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Abstract

ADVERSE RISK INCENTIVES AND THE DESIGN OF PERFORMANCE-BASED CONTRACTS

In this paper, option pricing theory is used to value and analyze many
performance-based fee contracts that are currently in use. A potential
problem with some of these contracts is that they may induce portfolio

managers to adversely alter the risk of the portfolios they manage. This

paper is prescriptive, in that it derives conditions for contract parameters
that provide proper risk incentives for classes of investment strategles.
For buy-and-hold and rebalancing strategies, adverse risk incentives are
avoided when the penalties for poor performance outweigh the rewards for

good performance.



In late 1985, the Securities and Exchange Commission approved the use of
performance-based fees for portfolio managers. They were also approved by
the Department of Labor in August 1986 for ERISA governed pension funds.
Since then, performance-based contracts, which reward portfolio managers on
the basis of their portfolic return relative to the performance of a
benchmark portfolio, (typically the S&P 500), have become increasingly

common, Currently, billions of dollars in pension fund assets are being

managed under these contracts. Proposals that are currently being consi-
dered indicate that this amount will shortly grow to hundreds of billions of
dollars. It is not surprising, then, that the proper design of these
contracts is a major concern of the pension fund industry.

The focus of this paper is on performance-based fee contracts that are
currently in use. Hence, rather than solving for the optimal design of
contracts in general, we analyze the selection of parameters for observed
classes of contracts.2 The analysis shows that if the parameters for these
contracts are not properly chosen, the portfolio manager might face incen-
tives to alter the risk of the managed portfolio to a level that would be
detrimental to the welfare of his clients,

The risk-incentive problems are analyzed within an option pricing
framework. We show that performance-based contracts provide portfolio
managers with the opportunity to earn a fee that is equivalent to the payoff
on a portfolio of European options. The options arise because these
contracts have a floor on the manager's compensation, (the base fee), and
sometimes a ceiling as well, (referred to as the cap).

The underlying asset of these options is typically the difference between

the value of the managed portfolio and that of a comparison or benchmark



portfolio. Since option values are sensitive to the risk of the underlying
asset, the portfolio manager can control the present value of his fee by
altering the risk of his portfolio. For fee contracts that lack a cap on
the performance-based fee, the present value of the fee monotonically
increases as the beta of the portfolio deviates from one and as the unsyste-

matic risk of the portfolio increases. Hence, the contracts can provide an

incentive to the manager to deviate from the level of systematic and
unsystematic risk preferred by the client, regardless of the client’'s risk-
preference. Depending on their design, contracts that include caps may also
have these "adverse risk incentives." One contribution of this paper is
that it delineates necessary and sufficient conditions for selecting
contract parameters that induce proper risk incentives for classes of
investment strategies.

These issues may also be relevant when the manager’s current fee is
independent of the fund's performance. We argue that for these cases,
multiperiod reputational considerations may make the manager’s current plus
future fees a convex function of his performance in the current period.
This convexity property, which induces the incentive to increase risk, will
hold if the future benefits from performing well outweigh the losses from
performing poorly.

The presumed motivation for offering performance-based fee contracts is
to create incentives for the manager to use superior information for the
benefit of the fund. However, the results in the paper apply both to
portfolio managers with superior information and to portfolio managers with
no better information than "the market." In particular, we show that for

certain classes of portfolio strategies, informed portfolio managers select



the same portfolio as uninformed portfolio managers if the realized fee can
be hedged in the manager's personal portfolio. This result, which is a
simple extension of Fisher separation, suggests that effective portfolio
management contracts may require implicit or explicit restrictions on the
manager's personal portfolio.

The adverse risk incentives are first illustrated for a simple perfor-

mance-based contract in section I of the paper. Section II derives condi-
tions for the construction of more complicated performance-based contracts
that do not offer incentives to substantially alter the risk of the managed
portfolio. Section III analyzes the robustnmess of our findings. In
particular, it focuses on systematic risk, unsystematic risk, multiperiod
reputation considerations, and dynamic portfolio strategies (some of which,
in the absence of transaction costs, earn the maximum fee with probability
one, irrespective of contract design). This section also discusses a
similar risk incentive in corporate finance, the bondholder-stockholder
confliet, and contrasts our contractual solution with those proposed for
this other problem. In Section IV, we show that informed managers and
uninformed managers place the same value on every portfolio strategy. The
section also discusses contractual covenants that may induce an informed
manager to use superior information in managing the portfolio. Section V

briefly concludes the paper.

I. SIMPLE FEE CONTRACTS
The simplest performance-based contract has two features: a base fee and
a bonus based on the degree to which the managed portfolio’s return exceeds

the return of some benchmark. The realized value of this contract, with
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units expressed as fractions of the net asset value of the fund at the

beginning of the evaluation period, is represented by the expression

F= B + max[0, m(fip - Rs)], where (1)
B = base fee
m = fraction of the return of the fund in excess of the benchmark return
awarded to the manager as a bonus for good performance,
RP = return of the managed portfolio in the evaluation period, and
Rs = return of the benchmark portfolio used in the evaluation period.

The bonus portion of the contract can be viewed as offering the manager a
menu of options, each corresponding to a different portfolio that he might
choose, Each item in the menu consists of m European options to exchange
the manager’s portfolio for the benchmark portfolio.3 Diagram 1, which
illustrates this, plots the contract's percentage reward to the manager as a
function of the difference between the return of his portfolio and the
return of the benchmark.

