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Asymptotic Arbitrage Opportunities in Various Modes of Convergence and
the Approximate Linear Pricing Relation in Asset Market

Abstract

The three basic elements of the arbitrage pricing theory (APT) are the
linear factor structure of asset returns, the nonexistence of asymptotic
arbitrage opportunities, and the approximate linear pricing relation. This
paper explores the necessary and sufficient conditions of the approximate
linear pricing relation by systematically examining the associations among
these three elements. The generalization evolves around various modes of
stochastic convergence that characterize the nature of asymptotic arbitrage
opportunities and around assorted assumptions about the idiosyncratic risks in
the linear factor structure. This study is exhaustive in the sense that all
modes of convergence are used in defining the asymptotic arbitrage
opportunities. This study also allows researchers to know the trade-off between
the linear factor structure assumption and the no-asymptotic-arbitrage
condition while keeping the approximate linear relation intact . Our
generalization of the APT may enhance the understanding about the arbitrage
pricing mechanism and the stochastic nature of the underlying economy.



1. Introduction

The Arbitrage Pricing Theory (APT) has generated extensive research
{nterests since it was first introduced by Ross in 1976. The APT is a one
period model in which investors share the same belief that the stochastic
properties of capital assets returns are consistent with a linear factor

structure. If there are no asymptotic arbitrage opportunities, then the
expected returns on these capital assets are approximately linearly related to
the factor loadings. The three pasic elements of the APT are the linear factor
structure of asset return generating process, the nonexistence of asymptotic
arbitrage opportunities, and the approximate linear pricing relation
(hereafter, ALPR). The purpose of this paper is to investigate the
associations among these three elements in the construction of the APT.

In this paper, the APT is generalized in two major aspects. First, the
idiosyncratic risks of the linear factor structure are assumed in the
literature to have finite variances and be either orthogonal or weakly
uncorrelated.* In this study, we relax the finite variance and orthogonality
(or weak uncorrelatedness) assumptions by considering more general structures
for the idiosyncratic risk. The lacunary system and the convergence system are
two examples. Second, the no-asymptotic-arbitrage condition is usually defined

in the literature as the nonexistence of portfolios which cost nothing, and

1 Ross (1976) and Huberman (1982) assumed the idiosyncratic risks to be
orthogonal. Ingersoll (1984) assumed the variance-covariance matrix of the
idiosyncratic risks to be uniformly bounded. Chamberlain and Rothschild (1983)
assumed that only K eigenvalues of the returns' variance-covariance matrix
become unbounded. Stambaugh (1983) assumed that it is possible to decompose
the returns' variance-covariance matrix as £ = BB' + D - A where B is the
matrix of factor loadings, D is a diagonal matrix with bounded elements and A
is nonnegative definite. It can be shown all these three assumptions are
jdentical. And this condition will be called "weak uncorrelatedness"
hereafter.
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have positive returns for sure in the limit as the variances of their random
returns converges to zero. In this paper, the no-asymptotic-arbitrage condition
is defined in terms of (1) convergence in p*"™ mean, or (2) almost sure

convergence, or (3) convergence in probability.® The relationship between modes

of convergence and assumptions about the idiosyncratic risks in the linear
factor structure are studied. Specifically, This research will allow people to
understand the trade-off between the linear factor structure assumptions and
the no-asymptotic-arbitrage condition while keeping the ALPR intact. Namely, we
show how the match of various definitions of no-asymptotic-arbitrage condition
and assorted assumptions about the idiosyncratic risks can give rise to the
same conclusion: a finite bound on the Euclidean norm of the pricing error
vector.

Table 1 offers a preview to our analysis.® The propositions listed in
Table 1 are the fundamental results to be shown in this paper. All blank
entries will be filled as corollaries. This paper is a synthesis as well as an
extension and complement of two other works about the generality of the APT.

Wwang and Lee (1988) studied the APT under linear factor structures that allow

= Lee and Wang (1988) show that not all definitions of the no-asymptotic-
arbitrage condition imply asset market equilibrium in the sense that, even when
one rules out the possibility of asymptotic arbitrage in terms of convergence
in quadratic mean, other types of asymptotic arbitrage opportunities may exist.
For some investors, these become their free feast. Hence, knowing the
relationship between investors' preferences and definitions of the no-
asymptotic-arbitrage condition is important in understanding the generality of
the APT. In the context of our discussion, convergence in probability is
equivalent to convergence in distribution since we are dealing with stochastic
convergence to a real constant (see Laha and Rohatgi (1979).

s Taple 1 provides the basic framework of this paper. It shows that our
analysis evolves around the two basic elements of the APT, namely, the
idiosyncratic risks of the linear factor structure and the no-asymptotic-
arbitrage condition. A complete recapitulation of our general theory is given
in Tables 2 and 3 in the final section.
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Table 1 Linear Factor Structure, Asymptotic Arbitrage, And Linear Pricing
Relation: A Preview

A. The Linear Factor Structure Under Which No Asymptotic Arbitrage Implies An
ALPR

[ Linear Factor Structure

i
No Asymptotic | BLFS & BLFS & L-type C-type
Arbitrage E(esey)=0jE(ee')=0 [ factor factor
Condition Var(e;)<e| ﬂﬂh<m structure |structure

Ifor all i
w'1-->0 & ! a=B"c {a~B*¢c
Var{w'x)-->0 'Huberman |Ingersoll (1984)
==> w'a-->0 (1982) Chamberlain-Rothschild

(1983)

w'l-->0 & | a~B"c
w'x-w'a-L,->0 . Prop.2
==>u'a->0 |
w'l-->0 & i a=B"c
w'x-w'a—->0 a.s. Prop.6
==>uw'a->0

B. The Linear factor Structure Under Which The ALPR implies No Asymptotic
Arbitrage

Linear Factor Structure
No Asymptotic BLFS & BLFS & B-type C-type factor
Arbitrage min,Var{e,)>0 E(ee')=0 factor structure &
Condition E(e,ey) = 0 0<HQQ structuref inf,|es{>0
w'l-->0 & a=B"c a~B™c
var(w'x}-->0 Prop. 1 Prop. 3
== "'ﬂ-—h)O (p=2)
w'1l-->0 & a~B"c
w'x-w'a -L,->0 Prop. 3
==>u'a-->0
w'l--—>0 & a=B™c
w'x-w'a-->0 a.s Prop.C3
==>u'a-->0 X, are indept.

