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Asymptotic Arbitrage Opportunities and Asset Market Equilibrium

Abstract

In this paper, we show the reason why the absence of asymptotic arbitrage
opportunities in the sense of convergence in quadratic mean {(ACQM) as def ined
in Huberman (1982) is only a necessary condition for an asset market

equilibrium. For certain classes of risk-averting investors, a portfolio that
is not an ACQM may sometimes provide infinitely blissful gratification. These
investors would relentlessly explore such a portfolio and cause market
disequilibrium. Consequently, the APT that is based on Huberman's concept of
arbitrage is not a valid description of the no-arbitrage pricing relation as
other types of asymptotic arbitrage opportunities may exist in the economy. To
resolve this Inconsistency, we replace Huberman's concept of asymptotic
arbitrage (convergence in quadratic mean) with that of convergence in
probability. We show that if the idiosyncratic risks of the linear K-factor
structure are weakly dependent {or, more precisely, the sequence of the
idiosyncratic risks is a lacunary system of order p for some p 2 1), the
absence of the arbitrage opportunities in the sense of convergence in
probability (ACP) implies an approximate linear pricing relation which is
consistent with an asset market equilibrium for a broader class of preferences.
However, there are still circumstances in which the absence of the ACP is not
compatible with the asset market equilibrium. Finally. we claim that the
absence of "asymptotically exact” arbitrage opportunities is consistent with
asset market equilibrium for all risk-averting investors.



I. INTRODUCTION

The arbitrage theory of capital asset pricing was developed by Ross (1875,

1976) as an alternative to the mean-variance capital asset pricing model
(CAPM}. The derivation of market equilibrium condition in the CAPM depends on

specific assumptions about the investors' utility function. However, Huberman

(1982) suggested a definition for "arbitrage" and proved the arbitrage pricing
theory {APT) without referring to the investors' utility function.®* Huberman's
approach, the so-called "arbitrage derivation”, became the commonly accepted
framework for analyzing the APT in the literature. Since the APT depends only
on the absence of arbitrage with this approach, it seems that the APT should
also requires less structure on preference than the CAPM.2 In this paper, we
demonstrate the importance of considering investors' preferences in deriving
the APT with "arbitrage" approach.

It is well known that the no-arbitrage pricing relation is only a
necessary condition for an asset market equilibrium. The no-arbitrage

condition in Huberman (1982) does not imply the nonexistence of arbitrage

1 vaprbitrage" in this paper should always be interpreted as an
asymptotic-arbitrage unless otherwise stated.

2  Jarrow {(1988) provided conditions on preferences and market structures
that imply the no-arbitrage condition (Condition i in page 116) are sufficient
to derive the APT. He showed that only mild restrictions on preferences and
market structures are needed to obtain the APT. One natural question to ask is
what would happen to his result if the no-arbitrage condition is defined in
terms of other mode of convergence Instead of convergence in quadratic mean.
Jarrow's condition is stronger than the convergence in guadratic mean no-
arbitrage condition. In this paper, we provide other types of no-arbitrage
conditions which are also stronger than the convergence in quadratic mean no-
arbitrage condition, but in a different way. While Jarrow examined the
structure of preferences for a given no-arbitrage condition, our purpose is to
find a definition for the no-arbitrage condition so that portfolios of assets
satisfying this condition will provide no free lunches to any investors with
increasing and concave utility functions. These twoc papers can be viewed as a
set of complementary pieces.



opportunities in a broader sense, which, in turn, does not always indicate
asset market equilibrium. In this paper, we will establish the relation between
no-arbitrage condition and asset market equilibrium using two types of risk-
averting investors who derive an infinitely large utility from a costless
portfolio with a non-zero variance in the limit.® If these two kinds of

investors exist, then the absence of arbitrage opportunities in the sense of
convergence in quadratic mean does not imply an asset market equilibrium.
Hence, the approximate linear pricing relation derived from the APT using
Huberman's concept may not be consistent with market equilibrium.

