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Abstract

This paper develops distribution-specific theoretical constraints on
relative prices of out-of-the-money European eall and put options that are
also valid for American options on futures. Systematic violations of these
constraints by prices of American options on Deutschemark futures are found,
indicating that distributions more asymmetric than those of standard models
are necessary. An American option pricing model for jump-diffusion processes
Wwith asymmetriec jumps is developed. Estimates of parameters implicit in
prices of options on Deutschemark futures indicate that throughout 1984-87,
market participants perceived a remote chance of a substantial crash in the

dollar,
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drafts of this paper. Financial support from the International Finance
Section of Princeton University is gratefully acknowledged,



Option pricing literature is premised on symmetry. The continuous

processes for which option pricing formulas have been derived range from
arithmetic Brownian motion (Bachelier), which is symmetric, to geometric
Brownian motion (Black-Scholes), which is log-symmetric, to constant
elasticity of variance, which for the originally postulated parameters is
intermediate between the other two. Jump-diffusion models based on Merton
(1976a) almost invariably assume that jumps are distributed mean-zerco, so that

the distribution is log-symmetric.

The importance of asymmetric distributions, on the other hand, has long
been recognized in the international finance literature. The "peso problem"
under pegged exchange rates is an issue of asymmetric distributions: the
large chance over a finite time horizon of no change in the exchange rate (the
peg is maintained) and the small chance of an extreme change (the regime
collapses) creates a highly skewed distribution ex gnre. Models of "bubbles"
in floating exchange rate regimes also postulate the presence of asymmetries.
The large chance of the bubble continuing to expand and small chance of the
exchange rate collapsing back to its "fundamentals"-determined level again
implies a highly skewed distribution ex ante. As noted by Krasker {1980),
skewness creates fundamental difficulties for the reliability of statistical

inference when testing international asset pricing models.

This paper examines how the symmetry or asymmetry of the underiying asset's
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price distribution affects prices of Options written on the asset, and
pPresents evidence that distributions more dsymmetric than those hitherto
considered are more consistent with observed Prices of options on Deutschemark
futures. Since call options will pay off only when the underlying asset's
pPrice is in excess of the exercise price (i.e., the cal] finishes "in the

money" }, and puts only when the reverse is true, the instantaneous spectrum of

call and put option prices dcross all exercise prices gives a very direct
indication of asymmetries in market participants’ dggregate subjective
distributions. For instance, an assessed risk of a dollar crash (Deutschemark
"boom") will lead to call options on DM futures with exercise prices well
above the current futures price ("out-of-the-money" calls) being priced higher
than puts with exercise prices well below the futures price (out-of-the-money
puts); the chance of large upward movements in the DM/$ rate makes the call
more likely than the Put to finish in the money.! This observation leads
naturally to a "crash premium" measure of asymmetry, defined as the percentage

deviation between out-of-the-money (0TM) calls and puts,

Section I of the paper develops the relationship between OTM call and put
option prices for Ehe standard distributional hypotheses: arithmetic Brownian
motion, geometric Brownian motion, constant elasticity of variance, and log-
symmetric jump-diffusion processes. The relative Prices of QTM European
options are shown to order the processes: OTM European call and put prices
are equal under arithmetic Brownian motion and diverge increasingly as one

moves through constant elasticity of variance (CEV) processes to the geometric

Similarly, fears of a stock market crash will lead to out-of-the-money {0T™)
puts on stock indexes being priced higher than OTM calls. Whaley (1986) has
found such asymmetries; see also MacBeth and Merville (1982), Whaley (1982)
and Rubinstein (1985} for evidence of asymmetries in stock options.
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Brownian motion and log-symmetric jump-diffusion processes. For the last two

processes, European call options x% out of the money are priced x% higher than

the corresponding OTM puts.

Furthermore, for the specific case of options on futures, the relative
ranking of the distributions is shown to be maintained when ope compares

Adnerican OTM options. The above "x% rule” continues to hold for American OTM
opticns on futures when the underlying processes are either geometric Brownian
motion or log-symmetric jump-diffusion. Data for American options on
Deutschemark futures from the Chicago Mercantile Exchange over February 1984
to January 1987 indicate that crash premiums, though volatile, typically lie
above the range of the standard models (i.e., higher than the X% rule

benchmark), consistent with market assessments of downside risk on the dollar,

Section II examines the hypothesis that the asymmetries are the result of
the underlying asset's price following an asymmetric jump-diffusion process.
Such processes are notoriously difficult to estimate using actual price data
for the underlying asset when jumps are infrequent: as in the case of
estimating mean returns, accurate estimation of jump frequencies requires a
long history of data. The paper sidesteps the problem by estimating the jump
size and jump frequency implicit in option prices -- an extension of the
implicit parameter approach commonly used for stock return volatility. There
being ne known analytic solutions for American option prices under jump-
diffusion processes, I develop an accurate and inexpensive analytic
approximation, an extension of the work of MacMillan (1987) and Barone-Adesi
and Whaley (1987). Results from fitting the model to options data using
nonlinear least squares reinforces the "stylized fact" of positive

asymmetries: expectations of positive jumps are almost invariably found. The
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Positive asymmetries are present both during the period of dollar appreciation
prior to March 1985 and the period of dollar depreciation thereafter. With
Some exceptions, the expected jump component per year (size times frequency)
is not large: generally about 2-4%. However, the jump component of the
Process typically accounts for 10-30% of the implicit conditional variance of

the underlying process,

1. Measures of Asymmetry Under Standard Distributional Hypotheses

1.1. European Options

Although most options are "American,” i.e., allow early exercise, the
usefulness of options data in distinguishing between distributional hypotheses
is most apparent in the case of European options. The relative prices of out-
of~the-money calls and puts are closely related to the Symmetry or asymmetry
of the underlying asset's price distribution around the mean at the expiration
date of the options, as perceived ex ante by market participants. That
relationship can be made precise under the standard assumptions of option

pricing models.

Consider first the following standard generalization of Black and Scholes'
(1973) model:
Al) The asset price follows the stochastic difference equation
dS = u(*) dt + c(S,t) dz (1)
where Z is a standard Wiener process, and the instantaneous drift u{*)
is an arbitrary function of (possibly stochastic) variables.
A2} Markets are frictionless: there are no transactions «costs or

differential taxes, trading takes place continuously, there are no
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restrictions on borrowing or selling short,
A3) The imstantaneous risk-free interest rate is known and constant.
A4) The "cost of carry" to maintaining a position in the underlying asset

is a conmstant proportion b of the asset price.

Assumption A4) is standard ip most option pricing models, For non-dividend

paying stocks, b = r, the opportunity cost of not holding the risk-free asset.
For options on foreign exchange, b = r - r*, the domestic/foreign interest
differential. An important characteristic of futures contracts is that the
cost of carry equals zero: the collateral requirements of taking positions in
futures markets can be met by posting Treasury bills, so there is no

opportunity cost to such positions.

Under these assumptions, the payoff to any contingent claim on the asset
can be replicated by a continuously adjusted portfolio of the asset and the
risk-free bond, and the claim is priced as iIf investors were risk-neutral and
the asset price followed the equivalent martingale process

dS* = bS*¥ dtr + o(S*,t) dz (2)
with §%(0) = 5(0) = SO' In particular, European calls and puts with exercise

price X and time T to maturity are priced at what would be the the discounted

expected value of their terminal payoffs if the process followed (2).

Let c(SO,T;X) and p(SO,T;X) be the prices at time 0 of European calls and
puts, given the current price S0 for the underlying asset, the option's time
to maturity T, and the exercise price X. Similarly, C(SO,T;X) and P(SO,T;X)
will be the corresponding prices of American options. In options market

terminolegy, the call options are "out of the money" if X > S_, and puts are

03

cut of the money if X < SO' Then under assumptions Al - A4, the European

option prices will be



¥y = o°IT *
¢(8,:T;X) = e E, max[Sl-T - X,0]
_ ~rT E g Xl s+ > £ >
= e olS%p - | *7 2 X] Prob[S"T 2 X] (3)
oy = o °IT e
p(SO,T,X) e EO max[X - § 0]
= ¢V [X - S| S% < X] Proplat <
ol = $% St < 4] Probse s x) | (4)

where S*T, the value of $* at the expiration of the option, has expected value
E 5*. = 8 exp(bT). By arbitrage, § exp{(bT) = F » the forward price on the
0°'T 0 0 0,T

asset.?

The key insight from (3) and (4) is that calls and puts as functions of the
exercise price X are Symmetric contingent claims. Symmetries or asymmetries
in the distribution of S"-‘T around its mean Soexp(bT) = FO,T generate
corresponding symmetric or asymmetric relationships between out-of-the-money
calls and puts. Since different distributional hypotheses imply different

distributions of S*T, options data can be used to distinguish between those

hypotheses.