Notes: BLFS: basic linear factor structure; w: vector of portfolio weights; x:
vector of realized asset returns; a: vector of expected asset returns; B:
matrix of factor loadings, B" = (1, B); -Lp->: convergence in ot® mean; -->
a.s.: almost sure convergence; a=B"c: ALPR; ==>: imply.
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the nonexistence of the second moments of the idiosyncratic risks and/or weak
dependence among them. There, the no-asymptotic-arbitrage condition is def ined
in terms of convergence in p®" mean. Lee and Wang (1988) discussed the
no-asymptotic-arbitrage condition in terms of the convergence in probability.
Qur focus in this paper is on the no-asymptotic-arbitrage condition defined in
terms of almost sure convergence and on the required assumption about the
linear factor structure in order to get the approximate linear pricing
relation.

The concept of asymptotic-arbitrage in terms of the almost sure
convergence is important for three reasons. First, portfolio returns (defined
as the period-ending value of investment divided by the beginning value) are
not like assets returns which are nonnegative under the doctrine of limited
liability. Moreover, the returns of a portfolio could behave strangely if
weights are deliberately chosen. Thus, it is quite possible that the return of
a portfolio converges almost surely but does not converge in p*t® mean, or it
converges in p*" mean but not almost surely. Third, as shown in Lee and Wang
(1988), for a certain type of utility functions, only some particular
definition of no-asymptotic-arbitrage condition is consistent with the market
equilibrium. For example, a portfolio that is not an arbitrage opportunity in
the sense of convergence in quadratic mean may be an arbitrage opportunity in
the sense of almost sure convergence. To understand fully the generality of the
APT, it is important to investigate the APT under this almost sure mode of
convergence,

As indicated in Table 1, the discussion of the APT in the literature is
limited to the sufficient condition of the ALPR. In this paper, we derive a

necessary as well as the sufficient condition for the ALPR for each combination
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of linear factor structure and no-asymptotic-arbitrage condition. This
comprehensive investigation has two empirical implications.® First, if the
linear pricing relation is not supported by the data, then we could assert that

arbitrage opportunities do exist or that the assumption of linear K-factor
structure is not tenable according to the data used in testing the APT. If it

is the "arbitrage opportunity" that ruins the ALPR, we might infer that
transaction costs are so large as to prevent the utility-maximizer from taking
these advantages. Secondly, suppose that the ALPR holds, from the if-and-only-
if relation we can say there are no arbitrage opportunities in the economy. In
addition, the ALPR can be tested by examining the existence of arbitrage
opportunities. Given the data available, if we can find just one arbitrage
portfolio with zero cost and zero absolute central pth moment (e.g. variance)
having a positive mean, then the hypothesis of linear pricing may be rejected.

In this paper, we assume the number of the assets traded in the economy
are countably infinite. The price system is normalized by letting each asset
cost one dollar. The assets are arranged in a sequence. We always examine the
effect on various objects such as arbitrage opportunities and pricing relation
as the number of assets, n, increases to infinity.

The rest of paper is organized as follows. Section II introduces the
basic Model which is the primary structure of the following discussion. Section
III discusses the APT when the no-asymptotic-arbitrage condition is considered
in terms of convergence in p*™ mean instead of convergence in quadratic mean.
First, the concept of martingale difference system is introduced. It is shown

that if the linear factor structure holds and if the sequence of idiosyncratic

+ fTestability of the APT has always been a controversial issue in the
literature (Shanken, 1982; Dybvig and Ross, 1985). Strictly speaking, it is not
testable since it is impossible to obtain estimates of an infinite number assets.



6
risks is a martingale difference system, then the ALPR holds. The
"nonexistence of asymptotic arbitrage in the sense of convergence in p*"™ mean”

{hereafter, NACPM) is proved to be a necessary and sufficient condition of the
ALPR. Section IV derives the ALPR from the "nonexistence of asymptotic
arbitrage in the sense of almost sure convergence" {hereafter, NAASC) under the

"C-type factor structure". As in Section 111, a special yet interesting case is
introduced first for exposition purpose. Specifically, we introduce the
concept of weakly-multiplictive type dependence restriction. Then we provide a
more general framework (C-type factor structure) where the sequence of the
idiosyncratic risks is assumed to be a convergence system. Section V concludes

this paper.

1I. The Basic Model

The APT is composed of three basic elements, namely, the linear factor
structure of asset return generating process, the no-asymptotic-arbitrage
condition, and the approximate linear pricing relation. In this section we set
up the fundamental framework in our analysis. The three elements of the basic

APT model are_introduced in a natural seguence.