We also tentatively investigate the no-arbitrage condition that avoids the
above-mentioned situation for certain investors (Type 1) by making the no-
arbitrage condition somewhat more restrictive. Moreover, we are able to, under
this stronger no-arbitrage condition, relax the assumptions on the
idiosyncratic risks in the proof of the APT. However, the problem of
inconsistency with market equilibrium persists when we consider the other type
of investors (Type II). Finally, we suggest a no-arbitrage condition that
conforms to market equilibrium for all risk-averting investors. The validity of
the APT in such a setting is apparent since a stronger assumption is used.

In this paper, we consider a market in which a countable number of assets
are traded. The price system is normalized by assuming each asset costs one
dollar. The assets are arranged in a sequence. We shall look at what happens to
various objects as n increases to infinity. We also assume that preferences can

be characterized by an expected utility function.

= gbviously, this portfolio does not satisfy the condition of arbitrage
defined bv Huberman .



The rest of paper is organized into three sections. I[n Section II, we use
two examples to illustrate that the relation between the no-arbitrage condition
and market equilibrium depends on the utility function of the investors. In
Section III, we relax the assumptions on the linear factor structure, but
tighten the restrictions on the no-arbitrage condition.® We then establish the

APT under this new setting. Moreover, conditions for the consistence between
no-arbitrage and market equilibrium will be provided. Section IV concludes

this paper.

II. ARBITRAGE OPPORTUNITIES AND ASSET MARKET EQUILIBRIUM
I1.1 The Basic Model

Basically, the APT is composed of three elements: the linear K-factor
structure, the no-arbitrage condition, and the approximate linear asset pricing

relation. The linear K-factor structure of asset return, x, is described as

follows,
x=a+Bf + e (1a)®
E(e) = 0 (1b)
E{f) = 0 (1c)
E(ff') = I (identity matrix of rank K) (1d)
E(ef') = 0 (n x K matrix) (1e)
E{(ee') =D (D is a diagonal matrix) (1f)

1,'D1; < 0% < » for all i, where 1; is the i*" cclumn of

4 PFor example, the variances of idiosyncratic risks may not be finite.

B In this paper, x, f, and e are random. Moreover, x, a, B, f, and e all
depend on n. To simplify notations, we omit the labels of randomness and the
subscripts for sequential indices.



an identity matrix with rank n. (1g)

The vectors x, a, and e are each n x 1 in dimension and represent the realized
returns, expected returns and {(nonobservable) "residual" portions of the
returns, respectively. The e;, which is often called idiosyncratic risk or

residual in the literature, measures the uncertainty unexplained by the common
factors. The expected return of i*™ asset, a,, is assumed to be bounded for all
i. £ is a K x 1 vector of nonobservable values of the common factors. The
second moment of f, is assumed to exist for all k. B is the n x K matrix of
bounded factor loadings, i.e.,|bswx| < = for all i and k. D is the n x n
positive definite diagonal variance-covariance matrix of the idiosyncratic
risks. The i*" diagonal element of D is denoted as o.®.

Following Huberman (1982) and Ingerscll (1984), asymptotic arbitrape is

defined as follows:

Definition: Arbitrage in the sense of convergence in gquadratic mean

{hereafter, ACQM) is the existence of a subsequence n of arbitrage portfolios,

win), n =1, 2, ... , whose returns z({w(n)) satisfy
win)'1(fi} = 0, (2a)
E z(w(n)) = wi{h)'a(il) > m > O, (2b)
vVar z{(w(fi)) = w{f)'E(f)w{h) -~--> 0 (2c)

where IZ(n) = B(n)'B(n) + D(n), and 1 is a coiumn of 1s. H

Condition {2a) indicates a zero-cost portfolio, condition (2b) means that the
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portfolio has a positive expected return, and condition (2¢) signifies that the
portfolio has a zero variance random return in the limit.
The Arbitrage Pricing Theory asserts that if the returns on the risky