A caveat is that one cannot in general make direct inferences from options
data about the asymmetry of the actuwal distribution of the terminal price ST
of the underlying asset. Option pricing models place no restriction upon the
instantaneous drift u(*) of the process, and it is conceivable that movements
in the drift could create arbitrarily asymmetric distributions for ST that are
not reflected in the distribution of S*T. Additional, model~-specific

restrictions on U(*) will therefore be necessary to determine the precise

relationship between the ST and S*T distributions.
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For some such restrictions, however, the asymmetry of S*T around F gives an
exact measure of the asymmetry of ST around EOST. The constant-drift

geometric Brownian motion process for ST assumed by the capital asset pricing

mode],
d3/§ =wpdt + ¢ dz, (3)

implies that ST and S*T are log-normally distributed with identical

2

2
coefficients of skewness (eU T+2)(e0 T-l)l/z.3 The Ornstein-Uhlenbeck process®

dS = (a+BS) dt + ¢ dz, {6)

with no absorbing barrier at §=0 (of which unlimited-liability arithmetic
Brownian motion is a special case) implies that ST and S"fT are both mnormally
distributed (conditional on SO) with identical, zero coefficients of skewness.
These examples suggest that the asymmetry of S*T around F generally gives a
reliable indication of the asymmetry of ST around E0 T when asymmetry is

measured by the coefficient of skewness.

Using (3) and (4), one can immediately ascertain the relationship between

out-of-the-money calls and puts for symmetric distributions of S*T:

Propositjon 1: 1f the terminal distribution of the equivalent martingale
megsure is symmetric around its mean F = § exp(bT), then European call and put
prices are related by

c(8,T;F+x) = p(8,T;F-x) for any S, x, and T, (7)

the third argument of c(*) and p(*) being the exercise price.

® The coefficients of kurtosis will also be identical.

* See, e.g., Merton (1971), p. 404.
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Proof: 1f S*T is distributed symmetrically around its mean F, then

b

C,FT) = e TUL (57 - (P E(Sp* « F) d(S%F)

where f{S§% -F) is the probability distribution function of §% -F. Symmetry

implies f(-x) = f(x). Substituting z_ = 2F-ST7'~' yields

T
) _ -rT F =X
¢(S,T;F+x) = [(F-x) - 2;] £(F-2)(dz,)
=TT F X F-x) - ap] £(z-F) dz
= p(8,T;F-x) . |

An implication of (7) is that the relevant concept of "out-of-the-money" in
comparing calis and puts is relative to the Forward price F = § exp(bT) rather
than relative to the spot price S on the underlying asset. This measure of
"moneyness" is standard in the literature,® albeit not in options markets, and
is completely intuitive: only the terminal distribution matters for pricing
European calls and puts, and F is the mean of that distribution. I will
henceforth use this definition of "moneyness.”" In the case of options on
futures (b=0), considered below, the two versions of "moneyness" are

identical.

It is important to realize that (5) has nothing to do with the European
put-call parity relationship

c{8,T;X) = p(8,T;X) + e TT(seT - xy | (8)

which is an arbitrage relationship between puts and calls with sdenticgl
eXxercise prices, and holds regardless of distribution. The importance of (7)
is that it holds only for symmetric terminal distributions. If the

distribution is -asymmetric, then call and put prices for symmetric exercise



prices will diverge.®

For the major distributions studied hitherto, that divergence takes
systematic forms. The positively skewed log-normal distribution used in the
Black-Scholes model has a positive divergence between out-of-the-money calls
and puts:

c(8,T;F+x) > p(8,T;F-x) for x > 0, (9)
with out-of-the-money defined relative to the forward rate rather thanp the

spot rate. In fact, the degree of divergence can be quantified for this

distribution.

Proposition 2: If the underlying asset's terminal distribution is log-normal,
then European call and put prices are related by

c(8,T; F(1+x) ) = (1+x) p(S,T; F/(1+x) ) for any S, x, and T. (10)

Proof of proposition 2 follows directly from inspecting the generalized

Black-Scholes formulas

c(8,T;X) = & T7 [ gePT N(d}) - X N(d,) ] (11)
and

P(S,T3%) = o™ [ X N(-a,) - sebT NG-d) ], (12)
where d1 = [ln(SebT/X) + O.SGZT} / ofT d2 = d1 - o/T, and N(*) is the
cumulative normal. [ |

when the distribution is symmetric:

c(8,T;F+x) = ¢(8,T;F-x) + e T (F-x - F)
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When x is close to 0 (as is observed in options markets), (10) can be

rewritten as

c¢(8,T;F(1+x) )

(1 +x) p(S,T;F/(1 + x) )

B

(1 +x) p(S,T;F(1-x) ) . (13)
That is, call options with exercise prices 5% higher than the forward rate

should be priced about 5% higher than put options with exercise prices 5%

below the forward rate, if the underlying asset's price follows geometric
Brownian motion. If the asset price followed unlimited-liability arithmetic
Brownian motion, then from (7) the call and put options would have identical

prices.’

Both geometric and arithmetic Brownian motion are special cases of the

broader class of constant elasticity of variance (CEV) diffusions, of the form
dS = wu(*) dt + osP dz . (14)

Setting p=0 yields arithmetic Brownian motion, while p=1 yields geometric
Brownian motion. The first studies of CEV processes restricted p to between 0
and 1, with p=1/2 especially studied.® For such intermediate values of P,
there is a relationship between OTM calls and puts intermediate between those

of Propositions 1 and 2.

Proposition 3: If the underlying asset's price follows the process (14), then

out-of-the money call and put prices, as functions of state variables and

Given limited liability, this distributional assumption is admittedly
implausible, although it is of some historical interest in the option
pricing literature. I use it because 1) it is a simple example of a
symmetric distribution, and 2) it provides a useful lower bound for (16a)
below.

' See, e.g., Cox and Ross (1976).
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relevant parameters,? are related by

l..
c(8,T;Fk,k™ Po,p,b) = & p(8,T;F/k,0,p,b)  for k>0 and any p  (15)

and satisfy the following inequalities:
a) c¢(S,T;F(14x),0,p,b) > P(8,T;F(1-x),0,p,b) for p>0, x>0 (16a)
b) c(S,T,F(1+x),0,p,b) < (1+x) p(5,T;F/(1+x),0,p,b) for p<l, x>0 (16b)

c) c(S,T,F(1+x),o,p,b) > {1+x) p(S,T;F/(1+x),0,p,b) for p>1, x>0 (16c)

with inequalities reversed for x<0.

Expression (15) is proved in Appendix I for p<l via manipulation of the
generalized European CEV option pricing formula. That it also holds for p>1
follows from the useful property also proved in the appendix that a European
call with CEV parameter p<l corresponds to a European put with CEV parameter

p¥ =2 - p > 1, cost of carry b* = -b, and a modified volatility parameter:
. = . 2(1-p%) .
c(8,T;F(14x),0,p,b) = (1+x) P(8,T;F/(1+x),0F 1 P¥,BF) (17)

(1éb) and (16c) follow from (15), since option prices are increasing functions
of the volatility parameter. (16a) also follows from the (15) for p>1 (since
F/(1+x} > F{l1-x) and pi{*) is increasing in the strike price), and has heen

confirmed numerically for p<l.

The final distribution-specific relationship is for the jump-diffusion
process studied by Press (1967} and Merton (1976a,b), among others. This
models asset prices as generally following geometric Brownian motion, but

occasionally being hit with a Poisson-distributed "event," in which the asset

° In the expressions below, the arguments are the asset Price, the time to
maturity, the strike price, the volatility parameter, the CEV parameter,
and the cost of carry, respectively.
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Price jumps discretely. The percentage jump is itself generally modeiled as a
random variable, and the typical assumptions are that it has a zero mean and
that one plus the percentage jump has a log-normal distributiop,!® Merton
(1976) shows that it is no longer possible to replicate an option with a
continuously-adjusted two-asset portfolio of risk-free bond and the underlying

asset, so that restrictions either on distributions or on attitudes towards

risk become necessary in deriving option values. The standard assumption is
that jumps represent idiosyncratic, diversifiable risk to which investors are
indifferent. Under this assumption, or the assumption that investors are in
fact risk-neutral, European option pricing formulas can be derived, and the

following relationship holds:

Proposition 4: If asset prices follow the log-symmetric jump-diffusion
process described above, and if investors are effectively risk-neutral with

regard to jump risk, then the call-put relationship of Proposition 2 holds:

c(8,T;F(1+x) ) = (1+x) p(s,T; F/(1+x) ) for any S, x, and T. (18)

Proof of the proposition is in Appendix II.

1% See Merton (1976a,b) and Ball and Torous (1983,1985). The rationale behind
the choice of mean-zero jumps is that this distribution is used primarily
as a fat-tailed "fix-up" of geometric Brownian motion, to accord with the
observed leptokurtosis of asset returns.
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1.2. American Options on Futures

The symmetric call-put relationships derived above for European options
will not hold in general for American options. A simple counter-example is
perpetual options on a non-dividend paying stock: the call will never be
exercised early, whereas the put will be exercised early if the stock price

falls low enough. More generally, the problem is that the early-exercise

feature of American options is symmetric around the spot price S8  whereas, as

Q
noted above, the European options are claims symmetric around the forward
price FO,T = Soexp{bT). For b > 0, the range of Spot prices on the underlying
asset for which the call will be exercised early is smaller than the early-
exercise range for puts. TFor b < 0, the reverse is true.!! The resulting
asymmetries in early exercise premiums (the premiums being defined as the
difference between American and European option prices) implies that comparing

American call and put option prices cannot in general be used as a simple

diagnostic of asymmetries in distributions.