II.A. The Basic Linear Factor Structure

Definition: The asset return, x, is said to satisfy the basic linear factor
structure if the following conditions hold.

x=a+ Bf +e , (1a)"®

5  variables x, f, and e are random and the sequences X, a, B, f, and e
all depend on n. To avoid messy notations, unless the omission can cause
confusion, we do not label the randomness, neither do we index the order of



m
Lv]
1]

0 {1b)
E(f) =0 (1c)

The vectors X, a, and e are each n x 1 in dimension and represent the realized

returns, expected returns and (nonobservable) “residual” portions of the

returns, respectively. The ey, which is often called idiosyncratic risk or

residual in the literature, measures the uncertainty unexplained by the common
factors. The expected return of i*" asset, aj, is assumed to be bounded for all
i, f is a K x 1 vector of nonobservable values of the common factors. The
second moment of f. is assumed to exist for all k. B is the n x K matrix of
bounded Factor loadings, i.e.,|buni < = for all i and k. We do not, right now,
impose any assumption on the stochastic properties of the idiosyncratic risks,
e,. The assumptions on the idiosyncratic risks will be added later in
differentiating various types of factor structures introduced. Assumption (1b)
is always possible through appropriate choice of expected returns, a.
Assumptions (1lc) can be met by subtracting any factor means. Thus both are
innocuous.

Besides linearity assumption, the most important assumptions about the
linear factor structure in the literature are (1) finiteness of the second
moments and (2) cross-sectional orthogonality (or weak correlatedness) among
the idiosyncratic risks. These two assumptions will be relaxed in a variety of

ways in this paper.

II.8. No-Asymptotic-Arbitrage Condition

Definition: No-asymptotic-arbitrage condition holds if, for any w € R",

whenever

sequence.
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(i). cost of portfolio, w, converges to zero: w'l --> 0, and
(ii). random return of w converges in some stochastic mode to its
expected value: w'x - w'a -?2-> 0 ,
then, (iii). the expected value of portfolio return converges to zero:
wa --> 0,
where -7-> 0 indicates the convergence to zero in a certain stochastic mode, w

is an n-element vector of portfolio weights, wy, and 1 is a vector with n 1s.°

II.C. Approximate Linear Pricing Relation

pefinition: The approximate linear pricing relation in terms of Euclidean norm
(ALPR) indicates that the expected returns, a, is a linear combination of the

factor loadings, b... plus an error term, V. And it gives expected returns a

with a mean squared error of zero. In other words, for n =1, 2, ... , there
exist ¢' = ( Co. €1, Cay, ¢+ » Cx ) such that
a = B"c + v, and (3a)
lim,,,...,....,_(lfn)}vl[]a = 0, or somewhat more strongly, (3b)
Lim, ooV} < =, (3c})

where B* = (1 B ); all a, B, and ¢ depend on n, and ﬂ ” £ Euclidean norm,

i.e., “vu = (Eg..vsi®)272. '

Note that the way we express the ALPR is in terms of the Euclidean norm of the

pricing error vector. While Wang and Lee (1988) examines several concepts of

& Most researches on the APT start with a definition of "arbitrage™.
However, the APLR is in fact a result of "no-arbitrage”. The no-asymptotic-
arbitrage condition is implied by the usual definition of arbitrage through a
simple logic that not( A and B ) = ( A ==>mnotB).
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bound on norm of pricing error vector, this paper is concentrated on the bound

of the Euclidean norm type, which is commonly used in the literature.

IIf. The No-Asymptotic-Arbitrage Condition in the Sense of

Convergence in P*™ Mean (NACPM) and the ALPR

I1I.B The M-Type Factor Structure

In this subsection, we introduce the concept of martingale difference
system which is often used by statistician and mathematician in modeling a
stochastic process. If a sequence of random variables, {x,}, is such that
E(xiuxd) = 0 for all j < i, then {x,} is called a martingale difference
system.” Instead of requiring the idiosyncratic risks, es, to be uncorrelated
or weakly uncorrelated as in the literature, we will assume the sequence of ey
to be a martingale difference system throughout this subsection. This
assumption simply means that when we add a new asset into the economy, its
idiosyncratic risk has a mean of zero conditioned on the idiosyncratic risks of
the original assets.

Note that this is weaker than the assumption of independence but stronger
than the assumption of zero covariance as in Ross (1978) and Huberman (1982).
However, by adopting such a stronger assumption about the idiosyncratic risks,

the no-asymptotic-arbitrage condition stated in Huberman (1982) can be

7 The name suggests that it is generated from the first differences of a
martingale process. For detailed discussion of the martingale system, see Chow
and Teicher (1978). With some additional assumptions, a martingale difference
system is a special case of a lacunary system which will be examined later.
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generalized.® Specifically, if we further assume that sup,E|e,|? < = for some
p 2 2, the no-asymptotic-arbitrage condition can be defined in terms of
convergence in pth mean.® In this case we show that the no-arbitrage condition
is a sufficient condition for the ALPR. In additien, if we assume that E(ff')
= I, {where I, is a K x K identity matrix), e and f are independent, and
inf,Elesl > 0 for all i, then the no-arbitrage condition is a necessary

condition for the ALPR.*°

Definition: The linear factor structure is a M-type factor structure if the
asset return vector, X, satisfies the requirement of a basic linear factor
structure, i.e, condition (1); and {e.} 1s a martingale system with sup,Ejesl®

¢ » for all i and for some p 2 2. ]

Definition: The no-asymptotic-arbitrage condition defined in terms of
convergence in p*" mean (NACPM} satisfies the requirement that

when w'l ~-> 0, and w'x - w'a -L,—> 0 , for some p 2 1,

then w'a --> 0,

where -L,-> 0 denotes the convergence to zZero in p®"™ mean. '

® The assumption about the distributions of the factors in the linear
factor structure can be relaxed too. In other words, if we are concerned only
with showing the no-arbitrage condition as a sufficient condition of the linear
pricing relation, then, we do not need to assume the existence of the second
moments of the factors.

® It can be proved (Rohatgi, 1976; Laha and Rohatgi, 1979} that
(1} EjX|® < » <==> |x|®~* P{|X[|>X} is integerable over (0,«).
(2) E|XI® < = <==> Eq-.P{{X|>n*?} < =.