assets are given by the linear factor structure described in (1), and there are

no asymptotic arbitrage opportunities as defined in (2), then there exists an

approximate linear pricing relation which gives expected returns with finite
sum of squared pricing errors. In other words, for n = 1, 2, ... , there exist
Co, €1, C2, ... , Cx such that
lim,__..|a - B7¢c}® < =,

where ¢' = ( Co €Cs Ce ... Cx ), B*= (1 B}, 1 is a column vector of 1s,
and a, B, and ¢ all depend on n.

In next subsection, we show that absence of the arbitrage opportunities
defined by Huberman (1982), ACQM, does not always indicate nonexistence of

other types of arbitrage opportunities.

I1.2 Some Examples of Market Disequilibrium

Before showing the inconsistency between the absence of ACQM and the asset
market equilibrium, it is worthwhile to mention that Huberman (1982) noticed
that one needs to make assumption on agents' preferences in order to relate
existence of equilibria to absence of arbitrage. However, his statement that
"... a result of the type 'no arbitrage implies a certain behavior of returns'
should involve no consideration of preference structure of the agents involved"
(Huberman 1982:P.190) is rather ambiguous. He did not fully explore this issue.
Huberman gave two examples showing that arbitrage portfolios which satisfy (2)

are not desirable for some expected utility maximizers. In other words, {2)

does not suffice to assert that lim ..... E u(z(w(fi))) = U(+«) for all monotone



utility functions u. In the first example, he assumed a CRRA-like utility
function: u(x) = -1/x for x > 0 and U(X) = -= for x < 0, whereas in the second
example he assumed a CARA utility function (of exponential type). When these

two types of investors spot an ACQM, they are so repelled by it that they would

rather die (if death is the ultimate sufferance) than touch it. General

conditions which asserts that (2} implies u(z(w(i))) = U{+=) are not known.
Jarrow (1988) provided sufficient conditions on preferences and market
structure for the APT pricing relation to hold. Jarrow also showed that his
Proposition 3 includes as a special case the conditicns on preferences
contained in Ross (1978).°

On the other hand, if there is a subsequence n* of arbitrage portfolios,
w(n™}, n" =1, 2, ... , whose return z(w(n")) does not satisfy (2), does this
mean that no one is going to have infinite utility levels? In this subsection,
we show that the portfolio satisfying the Huberman's condition of no-arbitrage
may actually give rise to an infinite level of utility for some risk-averting

investors.

Example 1 : Suppose we have a sequence of random arbitrage portfolio returns z_,
with outcomes { 1-n, 1, 1+n } and with probabilities { n-%, 1-2n-2, n-* 1.
This portfolio does mot provide an ACQM because

E{(zn) =1 > 0,

Var(z,) --> 2 # 0. T

® Ross (1976) showed that if the investor's utility function is strictly
increasing, concave and bounded below or uniformly integrable, then the utility
function will imply u(z(w)) = U(+=). However, Ross' argument applies only to
the random variables converging to zero in quadratic mean. He did not
generalize his results in Appendix 2 to other modes of convergence.



Case 1, Type I Investor: Consider an investor with a concave utility function,

I .87 .i.f z 20
u(z)= ﬁ (3)
- Z

ifz <0

The expected utility of Type I investor is

E u{zn) = (1-n)*1/n®* + .8*(1-2/n®) + .8*(1+n)*1/n®

= .8 -1.8/n + 1.8/n® ——> .8.

The arbitrage portfolio is of zero cost and can be scaled up to any level.
If we scale up the above portfolio by n*“2, then
E u(z,') = .8%n*72 - . 2/n*® + .2/n**® --> ® as n -~> «,
Hence, a portfolio that does not offer an ACQM turns out to be a golden chance

for Type I investor. 'Y

Case 2, Type II Investor: Consider another class of investors whose utility

function is described as

z27% — 4/27 if 8/27 < z
u(z) = z if -4/9 < z < 8/27 (4)

-(-z)}®/= -4/27 if z £ -4/9.

