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A General Theory of Arbitrage Pricing:
When the Idiosyncratic Risks Are Dependent and Their Second
Moments Do Not Exist

Abgtract

In this paper, we generalize the Arbitrage Pricing Theory (APT) to incorporate
the cases where the idiosyncratic risks of the factor model are dependent
and/or the second central absolute moments (variances) of the assets returns do
not exist. A bound on the pricing errors, similar to the one derived in Ross
{1976) and Huberman (1982), is derived in our generalized framework.
Specifically, it is shown that as long as the idiosyncratic risks are weakly
dependent (or when the sequence of the idiosyncratic risks is a lacunary
system), the approximate linear pricing relation holds in the absence of
"arbitrage"” in the sense of convergence in p*® mean (ACPM). It can be
demonstrated that the models in Huberman (1982), Ingersoll (1984) and
Chamberlain and Rothschild (1983) are all special cases of this version of the
APT. It is also established that, under suitable assumptions on the linear
factor structure, the approximate linear pricing relation implies the
nonexistence of asymptotic arbitrage opportunities. Thus the no-asymptotic-
arbitrage position is a necessary and sufficient condition for the approximate
linear pricing relation.



I. Introduction

In financial economics, variance has almost always been used as a measure
of risk and dispersion. It plays an obvious role in mean-variance analysis and
in theories derived from it, such as the Sharpe-Lintner-Mossin-Treynor Caplital
Asset Pricing Model (CAPM). It is also used as a measure of risk in the
Arbitrage Pricing Theory (APT) where a rilskless arbitrage portfolio is defined
to be a portfolio with no variance and the idiosyncratic risk is always assumed
to have bounded variamce. The literature has not closely examined the
robustness of these theories when asset return distributions have undefined or
infinite varlances. There are strong empirical evidences showing that this is
a relevant concern. For example, Fama (1965) found that the distribution of
price changes conforms better to the stable Paretian distribution which is not
normal. In the class of stable Paretian distributions, only the normal has a
finite variance. In this paper, we extend the earlier research in asset
pricing by employing different concepts of dispersion. As an instance, when
variances are infinite, the mean absolute deviation (MAD) or the mean of some
power of the absolute deviation (other than two) may exist. By using these
alternative concepts of dispersion, asset pricing can be shown to extend to
other classes of asset return distribution. In particular, our research
focuses on the APT.

The APT has generated extensive research interests since it was first
introduced by Ross in 1976. The theory was proposed as an alternative to the
CAPM, a major analytic tool in financial literature at that time. It

represents one of the major attempts to surmount the problems with testability



and the anomalous empirical findings that have plagued other theories.* The
APT is a one period model in which investors share the same belief that the
stochastic properties of capital assets returns are consistent with a linear
factor structure of which the idiosyncratic risks have finite variances.® If
there are no asymptotic arbitrage opportunities, then the expected returns on
these capital assets are approximately linearly related to the factor loadings.
People may be curious about what happens to the APT when the second central
absolute moments (variances) of the assets return do not exist.® This is solved
in the context where the distributions of the idiosyncratic risks are stable
Paretian with characteristic exponent a (1 < a < 2) and the asymptotic
arbitrage is defined in terms of convergence in pt" mean.®

Moreover, we generalize this theory even further by allowing thersequence

of idiosyncratic risks to correlate under some constraints and by letting the

1. Following the early success of the empirical research on the CAPM,
extensive evidences in recent years indicate the existence of anomalies. For
example, market capitalizations, dividend yields, and price-earnings ratios of
common stocks are found to be significantly associated with the asset returns
after risks are adjusted according to the CAPM. To explain these anomalies, the
literature explores the possible economic and financial variables that are
omitted in the one-period CAPM. For example, theories that incorporates
institutional characteristics such as taxation, skewness, and intertemporal
changes in investment opportunities are suggested. None of them is successful
in getting empirical supports. Furthermore, Roll (1977) wondered that the CAPM
may not be a testable scientific theory.

2 Even if all investors agree on the factor structure, however, there is
still significant scope for disagreement on the underlying probability
distributions. As long as all investors agree on the impacts of the factors on
returns through factor loadings, they can hold a variety of views on the
distributions of the factors without violating the approximate linear relation.
Similarly, investors can also disagree on the distributions of the residual
risks.

3  Throughout this paper, we assume that the first moments of the asset
returns always exist.

- When p = « = 2, we have the usual convergence in quadratic mean. Note
that 1 < p < o when o # 2.
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variances of the idiosyncratic risks to be infinite in some cases. We prove
that if the idiosyncratic risks are weakly dependent (or, specifically, the
sequence of the idiosyncratic risks is a lacunary system of order p for some p
> 1) and if the definition of arbitrage is defined in terms of convergence in
pt™ mean instead of being restricted to convergence in quadratic mean (p = 2),
then the APT holds. The results concerning the asset pricing relation in Ross
(1975, 1976), Huberman (1982), Ingersoll (1984) and Chamberlain and Rothschild
(1983) are shown to be special cases of our model.®

We also demonstrate that, under suitable assumptions on the linear factor
structure, the approximate linear pricing relation implies the nonexistence of
asymptotic arbitrage opportunities. Thus, the no-asymptotic-arbitrage position
is a necessary and sufficient condition for the approximate linear pricing
relation. The empirical implications of this finding will be discussed.

In this paper, we assume the number of the assets traded in the economy
are countably infinite. The price system is normalized by letting each asset
cost one dollar. The assets are arranged in a sequence. We always examine the
effect on various objects such as arbitrage opportunities and pricing relation
as the number of assets, n, increases to infinity.

The rest of the paper is organized as follows. In Section II, we discuss
the basic model and its assumptions. Although the basic model has been
extensively explored in the literature, the scope of examination has been

limited to the sufficient conditions of the APT. In this section, we will

s In their proofs of the APT, Ross (1976) and Huberman (1982) assumed
the residual risks to be uncorrelated, Ingersoll (1984) assumed the variance-
covariance matrix of the residual risks to be uniformly bounded, and
Chamberlain and Rothschild (1983) and Chamberlain (1983) allowed only K
eigenvalues of the returns variance-covariance matrix to be unbounded. All
these theories of arbitrage pricing are special cases of our model.



4
derive the necessary condition as well. Section IIl discusses the APT in a

specific framework where asset are stably distributed. Section IV provides a
generalization of the results in Section III. We will introduce ‘the concept of
lacunary system to describe an interesting type of weakly dependent relations

among the idiosyncratic risks. In Section V, applications of the generalized

APT are discussed. Section VI concludes the paper.

II. The Basic Model

The basic model of the APT in the literature is analyzed in this section.
Basically, the model is composed of three elements, namely, the linear factor
structure, the concept of asymptotic arbitrage , and the approximate linear
pricing relation. We will first discuss the assumptions on the linear factor
structure of asset returns. Then we will define asymptotic arbitrage in terms
of convergence in quadratic mean and the approximate linear pricing relation
expressed in terms of Euclidean norm. The necessary and sufficient condition
for the approximate linear pricing relation in this basic model will be

derived.