(3) E|X|® < ® ==> n®P{|X|>n} --> 0.

(4) n®*= P{|X|>n} --> 0 ==> E|X|® < » for some & > 0.

19 The assumption that infiE!eiu > 0 for all i is weaker than the common
assumption in the literature, namely, var{e,) > 0 for all i.
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Proposition 1: Given a M-type factor structure, the NACPM implies the ALPR.
Before proving this proposition, we introduce the following lemma.

Lemma 1: Let {e,) be a sequence such that E{e:|es) = 0 for all j < i, and
sup,Eley|? < « for some p 2 2, then there exists a positive constant K, such
that for any sequence of real constant, d,,

E{Zg. ndie ™ ¢ Ko(Ef-mds®) P72,

Proof: See Appendix A. Q.E.D.

Proof of Propositiomn 1: Use Lemma 1 as above and Theorem 1 in Wang and Lee

(1988). Q.E.D.
Definition: The linear factor structure is a M'-type factor structure if,
given a M-type factor structure, we have E(ff') = I, where I, is a K x K

identity matrix; e and f are independent; and infiE|es| > 0 for all i. =

Proposition 2: Given a M'-type factor structure, the NACPM is equivalent to

the ALPR.*?

Remark: In Proposition 2, we have to assume the existence of the second

moments of the factors, f..

Lemma 2: Let P > 2 and let {e,} be a sequence such that

11 If we maintain the same assumptions as in Proposition 2 except

infyles| > O, then it is easy to prove that im,__>.la - B"c| = 0 implies the
nonexistence of asymptotic arbitrage opportunity, i.e.,
'l -—>0and w'x - w'a -L,> 0 ==>w'a -—> 0.
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E(e,|ey) = 0 for all j < i, and inf.E|e,| > O,
then there exists a positive constant H, > 0 such that, for all constant dy,

E|I7onds€s|® 2 Ho(Efomds®)?/® for all n 2 m.
Proof: See Appendix A. Q.E.D.

Proof of Proposition 2: Use Lemma 2 as above and Theorem 2 in Wang and Lee

(1988). Q.E.D.

Propositions 1 and 2 are, respectively, special cases of Propositions 3
and 4 in next section. This is easily seen, since if the sequence of e; is a
martingale difference system and satisfies sup;E|e,|® < = for some p > 2 and

for all i, then {es} is a lacunary systems of order p which we now turn to.

III.C. The L-Type Factor Structure

The generalization of the APT in the context where the sequence of
idiosyncratic risks is a lacunary system of order p for some p 2 1 is discussed
in detail by Wang and Lee (1988). We summarize the relevant results here for

the sake of completeness. All proofs and explanations are omitted.

pefinition: Given p > 0, a sequence of real-valued random variables {e;} is
called a lacunary system of order p, or an S system, if there exist a positive
constant K, such that for any sequence of real constants d;,

Eiff.ad | ™ S Ko(Zfumds#)®72 for all n 2 m.
If the system (e,} is an §, system for every p > 2, then it is called an S.

system. X
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Definition: The linear factor structure is a L-type factor structure if the

asset return vector, x, satisfies the requirement of a basic linear factor
structure, i.e, condition (1); and {es} is a lacunary system of order p for

some p 2 1. 1

Proposition 3: Given a L-type factor structure, the NACPM implies the ALPR.

II1.D. The B-Type Factor Structure

Now let's turn to the necessary condition.

pefinition: A sequence of random variables {e,} is said to satisfy the Bessel
inequality if there exists M > 0 such that for all constants d.

E|LPomdses|® 2 M D7ond.® for all n 2 m. .

Definition: The sequence of random variables {e,} which is a lacunary system of
order p > 2 and satisfies the Bassel inequality is called a Banach System

(Banach, 1930). ¥

pDefinition: The linear factor structure is a B-type factor structure if the
asset return vector, X, satisfies the requirement of a basic linear factor
structure, i.e, condition (1)}; E(ff') = I.; e and f are independent; and {e,}

is a Banach systenm. ]

Proposition 4: Given a B-type factor structure, the NACPM and ALPR are

equivalent.
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IV. The Almost Sure No-Asymptotic arbitrage Condition and the APT
The lacunary factor structure as well as the NACPM allow us to relax the
assumptions on the finiteness of second moments of the idiosyncratic risks and

the orthogonality (or weak uncorrelatedness) among them. To establish the

validity of the ALPR given a L-type factor structure, we need to rely on the
concept of convergence in p*™ mean. As discussed in the introduction, it is
useful to examine the no-arbitrage condition under other mode of convergence. A
natural question arises from this exercise is the "cost” of using different
mode of convergence in defining the no-arbitrage condition. How much
restriction need to be imposed on the linear factor structure so as to match
the no-asymptotic-arbitrage condition in terms of almost sure convergence
(NAASC) without losing the ALPR? In this section, more types of factor
structure are introduced, together with the NAASC, to derive the same ALPR.
These structures do not impose strong assumptions on the orthogonality or the

existence of second moments.