Since the value of an option is related to the volatility of the underly-
ing security, the present value of the fee contract must be related to the
volatility of the combination of a long position in the managed portfolio
and a short position in the benchmark. This, in turn, is affected by the
risk of the manager’s portfolio. An analytic solution for the present value
of the fee can be obtained if assumptions are made about the manager's
investment strategy. Consider, for instance, a manager with a buy-and-hold
strategy in the benchmark portfolio and a risk-free asset. Let g with g8 > 1
denote the fraction of the initial net asset value of the fund invested in
the benchmark, (or equivalently, his portfolio beta when measured against
the benchmark). The fraction § - 1 of the fund’s net asset value is then

borrowed at the risk-free rate to finance the riskvy equity purchase,



DIAGRAM 1

MANAGEMENT FEE AS A FUNCTION OF THE RETURN OF THE PORTFOLIO
IN EXCESS OF TUE RETURN OF THE BENCHMARK PORTFOLIO

Fee




implying that

Rp - ﬁRs + (1 - ﬁ)Rf.
Substituting this into equation (1) yields

F=3B+mn(g - 1)max(0, Rs - Rf). (2)
For # <1, (i.e. the fund is long in the risk-free asset), it becomes

F=5B+m(l - g)max(0, Rf - RS). (3)

Equations (2) and (3) are plotted in Diagram 2 for various values of 8.
Increasing the leverage of the managed portfolio when B exceeds one (or
increasing the long position in the risk-free investment for g < 1) implies
that the fee structure has more call (put) options implicit in the payoff.
Since call (put) options always have positive value, as the manager increa-
ses the leverage (the risk-free position) of his portfolio, he increases the
present value of his fee contract.

If he desires, the portfolio manager can capture the value of these
options risklessly by hedging in his personal portfolio. For a portfolio
with a beta that is greater (less) than one, he merely needs to write call
(put) options on a one dollar investment in the benchmark with striking
prices equal to one plus the risk-free rate. The number of options he
writes is the product of m, the absolute value of 8 - 1, and the initial net
asset value of the fund. Since these should be European options, this hedge
is only approximate if the manager uses currently traded American index
options. However, he can perfectly hedge his fee with dynamic positions in
these options or in index futures. (Note that this would be somewhat more
difficult if options on the benchmark or some portfolio that is highly
correlated with the benchmark are not traded, as would be the case for some

less traditional benchmarks.)



DIAGRAM 2
MANAGEMENT FEE FOR VARIOUS PORTFOLIOS OF THE
RISK-FREE ASSET AND THE BENCHMARK
AS A FUNCTION OF THE RETURN QF THE BENCHMARK

Panel A: Leverage Positions in the Benchmark
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Panel B: Portfolios with Long Positions in the Risk-Free Asset
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II. COMPLEX FEE CONTRACTS

Most performance-based fees are more complex than those examined in the

previous section. They often include caps on the maximum fee and bonuses
that are triggered when the portfolio return exceeds the benchmark return by
a hurdle amount H, which can be either positive or negative. For example,
if H is 2%, the manager earns the base fee unless his returns are more than

2% greater than the benchmark return. The manager then keeps the fraction m
of the returns in excess of the 2% hurdle up to the cap, if one exists.
Contracts with a negative H can be thought of as having a penalty for
performance below the benchmark return. -H is then the minimum difference
between the benchmark return and the portfolic return that results in the
maximum penalty.

This more general contract is represented by the formula

F=38B+m (min [max(O0, f{p - Rs - H), (C - By/m)]},

= B + m [max(0, Rp - RS - H) - max(0, RP - Rs -H - (C - BY/m)], (&)

where

H = hurdle point that triggers the bonus and

C = the cap on the performance fee, which exceeds B,
This contract is plotted for both positive and negative hurdles in Diagram
3. Note that the contract without the cap is a limiting case in which the
cap, G, approaches :i.nfi_nity.[IL Note also that H + (C - B)}/m, which we
henceforth denote as Q, should exceed zero. Otherwise, this is a trivial
problem: The manager earns the cap by purchasing the benchmark portfolio.
Q is the minimum amount by which the return of the managed portfolio must
exceed the return of the benchmark in order for the cap to be binding.

Various subsets of the following assumptions will now be made to allow a



DIAGRAM 3

MANAGEMENT FEES WITH CAPS AS A FUNCTION OF THE RETURN OF THE PORTFOLIO
IN EXCESS OF THE RETURN OF THE BENCHMARK PORTFOLIO

Panel A: Positive Bonus Trigger Point

Fee
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Panel B: Negative Bonus Trigger Point
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tractable analysis of the adverse risk incentives that are associated with
more complicated performance-based fee contracts. Later sections of the
paper examine the robustness of the results to relaxations of these assump-

tions.

Assumption 1: The manager follows a buy-and-hold strategy for the duration
of the evaluation period. His portfolio has the fraction B invested in the
benchmark portfolio and the fraction 1-8 invested in the risk-frge asset,
where the risk parameter 8 is selected by the portfolio manager.

In a later section, we employ an alternative assumption.

Assumption 1’: The value of the managed portfolio is generated by a station-
ary geometric brownian motion process, (i.e. the portfolio is continuously
rebalanced) and can be continuously traded in perfect markets in the
manager's personal portfolio,

Assumption 2; The manager’s horizon is one evaluation period.

Assumption 3: There are no arbitrage opportunities, the benchmark portfolioc
can be continuously traded in perfect markets in the manager’s personal
portfolio, and the value of the benchmark portfolio is generated by a
diffusion process with known variance parameter(s).

Assumption 4: The benchmark portfolio’s net return is bounded below by
negative 100%.

For certain closed form solutions, a stronger assumption may be employed:
Assumption 4': The benchmark portfolio’s gross return is generated by a
stationary geometric brownian motion process (and is therefore lognormally
distributed)}.

Note that Assumption 3 implies that without loss of generality, risk-
neutral valuation techniques are applicable to any contingent claim on the
benchmark portfolio. (See Cox and Ross (1976).) When combined with Assump-
tion 4', it implies that the Black and Scholes (1973) option pricing formula
can be used to value the performance-based fee contracts.