I1.A. The Linear Factor Structure

The first element of the APT is the linear factor structure of asset
returns. Throughout this section we shall assume the following linear factor
structure:

XxX=a+Bf+e (1a)*®

s  vyariables x, f, and e are random and the sequences x, a, B, f, and e

all depend on n. To avoid messy notations, unless the omission can cause
confusion, we do not label the randomness, neither do we index the order of



E(e) = 0 (1b)
E(f) =0 (1c)
E(ff') = Ik (Identity matrix of rank K) {1d)
E(ef') = 0 (n x K matrix) (1e)
E(ee') = D (D is a diagonal matrix} (1f)

1,'Dl, < 0% < = for all i, where 1, is the i*" column of an
identity matrix with rank n. (1g)~

The vectors x, a, and e are each n x 1 in dimension and represent the realized
returns, expected returns and (nonobservable) “"residual” portions of the
returns, respectively. The e,, which is often called idiosyncratic risk or
residual in the literature, measures the uncertainty unexplained by the common
factors. The expected return of i*™ asset, a,, is assumed to be bounded for all
i. f is a K x vector of nonobservable values of the common factors. The second
moment of f,. is assumed to exist for all k. B is the n x K matrix of bounded
factor loadings, i.e.,|bse| < » for all i and k. D is the n x n positive defi-
nite diagonal variance-covariance matrix of the idiosyncratic risks. The i*®
diagonal element of D is denoted as o0,%.

The linearity assumption in (la) is the backbone of the APT and will be
kept intact throughout this paper. As is discussed in Ingersocll (1984),
assumption (1b) is always possible through appropriate choice of expected

returns, a. Assumptions (1c) and (1d), which can be met by subtracting any

sequence.

7 The validity of (1g) can be tested by using an interesting result in
Laha and Rohatgi (1979:62, E24). It can be shown that
E(e,)=0 and E(e,®}=0,% < = imply that
P{eys>x} £ 0,2/(0,%+x®) If X > O
and P{e;>x} € x2/(0,%+x%) 1if x < 0.
Hence, a researcher can show the empirical validity of (1g) by examining the
histogram of the sample data.



factor means and then orthognoalizing and rescaling the parameters, are
innocuous. Also note that it is assumed that B is an n x K matrix with rank K.®
Assumption (ie) is, however, rather troublesome. Ingersoll (1987) argued that

(1e) could be achieved through appropriate choices for a and B. As to be shown

in Appendix A, that statement is not quite true. Note that (le} is not crucial
to the derivation of the APT. However, it is required in proving that the no-
asymptotic-arbitrage position is a necessary condition of the approximate
linear pricing relation.

Assumption (1f) indicates zero covariance of the idiosyncratic risks and
assumption (1g) indicates the finiteness of the variances of the idiosyncratic
risks. Conditions (1d) and (1g) together imply that variances of x, are
bounded. All these assumptions will be relaxed in our generalized model of the

APT.

s The matrix B is assumed to be a n x K matrix with rank K. If the rank
of B is less than K, say Ky, let B = ( B B, ) where B, is an n by K, matrix.
Suppose B; = BoP , we have

( Bo B: ) = ( Bu ).

the rank problem is then solved by letting Binew; = BQ™* and finew, = Q7*f. Now
we can not say that E(ff') = I.. But, this is not of great importance. We are
more concerned about the fact that E[(BF)(BF)'] = BB'.



II.B. Asymptotic Arbitrage

The second basic component of the APT is the nonexistence of the
asymptotic arbitrage opportunities. Huberman (1982) and Ingersoll (1984)

suggested a definition of asymptotic arbitrage , which is defined in terms of

convergence in quadratic mean.

pefinition: Arbitrage in the sense of convergence in quadratic mean (ACQM} is
the existence of a subsequence i of arbitrage portfolios, w(i), n=1, 2, ...,

whose returns z(w(n})) satisfy

w(n)'1(fi) = 0, (2a)
var z(w(n)) = w(h)'E(i)w(n} --> 0 {2b)
E z(w(n)) = w(fi)'a(h) > m > 0O, (éc)
where IL(ii) = B(A)'B(f} + D{(d). X

The less stringent condition (2c) replaces Huberman's (1982) requirement of
Ez(w(fi)) -—> = (Ingersoll, 1984).°

The approximate linear pricing relation in the APT is derived from the

® According to Ingersoll (1984), the scale of asymptotic arbitrage is
arbitrary. Hence, condition (2c) should serve the purpose. Although the scale
of guadratic mean arbitrage can be magnified, yet the choice of the scalar is
by no means arbitrary. Given a subsequence i of arbitrage portfolio; w(n),
c{f)w(fi) can be also an arbitrage portfolio for some c(fi) > 0. We can not take
an arbitrary c(i), otherwise condition {(2c) might be violated. However, if
c(f) = (w(i)'L(f)w(n))®, where -1/2 < p < 0, then w(n) = c(ii)w(n) is a
guadratic mean arbitrage opportunity with an infinite profit in the limit. The
reason is given as follows.

Suppose w(fi)'E(fi}w(fi) —-> 0, we have

wi{n)'1{A) = c(h)w(f)'1(i) = O,

w(n)'a(d) = c(f)w(i)'a(fi) > mc(ii) --> =« m > 0, and

W(R)'Z(A) W) = c(d)>w(fi) 'L(M)w(d) = (w(R)'Z(f)w(R))*>="

-=> 0 for -1/2 < p < 0.
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absence of asymptotic arbitrage opportunities. The no-arbitrage condition is
implied by the definition of arbitrage through a simple logic:
not( Aand B ) = ( A ==> not B ).

Hence, we define the nonexistence of ACQM, or NACQM, as follows.

Definition: The NACQM condition is the situation that when there is a portfolio
with zero cost and zero variance in the limit, its expected return must also
converge to zero, i.e., for all w € R™,

w'l -—> 0 and Var{w'x) --> 0 ==> w'a --> 0, (2')=2°

Whenever possible, the indices in the seqgence of the arbitrage portfolio are

omitted for brevity.

II.C. The Approximate Linear Pricing Relation (ALPR)

The third basic component of the APT is the approximate linear pricing
relation, which gives expected returns with a mean squared error of zerc. The
nature of the approximate linear pricing relation depends on the specification
of the error bound. The linear pricing relation that is usually examined in the
literature is described in terms of the finiteness of the Fuclidean norm of the

pricing error vector,.

Definition: The approximate linear pricing relation in terms of Euclidean norm

(ALPR) indicates that the expected returns, a, is a linear combination of the

12  Chamberlain and Rothschild (1983) made another no-arbitrage
assumption: If w'l --> 1, Var{w'x) --> 0, and E(w'x) --> a (Condition Aii),
then ¢ > 0. Jarrow {1988) showed that this condition implies (2'). However, to
prove the APT, the weaker one {2') will be sufficient.
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factor loadings, b.., plus an error term, v. And it gives expected returns a

with a mean squared error of zero. In other words, for n =1, 2, ... , there
exist ¢' = ( €y €1y C2s ++. » Cx )} such that
a = B + v, and (3a)
lim ,.__>.(1/n}]v}2 = 0, or somewhat more strongly, (3b)
limg_ .. ]v] < =, (3c)

where B* = (1 B ), 1 is a vector of 1s; all a, B, and c depend on n, and ﬂ ﬂ

is the Euclidean norm, i.e., jv| = (ETaslve|®) 72 '

This paper will discuss several types of approximate linear pricing relation.
However, the ALPR in terms of Euclidean norm appears most often in the text.
Unless otherwise specified, the "ALPR" in the rest of the paper indicates the
"approximate linear pricing relation in terms of Euclidean norm™.

