

variances are obtained directly from the conditional moments using m, the

vector of steady-state probabilities:

E(AN) (AN)

' E {12a)

' (AN AN) o [(EAN) (A =(AN)

_s (aN) _ g tg)] (13a)

as)*(E

. A .
Following the notation defined earlier, let Ré ; denote the N-peried

return on aggregate wealth starting at the beginning of period t. In

A A
obtaining the first-order autocorrelation of RéAé, corr(R( ) R( ) )]

£, N’ £-N,N" we note
that
(A) (). .2
@D gA) B+ R on! - [EOL+ RO
COTELRe N Reen,N var(RA), ‘
arike N
= (A2N) =(AN) ={AN) .2
_ E - ?E - [E ] (14a)
(AN

The expressions for the unconditional moments of returns on levered equity are

of precisely the same forms (simply replace "A"™ with "L" in (12a)-(1l4a)].
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Table 1

Markov Process for the Conditional Mean and Standard Deviation
of the Monthly Consumption Growth Rate in the Example
of the Equilibrium Model

Conditional Conditional
Mean of the Standard Deviation
Unconditional Monthly of the Monthly
State Probability Growth Rate (%) Growth Rate (%)
1 $.084 0.111 0.915
2 0.088 0.153 0.915
3 0.084 0.194 0.915
4 0.160 0.111 1.023
5 0.168 0.153 1.023
6 0.160 0.194 1.023
7 0.084 0.111 1.144
8 0.088 0.153 1.144
9 0.084 0.194 1.144

Probability of moving from state i to state

state {i 1 2 3 4 5 6 7 8 9
1 0.459 0.041 0.000 0.397 0.036 0.000 0.062 0.006 0.000
2 0.039 0.422 0.039 0.034 0.365 0.034 0.005 0.057 0.005
3 0.000 0.041 0.4539 0.000 0.036 0.397 0.000 0.006 0.062
4 0.20% 0.019 0.000 0.500 0.045 0.000 0.209 0.019 0.000
5 0.018 0.192 0.018 0.042 0.460 0.042 0.018 0.192 0.018
6 0.000 0.019 0.209 0.000 0.045 0.500 0.000 0.019 0.209
7 0.062 0.006 0.000 0.397 0.036 0.000 0.459 0.041 0.000
8 0.005 0.057 0.005 0.034 0.365 0.034 0.039 0.422 0.039
9 0.000 0.006 0.062 0.000 0.036 0.397 0.000 0.041 0.459
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Table 2

Unconditional Moments of Various Monthly Series in the
Example of the Equilibrium Model

2 Standard First-Order
Quantity Mean Deviation Autocorrelation

A. Consumption Growth Rates (exogenous)
Actual Growth Rate 1.8300 3.5684 0.0010

Conditional Expected 1.8300 0.1163 0.9178
Growth Rate

(%)

Conditional Standard .5551°¢ 0.2852 0.4320

Deviation of the Growth

Rate
B. Rates of Return (endogenous)

Riskless Rate 0.7%07 4.0964 0.7509
Return on Aggregate 4.4262 16.6290 -0.0544
Wealth

Return on Levered 6.9865 27.7465 -0.0439
Equity

Conditional Expected 6.9865 3.9415 0.7776

Return on Levered Equity
Conditional Standard 27.0820° 4.5712 0.7764
Deviation of Return on

Levered Equity

C. Other Financial Variables (endogenous)

Dividend-Price Ratio 2.0886 0.0630 0.9155
Short-Term Default Spread 5.3292 1.0810 0.8681
Term-Structure Spread -1.3336 3.9515 0.7410

#A11 numbers in this column, except those noted otherwise, are
multiplied by 1200.

bThe numbers in this column are multiplied by 100 x /12.

“Multiplied by 100 x /12,
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Table 3

Sample Means, Standard Deviations, and Correlations

Correlations
Standard
Variable Mean Deviatio -
eviation Yaaa VTR D/P r
!
yBaa—yAaa 0.1007 0.0676 0.58 0.08 0.03
yAaa'yTB 0.1839 0.1077 -0.04 0.10
b/P 0.0402 0.0133 -0.19
r 0.0078 0.0754

Note: The variables are defined as follows,

(yBaa - yAaa)t the difference at the end of month t between Moody's
average yield on bonds rated Baa and bonds rated Aaa.

the difference at the end of month t between the Aaa
yield and the yield on a U.S. Treasury Bill with maturity
closest to one month.