Assumption 1 implies that the realized fee from equation (4) can be
expressed as

F= B+ m [max(0, b(RS - R.) - H) - max(0, b(ﬁS - Rf) - Q], (3)

£



where b=8 -1, Q=H+ (C - B)/m>0, and Rf = 1 + risk-free rate.

The bracketed term in (5), denoted F*, can be rewritten for b > 0 as
F* = b[max(0, RS - R - H/b) - max(0, RS - Rg - Q/b)] (6a)
and for b < 0 as
F* = -b[max(0, H/b + Rf - RS) - max(0, Q/b + Rf - RS)]. (6b)
The expression in (6a) ((6b)) represents b (-b) times the difference between

the value of two call (put) options on the benchmark portfolio with striking
prices respectively equal to Rf + H/b and Rf + Q/b. The first option is an
option associated with the bonus, which is triggered by performance in
excess of Rs + H. The second option is associated with the cap, which
becomes effective when performance exceeds the benchmark return by Q. Since
these options differ only in their striking prices and Q/b is positive for
the calls and negative for the puts, the difference in their values must
always be nonnegative.

Letting PV( ) denote the present value function, the values of the
expressions in (6a) and (6b) are respectively

PV(F*) = b[c(Rf + H/b) - c(Rf + Q/b)] for b > 0 and (7a)

PV(F*) = -b[p(Rf + H/b) - p(Rf + Q/b)] for b < 0, where (7b)

c¢(K) = value of a European call option on a one dollar investment in the
benchmark portfolio with a striking price equal to K and

p(K) = value of a put option with the same features as c(K).

Note that if K is zero or negative, c(K) equals the absolute value of the
striking price plus the value of the underlying asset and p(K) equals zero.
If K is positive and if assumption (4') holds, c(K) and p(K) equal their
Black-Scholes (1973) values, respectively

c(K) = N{-[log(K/R.) /o + o/2) - (K/Rf)N{-{log(K/Rf)]/a - o/2}, and

f)

O FTEN YA 7 2 Y | ™r /T U,



¢ = annualized standard deviation of RS.
We can now describe how deviations of beta from one (i.e. from holding the

benchmark portfolio) affect the value of the contract.

Propogition 1: If the fee is described by equation (4) and if Assump-

tions (1}, (2), (3), and (4) hold, then
(1) In the absence of a cap (i.e. infinite Q), the value of the performance-
based fee contract is monotonically increasing in the absolute deviation of
the B of the managed portfolio from one.
(ii) If H is negative and there is a cap, the value of the performance-based
fee contract is decreased by small increases in B above f = 1 and increased

for small decreases in § below one.

Proof: See the Appendix.

Part (i) of Proposition 1 derives from the fact that options are increas-
ing functions of the volatility of the underlying asset. Part (ii) of the
proposition follows from the truncation of the distribution of the benchmark
portfolio return. For small increases in B above one, the bonus portion of
the option is always in the money. That is, even in the worst possible
scenario, where the benchmark return is -100%, one still receives more than
the base fee. Because of this truncation, small changes in the volatility
of the underlying asset, brought about by increasing beta slightly above
one, have no effect on the bonus option. However, since they increase the
value of the cap option, they reduce the value of the fee. For small
decreases in B below one, the cap is never reached, even in the best

possible scenario, where the benchmark return is -100%. As a consequence,
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volatility increases that are brought about by small decreases in beta below
one increase the value of the bonus option, but have no effect on the value
of the cap option. This results in an increase in the present value of the
fee.
Proposition 1 suggests that any cap and any negative hurdle will deter

sufficiently small increases from a beta of one, It also indicates that

performance-based fee contracts cannot be designed to provide incentives for
the portfolio manager to buy-and-hold the benchmark portfolio, (unless the
maximum fee is awarded for zero excess performance, i.e. Q < 0). This is
not a serious problem if a contract can be designed that induces the
portfolio manager to choose a finite beta and no unsystematic risk (relative
to the benchmark portfolio), where the optimal beta is independent of the
volatility of the benchmark. In this case, one could alter the risk of the
benchmark with positions in the risk-free asset to induce incentives for any
desired risk level in the managed portfolie. For example, if the S&P 500
benchmark induces a value maximizing portfolio beta of .9, (relative to the
S&P 500), a value maximizing beta of one is induced by a benchmark with a
leveraged position in the S&P 500: 10/9 dollars invested in the S&P 500
with 1/9 of a dollar borrowed at the risk-free rate.

Improperly designed contracts, however, may create an incentive for the
manager to deviate from any finite risk level (beta) that is targeted for
the fund. With such contracts, it is impossible to induce the portfolic
manager to select an appropriate beta by changing the composition of the
benchmark. The following proposition delineates the features of contracts
that create incentives for the manager who follows a buy-and-hold strategy

to seek a finite risk level.
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Proposition 2: If the fee contract is represented by eq. (4) and assump-

tions (1), (2), (3), and (4') hold, then

(i) If there is a finite cap and if H is nonnegative, the value of the
performance-based contract is monotonically increasing in the deviation of
the f of the managed portfolio from one.

(i1} If H is negative and smaller in absolute value than Q, the value of
the performance-based contract is monotonically increasing in the absolute
deviation of the portfolio beta from f*, where

* = 1 - HY/[R(H + Q).

(iii) If H is negative and larger in absolute value than Q, the value of
the performance-based contract is monotonically decreasing in the absolute
deviation of the portfolio beta from f*, which implies that for these
parameter values, the fee-maximizing beta is ﬂ*.6 It is mecessarily less
than one.

Proof: See the Appendix.