Two interesting remarks about the asymptotic linear pricing relation can
be made here. First, the literature (e.g., Ingersoll (1987)) interprets the
asymptotic linear pricing model, a = B*c, as that the market evaluates asset
prices "correctly"” for almost all assets, and it can be extremely bad at
pricing a finite number of assets. This interpretation is rather ambiguous and
sometimes misleading. For example, if we let the pricing error, vy, be a2t 2
for any a such that 0 < a < =, then the norm of v is a finite a. Here, every
v, is greater than zero and vs., = v4/2*7%. Hence, it is misleading in saying
that the model prices assets correctly for almost all assets. Also, the
definition in (3) does not entitle us to make assertion on individual pricing
error.

Second, the literature {e.g., Ingersoll, 1987) asserts that the theory

prices all of the assets together with a negligible mean squared error, i.e.,
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!vﬁa/n -->0 ; this condition for asymptotic linear pricing relation is
unnecessarily weak. In fact, it is also true that jvﬂ/log(n) --> 0. The
strongest condition we can get is lim“_“>_ﬂvu < =,** This accuracy bound was
first derived by Huberman(1982) for uncorrelated idiosyncratic risks.

Chamberlain and Rothschild (1983), Stambaugh (1983}, and Ingersoll (1984) have

independently proved this same result for correlated idiosyncratic risks.

II1.D. Necessary and Sufficient Conditions for The APT

Now, we are ready to show the "if and only if" relation between the
nonexistence of the ACQM and the approximate linear pricing result in the basic
model. The necessary and sufficient condition for the ALPR in the basic model

is formally stated and proved in Proposition 1.

Proposition 1:

(i) Given the linear factor structure (1), the NACQM described in (2') implies
the ALPR stated in (3c).

(1i) With an additional assumption that D is asymptotically positive definite,
(2') is implied by (3c¢).

Proof:

(1): Projecting the vector a onto the space spanned by B and the vector 1, we

have: 2

1 In the proof of part (i) of Proposition 1, we can set the arbitrage
portfolio w to be v/{log n * ﬁvq). Its expected return is 9vj/log n and its
variance is less than 0%/{log n}*. From these we can assert that '

[vil/log n -~> 0 as n --> =,
which is directly from the finiteness of yvl.

12 This is due to the projection theorem. If S is a closed linear
subspace of a complete inner product space (Hilbert space) L, then every 1 € L
has a unique decomposition as 1 = 1, + 1; where 1, € S and 15 € 8* (i.e., the
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a=B"c+v, where, ¢ € R*** and B"v = 0.
Consider an arbitrage portfolio, w, such that

w =

where, 1 < r £ 2. The return of portfolio w is

;:E( ] ll\lvl[r (via + v'Bf + v'e) = ijiir (via+v'e).

Therefore, the expected return of portfolio w is

v'a 1 . . A2 -
1 S U G

The variance is

t
FV?:' ) HVE“’ ET-1v420,% < 0%fv|a-2",

If lim,.... ,_ﬁvﬂ is not finite, then the expected return remains a positive
number while the variance goes to zZero as n --> » which violates the assumption

of no arbitrage. Therefore, limnwmp_ﬂvu“ < o,

(i1): We need to show that if lim, _..|a - B"¢| < =, then
w'l = ¢ and var(w'x) -—> 0 imply w'a --> 0.*®
Consider an arbitrage portfolio w with the following properties:
w'l = 0 and Var(w'x) --> 0.

Since Var(w'x) = w'BB'w + w'Dw --> 0,

we have w'B --> 0' and I7_.w,%0,* ——> 0 by (1f).

Due to that fact IS .wW;:20:2 2 PIT..Ws%, LIT.,w;® ——> 0, where B = min,;0,®.

inner product (1lz, 1,) = 0 for every l, € S}.

i3 The logical structure of the second part of Theorem 1 is that the
assumption A:[ALPR] implies that if C:[w'l --> 0 and Var(w'x) --> 0] is true,
then E:[w'a --> 0] is true. In logic symbols, this is written
A==>[C==>E1].
The symbolic logic statement can also be written [ A and C ] ==> E.
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By Schwarz inequality we have
ﬂwu “a - B’c! 2 |w'{a - B"c)| = |w'a|.
Since ”wﬂ --> 0 and lim,._..ja - B"c] < », w'a must converge teo zero, i.e.,

there are no asymptotic arbitrage opportunities. Q.E.D.

If we tighten up the constraint on the pricing error bound, we can relax
the constraint on the variance-covariance matrix of the idiosyncratic risks.

Corollary 1 shows the trade off between these two constraints.

Corollary 1 Given the linear factor structure, if D is asymptotically positive
semi-definite and if 1imn__>_ﬂa - B'cﬂ = 0, then the ACQM does not exist, i.e.,
w'l --—> 0, and Var{(w'x) --> 0 imply that w'a --> 0. -
Proof: Using the fact that among assets with zero idiosyncratic risk the
pricing must be exact (Ingersoll, 1988: Chapter 7, Theorem 2). Then apply

Proposition 1. Q.E.D.

The proof of sufficiency (part (i)} in Proposition 1 is similar to Theorem
1 of Huberman {1982). The arbitrage condition is defined in terms of variance,
and the error bound in the ALPR is defined in terms of squared errors. Later
on we will derive the more general results by relaxing the assumptions (1if) and
(1g) on the idiosyncratic risks in the linear factor structure, and we will use
alternative definitions for asymptotic-arbitrage. The proof of necessity (part

(ii)) is new and will also be extended.
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ITI. Nonexistence of the Second Moments in Asset Returns: The Case of Stable

Paretian Distribution

111.A. Empirical Evidences on Stock Returns

The stochastic properties of asset returns plays an important role in

constructing financial theories. Most financial models use variance as a
measure of risk and dispersion. However, empirical evidences indicate that the
second moments of asset returns may not exist.

Pama (1965) tests the normality hypothesis on the daily returns of the Dow
Jones Industrial stocks. The results reveal more kurtosis (fatter tails) than
that predicted from a sample of independent and identically distributed normal
variates. Fama thus concludes that the distribution of price changes conforms
better to the stable Paretian distribution with characteristic exponent less
than two.**

A frequently proposed alternative to the stable Paretian model is the
mixtures of normal distributions hypothesls, which suggests that stock returns
are represented by combinations of normal distributions with different
variances and possibly different means (e.g., Clark ,1973; Hsu et al., 1974;
Westerfield, 1977; and Hagerman, 1978). Both the stable Paretian and mixtures

of normal distributions models are capable of describing the higher frequencies

14 The family of probability distributions known as “stable Paretian" is
probably one of the most popular models to describe the stochastic properties
of daily common stock returns (Fama, 1965; Fama and Miller, 1972; Mandelbrot,
1963, 1971; Blume, 1970; and Roll, 1970). Blattberg and Gonedes (1974} showed
that the stochastic properties of monthly returns are better described by the
normal distribution. Although many empirical researchers in finance continue to
use monthly data in their studies, most of recent empirical works employs daily
data in order to segregate information events (e.g. Aharony and Swary, 1980} or
to take advantage of a much larger sample size (e.g., Roll and Ross, 1980).
Therefore, it is increasingly important to face the issue of stable Paretian
distribution in the asset pricing theory.
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of stock returns observed near the mean and in the tail areas when compared
with a normal distribution.

