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Abstract

This paper investigates the dynamics of real interest rates and inflation in the context of

an equilibrium asset pricing model. Formulas for bond prices and optimal forecasts of inflation

are shown to form a state space system. The model’s parameters are estimated by maximum
likelihood, using a Kalman filter to compute the likelihood function. The estimation uses time
series data on Treasury bill prices of various maturities and survey forecasts of inflation. The
results suggest that the stochastic processes for real interest rates and expected inflation are
mutually dependent; innovations in the processes display significant negative correlation while
expected changes in each variable are significantly positively related to the level of the other
variable. There is evidence that over the past decade inflation and real interest rates have dis-
played somewhat less mean reversion than previously. Distinguishing real rates from expected
inflation is likely to lead to gains in interest rate modelling.



An Empirical Investigation of Bond Prices and Inflation

L Introduction
There is a long history to modeling the link between interest rates and inflation, with

research dating back to the work of Irving Fisher (1896). More recently, Cox, Ingersoll, and
Ross (1985), Richard (1978), and others have made significant progress by developing equi-

librium, "arbitrage-free” bond pricing models that explicitly recognize the effect of inflation on
the term structure of interest rates. However, with the notable exception of the recent empirical
work by Gibbons and Ramaswamy (1986), little effort has been devoted to estimating equilib-
rium models where separate dynamics for real interest rates and inflation are distinguished.

Economic theory suggests that an underlying "state" variable might have an effect on the
equilibrium real interest rate that is different from its effect on the equilibrium inflation rate. For
example, a state variable such as technological change can directly influence investment oppor-
tunities and real rates of return. However, if monetary policy is accommodating, changes in
technology need not exert much effect on inflation. Alternatively, a government’s monetary
policy may itself be viewed as a changing state variable. In cases where theoretical models
display "monetary (super-) neutrality," an anticipated change in money growth has a proportional
effect on inflation but little influence on real interest rates. An implication of these theoretical
examples is that if the underlying state variables affecting real rates follow processes that are
dissimilar to those primarily affecting inflation, a model of the term structure should reflect this
dissimilarity.

This paper investigates the dynamics of real interest rates and inflation within an equilib-
rum term structure framework. Starting with a model which specifies consumer preferences,
technological change, and a nominal price level process, we derive an equilibrium term structure
of interest rates with characteristics similar to models by Vasicek (1977), Langetieg (1980), and
“arsh (1980). This bond pricing model can be transformed into a state space =ystem. The
unobserved state variables are the instantaneous real interest rate and expected inflation, which

follow a bivariate stochastic process that allows for mutual dependence between the variables.



The observed variables consist of bond prices of various maturities and survey forecasts of
inflation.

The model’s parameters are estimated by maximum likelihood, using 2 Kalman filter to
simplify computation of the likelihood function. The results provide evidence that real interest

rates and expected inflation follow significantly different, though correlated, stochastic
processes. This is empirical support for the importance of making a distinction between real and

nominal variables when formulating equilibrium bond pricing models.

The plan of the paper is as follows. Section II motivates our empirical work by showing
its consistency with a simple intertemporal capital asset pricing model. In section III, we derive
the equilibrium term structure of interest rates that results from this model. Section IV discusses
the technique used to estimate this model, while section V reports on the data chosen for the

empirical work. Section VI follows with an analysis of the empirical results.

II. An Intertemporal Model

Let us consider an economy similar to that of Merton (1971, 1973) and Cox, Ingersoll,

and Ross (1985a, b) hereafter referred to as CIR. The following three assumptions are made:

Assumption 1 Infinitely lived individuals maximize utility of the form;
(D max E; JT e P In(C (s)) ds

where (C (1) is the time ¢ consumption of a representative individual.

Assumption 2 There exists a single capital-consumption good. A single technology is available

which transforms capital, K (#) , into output according to the proccss;1
(2) dK /K = o, (1) dt + G, d 2,

where the expected rate of return on capital, o (), also varies stochastically, following the

process;

3 dog = (a1 + b1 ok (f) +b12 n(r)) dt + Cad 24



and where () is another state variable, following the process;

(4) dn = (ag + by O (f) + by TI(I)) dt +Ordzg .