In the case of American options on futures, however, the cost of carry
equals zero, the forward price on the futures contract equals the futures
price, and there is no intrinsic asymmetry introduced by moving from European
to American options. In this particular case, the above propositions continue
to hold, and relative prices of American calls and puts can distinguish among

competing distributional hypotheses.

'! From the logic of equivalent martingale measures, the call and put are
priced as if the underlying asset price drifts upward at expected rate b.
Positive drift increases the attractiveness of holding on to the call as
opposed to exercising it early, but decreases the attractiveness of holding
on to the put.



“14-

Proposition 5: For American options on futures, under dssumptions Al - A4,

1)

2)

3

If the futures Price follows unlimited-liability arithmetic Brownian
motion, then

C(S,T;S(l+x) ) = P(8,T;8(1-x) ) for any §, T, and X, (19)
and the critical exercise prices for callg and puts beloyw (above) which

the call (put) will be exercised immediately are Symmetric around the

current futures price §:

C(S,T;S(1+x) ) = (1+x) P(S,T;S/(1+x) ) for any 3, T, and x, (21>
and the critical exercise prices are log-symmetric around S:
c

S/ Xr = X*p /8= 1. {22)

(conjectured) If the futures price follows the CEV process (14), then
C(S,T;Sk,kl-pd,p,b) = &k P(S,T;S/k,c,p,b) for k>0 and any p (23)

and the following inequalities are satisfied:

a) C(S,T;S(1+x},0,p,b) > P(S,T;S(l-x),o,p,b) for p>0, x>0 (24a)
b) C(S,T,S(1+x),c,p,b) < (14x) P(S,T;S/(1+x),c,p,b) for p<1, x>0 (24b)
c) c(S,T,F(l+x),o,p,b) > (14x) p(S,T;F/(l+x),c,p,b) for p>1, x>0 (24¢)

with inequalities reversed for x<Q.

Proof of parts 1) and 2b) is in Appendix II, while 2a) is proved in

Appendix 1I. Expression (23) has been confirmed numerically!? over the

12

And imposing the standard restrictions on distributions or on preferences

discussed above in the latter case.



-15-

parameter range 0<p<l and therefore also holds for corresponding values of p
between 1 and 2, given the correspondence proved in Appendix I between
American calls on futures with CEV parameter p<l and American puts on futures

with CEV parameter p* = 2-p > 1 and cost of carry b* = -b = Q:
C(8,T38(14%),0,p,0) = (Lhx) P(S,T38/(14x),052 1P w0y (25

3b) and 3c¢) follow from (23); 3a) also follows from (23) for »>1, and has been

confirmed numerically for 0<p<l.

The above proposition can be used to construct a measure of asymmetry

which, by analogy with the term premium, is named the "crash premium".

Definition: The crash premium is defined as the percentage deviation of out-

of-the-money calls from correspondingly out-of-the-money puts:
CP(S,T,x) = C(S,T, S(1+x) ) / P(S,T; S/(14x) ) - 1 , x>0 . (26)

The crash premium is a function most importantly of the out-of-the-
moneyness parameter x. From propesition 5, the c¢rash premium has

approximately the following properties:

1? American CEV option prices were calculated using the Cox-Rubinstein (1985)
binomial option pricing methodology. Option prices were expressed in terms

of the transformed state variable Z = (Sl-p-i)/(l‘p), which follows a

process with state-dependent drift but with state-independent volatility.
Option prices were calculated only for p between 0O and 2, because of
difficulties with boundary conditions for values of p outside this range.



-16-

1} CP(*,x) = ¢ for unlimited—liability arithmetic Brownian motion
processes

2) 0 £ CP(*,x) < x for CEV processes with 0 < p < 1,

3) CP(*,x) = x for geometric Brownian motion processes,

4) CP(*,x) = x for log-symmetric jump-diffusion processes,

W

5) CP(*,x) > x for CLV Process with p > 1,

In sum: for options on futures, Amerjican calls xZ out of the money should be
priced between 0F and xI higher than the corresponding OTM puts for any of the
first four distributions listed above, regardless of the mALUrity of the

options, '*

The approximation enters in 1) and 2), in that the perfectly symmetric
arithmetic Brownian motion process places constraints on OTM calls and puts
for exercise prices symmetric around the forward (and spot) price:

Xc = S(1+x) Xp = 8{1-x) , (27)
whereas the above definition uses exercise prices log-symmetric around the
spot price, as is appropriate for symmetric log-normal processes:

Xc = §(1+x) Xp = 5/(1+x) = S(1-x) + [8(1-x)x?] . (28)
A more careful but more cumbersome approach would be to define an additiomal
crash premium measure based on (28), and use both premiums to distinguish
among distributional hypotheses. The latter premium would be approximately
the same but slightly greater thanp the premium defined in (27), except for
options far out of the morney or near maturity.!®

'* The choice of out-of-the-money options (x>0} in defining the crash premium
is arbitrary. One could equally define the crash premium as (minus) the
percentage deviation between in-the-money call and put options (x<0).

'* The two crash pPremium measures of percentage deviations in relative prices
of 0IM calls and puts diverge for deep out-of-the-money options. But
absolute deviations between 0™ calls and puts converge, as both call and



Pricing formulas are applicable. For example, for options o non-dividend
paying stocks, ome could compare effectively European out-of-the-money calls
with the out-of-the money European puts imputed (via put-call parity) from

effectively European in-the-money calls. In these cases, as noted above, the

relevant concept of "0ut-of-the~money" is relative to the forward rate rather

than to the spot rate.

1.3. Tests

The futures options on which I have tested the above symmetry relationships
dre options on Deutschemark futures, traded on the International Monetary
Market since January 24, 1984. I use settlement prices of options, the prices
used at the end of the day for settling positions. Settlement prices are
based on the daily clesing prices of options, unless those were considered not
current encugh, in which case information from other markets is also used.
The major advantage of these prices is simultaneity: option prices for the
spectrum of exercise prices are determined simultaneously with each other and
with the underlying futures' settlement prices.'® Data on settlement prices
are published daily in the Wall Street Journal, and are also published in the
Chicago Mercantile Exchange's Statistical Yearbook. The CME unfortunately
does not keep the data on computer tapes.

pPut prices go to zero.
1€ The simultaneity of settlement pPrices on futures and on futures options is

evident for options deep in the money . The price of such options

approaches the early exercise value given by the futures price/exercise
price differential.
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Options on DM futures over most of the 1984-87 period were available for
March, June, September, and December expiration dates. Intra-quarterly
options have also been introduced recently. The last trading day for these
options is two Fridays before the third Wednesday of the contract month (that

Wednesday being the delivery date of the underlying futures contract). The

first trading day is nine months (formerly six) before expiration. The
options can be exercised on any trading day, yielding a position in the
underlying futures the following business day. Option contracts are available
for integer exercise prices (in cents/DM) falling within a +/- 2.5 cents/DM
band around the current futures price, plus the contracts opened around
previous futures prices. The set of options contracts available for a given
maturity therefore depends upon the past movements of the underlying futures
price during the history of that maturity of option. For imnstance, on March
3, 1986, the June 1986 futures settlement price was 45.67 cents/DM, and call
options were available at exercise prices 35 to 48 cents/DM. The
preponderance of in-the-money «calls reflects the appreciation of the
Deutschemark over the six months up to March that the June 1986 options had
been traded. Prices of options are quoted in cents/DM; contract size is DM
125,000. The data sample used picks one day per month over the February 1984
to January 1987 history of the options, with days picked so that the options

have maturities that are (roughly) an integer number of months.}’

'7 More specifically, the dates were chosen on the same (or nearest preceding)
day of the month as the Monday following the last trading date on the
shortest-maturity option. That Monday is when the futures contract would
be delivered conditioral on the option being exercised on the final trading
date. Maturity of options fluctuates with the month; a one-month option
can mature in 28 to 34 days. Timing of contracts (as opposed to picking
28-day maturities) was chosen so as to coincide with timing of forward
contracts on foreign exchange.
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Since options exist only for specific exercise prices, the crash premium
measure of asymmetry cannot be implemented directly. TFor each OTM call with
exercise price x% above the futures price, there will not in general exist a
corresponding OTM put with exercise price exactly x% below the futures price.
However, theoretical distributions imply that options prices are continuously

differentiable, monotone, and convex functions of the exercise price. Options

prices for desired exercise prices were therefore calculated by quadratic
interpolation. The method used!?® was extremely accurate when tested on
theoretical distributions. Actual option prices were less well behaved than
the theoretical ones; while always monotone, there were instances of small
local concavities rather than convexity in the spectrum of option prices for

given exercise prices.