To understand the intuition of this proposition, consider the effect of
volatility on options with different striking prices. When underlying asset
values are generated with a buy-and-hold strategy in a risky and a risk-free
asset, volatility increases in the underlying asset have a greater effect on
the value of an option, the closer that option is to being at-the-money.
Part (i) of Proposition 2 follows because the bonus option is closer to
being at-the-money than the cap option. In part (ii), the bonus option is
also closer to being at-the-money than the cap option, however there is
another effect that dominates the volatility effect for small changes in

beta. This is the effect of the truncated distribution of the benchmark
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portfolio return, which is discussed in Proposition 1. 1In part (iii), the
cap option is closer to being at-the-money than the bonus option, however

the truncation effect again dominates for betas close to one, which shifts

the optimal beta to the left of one,

Note that f* in Proposition 2 is a monotonic function of H, holding Q

constant, and a monotonic function of Q, holding H constant. Hence, as the

penalty increases, g* increases towards one; as the bonus increases (i.e.
the cap is increased), fA* decreases towards minus infinity. An infinitely
restrictive penalty is required to induce the portfolio manager to hold the
benchmark portfolio. However, one does not have to be too restrictive to be
close to a beta of one. For instance, if -H is 300 basis points and @ is

200 basis points, the contract maximizing beta is close to .95.

III. EXTENSIONS
1. Adverse Risk Incentives in Corporate Finance

The tendency to alter the risk of the managed portfolio is similar to the
incentives that equityholders have to expropriate wealth from existing
bondholders by increasing leverage, investing in riskier projects, and
paying dividends. Green (1984) and others have suggested that convertible
debt or warrants can be used to eliminate this incentive. This solution to
the bondholder-stockholder incentive problem is equivalent to implementing a
performance-fee contract where the fee increases at points greater than Q,
but at a slope m’ less than m. This type of contract adds m’ call options

on Rp - RS with striking prices of Q to the old fee. 1In this case, the

adverse risk incentives are eliminated only when H is negative and larger in

absolute value than Q + z, where z is some positive number that is



13
increasing in m'. (The proof is available on request.)
By analogy, our solution suggests that the bondholder-stockholder
conflict cannot be eliminated with any type of warrant or convertible debt
issue. Only when the striking price of these option securities is

sufficiently close to the current stock price will the incentive be

eliminated. Moreover, the fewer the number of option securities issued, the

closer the striking price must be to the current stock price.

Bondholders, aware of the adverse incentives of value-maximizing equity
holders, also write covenants into their bonds that limit these forms of
expropriation. Funds could similarly restrict the behavior of their
performance-compensated portfolio managers. For instance, it is pessible to
contractually prohibit the manager from borrowing or holding short or long
positions in a risk-free asset or equivalent positions in futures or option
contracts. The manager could, however, still achieve higher fees by
choosing to hold securities with either very high betas or very low betas.
One could try to counter this behavior by rewarding a measure of performance
that is adjusted for beta (e.g. the Jensen (1968) Measure), but there is a
vast literature in finance on classes of securities that outperform beta-
based benchmarks as traditionally computed. Moreover, in this case, the
manager can gain by choosing stocks with large amounts of unsystematic risk.
This could be even worse from the fund’s perspective, since it might
increase the fund’s riskiness without increasing its expected return. It
should also be noted that contractual limitations on the manager could be
counterproductive if it limits his flexibility, and hence, his ability to

achieve abnormal returns.
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2. Unsystematic Risk and Rebalancing Strategies

In the last section, we showed that a manager who holds no unsystematic
risk will maximize the value of the performance contract with a finite beta
only if the maximum penalty under the contract (relative to holding the
benchmark portfolio) exceeds the maximum allowed benefit (i.e. the cap minus

the fee from holding the benchmark). The inclusion of unsystematic risk

makes this Problem difficult to analyze with the techniques used in the

previous section. In particular, with the buy-and-hold strategy, the
underlying assets in the fee options no longer have distributions that are
easily analyzed with a Black-Scholes approach.

Despite this, most of the intuition developed for the simpler case should
apply in more general settings. For instance, the main point of Proposi-
tions 1 and 2, that contracts with large caps or small penalties create
incentives to adversely alter the risk of the managed portfolio, is very
general.

We cannot demonstrate this, except for special cases,7 unless the
contract and the investment strategy are slightly modified, so that trac-
table solutions for the relevant option values can be derived in this more
general setting. Modifying the investment strategy alone is not sufficient.
For instance, if the values of the managed portfolio and the benchmark
portfolio are generated by stationary lognormal diffusion processes, risk
neutral valuation techniques can be used to value the two implicit call
options with boundary conditions given by equation (4). In this case, the

value of a call option on R_ - RS with a striking price of K is given by

(1/R) mej;l((x -y - K)E(x,y)dxdy,

o - . B .o NN N
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has used this technique to value options when the underlying asset’'s value
ig generated by more than one state variable. Unfortunately, the valuation
formula obtained from the above expression is very complex and is unlikely
to be sufficiently tractable to generate analytic conditions for the design
of contracts without adverse risk incentives. For this reason, the contract

must be slightly modified as well.

We will assume that the fee contract is of the form
F =B + m{max(0, log(ﬁp) - 1og(ﬁs) - H) - max(0, log(ﬁp) - log(ﬁs) - Q] (&)
This contract is based on the difference between the instantaneous rates of
return of the portfolio and the benchmark, rather than the cumulated
returns. These returns are normally distributed, rather than lognormally
distributed.8 We also assume that the value of the managed portfolio is
generated by a stationary geometric Brownian motion process. If asset
returns are generated by such stationary processes, then this assumption
implicitly assumes a rebalancing strategy for the managed portfolio rather
than a buy and hold strategy.