This utility functlon is concave. In fact, it is strictly concave except for
the segment between -4/9 and 8/27. The values of flexing points are assumed for

convenience and are not crucial to the result here. Nevertheless, we have
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E u(za) = [(1+n)2/3-4/27]%n-2 + 23/27*(1-2n°2) - ((n-1)®7®+4/27]*n-2
--> 23/27 > 0.
If we scale up the portfolio by n*/*, then
E u(zan') = [n*/8(1+n)2/3-4/27]%p-= 23/27%n*/**(1-2n-2)
= [n*7®(n-1)>"2+4/27)%n-2
-=->® asn --> .

Here again, the portfolio that is not an asymptotic arbitrage opportunity in

Huberman's sense is a fantasy-comes-true to Type IT investor. x

The existence of Type I and Type Il investors in an economy poses a
serious problem to the consistency of the APT derived from Huberman's approach
with market equilibrium. If the above-mentioned portfolio is an enrapturing joy
to Type I and Type II investors, they wili seize and explore this
"opportunity”. Since this portfolio requires zero investment, nothing can hold
off these investors' relentless pursue of happiness. Hence, absence of ACQM
does not imply asset market equilibrium condition. Consequently, the APT that
is based on Huberman's concept of arbitrage may not be a valid description for
the equilibrium asset pricing behavior if there are Type I and Type II
investors in the economy. In next section, we will provide alternative

definitions of arbitrage to see if they can accommodate these two kinds of

investors.

ITT. ALTERNATIVE DEFINITIONS OF THE ARBITRAGE OPPORTUNITIES

In this section, we first provide a new definition of arbitrage and show
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that the APT holds with respect to this more general arbitrage condition.”
Then, we will examine the robustness of this condition with respect to Type I
and Type II investors. Finally, a no-arbitrage condition that would be

consistent with asset market equilibrium with respect to all risk-averting

investors is given.

IT1.1. The Setup

Definition: Arbitrage in the sense of convergence in probability (ACP) is the

existence of a subsequence f of arbitrage portfolios, w{i), fi =1, 2,

whose returns z{w(fi)) satisfy

w(i)'1(f) = 0 (5a)

E z(w(fi)) = w(d)'a(i) >m > 0 (5b)

z(w(fi)) -p-> w(i)'a(d), i.e., plim z(w(A)) = w(h)'a(d). (5c)®
where -p-> denotes convergence in probability. .

While Huberman's arbitrage is defined in terms of convergence in quadratic
mean, condition (5c) is defined in terms of convergence in probability. Note
that convergence in quadratic mean always implies convergence in probability,
but not vice versa: condition (5c) is weaker than condition (2c). Thus the "no-

arbitrage" condition based on the concept of ACP is stronger than the "no-

7 The more general arbitrage condition implies the more restrictive no-

arbitrage condition In proving the APT. However, the assumptions about the
linear factor structure can be relaxed as shown in next subsection.

- In this paper, we will state the no-asymptotic-arbitrage condition as
follows. The nonexistence of ACP means that when there is a portfolio with
zero cost and its random return converges to zero in probability, its expected
return must also converges to zero, i.e., for all w, € R™, W.'l, --> 0 and
Z(Wa) -p-> w.'a, ==> w,'a, --> 0. This is true by simple logic: not{ A and B )
= (A==>notB).
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arbitrage" condition on that of ACQM. It is not difficult to envision that
using (5) can accommodate a more general class of risk-averting investors.
Although a stronger structure is imposed on the no-arbitrage condition, yet we
may relax the assumption about the idiosyncratic risks in the linear factor

structure by applying the concept of weakly dependent relations among the

random variables. Specifically, we will assume that the sequence of

idiosyncratic risks is a lacunary system of order p with p 21,

Definition: Given p > 0, a sequence of real-valued random variahles {e,} is
called a lacunary system of order p, if there exists a positive constant Ko
such that for any sequence of real constant d,,