Table 1 chronicles the crash premium over February 1984 to January 1987,
for options 2%, 4%, and 6% out-of-the-money. Uncontroversially, the premiums
are invariably positive, as would be the case for the standard model of
geometric Brownian motion. However, for short-term options (maturities of 1-3
months), the premiums are predominantly in excess of the x% rule of geometric
Brownian motion. The deviation grows more pronounced for options further out
of the money. Taking the three-month options of March 9, 1984 as an example:
geometric Brownian motion implies calls 4% out of the money should be priced
4% higher than corresponding OTM puts; instead, they are priced 18% higher.
The 6% OTM calls should be priced 6% higher than OTM puts; they are priced 25%
higher. One cannot rely too heavily upon the magnitude of percentage

12 Interpolations were based on parabclas through the three exercise
price/option price points surrounding the desired exercise price, provided
the parabola was comnvex. Otherwise, linear interpolation was used. When
two parabolas could be fitted, the average of the two interpeclations was
used.
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deviations between options far out of the money, especially in the case of

one-month options, but the sign is of interest. In total, three-quarters of
the crash premiums on 1-3 month options are more positive than would be the

case under geometric Brownian motion. This "stylized fact" is consistent with
the CEV model with p>1, or with the Jump-diffusion model with asymmetric jumps

discussed below.

Crash premiums for medium-term {(4-6 month maturities) conform more closely
to the benchmark model of geometric Brownian motiomn. The deviations from the
x% rtule are smaller than for short-term options, and occur both above and
below. Positive deviations are slightly more frequent, because of the
predominance of positive deviations for the 4% OTM crash premiums. In sum,
the short-term options imply distributions more positively asymmetric than
geometric Brownian motion, whereas the evidence from medium-~term options is
mixed. This "maturity effect," of decreasing absolute deviations from the x%
rule as longer maturities are considered, is characteristic both of CEV option
pricing models and of jump-diffusion models with asymmetric jumps. Neither
model canr explain why the deviations are of mixed sign for medium-term

options.
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2. The Asymmetric Jump-Diffusion Model

The above measures of asymmetry indicate that distributiongs mOre asymmetric

than those hitherto generally considered would better explain observed option

prices. For this reason, and because the distribution is of interest in its
OWn right, it is posited that the asset price follows a stochastic

differential equation with asymmetric, deterministic jumps;
dS/S = [u(*) - Ak] dt + o0dZ + & dq, {29)

where

k(*) is the instantaneous unconditional expected return on the asset,

O is the instantaneous variance conditional on no jumps,

Z is a standard Wiener process,

k is the percentage jump conditional on the Poisson event occurring,

A is the frequency of Poisson events,
and q is a Poisson counter with intensity X:

Prob(dg = 1) = A\dt, Prob{dq = 0) = 1 - udt.
The process resembles geometric Brownian motion most of the time, but omn
average A times per year the price jumps discretely, by a predictable amount.
The instantaneous mean return is udt, the instantaneous variance is

(a2+3k?)dt.

The postulated process is a special case of the one studied by Jones (1984)
and differs from previous work on option pricing under jump-diffusion
processes (Merton (1976a,b), Ball and Torous (1983,1985)) in certain important
directions. First, the jumps are allowed to by asymmetric, i.e., with non-
zero mean. Values of the expected percentage jump size k greater (less) than
zero imply that the distribution is positively (negatively) asymmetric

relative to geometric Brownian motiom. The implication is that the crash
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premium will be greater than or less than the x% rule, depending on k; for

sufficiently negative k, the crash premium will be negative.

Second, the jumps are assumed to be deterministic. Market participants
know exactly how much an asset price will jump conditional on the jump taking
place. Although admittedly an implausible assumption, the work of Ball and

Torous (1985) suggests that the noisiness of jumps would have relatively
little additional effect on option prices relative to a deterministic-jump
option pricing model.!® And the deterministic-jump assumption has the major
advantage of implying an arbitrage-based option pricing formula; Merton's
strong (and implausible) assumption of diversifiable jump risk is no longer

necessary.

Jones (1984) develops the arbitrage-based option pricing model for jump-
diffusion processes with deterministic jumps. The basic insight is that the
additional source of risk coming from jumps can be hedged by adding an
additional asset to the continuously-adjusted portfolio replicating an optiom.
The natural instrument to use is another contingent claim; any option can be
replicated by a three-asset portfolio consisting of a risk-free bond, the
underlying asset, and a different option on the asset. The implication (see
Jones (1984)) is that options are priced as if investors were risk-neutral and
the underlying asset price followed the equivalent martingale process

ds*/8% = (b -~ k) dt + o dZ + k dg* , (30)

where b is the cost-of-carry coefficient, ¢ and k are as before, X* is the

'? Using time series data, Ball and Torous estimate the parameters of a jump-
diffusion process with zero-mean randem jumps, and find that the resulting
option prices are virtually identical to those implied by a (degenerate)
jump-diffusion with =zero-mean, deterministic jumps -- i.e., the no-jump
Black-Scholes model. Ball and Torous use Merton's option pricing model.



option used in the replicating portfolio?® and is assumed constant,?! and q*

is a Poisson counter with frequency )*:
Prob(dg®=1) = Medt Prob{dg®=0) = 1 - Akdt,
Since the choice of option used in the replicating portfolio is arbitrary, alj]

Options will be priced as if the process were (30),

Pricing European options from (30) is straightforward. The terminal
distribution of S*T is given by

in S*T = (b - Xk - 0,.502)T + ozT + n¥ , (31)

where ZT has

P(A*T), and ¥

3]

Normal distribution N{0,T), n has a Peisson distribution

In(1+k). European calls are priced at what would be the
discounted expected value of their terminal payoffs if the terminal

distribution were (31):

c(5,T;X) = e-rT E::O Prob(n jumps) EO[ max(S*T-X,O) ! jumps |
_ ~rT _= -AFT PN D b(n)T _
= e En=0 [e (A*T) /n!] [Se N(dln) X N(dZn)] , (32)
where

b{n) = (b - k) + n¥/T,

dln

d

[In(S/X) + b(n)T + 0.56%T] / o/T, and

I dln - ovT .

European puts have an analogous formula:

2% More precisely, A\¥ is the cost of crash insurance per unit time. That is,
(A*At)exp(-rAt) = \*At is the cost at each instant of an Arrow-Debreu
security that pays off $1 in the event of a crash occurring within the next
instant and $0 otherwise. Under risk neutrality, such insurance is pPriced
at the actuarially fair rate: M* = X,

2! Sufficient conditions for X* to be constant are given in Bates (1988) and

include 1) constant relative risk aversion of the representative investor,

and 2 the ravrrmmt oo oL e e - 0 m
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-IT = . . .
p(§,T;¥) = e En=0 Prob(n jumps) E, max(h-ShT,O) | n jumps ]

-rT o =MT .1 b{n)T
= i ! - - -
e ano [e (AFT)"/nt] [X N( dZn) Se N( dln)]. {33)
There are no known analytic solutions for American calls. Finite-

difference methods based upon Cox et a&l. (1979) can be used to evaluate

option prices accurately for given parameters, but at a significant cost in

computer time. That cost becomes prohibitive when one seeks to estimate the
parameters implicit in observed option prices. Consequently, I have developed
an accurate and inexpensive quadratic approximation for evaluating American
options written on jump-diffusion processes. The approximation is an
extension on the one developed by MacMillan (1987) and Barone-Adesi and Whaley
(1987) for evaluating American options written on geometric Brownian motion
processes; details are in Appendix III. The resulting form:la for American

calls is

c(S,T;X) + X A, [(S/X)/yc--'--]q2 for S/X < y_*,

r
I

C(S,T;X) =
| 5 -X for S/X =z y *, (34)
L c

where A2 = (ych/qz)[l-cs(yCW,T;l)], q, is the positive root to

0.56%g% + (b - Mk - 0.50%)q - r/(1-e "1y + ax(efd - 1) = o, (35)

and the critical spot price/exercise price ratio yc* z 1 above which the call
is exercised immediately is given implicitly by
v - 1= c(yc%,T;l) + (yca/qz)[l - cs(yc,T;l)]. (36)

Similarly, American puts have values approximated by
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:
BICROIVES ¥ [(5/%)/y %1% for s7x > 5,

P(S,T;X) = {
|
]

“
3

X -8 for §/X < yp* (37)

where A1 = (yp*/-ql)[1+ps(yc*,T;1)], q, is the negative root to (36), and the

critical spot price/exercise price ratio yp* < 1 below which the put ig
exercised immediately is given implicitly by

1-y=*= *,T;1) + (y_*/-q,)[1+ *,T;1)]. 38

Yy p(yp ) (yp/ql)[ py(yp )] (38)

The parameters ql,qz,yc*, and yp* can be evaluated rapidly via Newton's method

for given parameters r, b, ¢, k, and X*, and for given time to maturity T.