Assumption 3 The monetary policy of the government is assumed to result in a process for the

nominal price level, P (1), of the form;
(5) dPIP =n{dt +0,dz,, dzndz, =pydt

where (f) is the expected rate of inflation, which follows the process previously specified in
equation (4).2

Similar to CIR (1985b), we assume an exogenous nominal price level process without
explicitly modelling the nature of money supply and demand that would give rise to it. However,
unlike CIR, the specifications in equations (2) to (5) allow for the possibility of interaction
between the real return on capital and the rate of inflation. This could be important since certain
monetary models predict that technological change, in affecting the efficiency (return) of capital,
influences the economy’s rate of inflation, e.g., see Siegel’s (1983) extension of the Sidrauski
(1967) model. Equation (4) captures this effect by allowing the expected rate of inflation to
depend on the current expected return on capital.

In addition to the return on capital affecting inflation, there may well be a causal relation-
ship working in the opposite direction. Fischer and Modigliani (1978) outline a number of ways
that inflation can affect the real economy. Many of these influences are a result of taxation of
nominal asset returns or non-indexed private contracts. Research, such as Feldstein (1980), has
been able to demonstrate a link between higher expected inflation with lower asset valuation.
Equation (3) allows for this result by making the expected real return on capital depend on the
level of expected inflation.?

The solution to the consumption and portfolio choice problem described by assumptions
A.1 to A.3 is similar to others found in the literatvr= and the derivation is outlined in Appendix
A. Without loss of generality, let i(7) be tiie (iustuniaceuus) nominal yield on a currently matur-

ing, riskless in terms of default, discount bond. In addition, let r(z) be the (instantaneous) real



yield on a currently maturing, riskless in terms of default, real discount bond. These bonds are
assumed to be in zero net supply, and since individuals have identical preferences, their individ-

ual holdings equal zero.

Individuals’ optimal consumption behavior implies that aggregate consumption is propor-
tional to aggregate real capital;
(6) Ct)=pK({ .
In equilibrium, the nominal interest rate equals;
7 i(f) = () — 0} +7(f) — O — Py Ok G,
and the equilibrium real interest rate is;
®) JOETAGEL S
Thus the instantaneous riskless real interest rate has dynamics similar to the dynamics of the
expected rate of return on risky capital;

9) dr=doy =(a; + b1} +bur(®) +bpn(d)dt +Cedza .
= (a, + b rin +b121t(t)) dt+o,dz, .

The state of the economy is determined by the level of real wealth, X (), along with the
bivariate system consisting of the real interest rate and expected inflation. Letting

s(0) "= (r{) n{r), equations (9) and (4) can be re-written in the form;

(10) ds(t) =(A+Bs(t)dt + cdZ
) bu b2 , .
where A" =(a, ar), B= b b ) and (0dZ) " =(0,dz, Ordzy), with ©dZ(cdZ) = Zdt,
2 b

h o O
where X = .
Orr U-,-z:

The process for r (¢) and nt(¢) will be stationary if the real parts of tha alscov jlues of B are
negative. Also note that, unlike CIR (1985b), the process given by equation (1U) will not restrict

either r(f) or n(¢) from becoming temporarily negative. In one sense, this is an advantage of the



present model, since without a riskless real storage technology, r(r) could be negative while
expected deflation implies n(z) could be negative. There appear to be historical episodes that are
consistent with r(f) <0, such as in the U.S. during the mid 1970’s, and other times where
() <0, such as in the UK, during the early 1920’s when attempting to return to the gold
standard at pre-war parity. Nevertheless, we would ideally like to impose the restriction that the
nominal interest rate be non-negative, i.e. i(f) =r(t) +n() - oﬁ - Pw Sk, 20. Unfortunately,

this leads to significant difficulties in deriving solutions for equilibrium bond prices, so that this

4

restriction will not be imposed in the analysis that follows.” But we can guess that the effect

from i () >0 will lead to estimates of b2, b21, and/or o, which reflect negative correlation

between r(¢) and x(z).