Ypaa - Yr8)e

{D/P) : for the equally weighted portfolio of NYSE stocks, the ratio of
t s . -
dividends paid for the twelve months ending at t to the
price at the end of month t.

r . the continuously compounded real return in month t on the equally
weighted portfolio of NYSE stocks.



Table 4

Estimates cof the VAR’'s Parameters

Dependenta b
Variable Independent variables (lagged one month) Residual Autocorrelations
. 2
Intercept Yp.."Yaaa Yaaa Y8  O/F r adj. K2 200 L P ?3 Py Ps  Pg

YBaa Yaaa 0.0008 0.9706 0.0076 .0423 -0.0828 0.96 3883.0 0.08 -0.09 -0.26 -0.13 0.12 0.10
(0.0031)|(0.0309) (0.0080) .0437) (0.0176) (0.000)

Yaaa ¥TB 0.0077 0.1303 0.8748 L0744 -0.0582 0.85 3460.3 -0.11 C©.06 -0.06 -0.02 -0.04 Q.09
(0.0059) (0.0421) (0.0369) .0804) (0,0225) (0.000%

b/P 0.0024 -0.0070 -0.0012 .9633 -0,0042 0.493 9045.3 0.02 -0.00 -0.08 0.03 0.12 0.05
(0.0008) (0.0055) (0.0013) L0129y  {0,c028) (0.000)

r ~0.0245 0.0975 0.0285 .3937 0_1605 0.04 12.3 -0.00 0.02 -0.08 -0.01 0.07 -0.02
(0.0134) (0.1073) (0.0311) L2486  (0.0714} (0.018)

3The variables

(yBaa -

(Ypaa ~ YTBly

yAaa)b

are defined as follows.

the difference at the end of month t between Moody’s average yield on bkonds

rated Baa and bonds rated Aaa.

the difference at the end of month t between the Aaa yield and the yield on a U.S. Treasury Bill with
maturity closest to one month.

(DIP)t for the equally weighted portfolio of NYSE stocks, the ratio of dividends paid for the twelve months ending at t to
the price at the end of month t.

LI the real return in month % on the equally weighted portfolio of NYSE stocks.

b

The coefficients are estimated using ordinary least squares and the standard errors (in parentheses) are based on the

heteroskedasticity-consistent estimator of the covariance matrix of White (1980) and Hsieh (1983).

®The statistic reported is asymptotically distributed as xz with five degrees of freedom under the null hypcthesis that all of

the coefficients on the independent variables (excluding the intercept) are equal to zero.

The p-value is shown in parentheses.
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Figure 1. Sample estimates of first-order autocorrelations of N-month
real returns (continuously compounded) on the equally weighted NYSE portfolio.
The estimates are obtained by regressing the N-month return on its lagged
value, using monthly observations with overlapping return horizons.
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Figure 2. R-squared values in regressions of N-month real returns
(continuously compounded) on the equally weighted NYSE portfolio on three
predictive variables (the Baa yield minus the Aaa yield, the Aaa yield minus
the T-Bill yield, and the dividend-price ratio). For each N, the R-squared
value is obtained in a regression using monthly observations with overlapping
return horizons.
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Figure 3. First-order autocorrelations of N-month returns on levered
equity implied by the equilibrium model. The solid line represents values
implied by the model using the parameters of the numerical example of section
3. The long-dashed and the short-dashed lines display the values for this
example where the risk aversion coefficient is changed to 10 and 2,
respectively.
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Figure 4. R-squared values in regressions of N-month returns on levered
equity on three predictive variables (a dividend-price ratio, a low-grade-
versus-high-grade yield spread, and a short-term-versus-long-term yield
spread) implied by the equilibrium model. The solid line displays wvalues
implied by the model using the parameters of the numerical example of section
3. The long-dashed and the short-dashed lines display the values for this
example where the risk aversion coefficient is changed to 10 and 2,
respectively.
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Figure 5. First-order autocorrelations of N-month returns on levered
equity implied by the equilibrium model. The solid line represents values
implied by the model using the parameters of the numerical example of section
3. The other lines are obtained using alternative specifications of the
first-order autocorrelation of the monthly growth rate in consumption.