FPielitz and Rozelle (1983) found evidence showing that although the
majority of stock return distributions are consistent with a mixture-of-
distribution hypothesis, 1t is difficult to differentiate whether the mixtures
of distributions are normal with changing variance, or nonnormal stable with
changing scale parameter (dispersion). In this section, we will discuss the APT

when the returns have no second moments, or more specifically, when the

distributions of the returns are symmetric stable Paretian.

III.B. Stable Paretian Distribution

Definition: A stable Paretian distribution has the following log characteristic
function:

log ¢, (t)

log E{e***}

]

it - oft{=[ 1 + ip{t/[t|)}w(t,a)], (4)2=
where X is the random variable, t is some real number, and

0<ag£2;, ~1€B<1l; ~o<dH<w; 0<o0. ¥

The parameter a is the characteristic exponent, a main parameter of the
stable law; f§ is the degree of asymmetry of a stable distribution, where B = 0
indicates a symmetric distribution; 6 is the location parameter; and o is the
scale parameter of the stable Paretian distribution. When o < 2, the variance
of the stable distribution is infinite. However, there is a finite parameter g

which defines the scale of the distribution. Suppose that a =1, B = 0 (Cauchy

18  There are other ways to represent a stable Paretian distribution. See
Zolotatarev (1986).
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distribution), o is the semi-interquartile range. In the remaining part of
this section, we will consider only the case where o > 1, B = 0 so that the

mean value exists and the density is symmetric.
By definition, a stable Paretian distribution is any distribution that is

stable or invariant under addition.?® 1In other words, the distribution of the
sum of 1.1.d. stable Paretian variables is itself stable Paretian and has the
same distribution as the summands (but, values of parameters are different).
More generally, stable random variables are stable or invariant under
"weighted"” addition.?*”

Some properties of the stable random variables, which are useful in

deriving a generalized version of the APT are summarized in Lemma 1.

Lemma 1:
{i) For each p € (0,a} and each q € (0,a), there exist constants A and B such
that for each n 2 1 and any {d:} € R™,

A(E2-21d(|?) 2/ € (B(Zf-s|dies|P)9/7)2/% S B(E-,d(|?)*7®,

1ie It is well known that the class of stable distributions provides a
generalization of the normal central limit theorem; i.e., if a weighted sum of
random variables has a limiting distribution, the limiting distribution is a
member of the stable class. The stable nonnormal distributions generalize the
central limit theorem to the case in which the variances of the underlying
variables do not exist.

7 For example, let x,, Xa,..., X, be independent symmetric stable
variables whose distributions have the same characteristic exponent a, but
different (possibly) location and scale parameters a, and o,. Then
2o = E9.,d,x;, is symmetric stable with characteristic exponent a and with
location and scale parameters as follows:

E(z,) = T9.,dia,,

0(2z,) = [£%-.0.]|d.|®], for all constants d,.
The location parameter of asset i's return stable distribution is the expected
asset return a; if a > 1. The notation 6 is used in the statistics literature.
For notation consistency, we will replace 6; by a, for all i. Throughout the
discussion, we will assume a > 1 so that the first moment exists.
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(ii) For each q € (0,a), and each p € (a,~), there exist constants A and B such

that for each n 2 1 and any {d,} € R=,
A(£7-11d41°) %/ € (E(E2oaldses[P)977)2/% < B(Z|dg]%)*/°.

Proof: See Schwartz (1969/70) and Woyczynski {(1978). Q.E.D.

111.C. The APT with Stably Distributed Asset Returns

As discussed in the basic model, the APT in the literature is derived
assuming finite variance. When the second moments of asset returns do not
exist, we need to use an alternative concept of asymptotic arbitrage called
NACPM and a new concept of approximate linear pricing relation called ALPR-p.

These concepts are defined as follows.

Definition: The no-asymptotic-arbitrage condition defined in terms of
convergence in p®" mean (NACPM) satisfies the requirement that

when w'l --> 0, and w'x - w'a ~-L,-> 0 , for some p 2 1,

then w'a ——> 0,

where -L_-> 0 denotes the convergence to zero in p*™ mean. =

Definition: An approximate linear pricing relation expressed in term of norm
defined by uxu = (E£}x,}®)*”® (ALPR-p} can be stated as
a =B +v, and limn_ _..|V|s < =,

(£2-1|vs|®)*7®) and p 2 1. .

/1]

where |v|,

Note that lim,__..|v]. < «» is stronger than lima__».fv]= < =, since |vj, > |v].

if p < 2.
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Proposition 2: Given the linear factor structure, (1), with the exception that
the idiosyncratic risks, e,, are i.i.d. symmetric stable random variables with

characteristic exponent a € (1,2), the NACPM (for p € (1,a)) implies ALPR-p.
Proof: As in Proposition 1, by orthogonal projection,

a=B8"c+ v, and B°v = 0.
Then, the proposition can be proved by contradiction.

Suppose that Evﬂp -=> ®» as n --> =,

v
Let W = «powpmee
ME

then w is a zero-cost portfolio.

1
= ' - AN M T l 1
z = w'x ﬂvﬂg (v'a + v'e).

2

E(z} = w'a = M“ﬁ%%gw > min(1,6min,{vs|va # 0}) > 0, for some & > O.
=4

Ejz - E(z}{®

It

Elw'x - w'a|® = E{w'e|® = E|Ef. Wiey|®

LA

B(E1-4[Wal®) = BJvjsr=>e.

The last inequality follows from (ii) of Lemma 1.

Now lim.._..E(z.) > 0 and lim,__..E|Z, - E(z.)|® = 0 which violate the

NACPM, thus lima _..Jv], < =. Q.E.D.

Note that, in Proposition 2, we did not make any assumption on the
stochastic properties of the factor, f.. We only assume that the idiosyncratic
risks, e,, are stably distributed.

To obtain the necessary condition result in Proposition 3, we assume that
all interrelationships among the returns on individual assets are generated by
the linear K-factor model:

Xy = as + B bofu + ey, i=1,2, ..., n.

where f, are assumed to be mutually independent, independent of the e, and both
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e; and f,. are stably distributed the same value of a. The market model and the
market-industry model in Fama and Miller (1972) are special cases of this

model. It can be shown that x, are also stably distributed with characteristic

exponent a.

The following lemma will be used in the proof of Proposition 3 which
simply says no-arbitrage condition is a necessary condition for the linear

pricing relation.

Lemma 2: If E|X. +Y.|® --> 0 for some p > 0 and X, and Y, are independent for
all n, then E|X,|® --> 0 and E|Y,.|® —-> 0O.

Proof: See Appendix B. Q.E.D.

Proposition 3: Suppose the linear factor structure (1) holds, except that the
idiosyncratic risks, e,, and the factors, f., are now assumed to be i.i.d.
symmetric stable random variables with characteristic exponent a € (1,2),
then:

the approximate linear pricing relation expressed in term of norm defined by

1]

1/p + /g =1, p£g< =,

(Zjxs|®)*”< (ALPR-q) implies the NACPM, where p € (1,a), p is such that

Proof: w'x - w'a -L,> 0 <==> E|w'Bf + w'e|® --> 0
==> E|w'Bf|® -—> 0 and
E|lw'e|®" -—> 0. (5)
(8) follows from Lemma 2.
According to (ii) of Lemma 1,
ElZRcaUnucfic|® 2 AxIfo,fuak]®, where ug. = L0 ,Wibw.

