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Linear Transformation of Asset Returns and the APT
Abstract

The capital market is abound of mergers, spin-offs, sell-offs, and
construction of mutual funds. All these activities impose linear or nonlinear
transformations on the return generating process. The validity of the APT under
linear transformations of asset returns has been discussed but not fully
explored in the literature. The purpose of this paper is to examine the
robustness of the APT with respect to arbitrary linear transformations. We show
that the APT holds under any linear transformation as long as the product of
the transformation matrix and its transpose is uniformly bounded.



1. Introduction

The capital restructuring process in business, such as merger and spin-
off, and the construction of mutual funds, gives rise to linear or nonlinear
transformation of asset returns in the economy. The validity of the APT with

respect to arbitrary linear transformations of asset returns caused many

concerns but has not been fully explored in the literature. For example, Dybvig
and Ross (1985) made the following observation:

Many people we have talked with have thought that the
APT "should" be robust to linear transformations or
else its validity would be affected by mergers or
spinoffs. However, mergers and spin-offs are not
arbitrary transformations; they represent the adding
together of returns of two stocks or the separation
of a single security into two parts. Neither case is
likely to affect the validity of the APT. This is in
contrast to the type of extreme transformation
required for Shanken's argument, which might create a
new security which is long 1000 shares of the security
one and short one share each of 999 other securities.
There is no reason to require or expect the APT's
distributional assumptions to be robust te such
transformations. (p. 1179}

In this paper, we will demonstrate that the validity of the APT should not
be impaired by arbitrary linear transformations as long as the product of the
transformation matrix and its transpose is uniformly bounded. Our proof is
first based on a simple but rather restrictive linear factor structure adopted
in Ross (1975, 1976) and Huberman (1982). We then demonstrate the robustness of
the APT in a much more general framework which includes the circumstances where
the asset returns are weakly dependent and/or their second moments do not

exist. Specifically, we will either assume the sequence of the idiosyncratic

risks is a lacunary system of order p for some p 2 1 or assume it is a
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convergence system in order to suit for different needs for alternative
definitions of asymptotic arbitrage.®
Note that this paper considers a market in which a countable number of

assets are traded. We normalize the price system by assuming each asset costs

one dollar. The assets are arranged in a sequence. We often look at what

happens to various objects as n increases to infinity.

The rest of the paper is organized as follows. The robustness of the APT
in a basic model is demonstrated in Section II. In Section III, the robustness
of the APT with respect to arbitrary linear transformations is examined in a
generalized model where the sequence of the idiosyncratic risks is a lacunary
system of order p for some p 2 1. The conclusion in Section III can be used to
prove several interesting results in the theory of arbitrage pricing. In
Section IV, we derive results similar to those in Section III with the
assumption that the sequence of the idiosyncratic risks is a convergence

system. The last section concludes the paper.

1I. The Robustness of the APT in the Ross-Huberman Model

II.1. The Ross-Huberman Model

The basic model of the linear K-factor structure upon which Ross (1975,
1976) and Huberman {1982) demonstrated an approximate linear pricing relation

as the result of market arbitrage activities is summarized in equation (1).

1. The APT is composed of three basic elements: the stochastic structure
of asset returns, the no-arbitrage condition, and the approximate linear
pricing relation. There is a trade-off between the linear factor structure and
the no-asymptotic-arbitrage condition that keeps the approximate linear pricing
relation intact. Wang and Lee (1988) and Lee and Wang (1988) establish the
validity of the APT when the sequence of the idiosyncratic risks is a lacunary
system and convergence system respectively.



x =a+Bf+e (1a)®
E(e} = 0 (1b)
E(f) = 0 (1c)
E(ff') = I« (Identity matrix of rank K) (1d)
E(ef'}) = 0 (n x K matrix) (1e)
E{ee') = D (D is a diagonal matrix) (1f)

1,'D1, < a2 < «» for all i, where 1, is the i®"
column of an identity matrix with
rank n. (1g)
The vectors X, a, and e, each of which is n x in dimension, respectively
represent the realized returns, expected returns and {nonobservable) "residual”
portions of the returns. The residual e, measures the uncertainty unexplained
by the common factors and is known as the idiosyncratic risk in the literature.
The expected return of each individual asset, a,, is assumed to be bounded. f
is a K x vector of nonobservable values of the common factors; the second
moment of f. is assumed to exist for all k. B is the n x K matrix of bounded
factor loadings, i.e.,|bsu] < o for all i and k. The elements in the n x n
diagonal matrix of variance-covariance, D, are assumed to be bounded.
Conditions (1b), (ic), (le), and (1f) are rather innocuous. They are
merely normalization conditions and do not impose any real restriction on the
structure of asset returns. Condition (1f) implies uncorrelated idiosyncratic

risks and condition (1g) imposes a bound on variances of asset returns.® In

2 The variables, x, £, and e, are random. The values of x, a, B, f, and
e all depend on n. To avoid messy presentations, we omit the notation for
randomness and the sequential indices.