A
~No

RT,N on Xt“_T

| o
J o
‘ O autocorr{mean)
<+ L
J ol , 0.92 -
0.50 - -
| i 0.00 _
| -0.50 ______
-
a1t
S|
! w
[
N
S
O
(=]
o
o
<
< Q. 5 10 14 19 24 29 34 38 43 48
N

Figure 6. R-squared values in regressions of N-month returns on levered
equity on three predictive variables (a dividend-price ratio, a low-grade-
versus-high-grade yield spread, and a short-term-versus-long-term yield
spread) implied by the equilibrium model. The solid line displays wvalues
implied by the model using the parameters of the numerical example of section
3. The other lines are obtained using alternative specifications of the
first-order autocorrelation of the monthly growth rate in consumption.
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the equally-weighted NYSE portfolic for five-year horizons. The-value p%ot?ed
corresponds to the expected monthly return for the five-year horizon beginning
on the given date. The solid line represents expected five-year returns
implied by the VAR model, and the dashed line represents expected returns
estimated directly in a regression with five-year returns as the dependent

variable.
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Figure 8. First-order autocorrelations of N-month real returns
(continuously compounded) on the equally weighted NYSE portfolio. The solid
line displays values implied by the VAR model. The dashed line displays
sample estimates obtained by regressing the N-month return on its lagged
value, using monthly observations with overlapping return horizons.
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Figure 9. R-squared values in regressions of N-month real returns
(continuously compounded) on the equally weighted NYSE portfolio on three
predictive variables (the change in the Baa yield, the Baa yield minus the Aaa
yield, the Aaa yield minus the T-Bill yield, and the dividend-price ratio),.
The solid line displays values implied by the VAR model. The R-squared value
is equal to the ratio of the implied variance of the expected N-month return
te the implied variance of the total N-month return. The dashed line displays
sample values obtained in a regression of the N-month return on the three
variables, using monthly observations with overlapping return horizons,
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Figure 10. Responses of one-month real returns (continuously compounded)
on the equally weighted NYSE portfolio in month t+n to shocks in the
predictive variables in month t, as implied by the VAR model.
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Figure 12. First-order autocorrelations of N-month returns on levered
equity. The solid line displays values for simple returns implied by the
equilibrium model with the parameters of the example in section 3. All other
lines display values for continuously compounded returns based on data
generated by simulating the equilibrium model with these parameters. The line
with dots and dashes displays estimates obtained from a simulated data set
with 70900 observations. The line with short dashs displays the average
values of 100 simulated data sets with 709 observations each. For these two
lines, each value is obtained by regressing the N-month return on its lagged
value, using overlapping return horizons. The dashed line displays values
implied by a VAR model estimated from a simulated data set with 70900
observations. The dotted line displays the average (over 100 data sets)
values implied by a VAR model estimated from a simulated data set with 709
observations.
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Figure 13. R-squared values in regressions of N-month returns on
levered equity on three predictive variables (a dividend-price ratio, a low-
grade-versus-high-grade yield spread, and a short-term-versus-long-term yield
spread). The solid line displays values implied for simple returns by the
equilibrium model with the parameters of the numerical example of section 3.
All other lines display values for continuously compounded returns based on
data generated by simulating the equilibrium model with these parameters. The
line with dots and dashes displays estimates obtained from a simulated data
set with 70900 observations. The line with short dashes displays the average
values of 100 simulated data sets with 709 observations each. For these two
lines, each value is obtained by regressing the N-month return on its lagged
value, using overlapping return horizons. The dashed line displays values
implied by a VAR model estimated from a simulated data set with 70900
observations. The dotted line displays the average (over 100 data sets)
values implied by a VAR model estimated from a simulated data set with 709
observations. The VAR-implied R-squared value is equal to the ratio of the
implied variance of the expected N-month return to the implied variance of the
total N-month return.