II. Derivation of the Term Structure

We can now derive the term structure of interest rates for (zero net supply, default-free)
nominal bonds. Following the work of Richard (1978) and Langetieg (1980), let N (1, 5 (¢¥)) be
the nominal price at date ¢ of a discount bond which pays $1 with certainty at date t+t. Since the

bond price depends on the vector of state variables, s (¢), Ito’s lemma allows us to write its

dynamics as;

(11) dN (T, 5 D) IN (T, 5 (1)) = (s () dt + (N, 6, /N) d 2z, + (Nx On/N) d 2
where

(12) ta = (1/N)[Nrttr +Nelin + 3N, OF + [Ngn Op + Nypn Gy — Ny

where LI, and [t are the instantaneous expected changes in r (r) and n(f), respectively, given in

equation (10).
A currently maturing bond is instantaneously riskless in nominal terms, so that we can

define the yield on this bond to be the nominal interest rate, i (z, 5 (1)) ;
(13) AN(t=0,s(0))/N(=0,5() ==N, =iz, s(1))

since N, = Nx =N, =Npg =N,x =0 as the bond price approaches its maturity value of $1. If

bonds are priced such that no arbitrage opportunities exist in equilibrium, then a standard hedg-



ing argument can be employed to show that the expected rate of return on a T maturity bond must

be of the form;
(14) He =i(l) + YN, G, /N + Yz N G /N

where 9, and ¥ are the "factor risk premia” or "market prices of risk" of a unit of standard

deviation from the real interest rate and inflation, respectively. CIR (1985a) shows that, in

equilibrium, the factor risk premia equal;
(15) X = (:%)cov((:*, 9

where U (C#) is the utility function evaluated at individuals’ optimal level of consumption, and
cov(C*, 5) is the covariance between changes in optimal consumption and changes in the state
variable, s. Given that utility is logarithmic, C* = pK (¢), and using equation (10), we have
Yr = Ok Or Prr ANA Xt = C4 O Pix -

Equating the right hand sides of equations (12) and (14) we obtain a partial differential
equation that the equilibrium bond price, N (t, 5 (#)), must satisfy, Richard (1978) shows that the

solution to this equation can be written in the form;

(16) N s @) =Eexp[-f;” (i) + 2T WY av - [ W s oaz ) |

where ¥ = (0, X, OnXx),and where i(f) =r(t) + a(t) — G, — Piy Ci p.
Some insight may be gained by comparing this formula to that of a forecast of inflation
over the life of the bond, i.e., the period from ¢ to t+1. From the stochastic process for inflation,

equation (5), we obtain;

17 E(Pe+0/P®) =Eexp| [ (x) ~ D) v + [ “,dz )] .

Note the similarity in equations (1€} =nd {17), esrecially the first terms under the integral signs

on the right hand side of each equation. One component of the bond price is the expectation of



an exponential function of the integral of the nominal interest rate, of which one component is
the instantaneous mean rate of inflation, n(s). Similarly, the expected rate of inflation over the
bond’s life, equation (17), has this same component.

The results of Langetieg (1980) allow us to solve for the equilibrium price of a bond of
any maturity. Denote the log of the bond price as n(t, s(f)) =InN (1, s(£)). Using equations

(16) and (10), the formula for n (1, 5) can be shown to take the form;

(18) n(t,5) =K, (1)
+[e1 + g1 (bu +bu —A3) €M + g2 (bt +bu — M) r (1)
+[c2 + 81 (b2 +bia —A2) €T + ga (b + bra —hi) €] m(0)
=K (7)) +ou(t)r(t) +oz(t)n(r)

1
where Az = %‘(bu +by £ [(bu - br) +4b12b21]7) ,

¢1 = (b —bu)/(br1bn — b bna) ,
c2 = (bn = b12) /(bribn — bau b12) ,
g1 =[(bz + b1z — A1) (b — b)) + (b1 + b — A1) (bu —bip)] /d,
g2 =[(b + b1z —A2) (b2 —bn) + (b1 + b2y —A2) (b2 —bn1)]/d,

with d =[(b11 + b1 —A2) (bre = b2 = A1) = (buy + bt — A1) (b2 + b1z — A2)](Br1 bz — bi2 b))
and K (1) is a constant, given the bond’s maturity T. Note that the coefficients multiplying r ()
and =(¢) in equation (18) are only functions of T and the elements of the matrix B.