The performance fee given by equation (8) can be hedged with dynamic
positions in the benchmark portfolio and the assets in the managed portfolie
if assumptions (1') and (3’) hold. This is because the fee is a function
only of the state variables that generate ﬁp and Rs' As a consequence, the
fee contract can be valued as a special case of the risk neutral valuation
formula in Brennan (1979, eq.(39)) for call options on normally distributed
variables. 1In this case, the current value of the underlying asset is set
equal to zero, implying that the value of a call option with striking price
K is

c(K) = (-K/R_)N(-K/o) + (1/R_yon(-K/o), where (9)
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n(x) = N'(x) = standard normal density function, and
o = annualized standard deviation of 1og(Rp) - log(f{s).9
The relevant striking prices for the bonus and cap options are respectively

H and Q. With this modification of the fee, we can confirm the intuition

given above, as the following proposition demonstrates.

Proposition 3: If the fee is represented by equation (8), and if assump-
tions (1'), (2), (3), and (4') hold, then
(i) The instantaneous variance of the 1og(ﬁp/Rs), {or, equivalently,
Rp/is), denoted 02, can be achieved with any combination of systematic and
unsystematic variance that satisfies

02 = {8 - 1)202 + 03,
where 8 is the regression coefficient that relates log(Rp) to log(ﬁs), af is
the variance of the residual from the regression, and az is var(RS).

(ii) If H is less than or equal to -Q, the present value of the fee is

monotonically decreasing in the variance of Rp/ﬁs, and hence maximized when

R
p

(iii) If H is greater than -Q, the present value of the fee is monotonically

- ﬁs at a fee value of B - mH.

increasing in the variance of RP/RS.

Proof: See Appendix.

If the results in Proposition 3 apply to the fee represented by equation
(4), then adverse risk incentives are eliminated only when portfolio
managers face penalties for poor performance that exceed the rewards for
good performance. This result is very similar to the result in Proposition

2 for the buy-and-hold strategy. In contrast to the results in Proposition
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2, however, the results in Proposition 3 are symmetric about g = 1. This
derives both from the symmetry of the distributions of the underlying assets
and because constant variance rebalancing strategies are not subject to the

truncation effect, (discussed after Proposition 1), although either would be
sufficient to induce symmetry.

One might also note that the results in Proposition 3 are identical to

the results that would be obtained with the fee represented by equation (4),
assuming that Rp and ﬁs are normally distributed. One merely substitutes
Rp and Rs for the logs of these values, Thig result is not realistie,
however, because it allows the value of the managed portfolio to be nega-
tive,

Proposition 3 also suggests that the particular benchmark can affect the
investment strategy of the manager. If the contract’s maximum penalty
exceeds its maximum reward, the manager desires to hold the benchmark with
no unsystematic risk. Hence, a client should tailor the benchmark to suit
his risk preferences. These results extend to the lognormal return non-log
fee of Proposition 2 with the slight modification discussed in the

proposition,

3. Buy-and-hold vs. Rebalancing vs. More Complex Strategies.

By altering the performance-based contract, we were able to analyze
stationary portfolio strategies that are continually rebalanced. Unfortu-
nately, this strategy camnot be directly compared to the buy-and-hold
strategy within our framework. However, we conjecture that, given lognor-
mally distributed returns, buy-and-hold strategies result in higher expected

fees than rebalancing strategies. This is because the risk of the buy-and-
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hold strategy changes as the value of the benchmark changes in a manner that
increases the value of these types of fee contracts.
For the fee contracts examined here, it is better to decrease the
volatility of the difference between the portfolio return and the benchmark
return when near the cap and increase this volatility when further from the

cap. If the initial B of a buy-and-hold strategy exceeds one, increases in

the value of the benchmark place the manager closer to the cap and decrease
volatility. If the initial B is less than one, increases in the benchmark
increase volatility and place the manager farther from the cap.

Strategies that more aggressively increase or decrease the beta of the
managed portfolio can generate even higher expected performance fees than
the buy-and-hold strategies. In fact, in a perfect market, dynamic strate-
gies exist that earn the maximum fee, irrespective of the design of the
contract. Consider, for instance, a simplified setting where the benchmark
return can earn either 1% more than the risk-free rate (the good state) or
1% less than the risk-free rate (the bad state) in a given time interval,
and assume that there are T of these time intervals in one evaluation
period. If one earns the maximum fee, C, by beating the benchmark by 2%, a
doubling strategy will almost certainly earn the maximum fee if T is
sufficiently large. In the first time interval, a beta of 3 (b = 2)
followed by a beta of one in all subsequent intervals will earn the maximum
fee if the good state occurs in the first interval. If it does not occur, a
beta of 5, followed by betas of one will earn the maximum fee if the good
state occurs in the second interval. If this does not happen, select a beta
of 9 in the third interval, etc. Only if the bad state occurs in each of

the T intervals would such a strategy fail. The probability of this goes to
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zero as T becomes large, which would be the case if continuous trading was
possible.
Obviously, transaction costs and reputational considerations may limit
the extent to which these dynamic strategies can be used. Hence, it is
unlikely that portfolio managers will earn the maximum fee with certainty.

Nevertheless, the example illustrates that even the contract designs in
Section 2 that deter gaming with buy-and-hold strategies will not entirely
eliminate adverse risk incentives unless one monitors the investment
strategy of the manager very closely.

Portfolio managers are aware of the incentives to alter their wvolatility
in response to the current performance of their portfolios. A recent Wall
Street Journal (Dorfman (1986)) article reported the recollections of a
partner in an investment consulting firm. He recalled "a couple of managers
who stated their objectives as investing in blue-chip stocks with market
capitalizations over $500 million. But when the managers’ performance
numbers sagged, they began to 'stretch for performance by going for takeover
candidates and high-flying over-the-counter stocks.’ "

We also know that portfolio turnover happens to be greater towards the
end of an evaluation period than at the beginning. Traditional explanations
for this include tax considerations and a desire to avoid listing "losers”
on year-end and quarterly reports to clients. OQur incentive fee model adds
another explanation to this list. Managers who have done well will
rebalance their portfolios to reduce risk, while managers who have done
poorly will rebalance their portfolios to increase risk.