The expressions, although messy, are in fact fairly intuitive. Deep out-
of-the-money American call and put option prices approach the European values
c(*) and p(e), respectively. Deep in-the-money call and put option prices
smoothly approach the early exercise values (8-X) and (X-35), respectively,
attaining those values at the critical spot ﬁrice/exercise price ratio y¥,
Intermediate values are taken from a smooth, convex curve connecting the two
extremes, with the parameters of curvature 4, and q, inversely related to the
conditional variance (o2+\*k?)T over the remaining lifetime of the option. 22
The critical early exercise ratios yc*(T) and yp*(T) are functions of time and
of the parameters of the model, excluding exercise price. As the maturity
approaches zero, the curvatures approach infinity and early-exercise ratios
shrink towards 1. The American call price approaches max(5-X,0), the American

put price approaches max (X-5,0).

?? That is, the variance of the log of the equivalent martingale measure.
Parameters q, and q, are also affected by total unit cost of carry bT, but
are insensit.ve to «.thetr maramotarve € ol o 1 7 -~ . .y e
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Table 2 compares the estimated calls and puts with those calculated by

finite-difference methods. The error is typically less than or equal to

rounding error, except in the case of extreme parameters.

2.2. Estimation

The procedure discussed above and in Appendix T1II gives an American option
pricing formula as a function of state variables § and T and and parameters X,
r, o, b, k, and 3. The first four are known. The instantaneous risk-free
rate can be proxied by Treasury bill rates: I use rates derived from the
average of bid and ask discounts on Treasury bills maturing close to the
maturity of the option. The jump size k, jump frequency A¥, and standard

deviation ¢ (conditional on no jumps) are not known.

It is possible to derive estimates of ¢, k, and \ from the history of
prices of the underlying asset. To derive accurate estimates requires a long
history of data, however; small sample estimates when jumps are infrequent
will be strongly affected by whether jumps did or did not take place within
the sample. This paper therefore takes the approach of estimating the jump
parameters implicit in option prices. The parameters estimated are of course
those of the equivalent martingale jump-diffusion process, and only under the
assumption of diversifiable jump risk will the estimated jump frequency %
equal the true jump frequency X. But the jump size k is the same for both the
actual and equivalent martingale jump-diffusion processes, so options data can

still be used to see whether market participants perceive jump risk.

The set of settlement prices of options at a given day was assumed to be

represented by corresponding model prices plus a random disturbance term:
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V. = V(S,Xj,o,k,l*) + vj . (39}

(typically about 12 data) was used, and the implicit parameters o(t), k(t),
and A*(t) for that day were estimated via nonlinear least squares. The
regression yielded estimates of o{t), k(t), and A(t) implicit in option prices
for that day. The implicit parameters were not constrained to be constapt

over time. Two different regressions were run for the two maturity classes
considered: short-term (1-3 months) and medium-term (4-6 months) options,
The regressions were repeated for each day of the one day per month, February

1984 to January 1987 sample discussed above, 23

The implicit parameters were estimated using the quadratic hill-climbing
software of Goldfeld and Quandt, GQOPT method GRADX. The likelihood function
was typically characterized by multiple equilibria. In particular, there was
a4 local maximum at the no-jump solution which, however, was generally
dominated by a positive-jump optimum. Multiple starting values were used to
ensure that the global maximum was indeed found. Starting with negative jumps

typically converged to the ne-jump or positive jump optimum, but not always.

To reduce costs, the implicit parameters were first estimated for the
Bernouilli jump-diffusion process, premised upon at most one jump during the
life of an option. This assumption yields an European call option pricing

formula of

23 It is unlikely that observed and model prices differ only by additive
random error, However, the major alternative source of error in testing
options prices =-- the nonsimultaneity of futures' and futures options'
prices -- presumably has been reduced by the use of settlement prices. If
v. could be assumed to be normally distributed, then the regressions would
yield maximum likelihood estimates of the parameters. But nonnegativity of
options prices precludes that assumption,



1 b(n)T
c(S,TiX) = L _ w [Se (n) N, ) - X N(d)] (40)

where Wy = (1 = T}, L AT, and b(n) = b - In(1+Xk) + n¥/T.

The early exercise premium was then derived as discussed above and in Appendix
IIT. The estimated optimal parameters from fitting this model were used as
starting values for the Poisson jump-diffusion process discussed above. As

one would expect, the Bernouilli optimal parameters were close to the Poissom

parameters when estimated jump frequencies were low, which was most of the

time. 2"

Parameter estimates are given in Table III. The most striking result is
that the implicit jumps are almost invariably estimated as positive. This is
true for short-term and medium-term option data; for the period of dollar
appreciation prior to March 1985 and for the period of depreciation
thereafter. According to options prices, the "stylized fact" for the DM/$

rate over February 1984 to Januéry 1987 is downside risk on the dollar.

The second striking result is that parameter estimates fluctuate wildly and
there is no particular comsistency between the estimates from short-term and
from medium-term options. It is possible that this reflects too few degrees
of freedom; it is also possible that expectations are in fact volatile.
Pending further research, therefore, not too much reliance can be placed upon
individual estimates from settlement prices. Future work will  wuse

transactions data.

The broad patterns, however, are of substantial but infrequent expected

positive jumps. Figures 1 to 3 give measures of the economic significance of

2% Ball and Torous (1985) use a similar two-step procedure in estimating
distributional parameters from daily asset price changes.
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the jump component of the jump-diffusion process. Figure 1 gives expected
jumps per year Xk (the frequency of jumps times the size) for short-term
assets, with an approximation of the 95% confidence interval. This measure,
the implicit contribution of jumps to the expected return on the underlying
asset, is typically about 2-4% per year, with some notable exceptions. Figure
2 gives the same measure for medium-term options, with roughly the same

results.

Figure 3 indicates by how much the jump risk contributes to the overall
risk of the underlying asset returns. Although as volatile as the other
measures, jump risk is estimated as typically responsible for roughly 10-30%
of the conditional variance of asset returns. Using this or the above
measures, it is reasonable to conclude that jumps are perceived by market
participants as a substantive component of the behavior of the bBM/$ futures

price.



3. Conclusions and Extensions

This paper has shown that the "stylized fact" of options on Deutschemark
futures is that the implicit distribution is more positively asymmetric than
all major theoretical distributions used hitherto in option pricing models,

including the benchmark model of geometric Brownian motion. Evidence for this

assertion came first from the "crash premium" measure of asymmetry based upon
relative prices of out-of-the-money calls and puts. TFurther evidence came
from fitting an asymmetric jump-diffusion option pricing model to the options
data, with the sign of the jump parameterizing the direction of asymmetry
relative to geometric Brownian motion. Estimated implicit jump sizes were

almost invariably positive,

It is, of course possible that the observed "moneyness bias" in option
prices relative to the Black-Scholes benchmark is attributable to other
sources of asymmetries than to asymmetric jumps in a jump-diffusion process.
Relevant alternative models include stochastic volatility option pricing
models such as the ARCH (autoregressive conditional heteroskedasticity models)
and GARCH (generalized ARCH), and the CEV model with p>1. Standard ARCH and
GARCH assume,?® however, that the evolution of volatility is rndependent of
the asset price. In continuous-time models, this implies a stochastic
differential equation for volatility of the form

do = f(og,t) dt + glo,t) dzc, (41)
with f(*) and g(*) not functions of the asset price §, and with Cov(do,dS) =
0. It is straightforward to modify the proofs to show that the propositions

relating prices of out-of-the-money calls and puts will continue to hold under

25 See Nelson (1987) for a critical discussion of ARCH and GARCH assumptions.
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this assumption -- standard ARCH and GARCH cannot explain the moneyness bias.
Such models imply '"fat-tailed" distributions that are symmetrically fat-

tailed.

The modified GARCH of Nelson (1987) allows a non-zero correlation between
innovations in volatility and in the asset price. Positive correlations

(increased volatility as the dollar depreciates), a characteristic also of CEV
models with p>1, would induce a moneyness bias in option prices consistent
with the ones observed empirically. There has hitherto been little estimation
of such modified GARCH processes for exchange rates, so the sign of the
correlation is an open question. One relevant study is that of Melino and
Turnbull (1988), who estimate over 1975 to 1986 a negative correlation between
the dollar/Canadian dollar exchange rate and the volatility of that rate.
Since options on Canadian dollars also exhibit positive implicit

[

asymmetries,?® stochastic velatility models would not appear to be capable of

explaining the moneyness biases of such options.

The implications of asymmetries go well beyond ascertaining which
distribution best explains option prices. Tests of asset pricing models are
invariably tests of a three-fold hypothesis:

1) The theoretical constraint on expected returns across assets is correct,

2) Observaticns ex post are valid instruments for expectations ex ante, and

3) distributions are "well-behaved."

But as Krasker (1980) pointed out, skewed distributions are notr well-behaved.
1f skewness is present, sample distributions converge only slowly to the

asymptotic normal, so that sample moments from small samples lead to

2% See Borensztein and Dooley (1987).
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misleading inferences.