E|Lfomdies [P < K, (L£7_.d.?)°’2 for all n 2 m,
If the system {e,} is an S_. system for every p > 2, then it is called an S_

system. ¥

The lacunary system has properties that are, in some sense, similar to
properties of systems of independent variables. Probably we may call it a
weakly dependent system. If {e,} is a lacunary system, then Z7_.d,e, is called
a lacunary series. This concept is discussed in detail in Gaposhkin {1966) and
Lai and Wei (1983). It can be shown that both seguences of i.i.d. normal random
variables and the 1.i.d. Bernoulli random variables are examples of lacunary
system, and the assumptions on the idiosyncratic risks in the linear factor
structure used by Chamberlain and Rothschild (1983) and Ingersoll (1984) are
all special cases of a lacunary system. Wang and Lee (1988) provided extensive
discussion on a general theory of arbitrage pricing when the sequence of

idiosyncratic risks is a lacunary system of order p for some p 1.
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Proposition 1 : If the returns on the risky assets are given by a K factor
linear structure, where the sequence of residual risks, {e,}, is a lacunary
system for some p > 1, then the absence of ACP implies an approximate linear
pricing relation, i.e., there exist a column vector ¢' = ( Co €3 Cg ... Cx }

such that lim,... #-“a - B"‘cj2 < «, where j | denotes the Euclidean norm.®
Proof:

Projecting the vector a into the space spanned by the matrix B and vector
1, we have

a =B +v, c €R“**, and B"v = 0.

Consider an arbitrage portfolio w, such that

w = A where r € (1, 2]

Vi S

whose return, z(w), is

z(w) = VX = 1 (v'a + v'e).

R

Hence, the expected return, E z(w) is

vi-
By Markov inequality,
P( [z(w) - wa] >d )

E z{w) = = UVu““'.

_ ]
< .E (|z(u)dp ®217) | for some d > 0 and 0 < P < w.
] sa
< Kp(wd:)“ - (Kp/dp)(ﬂvla_ar)p/a -—> 0 for some Kp < ™,

The last inequality follows from the assumption that {e,} is a lacunary system

of order p.

bt When p < 2, the condition used here is weaker than those used by

Ingersoll (1984) and Chamherlain amd Datho b 2713 4mem-
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If limnmwa,ﬂvﬂ is not finite, then the expected return remains a positive

i

number while z{w) converges to a positive number in probability which violates

the assumption of no-arbitrage. Therefore, lim,.,".,m,_uv[l2 < o, Q.E.D.

III.2. Some Investors' Poison, Others' Meat

[t is obvious that the random portfolio return in Example 1 converges to
in probability. Hence, although the portfolio is not an ACQM, it is an ACP.
Consequently, by ruling out the ACP, we may be able to restore consistency in
Some cases,

Even though the new definition of arbitrage eliminates the inconsistency
between the no-arbitrage condition and market equilibrium condition
demonstrated in Example 1, the problem is not completely resolved. Example 2
shows that a portfolio that is not an ACP can nevertheless make Type I

investors ecstatic if its random return has some special stochastic structure.

Example 2: Let {z.} be a sequence of random arbitrage portfolio returns with
outcomes
{{1-n)/n, 1/n, (1+n)/n} with probabilities {1/4 - 1/n, 1/4 + 2/n, 1/2 ~ 1/n°’.

The mean and variance of this portfolio are:

E(z.,) (1 + n/4)/n ——> 1/4,

I

Var(z,) (11/16*n® - 2n) --> 11/16 # 0. 3]

The portfolio returns, z™, does not converge to E(z,) in probability. Hence,

this portfolio is not an ACP.