IV.A. W-Type Factor Structure

In this subsection we first introduce the concept of "weakly multiplictive
type dependence restriction”. The "weak multiplictiveness" refers to any form
of restriction on the product moment E{ei(i)€4(2)...-€1¢p )} of order p for all
1 < if{1) < i(2) < ... < i{p). Longnecker and Serfling (1978) suggested the
conditions for three different weakly multiplictive types. The first two can
be characterized as orthogonality related dependence restrictions. The third
one is similar to the first two, except it is motivated by examining the

structure of the product moments of a Gaussian sequence.
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Definition: A sequence of random variables {e;} satisfies Condition A, (weakly
multiplictive dependence restriction of type Ay) with respect to an even

integer p if E(e,®) < », for all i, and there exists a symmetric-function f

with p - 1 arguments such that

IE(e1¢ay o Bage)| S £{i(2)-1(1), 1(3)-i(2), ... ip)-ilp-1)}x8-a [Bles (s, ®)]127P
for all 1 € i(1) < ... < i(p),
and for }'.'.1‘:_12‘§<1)-1 E?(p—ﬂ)—i f{j(l), ey j(D—z)- k} < e, E

Definition: A seguence of random variables {e,} satisfies Condition B, (weakly
multiplictive dependence restriction of type B,) with respect to an even

integer p, if E(e.s®) < =», for all i, and there exists a symmetric function f of

p/2 arguments such that

|E(escay --- ElBacer)| € £{i(2)-1(1), i(4)-1(3),...,i(p)-i(p-1)}x5-1{E(es s>} 7"
for all 1 € i{1) < ... < i(p).
and for TmoiD5c¢ares-.-Df(psa - 13- £{3(1). ..., 3(p/2 - 1)k} <= ¥

Conditions A, and B, are two types of orthogonality-related dependence
restrictions. They are exactly the same when p = 2. They can also be regarded
as a simple relaxation of orthogonality. Longnecker and Serfling (1978) showed

that the notion of quasi-orthogonality treated in Kac, Salem and Zygmund (1948)

is a special case of Conditions A, and B..

Example 1: Suppose that X4 = a4 + bef + ey, i=1, 2, ... , where the e, are
"almost” uncorrelated: cov(e,,ey) = 0 if |i-j| > 1. Then e, satisfy both

conditions A, and B, when p = 2 (Chamberlain and Rothschild, 1983} . iz
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Example 2: Given the same linear one factor structure as in Example 1, suppose

the correlation matrix of the e, R,., is

, 1
1 +] o® an~ |
[ a 1 V] a~—*
oz o i an-2
an—-l an-z an—a . 1
Then e; also satisfy Conditions A. and Ba. B

Conditions A, and B,, when p = 4, are substantially more powerful than
orthogonality. Two specialized forms of Condition B, are presented in Appendix
B.

The third weakly multiplictive dependence restriction is closely related
to Condition A, and B,, but it deal with the fourth order product moment of a
Guassian series. Anderson (1971:39) showed that if ej¢ay, €1¢z), €1¢ay, and
Ei¢a;} are multivariate normally distributed with zero mean vector, the fourth
order product moment is

E{€sc1rBacarBacaricar}

= E{€a¢ar€1cz) tE{€a(ar€1car} * E{€1ca)r€icar}B{Racmracar)
+ E{ei(arCacar E{€1(=)8a(ar}-

Moreover, if after rearranging the series of asset returns we can get

E{ejey,) = R(j-i)), and if |R{k}| is nonincreasing, then it can be shown

(Longnecker and Serfling, 1978) that, for i(1l) < i{2) < i(3) < i(4),
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|E{es(1181¢2r81(mrBacar}]| €
2IR(i(2)-1(1))R(i(4)- i(1))| + min{|R(i(2)-i(1)],|R(i(4)-1(3)]IR(i(3)-1(2}].
The first term on the right hand side of the above inequality is of the form of

condition B2, (see Appendix B). The second term motivates the following

definition.

Definition: A sequence {e,} satisfies Condition C, (weakly multiplictive
dependence restriction of type Cg) with respect to an even integer p if E{(e,”)
< », for all i, and there exists a function f of p/2 - 1 arguments such that
|E(Ei(1)--'ei(P))| S
min{f{i(2)-i(1), £(i(p)-1(p-1)} g{i(8)-i(2), i(5)-i(4), ..., i(p-1)-i(p-2)}~
n5-.(E(ey5,”)*7"
for all 1 € i(1) < ... < i(p), if E3-.f(j) < =, and if Zo g{i(vy, ..., j(p/2-
1)} < =, where the subscript . denotes the set of all (p/2 - 1)-tuples (3(1),
., j(p/2-1)) with 1 € j(v) < j(m) for v #m, 1 € j(m) <o, and m =1, ...,

p/2— 1. H

Lemma 3: Let the sequence {e,} satisfy, for an even integer p > 2, either
Condition A,, Condition B,, or Condition C,. Then the condition ET.31b4%d,;® < =
implies the almost sure convergence of Ij..d.e,, where b, = E{e:?).

Proof: See Theorem 5.2 of Longnecker and Serfling (1978). Q.E.D.

Remark: This lemma is an extension of the result of Komlds (1972) for
multiplictive sequences to weakly multiplictive sequences {see Wang and Lee,

1988).
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pDefinition: The linear factor structure is a W-type factor structure if the

asset return vector, x, satisfies the requirement of a basic linear factor

structure, i.e, condition (1); and {e,} satisfies, for an even integer p 2 2,
either Condition A,, Condition B, or Condition Cp, (Note that E|ey|® < = for

all 1). ¥

pefinition: The no-asymptotic-arbitrage condition defined in terms of almost
sure convergence (NAASC) satisfies the requirement that

when w'1 -—> 0, and w'x - w'a -—> 0 a.s.,

then w'a -—-> 0,

where --> 0 a.s. denotes almost sure convergence to zero. ]

Proposition 5: Given a W-type factor structure, the NAASC implies the ALPR.
Proof: Projecting the vector a onto the space spanned by B and the vector 1,
we have:'®

a - B¢ + v, where, ¢ € R<** and B"v = 0.

consider an arbitrage portfolio, w, such that
v

W= WWE;WFM‘ ,

where, 1 < r < 2. The return of portfolio w is

1
A = 1 (v. a+ v ! Bf + v' e) R — (v ' a+v ] e) .

vi=vl® Wwie

Therefore, the expected return of portfolio w is

v'a _ 1
M kvl”

Consider u = v/“vﬂ , then EZ.,b,%us® = ﬁvﬂ“222_1b13v1= < B < @,

(viBe v v'v) = Tk = v

iz

This is due to the projection theorem. If 8 is a closed linear
subspace of a complete inner product space (Hilbert space) L, then every 1 €L
has a unique decomposition as 1 = 1, + 1, where 1, € § and 1. € 8* (i.e., the
inner product {l», li) = 0 for every 1, € 8).
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where B = max.by.