= Wang and Lee {1988) relaxed these two conditions in their
generalization of the APT.



this section, we will first show the robustness of the APT in the basic Ross-
Huberman model. More general results concerning top the relaxation of (1f) and

(1g) will be given in the following two sections.

I1.2. Robustness of the APT

Consider an arbitrary linear transformation of asset returns in a linear
factor structure:
xT = aT + B'f + e” (2)
where xT = Hx, a* = Ha, BT = HB, e = He, and H is an m X n matrix. Proposition
1 shows that the APT holds for the transformed asset returns x™ with sufficient

restriction on H.

Proposition 1: Suppose that the original linear factor structure (1) holds.
Consider the above transformed linear structure (2) with the product of the
transformation matrix and its transpose, HH', being uniformly bounded (H is m

X n in dimension). If, for some portfolio w {where w'

(Wa, Wa, ..., Wn), Wy
is the proportion of the wealth invested in i*" asset; 1 is a column vector of
n 1s) of the transformed assets, w'l --> 0 and w'x"™ - w'a™ -L,-> 0 imply
w'a® --> 0 {no asymptotic arbitrage condition), then there exists a vector ¢ =
( co, €1, +.. , Cwe ) such that
liM,....»-]@% - B*"¢§? = lim,..>-{@T - B¥7¢c)'(a™ - B™"¢c) < =

where B™ = (1 B™).
Proof: It is easy to find out that

X* = aT + B'f + e”

E(eT) = 0, E{f}) = 0, E(ff') = I, E(e™f) = 0.

E|d'eT| = E|d'He|® < o%|d'HE'd| < o0%|g.d'd| < 6]d'd|, for all d,
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where & = g,02 and g, is the largest eigenvalue of HH' and is bounded since HH'
is uniformly bounded. The rest of the proof is similar to Theorem 1 of

Ingersoll (1984). Q.E.D.

I11. The Case of Lacumary System

III.1. Nonexistence of Second Momement in Asset Returns and

The Cross-sectional Dependence of Idicosyncratic Risks

Fama (1965) tested the normality hypothesis on the daily returns of the
Dow Jones Industrial stocks. The result revealed more kurtosis (fatter tails)
than that predicted from a sample of independent and identically distributed
normal variates. This signifies that the second moments of asset return random
variables may not exist. The same result can be found in numerous empirical
researches. Moreover, there is no compelling reason to assert that the
idiosyncratic risks in the asset market are uncorrelated. Thus, conditions (1f)
and (1g) in the original Ross-Huberman model may be too stringent.

Wang and Lee (1988) establish the validity of the APT under a more general
setting which includes the circumstances where the idiosyncratic risks are
weakly dependent and/or the second moments of asset returns do not exist. In
this section, we demonstrate that the robustness of the APT assuming a linear
factor structure where the sequence of idiosyncratic risks is a lacunary system
of order p for some p 2 1. This also covers "approximate factor structure” in
Chamberlain and Rothschild (1983) and "uniform boundedness" of variance-

covariance matrix of idiosyncratic risks of Ingersoll (1984) as special cases.

I11.2. The Lacunary System




Before showing the robustness of the APT with respect to arbitrary
transformations in a general setting, we summarize some of the important
results in Wang and Lee (1988} which are needed in showing our general result

concerning the robustness of the APT to arbitrary linear transformation.

Definition: Given p > 0, a sequence of real-valued random variables {es} is

called a lacunmary system of order p, or an S, system, if there exists a

positive constant K, such that for any sequence of real constants d,,
E|E3_,dse|P 2 K {EP.1d:3)P 2 for all n 2 1.

[f the system (e,} is an S, system for every p > 2, then it is called an S_

system. "

The lacunary system has properties that are, in some sense, similar to
properties of systems of independent variables. Probably we may call it a
weakly dependent system. If {e,} is a lacunary system, then IT_,d,e, is called
a lacunary series. This concept is discussed in detail in Gaposhkin (1966) and
Lai and Wei (1983). The lacunary system is fairly general. For example, let
{es} be sequence of i.i.d. standard normal random variables, then {e.} is an Sa
system. As another example, the sequence of idiosyncratic risks in the
approximate factor structure in Chamberlain and Rothschild (1983) is an Sa.
system. The random elements in a lacunary system are neither necessarily
uncorrelated, nor do they necessarily possess second moments. Please see Wang
and Lee (1988) for more examples.