Case 1, Type I Investor: Let
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.82 ifzz2o

Lz ifz<9o

E v(z,)

i

{{1-n}(1/4-1/n) + .8(1/4+2/n) + .8(1+n}(1/2-1/n)}/n

H

{3n/20 +37/20 -9/(5n)}/n

--> 8/20.
If we scale up the above portfolio by n, then E u(z,) --> . Thus this

portfolio is in fact a fantastic opportunity to Type I investor. ie

Case 2, Type II Investor:

- Z® /3 _ g4/29 if 8/27 < z
uf{z) = Z if -4/9 < z < 8/27
- —{-z)=272 - a/27 if z < -4/9

E u{z,) = f({ltn}/n)2/3-4/271(1/4-1/n) + (1/n)(1/4+2/n)
= [{{n-1}/n)="2+4/27](1/2-1/n) for n > 4,
--> - 13/386,
If we scale up the above portfolio by n, then E u{z,) --> - =. This portfolio

is indeed an awful choice to Type Il investor. ]

Example 2 articulates that a portfolio which provides no ACP might be some
investors' poison, but the others' meat. The ruthless wealth pursuit of the
Type 1 investors would make the absence of ACP inconsistent with asset market
equilibrium. Next, we attempt to provide a definition of "no-arbitrage" that is

consistent with market equilibrium for all risk-averting investors and for all
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asset return distributions. We will also discuss the validity of the APT in
such a setting. In fact, a stronger pricing relation is obtained.

The no-arbitrage condition that is consistent with market equilibrium for

all investors must satisfy the following requirement:

For any sequence of asset returns {x:}%.. and for any
increasing and concave utility functions, u,, when w'l --> 0
a@s n goes to infinity, E{uy(I + Wn'Xa)} -<> a € uy (1) for
all j, where I denotes the nonrandom initial wealth.

The absence of the asymptotically exact arbitrage opportunities defined below

satisfies this requirement,

Definition: The asymptotically exact no—arbitrage condition requires that
whenever a zero-cost portfolio has no systematic risks in the limit, its
expected returns must alsc converge to zero.

Formally, for all w, € R®,

Wa'l, = 0 and w,'B, --> 0 imply that w,'a, --> 0 (6)

Since for all concave utility functions, condition (6) implies E{u(I + “,'x.)}

S u(l + E{w.'x,}) -—> u(I), the portfolic that satisfies the asymptotically

exact no-arbitrage condition should not get any risk-averting investor excited.
Propogition 2 examines the validity of the APT under the asymptotically

exact no-arbitrage condition.

Proposition 2: Assuming that (1a) through (le) holds. The asymptotically exact

no-arbitrage condition in equation (8) is a sufficient condition for the
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= (Co €1 Ce ... ©x ) such that BT . fa - B‘cu = 0, where | | Is the

Euclidean nornm.
Proof: Project a into the Space spanned by B and 1. Thus
a =B +v, and B™v = 0, where B" = (1 B).

Consider a portfolio w = v. The expected return is v'a = v'v which must

converge to zero. Q.E.D.

In fact, with a stronger "exact no-arbitrage" condition that,

for all w, € R=,

¥.'l, =0 and w,'B, = 0 imply that w,'a, = 0, (7)

it is easy to see that this no-arbitrage condition is a necessary and
sufficient condition for the "exact arbitrage pricing", i.e., there exists a
column vector c, such that a, = B."c...