According to Lemma 3, ZQ-lviei/ﬁvﬁ converges almost surely.
If limn__,,gvﬂ is not finite, then the expected return of portfolio w remains
a positive number while its random return becomes

w'x = w'e = (Cfavies/|vj}/{v|""
which goes to zero almost surely as n --> » which violates the NAASC

condition. Therefore, limnm...“>¢..|]v£§|2 < @, Q.E.D.

IV.B. The C-Type Factor Structure

Now, we will introduce the concept of the convergence system (Gaposhkin,
1966) which is a suitable structure for the idiosyncratic risks as we deal with
the NAASC. Specifically, the convergence system is the weakest restriction on
the idiosyncratic risks one can get to derive the ALPR using the concept of

NAASC.

Definition: Suppose that {e,} is a sequence of random variables satisfying the
following condition:
T7..d:e; converges almost surely for all real sequences {d,} such that
£7..d.% <o (i.e., {ds} € 1l2).
Then it is called a convergence system. If any rearrangement of the system
{e.} is a convergence system, then {e;} is called an unconditional convergence

systenm. ¥

Example 3: If e, are i.i.d., E(e.} = 0, E{es%) = ¢° < = for all i, then {es}

is a convergence system. EX
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Example 4: If E{ei..|es, ..., ey) = 0 for all i » 1 and sup;E(e;®) < =, then,

by the martingale convergence theorem (see Chung, 1874), {e,} is a convergence

system. 3

Example 5: Let {e,} be a generalized linear process generated by -an orthogonal
S, system {u,} with p > 2 and if ess SUPoxesz~f(0) < «, where f is the spectral

density of {es}. Then {e;} is a convergence system (Lai and Wei, 1984).

Other structures which are convergence systems include stationary Gaussian
sequences with absolutely summable correlations and certain types of weakly
multiplictive sequences.

Although the condition of the convergence system covers many idiosyncratic
risk structures, it does not necessarily hold if the {e.} are only assumed to
be uncorrelated with E(e,) = 0, and E{e;2) = ¢,® < ¢® < « for all i,*® or when

the {e.} are independent with zero means and sup,E|e;|® < = for some 0 < p <

2.14

pDefinition: The linear factor structure is a C-type factor structure if the
asset return vector, x, satisfies the requirement of a basic linear factor

structure (condition (1)) and {e,} is a convergence system. *

13 According to Chen, Lai, and Wei (1981), by Tandori's Theorem, there
exists a sequence {e,} of orthogonal random variables such that E(e,®) = 1 for
all i and £7_.(c.:e./s,) is everywhere divergent which also implies that
(£7.:c.€,)}/5, diverges almost surely by Lemma 3 (p.327) where s, = EP_,cCi %,

14 This assertion is illustrated by the following example. Assume that
{e,} are i.i.d random variables and P{e. = n} = P{e, = -n} = 1/n, then
P{e. = n i.0.} = 1. Thus if ¢. = 1/n, lim,__..P{a.e. -——> 0} = 0. Therefore,
I7_,c.e, does not converge almost surely.
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Proposition 6: Given a C-type factor structure, the NAASC implies the ALPR.
Proof: We have a = B"c + v. Let u-= v/ﬂvg. Since L$..u;% = 1 < « for all n,
£n_,u,e, converges almost surely. The rest of the proof is similar to the one

given in Proposition §. Q.E.D.

If {e,} is an lacunary system of order p (p > 2), a proposition similar to

Proposition 5 can be proved using the following lemma.

Lemma 4: Let {e,} be an S, system for some p > 2, and {d,} be a sequence of
real constants. Suppose that I¥.,ds® < =. Then the series If.. dse,
unconditionally converges almost surely (i.e., every rearrangement of the
series converges almost surely).

Proof: This is established by Gaposhkin (1966). Q.E.D.
Corollary 1: Given a lacunary factor structure {(for some p > 2}, then the
NAASC implies the ALPR.

Proof: Use Lemma 4. Q.E.D.

IV.C. S-Type Factor Structure

In Lemma 4, it is assumed that the second moments of asset returns exist.
The literature suggests that stochastic properties of asset returns might well
be characterized by a stable Paretian distribution in which the second moment
does not exist.®® We now generalize our model to the case where the
idiosyncratic risks do not have finite second moments. Before discussing the

ALPR, we need the follow results from statistics literature.

is For extensive references on this issue, see Wang and Lee (1988) .
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Definition: For a normed space E we define constants S2(EY, 0 <p<2,n-=
1,2,... as follows
se(E)=zinf{ s € R*: for all d,, da,.... da € E, and
(B)Ef_adyes}P7?) 2/ S s(L2oafdil®)2/ 7},
where e, are independent real stable random variables.*® We shall say that a
normed space E is of stable type p (in short, E € s-type p) if there exists a

constant t > O such that for all n € N, SR(E} € t < =, ]

It can be shown (Woyczynski, 1978) that E € s-type p if and only if there
exists a constant t > 0 such that, for all a, 0 £ a < p*, and for all finite d*

€EE (p* = p if p< 2, p* == if p =2), (EJEfadses]®)®/® < T (E-afds|)*7™.