The fact that E|Lk.,unfw|® --> 0 leads to
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U —-> 0 for all k. (6}
From (ii) of Lemma 1,

AnE‘I_ilwifp S E]E?_iwiei[p - 0

Let ¢;' = { ¢4, Ca, ... , Cx ).
By (i), w'a = w'B"¢c + w'v
= w'lce, + w'Bc, + W'V
~~> w'w
since Z¥_,u0,.Cx --> 0 by (8) and K is finite.
1 Y ﬂvﬁq < o and (7) imply that w'v —--> 0 by Holder's inequality.

Therefore w'a --> 0. Q.E.D.

Corellary 2: Suppose the linear factor structure (1) holds, except that the
idiosyncratic risks, e,, and the factors, fy, are assumed to be i.i.d.
symmetric stable random variables with characteristic exponent a € (1,2},
then:

[ w1 -->0, and w'x - w'a -L,—> 0 for p € (1,a) ==> w'a -—> 0 ]

<==> a = B"¢ + ¥, and lim“__"-.uqu <=,

1]

where |v]q = (Z2-4|v4[®)*79) and p is such that 1/p + 1/q = 1.

Proof: See Appendix C. Q.E.D.

IV. A Generalized Arbitrage Pricing Theory
In the previous section, we prove the APT under the assumption of i.i.d.
stably distributed idiosyncratic risks, which Is unnecessarily strong. In this

section, we will prove the APT under a more general structure which includes
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the cases of infinite second moments and weak dependence among idiosyncratic
risks. The notion of weak-dependence relation (lacunary system) is introduced

first. The APT is then derived under this more general setting.

IV.A, The Lacunary System

Definition: Given p > 0, a sequence of real-valued random variables {e,} is

called a lacunary system of order p, or an $_ system, if there exists a

positive constant K, such that for any sequence of real constants d,,
E|Z%_ndieq|® £ K (ZP.nd:2)®/= for all n = m,

If the system (e,} is an S, system for every p > 2, then it is called an S.

system (Gaposhkin, 1966). s

The lacunary system has properties that are, in some sense, similar to
properties of systems of independent variables. In fact, we may call it a
weakly dependent system. Here, the given property must be "hereditary" for the
system {e,}, that is, it must remain valid for every subsystem of the given
system. If {e;} is a lacunary system, then It.,d,e, is called a lacunary

series. A few examples may help to clarify the nature of the lacunary systems.

Example 1: If {e,} are independent random variables such that E(e;) = 0 for
all i, and sup,Ele,|® < » for some p > 2. Then {e,} is an S, system.xs
Example 2: Let {e,} be i.i.d. standard normal random variables, then {e,} is
an S, system since E|L¥..dsey | = K,{L2.,d,%)"/2, where K, = E|N(0,1)}|".x2
Example 3: If {e,} are i.i.d. Bernoulli random variables and

P{e =1} = P{e,=-1} = 1/2. Then for every p > 0 there exists a positive
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constant K, such that E|Zf..die,|® < K,(E7-..d:%)®"2 for all n 2 1 and all
ds. Thus {e,} is an S. system. See Khintchine (1924) for a proof. £
Example 4: Suppose that {e:} are i.i.d. with a symmetric stable distribution

and that the characteristic exponent o is between 1 and 2 (1 < a < 2), then

{es} is a lacunary system. Note that expected values exist only when o > 1.
Proof: According to Feller (1971: 171),

E|E3.nds€s|® = (Efam|ds|P)Eies]®,

for all d;, E R™2*, m <n, and 1 < p < a.

Since there exists a positive constant 8 such that

(Z3-m[dy|P)*7® < B(EQ m|dy|®)272, 2
therefore, E{I?.nd:e|® £ Ko(ET_nds®)®72, where K, = OPE|e,|".
Thus, {e,} is a lacunary system of order p. 3
Example 5: Suppose that E{e;)= 0, Var(es)= 1 for all i, and

E(e.ey) = Cov(e,,ey) =n > 0 for i # j,
then {e,} is not an Sz systenm.
Note that the largest eigenvalues of the variance-covariance matrix of {e,}, Q,
is 1 + (n-1)n which diverges to infinity as n --> «.*® Thus {e;} does not meet
Chamberlain and Rothschild's (1983) criteria. However, it can be shown that it

is a lacunary system of order 1.%° 1

18 As n —-> », it is assumed {d,} belongs to R™, an infinite

dimensional complete linear space. Since ﬂdﬂa < |d].. by equivalent norm
theorem {Royden, 1968), there exist a 8 > 0 such that Bﬂdﬂ, > ”d"p, where
d = (d,...do), m € n.

1e The other eigenvalues are all equal to 1-n. See, for example,
Anderson (1971:289).

2o E“Ediei < E(Eﬂdiegﬂ) < Ko Egd1H < Ki(z“diﬂ’)l/“.
where Ko, = max:E eiﬂ < Var(ei"ei=arg{max1"eiu}) = 1< o Ky = BKg.
The last inequality is due to the argument in Example 4.
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IV.B. Lacunary System of Idiosyncratic Risks and the APT: Sufficient Conditions

In this section, we will provide sufficient conditions for the ALPR. The
assumptions (1f) and (1g) in the basic model are relaxed substantially.
The L-type factor structure replaces the linear factor structure [equation set

(1)] of the basic model. We will show that the APT holds in such a more general

factor structure.

Definition: In a L-type factor structure, we have the following linear K-
factor model:

XxX=a+Bf +e,
where {e,} is a lacunary system of order p for some p > 1, and without loss of

generality, a and B are normalized such that E(e) = 0, and E(f) = 0. =

Theorem 1: Given the L-type factor structure, the NACPM implies the ALPR

stated in (3c).

Proof: Setting the portfolio weights, w, as:

W = oo, where r € (1,2] and

[vi~

using the definition of the lacunary system, we can prove this theorem in the

same fashion (by contradiction) as Proposition 2. Q.E.D.

The assumptions used in Theorem 1, E(f) = 0 and E{e) = 0, are rather weak
and innocuous. We do not have to impose restrictions on the form of the
multivariate distribution of (f,e) beyond the requirement that {e:} is a
lacunary system. In particular, neither need f, be jointly independent, nor

need they be independent of the e,. They need not possess variances. None of
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the random variables need be normally distributed. 1In the early APT literature
(Ross, 1976; Huberman, 1982), the assumption of uncorrelated idiosyncratic
risks is guite strong. Chamberlain and Rothschild (1983) introduced the

concept of an "approximate factor structure" to prove the APT with weaker

qualification on the asset return generating process.

However, Grinblatt and Titman (1885) demonstrated that the notion of an
approximate factor structure is not a significantly weaker restriction on the
return generating process than that in Ross {1976) and Huberman (1982). They
argued that "Any economy that satisfies the Chamberlain-Rothschild approximate
factor structure can be transformed, in & manner that does not alter the
characteristics of investor portfolios, into an economy that satisfies the Ross
exact factor structure. This insight also applies to Ingersoll (1984) economy
that yields the equal-weighted pricing bound, ..." (Grinblatt and Titman, 1985,
1369-68). Using a different definition of no-asymptotic-arbitrage condition,
we generalize the APT to allow for the nonexistence of the second moments of
asset returns. In the general model, for example, when p is less than two,
variances need not exist. We can simply model investors' preference as a
function of mean and "dispersion". The latter {dispersion) can be measured in
terms of mean absolute deviation (MAD) or mean of some power (less than two) of
the absolute deviation, instead of variance. The nature of investors' utility
functions is a yet to be resolved empirical issue. Our generalization of the
APT from a restrictive mean-variance framework could be regarded as a real
extension of the APT.