Thus, estimated implicit distributions from options prices point out g4
possible explanation for rejections of international asset pricing models, and
Suggest an alternative. Use of the distributions implicit in option pricing
may give a more accurate picture of true distributions., Furthermore, insofar
as these implicit distributions do Tepresent true expectations of market
participants ex ante, using the distributions can reduce the reliance on the
rational expectations hypothesis that expectations ex ante and realizations ex
post differ only by unforecastable white noise, and thus lead to more direct

tests of asset pricing models. Whether using implicit distributions can make

that much difference remains to be seen; but the potential is there.
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Appendix |

Properties of Constant Elasticity of Variance (CEV) Option Prices

Lemma: For European CEV option prices in general, expressed as functions of
the asset price §, time to maturity T, the strike price, and the list of

parameters,

¢(8,T;Fk,0,p,0) = K p(8,T;E/k, 0> VP ok bty for any k, (A1)

where p* = 2-p, b¥* = -b, and Fk and F/k are the strike prices of the call and
put, respectively, expressed relative to the forward price F = S exp(bT). The

same is also true for American options on futures (b=0):

C(S,T;Sk,0,p,0) = k P(S,T;S/k,08° 1 P™) 0% 0) for any k.  (A.2)

Proof: For p # 1, CEV option prices are homogeneous of degree 1 in S, X, and

pl/{l-p). Writing the European CEV call price in terms of the forward price
instead of the spot price, and dividing by the call's strike price X = Fk

yields a normalized call price of

cFe T T:X,0,0,b) / X

c¢'(y,T;1,0",p,b)

= o #/xye ™ Ti1,x (Po oy (A.4)

where y = F/X and ¢' = X Pg . The partials of c' are c'T = -bye-chS *+ cr
t _ "bT 1 - ‘sz . . . ]

cp T e Cgs and ¢ FF - Cog” Substituting into (A.3) vyields a general

p.d.e. for CEV option prices as a function of the (rormalized) forward price,

bT(l'p)]2Y29V1 - I'V' (AS)

! t
v + 0.5[0 e FF

T
for V'=c’, which is solved subject to the normalized terminal boundary
conditions specific to European calls,

c'(y,0;1,0",p) = max(y-1,0) . (A.6)
(since the normalized forward price F/X equals the normalized spot price §/X

when T=0).
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. ' ' L - [ -1 1
Define h(y,T;1,0',p%,b%) = ye dy ,T;1,0",p,b), where p¥ = 2-p and b* =
-b. Tts partial derivatives are h_ = ve' = ¢y Lt RN
p es are TS Y hy cC-y ¢ o and hyy y "¢ T
50
bT(1-p) 2 2p*
-h.. + [o'e h
! Iy vy
_ bT(1-p),2 2p%-3
= -yc'T + {o'e p)] yP c'yy
=y el e T2 e o1
= ylre' (y 1, T51,4)] = rh (A.7)

S0, h(®) satisfies the p.d.e. {(A.5) for V' = h and parameters p* and b¥*; and
since

B(y,051,%) = y max(y '-1,0) = max(i-y,0), (A.8)

which is the terminal boundary condition specific to European puts,
1 oo = 1
p’(y,T,l,o',p“,b") = h(*) = ye'(y T,1,6" ,0,b) (A.9)

Exploiting the homogeneity of p'(*) and c'(9), (A.9) can be rewritten as

1 -1, 1-p*
y1-p

1_ -
' (1,Tsy,0'y Pp) =y p'(1,T;y

0" (y 0D (A.10)
or
¢'(1,Tiy,0",0) =y p'(1,T;y 1,0",p) (A.11)
where g" = c'yl-p = c'y_(l-p“). Multiplying both sides by F yields
' nnl=p _ ' npl=p*
¢ (F,T:Fy,0"F" ",p) =y p"(F,T;F/y,0"F sPF) (4.12)
and redefining g = o"FL7P yields (A.1). [ |

The normalized price of American call options on futures C'(y,T;l,G',p)
must satisfy (A.5), (A.6), and also the early-exercise "smooth-pasting"
boundary conditions

C'(y*,T;1,0",0) = v - 1>9 (Al3a)

C'__(Y*,T;l,dl‘p) = 1
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call option is exercised immediateiy. It is straightforward to confirm that
H(y,T;1,0',p*) = yC'(1/y,T;1,0",p) and yp* = 1/y* satisfy the corresponding

early-exercise "smooth-pasting” conditions for American put options on

futures:
Hy #,T;1,0" %) = 1 -y % > 0 (A.14a)
P p
H (v *,T;1,0',p%) = -1 (A.l4a
yop )
Therefore, P'(*) = H(%), and (A.2) follows. |
Setting p = 1 = p* yields propositions 2 and 5b for options on geometric

Brownian motion processes.

Proposition 3: Again writing the option prices in terms of the forward price
instead of the spot price, and including the list of relevant parameters,

Proposition 3) specifies that
¢'(F,T;Fk,k' Po,p,b) = k p'(F,T;F/k,0,p,b) for k>0, p<l, (A.15)

where c'(F,T;X,0,p,b) = c(Fexp(-bT),T;X,0,p,b), similarly for p'(*) and p(*),
Fk is the strike price of the call, and F/k is the strike price of the put.
Dividing both sides of (A.15) by Fk and exploiting the homogeneity in F, X,

and 01/(1_p) yields the proposition to be proved:

¢"(y,T;1,6",p,b) = p'(1,T;y,0',p,b) (A.16)

where o' = on-l, v = 1/k > 0.

This can by shown manipulating the European CEV option pricing formulas for

p<1 given in Cox and Ross (1976) and Cox and Rubinstein (1985).
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The generalized European CEV call optien pricing formula for p < 1 is
-rT o0 o
ﬁwﬂmmnmm=er[nmﬁmxmmﬂm)-HF@mHJmmﬂn (8.17)

where ) = 1/[2(1-p)], § = 20/[0%” A1), £ 2 08 k2 o) b ig ine

cost of carry, and I'(s), g(*), and G(*) are the gamma function, gamma density

function, and complementary gamma distribution function, respectively:
_ -z n-1 ®
g(n,z) = e “z° “/I'(n), G(n,z) = fzg(n,x) dx .
From put-call parity,

' (y,T;1,%) - p'(1,T;y,*)

= (. TiL,*) - ¢' (1, Ty, ) - o T(y-1)

= Uy i emey ™ sann0) - 07 g, ey 60n,0)
- (5 8(n,8) 6atr,ey’/Ry - =18, 0) s(n,ey! ) )
. (4.18)

Grouping terms according to whether they are or are not pre-multiplied by v,
and using the equalities G(n,x) = Z?zlg(j,x) and G(n-1+X},x) + Emj=ng(j+k,x) =
1 yields after some manipulation the equalities

¢'"(y,T;1,%) - p'(1,T;y,%)

G

= I {y g(n,Byl

n=1

) g@hh,8) - g(n,0) g0yl |

{82n+k-2 y(n-l)/X )

= exp(-0-y"/%) 1 - Y 7 ) Ty

1

=0 . |



Corollary: c(S,T;Fk,kl-po,p,b) = k p(§,T;F/k,0,p,b) for p>1 and k>0.

Proof: For p>1, define p* = Z-p < 1 and b* = -b. Then,

¢(5,T;7k,k Po,p.b) = Kk p(8,T38/k, (€ Py (TP e by from a1y

e(8,T5Fk, kP [k PR (1)) bky from (4.15)

c(S,T;Fk,GFz(l-p“),p*,b*)

2(1-p*}, 2(1-p)

k p(S,T;F/k,[oF IF ,p,b)  from (A.1)
k p(S,T;F/k,0,p,b) . [



Appendix ||
Properties of American Options on Futures

1. Unlimited-1iability arithmetic Brownian motion (ABM) (Proposition 5.1)

It is straightforward to verify that under unlimited-liability ABM, prices
of American options on futures depend on the difference between the futures

price and exercise price rather tham on each separately:

C(s,T;X) C(8-X,T;0) = ¢'(x,T) (B.1la)

P(S,T;X)

P(s-X,T;0) = P'(x,T) (B.1b)
where x = §-X. C'(x,T) satisfies the p-d.e.

-t 2.t = 1

C T + 0.50°C xx rC (B.2)
subject to boundary conditions

C'(x,0) = max(x,0) (B.3)

and early-exercise smooth-pasting conditions

C'(x*,T) = x%* >0 (B.4a)
C'x(x*,T) = 1. (B.4b)
Define H(x,t) = C'(-x,T). H(x,T) and xp* 2 -x* satisfy the boundary

conditions and p.d.e. for American puts, so H(x,T)=P'(x,T). Proposition 5.1)

then follows. | |

2. Geometric Brownian motion (Proposition 5.2a)

Proved in Appendix II, as a special case of CEV processes.

3. Jump-diffusion with log-symmetric Jumps (Proposition 5.2b)

Option prices under such processes are homogeneous in S and T, so the

normalized price of American call options on futures is given by
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Cly,T;1) = C(S,T;X) / X = C(8/X,T;1) . (B.5)
In the Merton (1976) model, adapted for options on futures, C(*) solves the

general jump-diffusion p.d.e.

-V, + 0.502y%V_ + AE(V(Se’,T) - V] = rv (B.6)

T S5

for V=C subject to call-specific boundary conditions (A.6) and (A.13). Jis a

random variable with a Normal N(-0.55%,52) distribution, and [exp(J)-1] is the

random percentage change conditional on a jump occurring.