Similar arguments may also explain the observation that pension funds

generally sell a target firm's stock subsequent to a tender offer
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announcement. These announcements generally result in large increases in
the stock price moving the portfolio manager closer to the cap on his fee,
Since these stocks also become riskier, an expected fee-maximizing portfolio
manager would like to sell the securities rather than wait for the outcome

of the offer,.

4, Multiperiod Reputation

The model described abovg simplifies the rewards and penalties faced by
actual portfolio managers. Most importantly, it assumes a one period
horizon for managers. 1In reality, these managers may be more concerned
,about the renewal of lucrative contracts and about their long term reputa-
tions than about the additional amounts they can earn by altering risk in
the manner outlined above.

If the risk of the portfolio is easily observed by the pension fund offi-
cers, these reputation considerations may mitigate the adverse incentive
effects discussed here. However, since the risk of an actively managed
portfolio is difficult to measure, our simple model may capture incentive
problems that are present in more complicated settings.lO Moreover, multi-
period considerations may reinforce our arguments about adverse risk
incentives.

Regardless of the type of compensation contract, there is a maximum
amount that the portfolio manager can lose by performing very poorly. He
cannot do worse than lose all of his present and future business. However,
the upside potential associated with significantly outperforming the
benchmark is considerable, particularly if the manager is a newcomer to the

profession who is managing small amounts of money. This suggests that, even
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for a manager with a fixed-percentgge (i.e. flat) fee contract, the long run
payout may be a convex function of the managed portfolio return minus the
benchmark return in the current period. To offset the increased adverse
risk incentives created by this additional convexity in the payoff function,
it may be necessary to increase the penalties or decrease the cap on the

performance contract from the levels specified in Propositions 2 and 3.

On the other hand, an established manager with an 1llustrious track

record may already be managing a great deal of money. For such a manager,

the potential loss from performing poorly may outweigh the gains from
performing well. In this case, reputational considerations may add concav-
ity to the payoff function, and it may be possible to decrease the penalties
or increase the cap from the levels specified in section 2 without increas-
ing the incentives to adversely alter the risk of the managed portfolio.
These results can be formally analyzed within the compound option framework
developed by Geske (1979). However, because the solution is analytically
intractable, and would require numerical simulations, it is beyond the scope
of this paper.

The ability to cancel the manager’s contract without notice also falls
within this framework. Dismissal of the manager can be thought of as a
penalty that occurs at low levels of performance. If the manager's current
performance level makes the potential reward from future portfolio gains
exceed the potential penalties from future losses of the portfolio, adverse
risk incentives may still occur. However, when the portfolio’s value is

close to the dismissal point, the concavity of the fee function around that
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IV. SUPERIOR INFORMATION
An analysis of performance-based fees is necessarily incomplete without a
discussion of superior information, since the primary motivation for these
fees is the desire to obtain superior performance. However, the analysis in
the previous sections made no assumptions about the manager's abilities or
information. This implies that the existence of superior abilities or

information does not alter our conclusions.

To understand this, consider the case where one manager has better
information about the mean of the benchmark return, but has the same
estimate of the instantaneous volatility of the benchmark return as a less
informed manager. His continuous-time hedge of the fee for a given portfo-
lio strategy, and hence his valuation of the performance-based fee, would
then be identical to that of the less informed manager. This implies the
Fisher separation result, which is summarized by Proposition 4. The result
extends to models with discrete trading as long as the performance-based

fees can be hedged with traded European options.

Proposition 4: Denote a portfolio strategy by « and the present value of

the fee from that portfolio strategy by PVI(F(G)) for an informed portfolio
manager and by PVU(F(m)) for an uninformed portfolio manager. If Assumption
(3) holds,

PV (F(x)) = PV (F(x))

Proof: 1If options that are perfectly correlated with the fee can be
directly traded by the informed and uninformed portfolioc managers in their
personal accounts, each will trade them until the values they place on every

option are identical to their market prices. Hence, the value of the
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options to the portfolio managers will be independent of the manager’s

information.

QED

One implication of Proposition 4 is that uninformed and informed portfo-

lio managers who are restricted to buy-and-hold or constant rebalancing

strategies will maximize their fees by choosing identical portfolio strate-
gies. This is a strong result, in part because the continuous-time trading
environments, assumed for Proposition &, place restrictions on heterogeneous
information. For instance, it is not possible to model superior information
about volatilities in this context. Moreover, a commonly used model of
superior information in incomplete markets, where an informed investor has a
finer partition of the state space than uninformed investors, would lead to
arbitrage opportunities here because markets are effectively complete for
uninformed managers in our framework.

Although these strong implicit restrictions on superior information
should be noted, there is still the possibility that the manager's ability
to trade for his personal account may defeat the purpose of incentive fees.
A manager with superior information could rationally use the information for
his personal account, and manage the portfolio under contract as if he were
uninformed. Measures should thus be taken to prevent hedging in the
manager's personal portfolio. Covenants in the fee contract, (explicit or
implicit), that effectively prohibit hedging in the manager’s personal
account can cause informed and uninformed managers to value the options
differently and will induce managers to use any private information they

have when trading for the portfolios they manage. In the extreme case where
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the portfolio manager is required to place all of his personal wealth in the
risk-free asset, it is easy to construct examples with performance-based fee
contracts where the more optimistic portfolio manager chooses a higher beta

than the less optimistic manager. These cases require us to specify the
manager's utility function and thus cannot be examined within the option

pricing framework developed here.

V. CONCLUSION

This paper has demonstrated that improperly designed performance-based
fee contracts provide incentives for the portfolio manager to game the
contract at the expense of the fund’s beneficiaries by altering the risk of
the fund. To mitigate the adverse risk incentives associated with perfor-
mance-based fees, contracts should be designed with caps and should have
penalties for performance below the benchmark. The penalties for poor
performance should be at least as severe as the rewards for good perfor-
mance. For the buy-and-hold and rebalancing strategies analyzed in this
paper, contracts with these properties induce portfolio managers to choose
portfolios with appropriate levels of risk.