Furthermore, applying Theorem 1, we can easily get Corollary 3, a slightly

more general interpretation of the APT.
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Corollary 3: Given the L-type factor structure, the no-asymptotic-arbitrage

condition:

[ w'1 ~—> 0 and w'x - w'a ~L,.-> 0 ==> w'a ——> O with 1 < r < p ]

implies the ALPR in (3c}.

Theorem 1 shows that the L-type factor structure and the NACPM are the
sufficient conditions for an ALPR. The L-type factor structure is rather
general, though. Result in Lemma 3 will be used in showing this point later.

Lemma 3 also summaries some important properties of a lacunary system.

Leama 3:

(i) Let 0 < g < p. 1If {e,} is an S, system, then it is also an S5 system.
(ii) Let {e;} be a Gaussian system with zero mean. If {e.} is an S, system
for some q > 0, then it is an S. system.

(iii) Let {es} be an S, system for some p 2 2. Let {d,} be a sequence of
real constants. Suppose that ZI7._.d4? < ». Then the series IP_.d;e, converges
in Ly norm. Moreover, E(SUpnam|If_ndiey|P) < =,

Proof:

(i) From HYlder's inequality, E|x{9 < (E|x|®)9"® for 0 < q < p. The result
follows immediately.

{(ii) See Lai and Wei (1983).

{(11i) See Gaposhkin (1968). Q.E.D.

Thus if we restrict the distribution of {e;} to be Gaussian and assume
that {e,} is an S, system for some g > 0. Then we can relax the assumption of

no arbitrage in proving the APT by invoking (i{i) of Lemma 3.
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Corollary 4: Given the linear factor structure (1) except letting {e;} be a
Gaussian system with zero mean and be a S, system for some g > 0,2* then the

no-asymptotic-arbitrage condition: for all w € R™,

w'l >0 and wW'x - w'a -L.->0 forall 1 <r < o

implies the ALPR in (3c).

Unlike Corollary 3, the value of r in Corollary 4 can be any value that is not
less than 1.

The lacunary system may not be a familiar concept to many of the readers.
In Lee and Wang (1988), another structure which is used quite intensively in
probability and statistics literature is introduced. It can be shown that if
{e:} is an L, bounded martingale difference system such that E{e,|e,) = 0 for
all j < i and sup.E|e(|® < «», and if there is NACPM, then the ALFR holds.
However, the assumption of martingale difference system is unnecessarily
restrictive. Here, we propose a general structure, the “"generalized linear
process™, for‘the idiosyncratic risks, and show that the ALPR still holds in

this setting.

Definition: If {u.} is any orthonormal sequence ( E(u,) = 1 and E(u,uy) = 0
for all h # 3 ), the sequence

es = Loi.mog_ oo I¥o_y mipuy, (8)

EX To satisfy this condition, one can just assume e; to be i.i.d.
standard normal random variables.
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is called a generalized linear process generated by {u.} where the My are

constants such that E7_,m;n? < =,2%2 X

The notation, 1.i.m., means limit in quadratic mean (which exists by the
assumption of orthonormality and m,. € 1.). According to Doob {1953), every
wide-sense stationary sequence {e,} can be represented in the form of (8} if
and only if its spectral density is absolutely continuous. If the orthonormal
u, are i.i.d., the convergence in (8) also holds almost surely and the sequence
{es} defined by (8) is called a linear process. We can apply the concept of
generalized linear process to describe the stochastic process of asset returns

as a G-type factor structure.

Definition: In a G-type factor structure, we have the following linear
K-factor model:

X =a+ Bf + e,
where {e,} is a generalized linear process generated by an orthonormal So
system {u,} with p 2 2. Moreover, it is assumed that ess Suposeszf{0) < =

(ess sup = essential supremium), where f is the spectral density of {es}.

l

Without loss of generality, a and B are normalized such that E{e) = 0, and

E(f) = 0.2 :

2z From this definition, it follows that

E(Z%..e4)% = Lf.. (£2_:m;4n%) = o(n®)
and therefore {e,} satisfies the weak law of large numbers: n-'LP_,e, -p-> O.
The definition in (8) also provides an important stochastic model in the
engineering literature, where the sequence {u,} is a white noise sequence and
{ei} is the output sequence obtained by passing {u,} through a linear filter
defined by {m,,} (cf. Kailath, 1974).

23 The sequence {e,} is thus wide-sense stationary and has a spectral
density f.
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Corollary 5: Given the G-type factor structure, the NACPM implies the ALPR in
(3c}.

Proef: It can be proved that {e.} is an S, system with p > 2 (Lai and Wei,
1983, p.189). Then, the corollary can be derived by applying Theorem 1.

Q.E.D.

IV.C. Pricing Error Bound and Dependence Structure of Idigsyncratic Risks

In the above subsection, we examine the trade-off between the constraint
on the factor structure and the no-asymptotic-arbitrage condition in deriving
an approximate pricing relation. From Theorem 1, however, we can conjecture
that the bound on errors in the linear pricing relation depends crucially on
the assumption about the dependence structure of the idiosyncratic risks. The
strength of constraint on the idiosyncratic risks seems to affect the tightness
on the pricing error bound.

To study the relation between the pricing error bound and the dependence
structure of idiosyncratic risks, we need to introduce another concept, the Soa

system.

Definition: The sequence of idiosyncratic risks, {e.,}, is an S,, system if
there exists a positive constant K, for any sequence of real constants d, such
that

E[Zf_sdse:|® < K (3., ]d,|9)r/a for all n 2 1,

where 0 < q < =, 3
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Remark: When q = 2, the S,, system is a lacunary system of order p.

Example 6: Suppose that {e.,} are i.i.d. standard normal random variables.
Since
E|Z7..dye [® = (EX.2da®)®72EIN(0,1)[® < E[N(0,1){P(Tp_,d,>)>"

for some a 2 2. Thus, {e.} is an S.. system. R ]
Example 7: Suppose that {e,} is a sequence of i.i.d. symmetric stable random
variables with characteristic exponent o € (1,2), then according to (iii} of
Lemma 1 (with q = 1), there exists a positive real constant H, such that

E(£3.1]dse,[") < Ho(EP.a(dy|*)® = for p € (a,=).

Thus, {e,} is an S,. systen. %E

Corollary 6: If the sequence of idiosyncratic risks is a Spo system (p > 2;
0 < g < @}, then NACPM implies the following approximate linear pricing
relation,

a = Buc + v, and lim,__._{v|q < =,
where |v|g = (E£f.,|ve|¥)r/=,

Proof: Apply Theorem 1. Q.E.D.