Similarly using equations (17) and (10), we can solve for the optimal forecast of the price
level, given the current price level, P (r), real interest rate, r (¢), and instantaneous rate of infla-
tion, m(¢). Denoting the time ¢ optimal forecast of the price level at t + T as E, [P (t + T)], we

find it satisfies;



(19) In(E [P (¢ + T)/P ()]) =K (T)
+[c3 + g3 (but +ba —ha) €T +ga(bu + b -M) e r ()
+{cs + ga (b + b1z ~Ra) €T + ga (b +bra — M1)€ (1)
=K (1) + o3 (D r () +ou(T)x(T)

where ¢3 = by /(bubn —bubn) ,

¢4 ==bit/[(bu bz - bubu) ,
g3 =~ba (b2 + b1z —N1) —bu(bn +ba —M)/d
gs = by (b +biz = A3) + bt (by +bu —Ap)/d

and K> (T) is a constant, independent of r(z) and n(r). Again, the coefficients multiplying r (#)

and m(¢) are functions only of T and the elements of the matrix B.

IV. Estimation of the Model

In this section, we outline a method of estimating the parameters of the previous model.
This bond pricing model was formulated in continuous time so that analytic solutions for bond
prices could be obtained. However, since the data used to estimate the model are available only

at discrete observation intervals, it will be useful to specify the discrete time analog of this

model. We show that this model can be put in the form of a discrete time state space system.5

The process for the state variables, s(f), given by equation (10) above, can be re-written

in a discrete time form as;

(20) s(t+8) =) +OW®)s(® +Vv,(d),

where ©(8) =% = (‘bll o2
b

) is the fundamental solution matrix of the state variable process.
1

Its elements take the form;
On = —(bz + bz — ki) (bis + b —R2) €% +(byy + by — Mi) (b + b2 —22) €2°/8

$a, (hll + by _)LE) (bll + bay -7\-2) 8118 —(bll + by —7\.1) (bn + by -—)Lz) (—?128_/9

o1z =—{(bn + bz = A1) (bn +b12 ~ 12) % + (b +biz — M) (b2 + b1z — A2) e°/8



G2 = (b1 +bar = M) (b + b1z — A3) Mo - (b2 + b1z —Ay) (byy + by - A2) e o
and 0= (bll +by - 7\'1) (bzz + by - 7\,2) - (bzz + by - 7\.1) (bu +byy - ).2) .

Also ¥(8) = jﬁ(b(s) Ads and v, () is a normally distributed random variable with zero mean and

covariance matrix Q = E@(m) ZO(w) dw.
Equation (20) can be viewed as the "state transition equation” in a discrete time state

space model where these states, the instantaneous real interest rate and expected inflation, are

unobservable to the econometrician. Now if data on bid and ask prices of discount bonds are
available, in addition to survey data on individuals’ inflation forecasts, a set of measurement
equations that correspond to this state transition equation can be constructed. As will be dis-
cussed below, our use of inflation forecasts, in addition to data on bond prices, arises from a
need for identification restrictions on the parameters of the real interest rate-inflation process.

Suppose that we are not able to observe actual traded prices of nominal bonds, but these
traded prices are hypothesized to be of the form given in equation (18). Instead, if we have only
bid and ask prices on bonds, then these observed prices will measure the "true" traded bond
prices with error. For simplicity, we assume that the log of the average of the bid and ask prices
of a bond maturing in T periods, n*(1, 5), differs from the hypothetical log of the trading price by
a normally distributed error term which is independent across time, but whose variance may
depend on the maturity of the given bond. This assumption gives us a measurement equation of
the form;

21) n*(t,5(1)) =n(t,s() +ewu(r) where ey (1) is N (L, o) .