The analysis also indicates that it is impossible to design a perfor-
mance-based contract that will deter gaming when the class of dynamic
strategies are not limited. This suggests that performance-based contracts
should include covenants that specify allowable portfolio strategies.

Finally, we argued that the assumptions that allow us to value the
performance fees, in particular the assumption that the fee can be perfectly
hedged, also imply that the contracts will not induce portfolio managers to

use their private information to construct the managed portfolios. The
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informed portfolio manager will instead choose the identical portfolio as
his uninformed counterparts, and use his information to trade on his
personal account. In order to induce a manager to use superior information,
he must be prevented from hedging the contract in his personal portfolio.

Hence, performance-based contracts should also include covenants that

restrict the holdings in the manager's personal portfolio.



APPENDIX
The following lemma, a well-known result from option pricing theory,
(e.g. see Cox and Rubinstein (1975) pp.221 and 229), is used in the proof of

Proposition 2.

Lemma 1: If c¢(K) (p(K) is the Black-Scholes value for a European call (put)

with a striking price of K on a security that sells for ome dollar and has

instantaneous volatility of o, then
c'(K) = -(l/Rf) N(x - o) and
p'(K) = (l/Rf) {1 - N(x - o)), where
N{y) = probability that a unit normal variable is less than y and

X = - (1/a)log(K/Rf) + o/2.

PROOF OF PROPOSITICN 1:
(i) In the absence of a cap, the bracketed term in (5), denoted F*, can
be rewritten as

F* = max (0, b(Rs - R - H

g

This is a convex function of b(f{s - R with the function denoted as

oy
F*(b(f{S - Rf)). In a risk neutral world, the argument of this function has
a mean and a present value of zero for any b. Moreover, an increase in the
absolute value of b induces a mean-preserving spread of RS - Rf, in the
sense of Rothschild and Stiglitz (1970). 1If, as we have assumed, options
can be valued in relation to the underlying security as if we are in a risk-
neutral world, then the wvalue of the option is

E[F*(b(f{s - Rf))/Rf].
By Jensen's inequality, this value is an increasing function of the absolute

value of b if F*({ ) is a convex function.



(1i) When b > 0, but near zero, the bonus call option has a negative
striking price, implying that PV(F¥) = -H/Rf - b[c(Rf + Q/b)]. The first
term is unaffected by b, while the second term is the present value of the

convex function of ﬁs - R, that is represented by

f
max (0, b(ﬁs - Rf) - Q).

This present value is an increasing function of the absolute value of b by

Jensen's inequality. The argument is identical to that for part (i) of the

proposition.

When b < 0 but near zero, the cap put option has a negative striking
price, implying that PV(F*) = -b[p(Rf + H/b)], which is an increasing
function of the absolute value of b. The argument follows the reasoning in

the previous paragraph.

QED

PROOF OF PROPOSITION 2:

(i) Using Lemma 1, take the partial derivative of the fee values in eqs.
{(7a,b) with respect to b. There are three cases to consider when H > 0.
These cases are delineated by the signs of the striking prices of the bonus
and cap options and by the sign of b.

CASE A: b > 0 and b > -H/R.

dFx/db = blc’ (R, + H/b)(-H/D) - o' (Ry + Q/b) (-Q/b7) ]

+ c(Rf + H/b) - c(Rf + Q/b).

Using Lemma 1 and the Black-Scholes formula, this can be shown to equal

[N(x; - o)H - N(x, - 0)Q]/(bRy)

+ [N(x;) - (1 + H/(bR))IN(x, - o)] - [N(x,) - (1 + Q/(bR_))IN(x, - o)]



X, = -[log(l + Q/(be)]/a +0/2,
g = standard deviation of the diffusion process generating RS, and

N(x) = probability that a standard normal distributed random variable will
be less than x.

The bracketed terms in (Al) represent two areas under a normal density

function--that between X1 and X, -0 and that between X, and X, - 0 respec-

tively. The larger area is determined by whether X, or X, is closer to ¢/2,

since the standard normal density function is symmetric and monotonically

decreasing in the absolute value of its argument.

Clearly, if H is nonnegative, x. is closer to o¢/2, implying that the

1
derivative is positive at all nonnegative values of b.

CASE B: b < -Q/Rf and b < -H/R..
From the put-call parity theorem, it is easily verified that the derivative
of PV(F*) with respect to b is the additive inverse of that in eq. (Al).
Consequently, if H > 0, the derivative is negative and the fee maximizing b
is at minus infinity.

CASE C: -H/R. <b <0
The derivative is zero at all values of b in this region,

Since these are the only cases with H > 0, the derivative is nonnegative

in the absolute wvalue of b.

(ii) and (iii): Take the derivative of eqs. (7a,b) with respect to b.
Cases A and B in part (i) are also cases where H can be negative. Hence,
for these cases, the derivative is represented by equation (Al) or its
additive inverse. There are also two other regions where H can be negative,
denoted as Cases D and E.

CASE A: If H is negative, then, since Q is positive, the relative



by the relative sizes of

L/[1 + H/(bR.)] and 1 + Q/(bR (A2)

f)'

One derives a linear equation in b (B) when these two expressions are set
equal to each other. This equation has the unique solution

b = -HQ/[R,(H + )], (43)
which we henceforth denote as b*.

b* lies in the region for Case A if H< 0 and H + Q > 0. Assume these

two conditions hold and note that for b slightly larger than -H/R is

!
much further than X, from o/2. From the analysis in part (i) of the
proposition, the derivative must be negative around this value. The
linearity of the equation thus implies that the derivative of PV(F*) with
respect to b is first negative and then positive. On the other hand, if
H< 0 and H + §Q < 0, the linear equation derived from (A2) has no solution
for Case A and the derivative is always negative in this region.