. _ -1 _ _ -3
Define H(y,T) = yC(y ~,T;1). HT = yCT, Hyy v CSS’ 50

-Hp 4 O.SUZyZHyy + xE[H(yeJ,T) - H]

1

= -yC, + 0.50%7'C ¢+ VELyeloiy e 151y - yo)

)

+ 1 E[c(y te?,T51) - o] )

-2
- 2
y{ CT + 0.50%y CSS

ylrc(y L7510} = o (B.7)

where the penultimate line follows from properties of the given Normal
distribution:

1o - 1. - _ . 242
Ble’cy e ] = 17 ey e 11y oY (angry /2 om (940580728

R - -( =~ cx2N2
= 17 oy e Ty (2nry L2 o7 (FTHO.58%)2/28

= B[y ted, D)), (B.8)

Since H(y,T) solves the p.d.e. (B.6), and H(y,T) and yp* £ 1/vy* satisfy the
put-specific boundary conditions (A.8) and (A.14) if C(y,T) and y* satisfy the
call-specific boundary conditions (A.6) and (A.13), H(y,T) = P(y,T;1).

Proposition 5.2b then follows. [ |
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The same proof can be used to prove Proposition &4 for European optioms in
general under such processes, by using option prices written as functions of
the forward price: c¢'(y,T;1) = c(y exp(-bT),T;1). Such option prices solve
the p.d.e. (B.6), and h(y,T) = ye(1/y,T:1) solves the put's terminal boundary

conditions if ¢'(*) solves the call's terminal boundary cenditions. |



-41-

Appendix I

Quadratic Approximation to American Option Values for Jump-Diffusion
Processes.

The American call option price C(S,T;X) must meet the boundary conditions

terminal condition: C($,0;X) = max(§ - X,0] (B.1)
early exercise conditions: C(S,T:X) =8 - ¥ for § > Sc* (B.2)
CS(SC*,T;X) =1 (B.3)

where SC* is the critical early-exercise price on the underlying asset
(relative to X) above which the option will always be exercised immediately;
determination of SC* is part of the problem. The option must satisfy the

Bellman equation in the interiocr of the no-stopping regiom:
2 ¥
-VT + (b - kk)SVS + 0.5¢ VSS + A[V(Se ,T X) - V] =1V , (B.4)

where V(S,T;X) = C(8,T;X). The Bellman equation states that the call optien
is priced as if it yielded the instantaneous risk-free return given jump-
diffusion (30) for the underlying asset price: E*(dV} = rV. From Tto's lemma
(extended to jump-diffusions), that expected return is composed of the
maturity effect -VT, the diffusion components, and the expected effect of
jumps. The European call option price c(S,T;X) solves the Bellman equation

subject to terminal condition {(B.1),

Given that there exists an analytic solution for the European option price,
the problem is to find a good approximation for the early exercise premium
EC(S,T,X) £ C(5,T;X) - c(8,T;X). (B.5)
Given the linearity of (B.4) in V and its partials, e, also must solve (B.4)
in the no-stopping interior. The premjum is homogenecus in § and X:
EC(S,T,X) = X EC(S/X,T,IJ. Furthermore, without loss of generality, the

premium can be written as
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= XK(T) f(y,K), y=5/%, (B.6)
where K(T) is an arbitrary function of the time to maturity variable T.
Taking the partial derivatives e, = Kfy, ess = K/X fyy, and e = XKT + XKKTfK’

and substituting into (B.4), ome discovers that the function f(y,K) must

satisfy the Bellman equation
2.2
. + (b- -
0.50%y*f (b Ak)yfy rf{l + (KT/rK)(l + KfK/f)]

+ k[f(yex,K) - f(y,K)] =0 (B.7)

Choosing K(T) 1 -e T simplifies the expression to

It

o.SOZnyyY tAYE - (2/Kf - r(1-K)Ep + A[£(ye¥,K) - £(y,K)] = 0, (B.8)

which for calls is solved subject to the boundary conditions

f(y,0) =0 (B.9%a)
f(0,K) = 0 (B.9b)
By K) = (v % - D - oy *,T;1) (B.9¢c)
fy(yc*,K) =1 - cS(yc*,T;l) . (B.9d)

Conditions (B.9c) and (B.9d) require that the early exercise premium smoothly
approaches the stopped or early exercise value

£, K) = (y - 1) - e(y,T;1)
as y approaches the critical spot price/strike price ratio yc* above which the

call is always exercised early.

Apart from the term r[1~K(T)]fK, expression (B.6) is an ordinary
differential equation in vy. The quadratic approximation for the early
exercise premium is generated by ignoring this term, and solving the ordinary
differential eguation subject to the boundary conditions (B.9). The choice of
K(T) = 1 - exp(-rT) ensures that the approximation becomes exact at the

extreme boundaries: as T - 0, {1-K) » 0, whereas as T - E fK + 0,
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Under the approximation, {B.8) becomes

O.Sczyzfyy + (b—)«k)yfV - [r/K(T)]f + k[f(yex,K) - £{y,K)] = 0. (B.10)

The general solution to this is of the form
- '3} q2
By) = Ayt + a4y, (B.11)
where q and q, are the roots to

0.50%q% + (b-Ak-0.502)q - £/R(T) + 2eld = . (B.12)

One root (qu is negative, the other (qz) is positive. TFor given values of
the parameters r, g, k,and X, accurate values of the roots 9, and 9, can be
rapidly determined from (B.12) via Newton's method. Starting values are
obtained from the quadratic equation given by second-order Taylor expansion of
exp(¥q) in (B.12):

0.5(02+xk%)q® + [b - 0.5(c*+)k?)] - r/K(T) = 0 (B.13).

The expression (B.13) indicates that to a second-order approximation, the
parameter of curvature q depends on jump parameters A and k only insofar as
they contribute to the dverage variance per unit time of the underlying
process, og2+\k2. Furthermore, since r/K(T) = r/[{1-exp(-rT)| = 1/T, the

parameter of curvature q is insensitive to the interest rate.

Boundary condition (B.9a) rules out the negative root solution; A1 = 0 for

calls. Conditions (B.9¢) and (B.9d) pin down the critical early-exercise

ratio y * and the coefficient A,. Since f(y) = Azyq2 and f'(y) = Az(qz/y)yqz,

from {(B.%¢) and (B.9d) we find that yc* is the implicir solution to
yx - 1= C(Yc“,Til) + (yc"/qz)[l - CS(YC‘=T51)]’ (B.14)

and AZ is given by

Ay = 9 F a1 - ey #,T;1)] (B.15)
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(32); the summation is continued until further terms would make 1o difference

in accuracy.

A similar expression holds for the quadratic approximation to the early

exercise premium on American puts: The positive root is ruled out; f(y) =

Alyql . Solving this subject to the boundary conditions

DE(y,™) = (1-y %) - Py, Ti1) (B.16a)

2)fy(yp*) =-1- ps(yp*,T;l) (B.16b)
yields the critical early-exercise spot price/exercise price ratio yp* as the
impiicit selution to

1 = y* =p(y=,T;1) + (Y*/‘ql)[l + PS(Y*,Til)] . (B.17)
The coefficient Al is given by

Ay = vy */-qp) {1+ py *.T; )1 . (B.18)
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Table 1

Crash Premium for Options on Deutchemark Futures:
Percentage Deviation of OTM Call Prices From Corresponding OTM Put Prices

CP(8,T,x) = [ C(S,T; S(1+x) }/P(8,T; §,T, S/(1+x)} ) = 1], in percent
Out-of-the-moneyness parameter x at 2% increments.

Geometric Brownian motion implies CP(*,x) = x%.

Short-term options (1-3 months) Medium-term options (4-6 months)

Maturity X Maturity x

Date (months) 2% 4% 6% (months) 2% 4% 6%

8402 (1) 2% 9% 55% (4) 21% 28%

8403 (3) 4 18 25 (6)

8404 (2) 7 20 81 (5) 7 9

8405 (1) -14 -31 19 (4) -3 5

8406 (3) 3 14 33 (6)

8407 (2) -1 -1 (5) 13

8408 (1) -6 -2 (4) 3 5 11

8409 (3) 7 10 8 (6)

8410 (2) 3 5 13 (5) 2 3 1

8411 (1) 14 58 142 (4) 7 11 15

8412 (3) 0 2 7 (6)

8501 (2) 9 39 (5) 0 1 0

8502 (1) 7 70 (4) 3 6 -5

8503 (3) 4 9 (6) 2 4 9

8504 (2) 2 5 7 (5) 7 3 -1

8505 (1) 6 6 4 (4) 2 2 1

8506 (3) 6 9 8 (6) 3 2 2

8507 (2) 1 4 (5) -3 -1

8508 (1) 11 27 (&) 0 5

8509 (3) 2 A 8 (6) 5 7 8

8510 (2) -3 (5) 1 0 1

8511 (1) 1 4 26 (4) 2 4 12

8512 (3) 6 12 (6) 5 6

8601 (2) 1 1 (5) 2 5

8602 (1) 23 84 (4) 7 10

8603 (3) 5 11 (6) 2 1

8604 (2) 1 2 (5) 1 1

8605 (1) 3 5 (4) i 1

8606 (3) 5 6 (6) 3 2

8607 (2) 3 5 (5) 1 3

8608 @) 3 (4) 1 -1

8609 (3) 1 0 (6) 1 2

8610 (2) 4 9 (5) 3 IA

8611 (1) 7 (&) 1

8612 (3) 1 (6) 1

8701 (2) 6 (5) 1 4

Frequencies: Frequencies:

>0 86% 87% 100% >0 : 90% 93% 5%



Table 2

Theoretical American Futures Options Values under Asymmetric Jump-Diffusion
Processes

Exercise Price X = 100. Parameters: r = 0.06, 0 =0.20, T=0.25.