From the above discussion, we know that if we adopt (8) as our definition
of no-asymptotic-arbitrage, no investor with increasing and concave utility
functions are able to choose any zero-cost investment opportunity to increase
their utilitijes.® Hence, under the condition of nonexistence of asymptotically
exact arbitrage opportunities, there is no free lunch for any risk-averting
investor in the limit. Proposition 2 says that, in this tase, we can get an
asymptotically exact linear pricing relation, a much stronger result, The

linear pricing relation based on this no arbitrage condition is consistent with

9 Condition like w.'l, —> 0 ==> w.'a, --> 0 will serve the same
purpose. However, the above condition implies that the exact 1inear pricing
relation holds asymptotically with risk premium vector belnge equal ta 0
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the market equilibrium, where the market is composed of all kinds of risk-

averting investors.
Up to now, we have discussed the APT derived from the "arbitrage”
approach. This method was adopted by Huberman (1982), Chamberlain and

Rothschild (1983), Stambaugh (1983) and Ingersoll (1984). There is another

approach -- the "equilibrium” derivation of the APT —- which is also widely
adopted in the literature (Connor, 1984; Dybvig, 1983; Grinblatt and Titman,
1983; Chen and Ingersoll, 1983, and Cragg and Malkiel, 1982; Chamberlain,
1983). For example, Connor (1984) demonstrated that if the market portfolio is
well diversified, every investor would then hold a well diversified portfolio.
This and the first order condition of any investor imply asymptotically exact
arbitrage pricing in a competitive equilibrium. Chamberlain (1983) argued that
the asymptotically exact arbitrage pricing obtains if and only if there is a
well diversified portfolio on the mean-variance frontier. Also, Chen and
Ingersoll (1983) showed that in a finite economy if a well diversified
portfolic exists and it is the optimal portfolio of some utility maximizing
investor, then the first order conditions of that investor imply exact
arbitrage pricing. Of course, the equilibrium derivation of the APT won't
encounter tﬁe problem discussed in this paper. Thus, if we intend to use the
arbitrage approach to derive the APT, at least, we can make the assumption
employed by Connor, Chamberlain and Rothschild, and Chen and Ingersoll.
Ideally, we had better find conditions on preferences that are consistent with
the no arbitrage condition in terms of each mode of convergence in proving the
APT. This is, however, beyond the scope of this paper.

Dybvig and Ross (1985), in a state preference framework, show the

equivalence between absence of "arbitrage" and equilibrium (existence of an
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optimal demand for some agent who prefers more to less). In the same paper,
they claimed that there is no substance in the distinction between the
equilibrium derivation of the APT and the arbitrage derivation, It seems that

their result and ours are contradictory. This discrepancy comes from the fact

that Dybvig and Ross assumed a state preference framework with finite number of

assets and states and finite-valued outcomes. This paper suggests that their

result may not carry over to an economy with infinite number of assets and

states and infinite-valued outconme .

IV. Conclusion

For certain classes of risk-averting investors, a portfolio that offers no
ACQM may sometimes provide infinitely blissful gratification to some investors.
These investors would explore such a wonderful opportunity and cause market
disequilibrium. Consequently, the APT based on the Huberman's concept of
arbitrage may not be a valid description of equilibrium pricing behavior in
some circumstances,

To resolve this inconsistency, we employ a new definition of apbitrage.
Instead of defining the arbitrage in terms of convergence in quadratic mean, we
define it in terms of convergence in probability. If the sequence of
idiosyncratic risks is a lacunary system of order p for some p > 1, the absence
of ACP implies an approximate linear asset pricing relation. Although this new
definition of arbitrage can accommodate a larger class of risk-averting
investors, there are still circumstances in which the concept of ACP is

inconsistent with the asset market equilibrium.
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Finally, we defined an asymptotically exact no-arbitrage condition which
is consistent with asset market equilibrium for all risk-averting investors.
Under such a stronger condition of no-arbitrage, the "asymptotically exact"
linear pricing relation holds. However, the asymptotically exact no-arbitrage

condition may be too strong to describe the asset market behavior in the real
world.

In this paper, we used several examples to examine the usefulness of
alternative definitions of arbitrage. Unfortunately, we did not fully
characterize the class of utility functions that is consistent with each

definition of arbitrage. This should be an exciting challenge for future

researchers,
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