CASE B: The closeness of Xy and Xy to o/2 is determined by a comparison
of the terms in (A2). The equation derived from comparing the terms in (A2)
has no solution in the case B region if H + Q > 0. Note that for b slightly
less than -Q/Rf, X, is much further from o¢/2 than Xy implying that the
derivative is negative at this point. This implies that the derivative is
negative for the entire region. On the other hand, if H + Q is negative,
there is a unique solution to the equation derived from (A2), described by
(A3). Thus, the derivative is positive for b’s that are more negative than
this solution and negative for b's that are less negative.

CASE D: 0 <b < -H/R,

Values of b in this region lie between the values of b for cases A and B.

The derivative with respect to b can be shown to equal

-[N(Xn) - N(xn = U)],



which is always negative if there is a finite cap.
CASE E: -Q/Rf <b<0and H<O0
Values of b in this region lie between the values of b for Cases A and B,

The derivative is equal to

'{N(Xl) - N(xl - G’)],
which is always negative,

It is easily verified that PV(F*) is continuous in b for all of the cases

and that there is no discontinuity at b = 0. Plecing together these cases
implies that there is a solution to the equation derived from (A2) in the
region for b defined by either Case A or B. Call the solution b*. If the
solution for b* is in the Case A region, (H + Q > 0), the derivative of
PV(F*) with respect to b is negative at all values of b < b* and positive at
all values of b > b*. On the other hand, if b* lies in the Case B regionm,
(H + Q < 0), the derivative is positive for all values of b < b* and

negative at all values of b > b*. Thus, the value maximizing b is at b¥.

QED

LEMMA 2: Let c(K, o) represents the Brennman (1979) value of a European call
option on a self-financing security that is normally-distributed with an
annualized standard deviation of sigma and a striking price of K. Then the
partial derivative of the call option value with respect to volatility, o,
is

¢ (K, o) = n(/o)/R,
where n( )} is the standard normal density function.

Proof: Follows immediately from a partial differentiation of eq. (9)

with respect to ¢ and the identity n'{x) = -x N'(x).

QED



PROOF OF PROPOSITION 3:
(1) A regression of log(Rp) on log(Rs) yields the equation
log(Rp) =« + ﬁlog(ﬁs) + ¢ , which implies
log(R)) - log(R)) = «+ (8 - 1)log(R) + ¢ and
var(log(ﬁp) - log(RS)) = (B - l)zvar(log(ﬁs)) + var(e)
- (8 - D¥var(R) + var()
by Ito’s lemma.

(11), (iii) Using Lemma 2, imnediately above, partially differentiate the

present value of the payoff in the bracketed portion of eq. (8) with respect
to o. This yields

[n(H/0) - n(Q/a)] /R,
which is positive if and only if the absolute value of Q exceeds the

absolute value of H. Since H is smaller than Q, this can only occur if Q

exceeds -H.

QED



1.A recent article in Institutional Investor (Hawthorne (1986)) quotes
Roger Bransford, managing director of a pension fund consulting firm as
saying, "I wish people would put these (ideas about performance-based fees)
out to be tested by academia...". The contents of a recent issue of the
Financial Analysts Journal, (Jan./Feb. 1987), which was almost entirely
devoted to this topic, also provides evidence of its importance and
timeliness,

2.Agency papers by Heckerman (1975) and Bhattacharya and Pfleiderer (1985)
study contract design using expected utility theory.

3.Exchange options were first valued by Margrabe (1978). His formula cannot
be directly used to study the more general fees of the next section because
the values of options that comprise these fees depend on the values of three

assets: the managed portfolio, the benchmark portfolio, and a riskless cash
payout,

4.For simplicity, we ignore other performance-based contracts that exist,
particularly those with multiple hurdles at which different managerial award
fractions m become relevant. Until the cap is reached, most of these
contracts have the convex reward structure characterized by the contract in
equation (4). That is, at the margin, the manager keeps the same or a
greater fraction of his portfolio return as the return increases. The
essential economic features of these contracts are identical to those for
the contract described by equation (4). Extending our results to these
contracts is a simple technical exercise.

5.1f the portfolio beta is not between zero and one, this assumption may be
inconsistent with equilibrium. This is because the possibility of bankrup-

tey precludes borrowing at a risk-free rate. However, most of the buy-and-

hold strategies that will be optimal when contracts are properly designed

have betas between zero and one. Hence, our results are affected by this
inconsistency only for contracts with very extreme and unlikely parameter values.

6.1t is interesting to note that g% is independent of the volatility of the
benchmark return. This also indicates that g* is independent of the length
of time in an evaluation period, except for the effect of time on the
discount factor R = exp(-r_ t), where r_. is the instantaneous rate of
discount and t is the lengtﬁ of the evafuatlon period.

With shorter time intervals for evaluation, one would expect the cap and
the penalties to be smaller and this would have an effect on g*. For
instance, if H and Q are proportional to t, B* approaches one as the
evaluation period becomes arbitrarily small.

7.For instance, unsystematic risk makes contracts without caps more valua-
ble, conditional on a given f. The argument that proves this is identical
to that used to prove part (i) of Proposition 1.

8.For values of R and R that are close to one or close to each other,
log(R ) - log(R ) is approx1mately equal to Rp - Rs'

N Dee T ¢ . T U T S - - . - . a - - - - . o



10.The pension fund officer expects the returns of an actively managed
portfolio to differ from the return of the benchmark. For such an actively
managed portfolio, volatility is measured imprecisely, except in very long
time series. For this and other theoretical reasons, it would be impossible
to determine on the basis of a few observed ex-post returns whether a
difference between the two returns is due to a deliberate attempt to game
the contract or to active management based on superior investment talent.
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