From Corollary 6, we can see that if the sequence of idiosyncratic risks
is a lacunary system (q = 2 ), the bound is expressed in terms of Euclidean
norm, which is the approximate linear pricing relation usually studied in the
literature. If the assumption we make about the idiosyncratic risks is
stronger, a tighter bound is obtained, and vice versa. Theorem 1 is a special

case of Corollary 6.
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IV.D. Necessary and Sufficient Conditions for a General APT

So far we have provided, in several kinds of factor structure, a variety
of sufficient conditions for the ALPR. Now let's turn to the issue of necessary

condition. The derivation of the necessary as well as the sufficient condition
for the general APT has important empirical research implications.=<
First, if the linear pricing model is not supported by the data, then we could
assert that arbitrage opportunities do exist or that the assumption of linear
K-factor structure is not tenable according to the data used in testing the
APT. 1f it is the "arbitrage opportunities” that ruins the ALPR, we might infer
that transaction costs are so large the utility-maximizer are deterred from
taking these advantages. Secondly, suppése that the ALPR holds, from the if-
and-only-if relation we can say there are no arbitrage opportunities in the
economy. In addition, the ALPR can be tested by examining the existence of
arbitrage opportunities. Given the data available, if we can find just one
arbitrage portfolio with zero cost and zero absolute central pth moment (e.g.
variance) has a positive mean, then the hypothesis of linear pricing may be
rejected.

Before stating the formal theorem, we first introduce the concepts of
Banach system and Bessel inequality which are needed in deriving the necessary

condition.

Definition: A sequence of real-valued random variables {e,} is called a Banach
system if there exists a positive constant H such that, for every sequence of

real constants d,,

@4 Testability of the APT has always been a controversial issue in the
literature (Shanken, 1982; Dybvig and Ross, 1985). Strictly speaking, it is not
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E|Zfamdse | 2 H(EP.dy2)272 for all n 2 m . '

Clearly, if {e,} is a Banach system, then for every p > 1, there exists a
H, > 0 such that
E|Lf—mdsies ™ 2 H,(L3..d,2)""2 for all n 2 m
holds for all constant d, (Banach, 1930). A few examples may help the reader to
gain some insight about the nature of the Banach system. They are given as

follows.

Example 8: Let {e,} be i.i.d. standard normal random variables. Then {e,} is a
Banach system since

E|L7.adse;|® = Ho(ED .d, %)
where H, = E|N(0,1)|". i
Example 9: If {e,} are i.i.d. Bernoulli random variables and

P{e,=1} = P{e,=-1} = 1/2.
Then, for every p > 0, there exists a positive constant H, such that

Hp(E3_4d,®)" ® < E|E%.,d4e,|® , for all n > 1 and all d,.

Thus, {e:} is a Banach system. See Khintchine (1924) for a proof. i
Example 10: Let {e,} be an orthonormal sequence. Then {e,} is an S, system
for all 0 < r £ 2. Furthermore, if {e,} is an S, system for some p > 2, then,

as shown by Gaposhkin (1966), {e.} is a Banach system. ¥

Definition: A sequence of random variables {e,} is said to satisfy the Bessel
inequality if there exists M > 0 such that for all constants d,

E|ZTcmdses [® 2 M £2_,.d,% , for all n =z m. s
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Lemma 4: If {ey} is an lacunary system of order p for some p > 2, and if it

also satisfies the Bessel inequality, then {e,} is a Banach system {Banach,

1930).

Proof: The lemma can be proved by using Schwarz inequality, Lyapounov's
inequality and HOider's inequality. For a complete proof, see Gaposhkin

(1966) . Q.E.D.

Definition: The linear factor structure is a B-type factor structure if the
asset return vector, x, satisfies the requirement of a basic linear factor
structure, i.e, condition (1); E(ff') = I.; e and f are independent; and {e,}

is a Banach systenm. 3

Theorem 2: Given a B-type factor structure, the NACPM and ALPR are equivalent.
Proof: Same as in the proof of Proposition 3, by Lemma 2, we have
E{w'Bf|® --> 0 and E|w'e|" --> 0.
Since p 2 2, E|EX  Unfu]® 2 (E|ZEoitnfu|2)P72 = (Z¥_.u.2)"72,
where U, = I%.iW;ibsw. The first inequality is due to Lyapounov.
The Ffact that E|ZE_ Uanfwl|® ——> 0 leads to ZE_ Uae® ——> 0.
Thus, Ug, --> 0 , for all k. (9)
From Lemma 4,
AL(Ef.,w 3)P72 < E|Z0 awye (P --> 0 ==> EZ_,w,® --> 0 . (10)
From (9), we have w'a --> w'v .
Hence, limn__>_ﬂvﬂ< = and (10) imply that w'v —-> 0 by Schwarz inequality.

Therefore, w'a --> 0. G.E.D.

Romanl » Tn Thanrom 2 we Ao not have o acgiime that FI(EF'Y = T Whoan



1 € p <2, a weaker condition that {f.} is a lacunary system of order p would

be sufficient.

V. A Synthesis

In this section, we synthesize the APT literature and demonstrate that
most of the results regarding the ALPR are special cases of Theorem 1, which is
based on the L-type factor structure. Owen and Rabinovitch (1983) proposed a
class of elliptical distributions to describe asset returns. We establish the
validity of the APT when the asset return random variable are elliptically

{spherically) distributed. The proof is a simple application of Theorem 1.

V.A. The APT Literature in Light of the General APT

To prove the APT with correlated idiosyncratic risks (Chamberlain and
Rothschild, 1983; Ingersoll, 1984), we can just apply Theorem 1 with the
assumption that {e,} is a lacunary system with order 2. Note that {e;} do not
have to satisfy the Bessel 1nequality here. The reason is as follow. Because
the condition that {e.} is a Sz system is equivalent to that of

E(Z?_lwiEQ_)a S Kg(:;‘_;W’a) fOI‘ a].l W.au

28 A system {e;} such that the quadratic form IZoi;d;d; is bounded is
called "quasi-orthogonal" (Kac, Salem and Zygmund, 1948). Given any sequence
{e.1} of functions belonging to L* in (a,b), the necessary and sufficient
condition for quasi-orthogonality is that Id,e, should converge in the mean
with order 2 for any sequence {d,} with Zd;2 < =, The necessity follows
directly from Bessel inequality and the sufficiency from the fact that under
the hypothesis of convergence in the mean with order 2, the integral

[ (Ldse, )2dx

is bounded for every sequence {d,} with £d,2 < .
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This is also equivalent to the condition that Hnﬁ is bounded ( 0 is the
variance-covariance of the idiosyncratic risks and ”Oﬁ = sup, W'Ow/w'w ).2°
Chamberlain and Rothschild (1983) assume that only K eigenvalues of the
returns' variance-covariance matrix become unbounded. Stambaugh {1983) assumes
that it is possible to decompose the returns' variance-covariance matrix as
L=BB'+D-A where D is a diagonal matrix with bounded elements and A is
nonnegative definite. Stambaugh (1983, footnote 11) has demonstrated that
these two conditions are equivalent. The assumption of EQH < o < = (Ingersoll,
1984, Theorem 2) for some a > 0 is likewise equivalent. This is shown in

Ingersoll's footnote 8 (1984). We, thus, have the following corollary.

Corollary 7 (Chamberlain and Rothschild, 1983): Given the L-type factor
structure with p = 2, (i.e., the idiosyncratic risks' variance-covariance
matrix, @, is positive semi-definite and its largest eigenvalue is finite),

then the NACQM described in (2')} implies the ALPR stated in (3c).