Lemma 5: Let 1 € p < 2. The following properties of a Banach space E are
equivalent:

(i) E € s-type p;

(ii) Por any {d.} € E with Epdlup < » and i.i.d. stable random variables e; of
characteristic exponent p, the series Ij.,d;e, converges almost surely (and
also in Lg(E) if q < p).

Proof: See Woyczynski (1978}. Q.E.D.

Definition: The linear factor structure is a S-type factor structure if
ji. the asset return vector, x, satisfies the requirement of a basic linear

factor structure, i.e, condition (1};

1e  1n other words, {e.} have common distribution and their characteristic

function has the property that E exp(ites} = exp(—ﬂtﬂ’). t € R.
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ii, {ey} is a sequence of i.i.d. symmetric stable random variables with

characteristic exponent p € (1,2); and

iii. the space of the portfolio weights is of s-type p. X

Corollary 2: Given a S-type factor, the NAASC implies the ALPR.

Proof: Use Lemma 5. Q.E.D.

V. Conclusion

This paper explores the necessary and sufficient conditions for the APT by
systematically examining the associations among the linear factor structure in
the economy, the lack of asymptotic arbitrage opportunities in the assets
market, and the approximate linear pricing relation. A complete articulation of
these relationships can enhance our understanding about how we can perturb the
agssumptions on the linear factor structure and on the no arbitrage condition
without ruining the ALPR result.

This study allows us, once gathering empirical results on two of the
three elements of the APT, to infer about the nature of the third elements.
Tables 2 and 3 summarize the relations among the three elements of the APT.
Table 2 shows the combinations of various factor structures and assorted no-
asymptotic-arbitrage conditions that imply the ALPR.*” Table 3 indicates
various kinds of factor structure under which the ALPR would imply the lack of

asymptotic arbitrage opportunities.

17 The word "use" in Tables 2 and 3 indicates that the given
relationship among the three elements of the APT has not been formally proved.
Using the relevant theorem discussed in this paper, one can easily prove the
given relationship.
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our results in Tables 2 and 3 demonstrate that the APT is consistent with
many mixtures of linear factor structures and definitions of no-asymptotic-
arbitrage . Moreover, this paper, by explicitly deriving the relations among

the three elements of the APT, may provide the empirical researchers some

guidance on studying the arbitrage mechanism, the stochastic nature of the

asset returns, and asset pricing models in the real world.
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Table 2

Sufficient Condition

Linear Factor Structure

No | BLFS & BLFS & |[M-type | W-type |L-type C-type
ArbitragelE(e e, )=0i{E(ee'}=0| factor factor | factor factor
Condition|Var{e, )<= ﬂ0ﬂ<m structure |structure |structurejstructure
w'l-->0 f[a=~B"c a=B"c a~B"c axB"c a~B"c a=B"c
Var(w'x) |Huberman {I(1984) | use use use Prop.Cl *
-=>0 == (1982) C-R Prop.1 Prop.3 Prop.3
w'a-->0 (1983) | (p22) (p22) {pz2)
w'l-->0 (a=B"c a~B™ ¢ a=B"c axB"c a=B"c a~B" ¢
w'x-w'a use use use use use Prop.C2 *
~L,—>0 Prop.3 Prop.3 Prop.1 Prop.3 |Prop.3
==>W'a->0j] (p<L2) (ps2)

)
w'1-->0 a~B"c a=B"c a=B"¢c a=B"c a=B"c a=B” ¢
w'x-w'a use use use Prop.5 Cor.1 Prop.6
-->0Q a.s.}Cor.1 Cor.1 Cor.1 (p>2)
==>w'a->0
w'1l-->0 a~B"c a=B"c a=B"c a=B™c a~B"c a~B"c
w'x-w'a use use use use Lemma 1 use
-p->0 2 Lemma 1} Lemma 1 jLemma 1 Lemma 1 L-W Lemma 1
==>w'a->0 L—W(1988}|L—W(1988 L-W{1988) [L-W(1988) | (1988) L-W(1988)
Notes:

1. The sufficient conditions include additional assumptions that x, are
independent and |xg| < .

2. -p—> means "converge in probability”.

in law) here. Let ¢ be a constant,

(1983), and L-W(1988) for Lee and Wang (1988).

We can replace it by -1-> (converge
Xn -1l-> ¢ <==> x, -p->cC.
1(1984) stands for Ingersoll (1984), C-R(1983) for Chamberlain-Rothschild
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Table 3

Necessary Condition

Linear Factor Structure

| |
No IBLFS & BLFS & JM'-type W-type £B~type C-type
Arbitrage|E(ese,)=0[E(ee')=0] factor factor | factor factor
Conditionjmin,Var 0<ﬁﬂﬂ structure {structure?{structure|structure?

(es)>0

w'1-->0 axB"c a~B"c a=B"c a~B™¢ la=B™c a=B"c
Var(w'x) iProp.1 use use use use use
-->0 ==> |in Prop.4 Prop.2 Prop.4 Prop.4 Prop.4
w'a-->0 |[W-L{1988) (p=2) {p=2)} (p=2)
w'1-—>0 axB"c a~B”c a~B"c a=B"c a~B"c a=B"c
w'x-w'a juse use IProp.2 use Prop.4 use
-L,—>0 Prop.4 Prop.4 | Prop.4 Prop.4
==>w'a->0
w'1-->0 |a=B"c a=B" ¢ a~B™c axB™c a~=B"c a=B™c
w'x-w'a use use use use use use
-p—>0 Prop.C3 Prop.C3 [Prop.C3 Prop.C3 Prop.C3 Prop.C3
==>w'a->0[@[#] = ef#] @[#] @{#] @[#] @l#]
w'1l-->0 as=B*c a=B"c a~B"c a=B™c a=B"c a=B"c
w'x-w'a use use use use use use
-->0 a.s.|Prop.C3 Prop.C3 |Prop.C3 Prop.C3 Prop.C3 Prop.C3
==>w'a->0p@[#] * @[] a[#] @[#] l@f{#] @f#]
Notes:

1. {e,} is assumed to satisfy the Bessel inequality.
2. [#] indicates that the necessary conditions include the assumptions that e,
and f, are all independent and |e,|[<w, [fi|<=, or the assumption that e and

f are independent.

necessary conditions.