The following definition is a generalization of the usual no arbitrage
condition in terms of convergence in quadratic mean to one in terms of

convergence in p*"™ mean,



Definition: There are no asymptotic-arbitrage opportunities in terms of
convergence in p*® mean if the following condition holds: for all w € R™,
w'l --> 0, and w'x - w'a -L,-> 0 ==> w'a --> 0,

where -L,~> 0 indicates the convergence to zero in p*" mean.* i

By relaxing the restriction on the linear factor structure and using the
concept of asymptotic arbitrage in terms of convergence in pth mean, Wang and

Lee (1988) proved a generalized version of the APT. Their result is reiterated

in Lemma 1.

Lemma 1: Suppose the linear K-factor structure holds and the sequence of
idiosyncratic risks is a lacunary system of order p for some p 2 1. If there
are no asymptotic arbitrage opportunities in terms of convergence in p*® mean,
then there exist a column vector ¢' = { Co €4 €z ... ©Cx ) such that lim,. ._
la - B'cjy < =, where | | denotes the Euclidean norm.

Proof: See Wang and Lee (1988). Q.E.D.

It can be shown that the results about the linear pricing relations in
Ingersoll {1984) and Chamberlain and Rothschild {1983} are special cases of the

above lemma.®

* The condition is similar to Condition (Ai) of Chamberlain and

Rothschild (1983}:

w'l ——> 0, and Var(z) = w'iw ~--> 0 ==> E(z) = w'a --> 0,
where 2z is the random return of the portfolio w, and I is the variance-
covariance matrix of e. When p = 2, they are exactly the same.

% Ingersoll (1984) assumes that the variance-covariance matrix of the
residual risks is uniformly bounded. Chamberlain and Rothschild (1983) and
Chamberlain (1983) assume that only K eigenvalues of the returns variance-cova-



Lemma 2: Given that e is an S, {p > 1) system, e = He is also an S, (p 2 1)
system if H is m x n in dimension and HE' is uniformly bounded.
Proof: Since e is an S, system, there exists a positive constant K, such that
for any sequence of {d;}, Eld'e|® < Ko|d'd|®"=.

Eld'He® < Ko |d'HH'dIP’* < Ko|g,d'd|®/2 < K, |d'd|>/ =,

where K, = Kog.P72 and g, is the largest eigenvalue of HH' and is bounded since

HH' is uniformly bounded. Therefore, e is an S, system. Q.E.D.

II1.3. The Robustness of the APT

Proposition 2 shows that the APT remains valid with respect to the

transformed asset returns x7.

Proposition 2: Suppose that the original linear factor structure holds with
the exception that {e,} is an S, system for some p = 1. Consider the
transformed linear model (2) with the product of the transformation matrix and
its transpose, HH', being uniformly bounded (H is m x n in dimension). If,
for some portfolio w of the transformed assets,

w'l --> 0 and w'x™ - w'a™ -L,-> 0 imply w'a®™ --> 0,
then there exists a vector ¢ = { ¢o, Ca, ... , Cc } such that

limm“m,-HaT - B"”"clla = limm..>w(8T ~ B¥c)'(a™ - BT C) < =

where B*™™ = (1 BT).

Proof: e™ is a S, system with p > 1 by Lemma 2. Then apply Lemma 1. Q.E.D.

riance matrix become unbounded. These are equivalent to the assumption of
lacunary system if p = 2. See Wang and Lee {1988).
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Dybvig and Ross (1985) worried about the effect of transformation on the

variance-covariance matrix of asset returns. They argued that:

The Appendix verifies that either Shanken's
transformed variances of the inverse of the
transformation blows up. As we have seen in the above
example, if variances blow up, then the assumptions
used to motivate the APT (such as small idiosyncratic

variance ) will not be preserved when moving from the
original assets to the transformed assets (pp. 1179-

1180),

What "variance" means in the above discussion is the norm of the
transformed variance-covariance matrix of the returns on the assets (not
idiosyncratic risks). In fact, it is perfectly all right to have blown-up-
variances (it should be). The assumptions used to motivate the APT will
generally remain valid when moving from the original factor structure to the
transformed factor structure as long as the product of the transformation

matrix and its inverse is uniformly bounded.

ITI.4. An Example of Application of Proposition 2

Proposition 2 can be invoked to prove other results in the theory of

arbitrage pricing. The next corollary is an example.

Corollary 1: Given the K-factor linear model with E(ee') = 0 where @ is the n
X n positive definite variance-covariance matrix of the idiosyncratic risks.
(1) If no arbitrage opportunities in terms of convergence in quadratic mean
are available, then there is a sequence of vectors of factor premium ¢ and
there exists a positive number a such that the weighted sum of the squared
pricing errors is uniformly bounded, i.e,

{a - B'¢c)'0D*(a - B"¢) < o . {3)
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(ii) If assets variances are uniformly bounded, then @ may be replaced by the

correlation matrix of idiosyncratic risks, R, in (3).