Definition: Let p be a positive even integer. A sequence of random variables
{es} is said to be multiplicative of order p if E(€i(1,"€s(2)"..."€3¢(py) = O

for all if{1) < i(2) < ... < i(p) (Kolmds, 1972). %

Remark: When p = 2, the multiplicative sequence of order p is reduced to the

case of orthogonal random variables.

28 Suppose x and y € M where M is the space of the nonnegative definite

symmetric matrix space. 1t can be proved that ﬂ ﬂ is indeed a proper norm:
(1) x = 0 if and only if uxu = 0,
(1i)  Jx+y} = |x] + Jy| since g.(x+y) < ga(x) +g.(y),

where g, is the largest eigenvalue of the matrix (Rao, 1973: 68}.
(iii) lax] = |Q|?xu , o is a real number.
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Corollary 7 (Huberman, 1982): Let the sequence of idiosyncratic risks, {e;},
be a multiplicative sequence of order 2 such that sup;E(e,®} < =, then the
NACQM in (2') implies the ALPR in (3c).

Proof: The assumption implies that the sequence of random variables {ey} is

an S, system. Use Theorem 1. Q.E.D.

Remark: Assume that {e,} is a multiplictive sequence of order p (p = 4 and is
an even integer) such that sup.E(|e;|®) < ». Kolmdés (1972) shows that {e:} is
a lacunary system. Furthermore, if inf,E(e,?) > 0 then {e,} satisfies the

Bessel inequality which implies that {e,}) is a Banach system by Lemma 4.

Longnecker and Serfling (1978) show that if p is even and {e,} is a weakly
multiplictive sequence of type A, or B, or C, such that sup;E|e,s |® < «, then
{e.} is an S, system. Therefore, Lo—bounded multiplictive sequences of even
order p are §, systems. A more extensive treatment of this issue is given in

Lee and Wang (1983},

V.B. Non-normality: Elliptical Distributions

Owen and Rabinovitch (1983) proposed to use the class of elliptical
{spherical) distributions to describe the stochastic properties of asset
returns. They show the validity of Tobin's (1958) separation theorem, Bawa's
(1975) rules of ordering uncertain prospects, Ross' (1978) mutual fund

separation theorem and the CAPM in this class of distributions which are
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neither always normal nor necessarily stable.2” They generalized the mean-
covariance matrix framework to a mean-characteristic matrix framework in which
the characteristic matrix is the basis for a spread or risk measure.
Similarly, in the following corollary, the framework of convergence in mean and

variance is generalized to one that is convergent in mean and dispersion in

which dispersion 1s measured by the characteristic matrix.

Corollary 9: Consider the linear factor structure, x = a + Bf + e. Let e and
Bf be elliptically distributed with mean 0, 0 (assuming its existence) and
characteristic matrix Q, BB' respectively. Suppose that jnﬂ < « where BQH =
sup,, Ww'Ow/w'w. Then the no-arbitrage condition:

{w'l --—> 0, w'iw --> 0 ==> w'a --> 0}
implies the ALPR (3c), where £ = BB' + Q.
Proof: Since e is a member of ED,{0,Q), Bf a member of ED.{(0,BB'), then x is a
member of ED.{a,E) (Kelker, 1970). The rest of the proof is similar to Theorenm

1. Q.E.D.

The class of elliptical distributions contains the multivariate normal
distribution as a special case; as well as many non-normal multivariate
distribution such as multivariate Cauchy, the multivariate exponential, the
symmetric stable distribution and non-normal variance mixture of multinormal
distributions. Owen and Rabinovitch (1983) emphasize the potential usefulness

of elliptical distribution in modeling the empirical distribution of

27 With p an n-component vector and £ a positive definite n x n matrix,
we say that the vector x is a member of the class of elliptical distributions
(spherical distributions), ED.{@i,LZ), if and only if the characteristic function
of x Is of the form C,.(t) = ®#(t'IZt)exp(it'p) (Kelker, 1970}.
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speculative prices (returns). Since the shape of elliptical densities is
flexible and allows for fat tails, this class provides a variety of possible

multivariate models for speculative prices (returns).

VI. Conclusion

In this paper, we examined the robustness of the APT with respect to the

assumptions on the factor structure of asset returns. Particularly, we
established the generality of the APT when the idiosyncratic risks are weakly
dependent and/or their second moments do not exist.

We showed that, under the suitable assumptions on the linear factor
structure, if (i) the idiosyncratic risks are independent of the factors, (ii)
the second moments of the factors exist, and {iii) the sequence of the
idiosyncratic risks is a lacunary system of order p for some p 2 2 and If it
also satisfies the Bessel inequality, then the no-asymptotic-arbitrage
condition and the approximate linear pricing relation are equivalent. However,
only ({ii) is needed in showing the nonexistence of arbitrage opportunities as
a sufficient condition for the approximate linear pricing relation.®® The
models of APT in Ross (1978), Huberman (1982), Chamberlain and Rothschild
(1983) and Ingersoll (1984) can be demonstrated as special cases of our general

framework.

2% p can be less than two here (1 < p < =),
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Appendices

Appendix A

Ingersoll (1987) argued that (le) in the text could be achieved through
appropriate choices for a and B. However, it is not quite true by the
following example.

Suppose there are four states (s,, Sa, $a., S4} in the economy. K = 1 and n

= 2. The possible outcomes and probabilities are given as follows.

S, Sa Sa Sa
€1 1 0 0 -1
(= 1 -2 0 1
f 1 -1 -1 1

Prob. % % % %

Thus, E{e,) = E(ez) = E(f} = 0, E(e.f)} = 0, and E{eaf) = 1.

It is obvious that it is impossible to make E(e,f) = 0 by choosing
appropriate B (B is 2 x 1 in dimension in this case). We can show that, in
general, Ingersoll's statement does not hold. The proof is as follows.

Suppose E(e) = 0, E(f}) = 0, then a is fixed. The only choice left to
achieve (le) is B. Equation (la) can be rewritten as

X=4a+BQ3Qf +e =a + B°f° + e,

where B= = BQ~*, f° = Qf, and Q # 0.

E{efe') = E(ef'Q'}) = E(ef')qQ'.

We want E(ef<') to be 0. Now, there are nK equations for K= variables and

K << n, The solution will be inconsistent in general. Q.E.D.
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Appendix B

Proof of Lemma 2:

Without loss of generality assume that the median of Y. is 0.

i

P{|Xa+t¥n|>a} = P{Xa+Yn>a} + P{X.+Yn<-a}

P{&ntYn>0|Ya20}P{Ya>0} + P{X.+Y.<-a|Y.<0}P{Y.<0)

v

v

P{Xn+¥Ya>a|Yn>0}/2 + P{X,+Y,<-a|Y,<0}/2

v

P{X.>a}/2 + P{Xn<-a}/2

P{|Xa|>a}/2.

The last inequality is due to the assumption of independence.

E|Xnt+¥n|®

J; P{|Xn+¥Yn|? > a} da

p IZ a”~2P{ |X.+¥Ya|>a} da

v

p/2 IZ a®~*P{|X.|>a} da

H

E|X.|®/2.

We use Chung (1974:49, E17) to get the first equality and Rohatgi (1976:

86} the second equality. Q.E.D.

Appendix C
Proof of Corollary 2: It suffices to show that Bv!p <= ==> Jv|g <» for 0 <p

< g < =,

M T ‘z(lzllt; yermyaca o (gl Ty a2 g, Q.E.D.
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