@ means other additional assumptions are included in the

Use the fact that [w'x - w'a -—> 0 a.s.] ==> [w'x - w'a -p—> 0].
. W-L(1988) stands for Wang and Lee (1988)
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APPENDIX A

Lemma Al: Let 1 < p < », There are positive real constants &, such that if
E{e,le,) = 0 for all j < i, then (E|Z9-1e4 |P)}*7® < 8, (E|(L7-18,%)2 2% |7)2 ",

Proof: See Burkholder (1973: 22). Q.E.D.

Proof of Lemma 1: The lemma can be proved by using Lemma Al and Minkowski
inequality. For a complete proof, see Lai and Wei (1983},

Q.E.D.

Lemma A2: Let {e,)} be a sequence such that E(e,|e;) = 0 for all j < i. Suppose
inf,je.] > 0, there exist an A such that
E|£%-.d.e.| 2 A(E|ZP_sdses|®)}*7® for all n 2 1.

Proof: See Lemma 4 of Burkholder (1968}. Q.E.D.

Proof of Lemma 2:
According to Lemma A2 in the Appendix A, we have
E|f%.ndi€y| 2 o(E|LP_mdses|®)*”2, for all n 2 m.

(B|E7_mdses|{®)*”® 2 E[LZf_dses|, by HOlder's inequality.

Thus

E|Lf.ndiey |P 2 By (E|LT.ndse.|®*)P72 , where H, = aP. Q.E.D.

APPENDIX B

Two specialized forms of Condition B, are presented here. For more

discussion, see Longnecker and Serfling (1978).



28

Definition: A sequence {e,} satisfies Condition Bl, (weakly multiplictive of
type Bl,) with respect to an even integer p if E{e:®) < =, for all i, and there

exists a function f(j) such that

|E{€1cay. Baqer}| <

min{f{i(2)-1(1)1,£[i(4)-1(3)],..., fli(p)-i{p-1)]} ®w5a (E(Xs(4,") 27"
for all 1 < i(1) < ... < i(p), and if E%_,J°"*"* f(j} < =,
With g(ja,..-Jos2) = min{f(ja),....f(jo,=)}, both condition B and Bl have

the same first part.

Definition: A sequence {e,} satisfies Condition B2, (weakly multiplictive of
type B2,) with respect to an even integer p if E(e,F) < », for all i, énd there
exists a function f(j) such that

|E{€scay...aep}] < FIE(2)-1(1)IF[i(4)-i(8}]... fli(p)-i(p-1)]1 m5_.(E(ey s,")}*""

for all 1 < i(1) < ... < i(p), and if IF_,f(j) < =.

APPENDIX C

Lemma C1 (Improved convergence lemma): For series of independent random
variables, if the summands are uniformly bounded, and centered at

expectations, then almost sure convergence and convergence in quadratic mean

are equivalent.

Proof: See Loéve (1977: 261). Q.E.D.
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Proposition Cl: Given a linear factor structure. Suppose that X; are
independent, [X.] € m < » for all i and {e;} is a convergence system. Then [
W't --> 0 and w'X - w'a -L.~> 0 ==> w'a -~-> 0 ] ==> [ a = B*c |].
Proof: Consider a portfolio u = v/|v[ where v = a - BY¢. Since u'u = 1 <
», U'Xx - u'a converges almost surely. We have u'x - u'a converges in
quadratic mean by Lemma Cl. let w = u/{v|==*. Then apply Proposition 4 for p

= 2. Q.E.D.

Lemma C2: Under the same condition as in Lemma C1, the convergence a.s. and
convergence in pth mean are equivalent.

Proof: Use Lemma Cl1 and Basic inequality {Loéve, 1977: 159). Q.E.D.

Proposition C2: Given a linear factor structure, suppose that x, are
independent, |x4] € m < «» for all i and {e,} is a convergence system. Then
[w'l --> 0 and w'x - w'a -L,-> 0 (for some p > 0) ==> w'a ——> 0] ==> fa =~
B*c].

Proof: Use Lemma C2. Q.E.D.

Proposition C3: Given a linear factor structure, suppose that {e,} is an
Banach system, e and f are independent, e, and f, are all independent, les]| <
w, and |fx| <. Then [ a=B"c ] ==> [ w'l --> 0 and w'x - w'a -p-> (or -
1->) 0 ==>w'a --—> 0 }.
Proof: w'x - w'a -p-> 0

==> P{|w'x-w'a} > €} --> 0

<==> P{|w'Bf+w'e| > €} --> 0
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Without loss of generality, assume the median of w'Bf is 0, then, for
some € > 0, P{|w'Bf+w'e| > €} > P{|w'e! > €}/2 since e and f are independent

by Lemma 2 in Wang and Lee {1988).

Similarly, P{|w'e|>€} --> 0 implies w'e -L.-> 0 which means that w'w -->
0 since {e;} is a Banach system.

P{|w'Bf|>€} --> 0 implies E(|w'Bf{?) --> 0 since |fy| < = and f, are
independent. Thus w'BB'w --> 0, i.e., Ef.,W.b,c ——> 0. Then apply

Proposition 2 for the rest of the proof. Q.E.D.
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