Another type of measurement equation can be constructed by the use of survey data on
inflation forecasts that are assumed to be noisy measures of the "true" market forecast of infla-
tion. We make the assumption that the mean survey inflation forecast deviates from the market
forecast by an error term that is distributed independently across time and whose variance may
depend on the time irto the future over which ihe forecast is made. Denoting this survey infla-

tion forecast as E: [P(rt+T)/P (D], we have;
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(22)  InE [P(t+T)/P(1)] =1nE,[P(t+ D) /P (D] +ex(T) where ex(T) is N (Ur, o7) .

In practice, the error terms in equations (21) and (22) will also be due to slight data misalign-
ment, as the survey responses may not correspond to the exact time that the bond price quotations
are reportad.6

Now suppose that at date ¢ we can observe (with error) the prices of discount bonds at M
maturities, T, ..., Ty, and survey forecasts of inflation for N periods into the future, T, ..., Ty
Then we can write these observations in matrix form as;
(23) y(O) =K +os(@) +e

where

y (0 =[n*(t1,5) ... n¥(ty, 5) W(E; [Pt +T)/P®)]) .. n(E; [Pt +Tw) /P (D])] .

K is an M + N vector of constants, and o is an (M + N) x 2 matrix whose first M rows are of the
form (o, (t) o, (T)), i =1, ... M, and whose last N rows are of the form ((X.3(Tj) a4(Tj)),j =1, ..,
N. The M + N vector of error terms is distributed as N(0, R) where the covariance matrix R has
o%}v) )

Equations (20) and (23) now comprise a state space model. However, another slight

diagonal elements (o7, ... 07, o ..

1

simplification can be obtained by defining the state variables not as s (¢) "= (r () ®(f)), but as the
deviations of the real interest rate and expected inflation from their unconditional (long run)
means. We can define a new vector of state variables, x () "= (x; (£) x2(£)) with zero uncondi-

tional mean;

@ =r@®-n-02) +%o)/[(1-0u) (1 - d2) —02¢2]
x () =) = (B (= ¢n) +¥1021)/[(1 = 1) (1 — 622) —012021] .
With this state variable transformation, the state space model becomes;
(24a) X =0x +Vv;

(24b) Y =0, T 3 "ot
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L , : : 0
with | " | distributed normal with covariance matrix g P and where B is an M + N dimen-
€

sional vector of constants and, without loss of generality, & in the state transition ennation (20)
has been set to 1.
Our goal is now to estimate the parameters of the instantaneous real interest rate and

expected inflation dynamics given by equation (10), and test the validity of the hypothesized

bond pricing formula, equation (18). Specifically, we wish to estimate the elements of the matrix

B and the elements of the covariance matrix Z. Note that in the state space system (24), both @

and o are uniquely determined by the parameters by, b;,, b,,, and b,, (i.e., the matrix B). In
addition, the covariance matrix ¢ is uniquely determined by the covariance matrix X and the
matrix 8. Thus we want to fit the model (24) subject to the cross equation restrictions on the
parameters of @, o, and @, and thus obtain estimates of B and X.

The question arises whether these cross equation restrictions will be sufficient to identify
the parameters of this state space system. Note that had we used only bond price data, one could
not be sure whether the real interest rate or expected inflation was the first or second element of
the state vector x,, since each log bond price is just a linear combination of the underlying state

7

variables and these coefficients cannot be identified, a priori.” However, the use of data on

inflation forecasts provides us with the requirement that the shorter the inflation forecast horizon,
the greater the dependence of this forecast on the current instantaneous expected rate of inflation.
In the limit, as the forecast horizon, T, goes to zero, the inflation forecast simply equals the
current expected rate of inflation, implying an exclusion (zero) restriction on the coefficient of
the real interest rate, r (1)

Following the work of Engle and Watson (1981, 1983), we now describe a maximum
likelihood technique to estimate the parameters of the system in (24). Define the vector of
"innovations," 1,, as;

(25) no=y -5
=y —ODPE | [Xiot Vi1, Yr-2s s »n] -B.