Proof: (i) Since E(d'e*™)® = E(d'He)® = d'd, e* is an S, system. When HH' = Q-
1 (0 = E(ee')), ﬁaT - B""'c}!2 = {a - B*c)' @* (a - B"c). The result follows
immediately.

{(ii) Let HH'= R-*, {a - B"c)'R™*(a - B"¢) € m < » if R is positive definite,
since HH' has to be uniformly bounded.

Note that R = D;~*"20D,~*"2 where D, is the diagenal matrix of
idiosyncratic-risk variances constructed from the main diagonal of @. R is
positive definite due to the fact that Q is positive definite and that Do is

uniformly bounded and positive definite. Q.E.D.

Corollary 1 is exactly the same as Theorem 1 of Ingersoll (1984). Since
{"* can have negative entries, this is a useless bound. Note that Ingersoll
does not assume 1 to be uniformly bounded. But if €@ is not uniformly bounded,
a can be "arbitrarily” far away from B%c, i.e., (a - B™c)'(a - B"c) can be
arbitrarily large without violating (3).® Thus we should perhaps write G'—%*a =
G'~*B"c instead of a = B"c as in Ingersoll (1984, p.1024), where O = GG'.
Furthermore, ¢ is not unique in this case.” Theorem 2 of Ingersoll (1984) can

be proved by using Proposition 2 in a similar fashion.

¢ This argument does not apply to Proposition 2, since in Proposition 2

we are concerning about the pricing of the transformed assets. However, here,
we are dealing with the original assets,

7

Suppose 0 is not uniformly bounded and let @ = GG'. Since EQB is
unbounded, ”Gj is also unbounded and G- is a singular matrix. The rank of B"
is K+1, however the rank of G *B” will probably be less than K+1, ¢ is then not
unique,
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IV. The Case of Convergence System
The above result can be extended to the case where the sequence of the

idiosyncratic risks is a convergence system. This is a suitable structure for

the idiosyncratic risks especially if we define asymptotic-arbitrage in terms
of almost sure convergence. The idea of convergence system may be traced to
Gaposhkin (1966). The reason to consider this type of no-arbitrage condition
and the application of the convergence system to the generalization of the APT

can be found in Lee and Wang {1988).

Definition: Suppose that {e,} is a sequence of random variables satisfying the
following condition:

£37..d.e; converges almost surely for all real sequences

{ds} such that Z3.,d4,2 < = (i.e., {d,} € 1,)}.
Then it is called a convergence system. If any rearrangement of the system
{es} is a convergence system, then {e,} is called an unconditional convergence
system. z
Definition: There are no asymptotic-arbitrage in terms of almost sure
convergence if the following condition holds: for all w € R",

w'l --> 0, and w'x - w'a --> 0 a.s. (i.e., w'x - w'a

converges almost surely to 0) ==> w'a —--> 0. ]

We now show that the APT is still correct after arbitrary linear

transformation as long as the product of the transformation matrix and its
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transpose is uniformly bounded. First, we need the following result.

Lemma 3: If {e,} is a convergence system and if HH' is uniformly bounded, then
e® = He is also a convergence system.

Proof: Similar to Lemma 2. Q.E.D.

Lemma 4: Suppose the linear K-factor structure holds and the sequence of
idiosyncratic risks is a convergence system. If there are no asymptotic
arbitrage opportunities in terms of almost sure convergence, then there exist a
column vector ¢' = { cq €1 €2 ... cx ) such that limn__,,ﬂa - B'cg < =, where

| | is the Euclidean norm.

Proof: See Lee and Wang (1988). Q.E.D.

Corollary 2: Suppose the sequence of idiosyncratic risk, {e,}, is a
convergence system. Consider a transformed linear factor structure where the
product of the transformation matrix and its transpose is uniformly bounded.

If for all portfolio w € R®, w'l —-> 0 and w'x™ - w'a™ --> 0 a.s. imply w'a®™ —
> 0, then the approximate linear pricing relation holds, i.e., lim.,.__,...”aT -

B ¢c| < =.

Proof: Use Lemmas 3 and 4. Q.E.D.

V. Conclusion
The Arbitrage Pricing Theory has generated wide interests in scholarly
pursuit since its introduction in mid 70's. It represents one of the major

attempts to surmount the problems with testability and the anomalous empirical
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findings that have plagued other theories. Understanding the generality of this
theory would help researchers to formulate empirical studies and to apply this
theory to solve practical problems. This paper resolve one of the major
concerns about the generality of the APT: would the APT be robust to arbitrary
linear transformations in asset returns? We show that the APT holds under any

linear transformation as long as the product of the transformation matrix and

its transpose is uniformly bounded.
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