Call Options Put Options
American C(S,T:X) American P(S,T:X)
Jump Futures European Finite Quadratic European Finite Quadratic
Parameters Price S ¢(S8,T;X) Diff. Approx. p(S5,T;X)  Diff.  Approx.
k=0.10 80 0.12 0.12 0.12 16.82 20.02 20.01
A=1.0 90 1.02 1.02 1.02 10.87 10.91 10.91
100 4.35 4.36 4.37 4.35 4,35 4.36
110 11.02 11.08 11.08 1.17 1.17 1.17
120 19.91 20.09 20.09 0.21 0.21 0.21
k = -0.10 80 0.06 0.06 0.06 19.76 20.00 20.00
A=1.0 90 0.90 0.90 0.90 10.75 10.81 10.81
100 4,39 4.39 4.40 4 .39 4.40 4.40
110 11.21 11.24 11.25 1.35 1.36 1.36
120 20.05 20.18 20.18 0.34 0.34 0.35
k = 4+0.40 80 0.33 0.33 0.33 20.03 20.10 20.12
A=0.1 90 1.18 1.18 1.19 11.03 11.04 11.05
100 4,31 4,33 4.35 4.31 4.31 4.32
110 10.95 11.01 11.04 1.10 1.10 1.1¢
120 19.88 20.07 20.09 0.18 0.18 0.18
k= -0.40 80 0.05 0.05 0.05 19.75 20.00 20.00
A=0.1 90 0.83 0.83 0.83 10.68 10.74 10.80
100 4.35 4.35 4.35 4.35 4 .37 4.41
110 11.43 11.43 11.44 1.58 1.59 1.61
120 20.48 20.48 20.51 0.78 0.79 0.80



Estimates of implicit Parameters Under Al

Table 3

Options on Deutschemark Futures -- Pooled Calls and Puts

First entry:

Second entry:

Derived variables:
R = \k?/(o?

estimates for short-terp options (1-3 months)

estimates for medium-term options (4-6 months)

component of the process

Date

8402

8403

8404

8405

8406

8407

8408

8409

8410

8411

8412

*Rejection at 5
*Rejection at 1

10
10

16
10

15
15

16
10

17
14

19
10

12
10

<

=}

e}

o

<

o

<o O

Geometric
Brownian

Motion

g

.084 0,
.029

.089 0

.09% 0,
.112 0.

.109 0.
.118 0.

.109 0.
.110 o,

.118 0.

.118 0.

L1170,

.129 0.
.130 0.

.131 0.
.130 0.

175 0,
.175 0,

.149 0,
.170 0.

L1430

.153 0.

SEE

011

096
061

028
023

016
031

039
023
051

017
026

026
038

015
021

030
039

.027

067

% level of no-jump hypothesis (k or )
% level of no-jump hypothesis (k or X

\k is expected jumps per year;
+ Mk?) is the fraction of condj

Jump-~diffusion
o k A SEE

0.080 -0.046 0.35 0.012
0.084 0.568 0.01 0.027

0.051 -0.054 2.47 .095
0.010 0.096 1.37 0.004

<

0.097 0.126 0.21 0.017
0.093 0.041 3.28 0.018

0.096 -0.069 0.62 0.012
0.100 0.092 0.27 0.024

0.105 0.186 ©0.11 0.023
0.112 0.232 0.05 0.017
0.082 0.099 0.70 0.026

0.120 -0.148 0.17 0.01e
0.124 0.475 0.01 0.019

0.125 0.252 0.03 G.023
0.056 -0.035 11.47 0.055

0.171 1.179 0.00 0.010
0.174 0.982 0.00 0.022

0.111 0.058 3.12 0.014
0.151 0.226 0.17 0.022

<

.136 0.236 0.05 0.027
0.127 0.754 0.03 0.042

0)

i n
<

.00
.83

.35%
L37%

LG

.32%

L2345

.59
.31

.22
.20

R
.50

. 95%
.93

.05
.05

oo

ternative Distributional Hypotheses

Derived

tional variance attributable to the jump

Variables

Ak

.016
.005

.134
.131

.027
.135

.043
.025

.021

.011

.069

.026
.006

.008
.397

.004
.001

.182
.039

.013
.024

@

o

o

o

o

c

R

.102
.290

.741
.992

.264
-394

.244
.188

.258

.169

.500

.208
. 149

.117
.812

.139
.025

.463
.279

. 137
.534



Table 3 {cont.)

Estimates of Implicit Parameters Under Alternative Distributional Hypotheses

Date

8501

8502

8503

8504

8505

8506

8507

8508

8508

8510

8511

8512

N

11
10

11
11

12
11

12
11

12
12

12
12

10
10

10
10

12
12

10
10

11
11

10
12

G.B.M.

o

(-]

. 125
.138

114
.129

.159
164

.178
.178

.181
.189

.171
. 166

. 160
.158

.132
. 149

.158
. 155

. 149
. 159

.114
.141

.126
.129

SEE

.028
.029

.015
.050

.031
.047

.010
.023

.016
.014

.014
.022

.055
.030

.010
.018

.013
.028

.015
.013

.012
.015

.019
.022

Jump-Diffusion

0.108
0.130

0.107
0.113

0.148
0.144

0.174
0.174

0.177
0.186

0.165
0.156

0.153
0.158

0.093
0.136

0.151
0.146

0.144
0.157

0.111
0.136

0.116
0.123

-0.
.169

o

o

k

105
175

.129
.143

410
.296

.370
.16l

.203
.120

.123
.031

.240
.003

.009
.048

. 145
.048

157

.510
.307

.108
.215

Y
.09

.15
.22

.04
.09

.02
.05

.00
.09

.15
.17

.02
.26

.23
.67

.11
.28

.08
.02

.01
.03

.25
.04

SEE

015
.029

.011
.048

.018
.032

.008
.026

.015
.015

.014
.024

.011
.033

. 009
.019

.010
.031

.014
.015

.011
.012

. 009
.019

73
13

.75%
45

. 70%%
L 76%

.85
.20

.67
.20

.13
.06

. 25%%
.00

.82
.69

L94%
.12

.20
14

.85
.31

. 18%
.85

Derived

Variables

rk

043 0,

015 0

019 0

.016 0,
.028 0.

.007 0.
.008 0.

.G05 0.
.011 0.

.018 0.
.099 0.

.¢05 0.
.001 0.

.942 0.
.082 0.

.016 0,
.061 0.

.013 0,
004 0.

005 0.
.008 0.

.027 0.
.009 0.

R

279

.136

.178
.031 0,

256

234
284

082
043

263
037

076
111

049
000

509
180

094
121

090
027

181
114

180
116



Table 3 (cont.)

Estimates of Implicit Parameters Under Alternative Distributional Hypotheses

Date

8601

8602

8603

8604

8605

8606

8607

8608

8609

8610

8611

8612

8701

11
12

10
11

12
12

12
12

10
11

12
12

12
11

10
10

11
11

11
10

12
11

12
11

10
10

G.B.M.

0.117
0.124

0.107
0.111

0.149
0.137

0.161
0.149

0.173
0.163

0.154
0.153

0.146
0.144

0.119
0.130

0.133
0.138

0.118
0.123

0.103
0.115

0.112
0.114

0.108
0.110

SEE

.012
.025

.015
.021

.035
.048

.019%
.016

.017
.019

. 040
.026

.016
.015

.011
.010

.013
.018

.012
.015

.009
.013

.016
.020

.019
.024

Jump-Diffusion

0.114
0.115

0.089
0.102

0.137
0.130

0.156
0.149

0.168
0.161

0.141
0.143

0.142
0.141

0.116

0.129

0.133

0.137

0.114
0.118

0.101

0.114

0.110
0.113

0.103
0.105

k

. 387
177

.036
117

.335
.297

440
.168

.032
.460

.210
.087

.332
.201

.031
. 345

.207
.250

.255
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FIGURE 1: Expected Percentage Jumps per Year
Implicit in Short-Taerm Options on DM Futures

1 20% I (94.2)

| 1284 1985
_

1986




25%

20%

10%

0%

FIGURE 2 :

Expected Percentage Jumps per vear
Implicit in Medium-Term Options on DM Futures

-10%

1984

{(-39.7)

1985

1986



FIGURE 3: Percentage of Implicit Conditiconal Variance
Attributed to Jump Risk
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