A *
Let Xy = E (X2 Vet . Veer o oo v ] bBe the ontimal forecast of the 1rmhesruakle oinfa oo
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given the current and past values of the measurement equation observations, Also let H, denote
the time r covariance matrix of the innovations vector, 1, Both %1 and H, can be computed
from a Kalman Filter recursion, given starting estimates for Qo and the covariance of Xo» denoted

G,, and given values of the parameters @, o, B, @, and R (or equivalently given values for the

parameters B, Z, B, and R). xand H . are computed as follows. Define 6}, =0G,1 9"+ 0. Then

we have;
A

26) % = Ok + G o'H! (v — 00y —B)
AN LA

(27) Gg = G; - G;a HI- OtG;

(28) H =ab,a +R.

Once n, and H, are computed using the Kalman Filter, we can calculate the log-likelihood
of the observations, y. Schweppe (1965) has shown that the log-likelihood can be written in

terms of the innovations as;
(29) L=YL =% -5(log H,|+n H'n) .
{ ]

The remaining step is to find those parameter values B, X, 3, and R which maximize the

above function by using a numerical iteration technique.

V. Data

A monthly time series of Treasury bill prices was obtained from the Center for Research
in Security Prices (CRSP) tape. Similar to Gibbons and Ramaswamy (1986), we constructed
time series of (hypothetical} 30, 90, 180, and 345 day Treasury bill prices by linearly interpolat-
ing the yields derived from the average bid and ask prices of Treasury bills whose maturities
immediately surround the desired maturity. This time series of Treasury bill prices is available
over the period 1964 through 1986.

Two different time series of survey inflation forecasts were used in carrying out estima-

tions of the model The Institute for Social Research (ISR) at the University of Michigan pro-

duces a monthly survey of households’ forecasts of inflation over the next 12 months.® These



monthly surveys covered the period 1978 through 1986. The second source of inflation expecta-
tions data was obtained from the Livingston survey, which covers the period 1947-1986, The
data comprises responses from semi-annual questionnaires sent to participating economists,

They are asked to forecast the level of the Consumer Price Index (CPI) for 8 and 14 months into

9

the future.” These forecasts are made around the end of May and November of each year.

Although the Livingston survey is only available on a semi-annual, not a monthly, basis, we can
still use this data along with monthly bond price data to estimate our model of the term structure.

Appendix B outlines how the state space model can be re-formulated and estimated when the

inflation forecasts are only observed at the end of every sixth month.

VI. Estimation Results

This section reports maximum likelihood estimates for the parameters B, X, B, and R.
First, the model was estimated using the monthly Treasury bill prices along with the semi-annual
Livingston survey 8 and 14 month mean inflation forecasts over the period 1964 through 1986.
The elements of the observation vector, y,, were ordered to equal the log of 30, 90, 180, and 345
day bond prices, and 8 and 14 month mean inflation forecasts, respectively. The covariance
matrix R was restricted to be diagonal with elements r?, where the standard deviations of the
measurement errors were assumed to be the same for each of the log bond prices (= r;), and the
same for the log 8 and 14 month CPI forecasts (= r,). The results are given in Table A.

The parameter estimates of the covariance matrix, Z, indicate significant negative correla-
tion (prn =—394) between the innovations of the instantaneous real rate and expected
inflation.! In addition, the standard deviation of the instantaneous real rate, ©,, is almost twice
as large as that of expected inflation, o,.

Turning to the estimates of the elements of matrix B, i.e., b i, j=1, 2, it can be shown
that these point estimates in Table A imply negative eigenvalues, consistent with the state
variables following a stationary process. These estimates are generally significantly different
from zero, including the off-diagonal clarrzenis b, ord 3,,. This implies that the expected

change in real rates is positively related to the level of expected inflation while inflation is
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expected to rise as the current level of the real interest rate increases. A likelihood ratio test of
the hypothesis of zero overall correlation between real rates and inflation, b1z =by =pp =0,
results in rejection at a 1% significance level,

In Figure 1, parameter estimates from Table A were used to simulate the expected paths

of the instantaneous real interest rate and expected inflation resulting from a one standard devia-

tion jump (innovation) in the real interest rate from its unconditional (long run) mean.!! Note
that the real interest rate returns half way to its long run value in approximately 5 years, implying
rather weak mean reversion and leading to the "overshooting” of expected inflation from its long
run value. Figure 2 repeats this simulation exercise for a one standard deviation innovation in the
rate of expected inflation. Here, the half-life of expected inflation’s mean reversion is ap-
proximately 2.5 years, one half that of the real interest rate which was simulated in Figure 1.

The model was re-estimated over the 1978-86 period, using the ISR’s 12 month house-
hold mean inflation forecasts instead of the 8 and 14 month Livingston survey forecasts. These
results are reported in Table B. Unlike the estimates using the Livingston survey data, the
estimation using the ISR’s forecast produces parameter estimates of the B matrix that are all
insignificantly different from zero.!? In addition, one cannot reject the hypothesis of zero
correlation (b12 = by =p,x =0) between the processes for real interest rates and expected
inflation.

There are a number of possible explanations for the differences in Table A and Table B.
One obvious explanation is that the inflation forecasts reported in the Livingston survey are those
of professional economists while the ISR survey reports forecasts of households. Also, in the
Livingston survey, the participating economists are likely to have filled out their forecast ques-
tionnaires near the end of the months of May and November of each year, and thus their forecasts
would coincide fairly closely with the reported end of month Treasury bill prices from the CRSP
tape used in the estimation. In contrast, the ISR telephone surveys of households are spread
fairly evenly throughout the month,’ possibly causing significant dars misalienment. This
would imply a non-zero correlation between the error vector in the state transition equation and

that of the measurement equation. iNvalidating thie aeemimti e ~F mi1r o os o mes o o Lo
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Another potential explanation for the difference in the estimation results would be the
shorter recent time period used in the ISR estimation. To investigate this possibility, the
Livingston data sample was split in half and the model was re-estimated over the separate

1964-75 and 1975-86 periods. Table C gives the results of this estimation for the earlier period
while Table D gives the results for the latter period.
It is rather striking that in both Tables C and D, the estimates for the parameters of the

covariance matrix, X, imply high standard deviations and correlation for the innovations in real
interest rates and expected inflation. In each case G, and o are close to .1 and Prx is close to -1.
However, while the estimates of the covariance matrix are similar, the estimates of the matrix B
are quite different. The estimates obtained in the earlier 1964-75 period imply relatively strong
mean reversion in both the real interest rate and expected inflation. This can be seen from
Figures 3 and 4 which give the expected paths of real interest rates and inflation from a one
standard deviation increase. For this earlier period, the half life for mean reversion is less than
one year for both the real rate and expected inflation. Mean reversion is weaker in the latter
1975-86 period. Figures 5 and 6 show that the half life for mean reversion from one standard
deviation innovations is almost two years for both the real interest rate and expected inflation. A
possible interpretation of this result is the earlier period coincided largely with a fixed exchange
rate regime, while the latter period was one of flexible exchange rates. Fixed exchange rates may

have resulted in greater monetary discipline with more predictable inflation and real interest

rates.

VII. Conclusion

This paper formulated and estimated an equilibrium bond pricing model that explicitly
accounts for the difference between real and nominal variables. An important feature of the
model and the estimation technique is its allowance for interdependence between real interest
rates and expected inflation. Macroeconomic theory gives justification for making a distinction
betwetii tie Facess (oo the real interest rate and that for inflation. This paper produces sorme

evidence indicating this distinction to be worthwhile.
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Our empirical results show that unexpected changes in real interest rates are significantly
negatively correlated with those of expected inflation, while a higher level of one variable
implies a greater expected increase in the other. Evidence for significant mutval dependence
between real interest rates and expected inflation has implications for a number of areas in

macroeconomics and finance, such as the plausibility of real business cycle models or the general

hypothesis of monetary neutrality,



Appendix A

The derivation of the solution to the consumers’ consumption and portfolio choice
problem, given by equations (6) to (8) in section II, is outlined here.

Let wy, w,, and w (= 1 - wy, - w,) be the proportions of an individual’s portfolio invested
in nominal bonds, real (indexed) bonds, and real capital, respectively. Denoting an individual’s

total wealth as W, and J (W, ou, ) as the indirect utility function, Merton (1971) shows that the

optimality equation is;

A 6Cw,w) =) +Iw {W[(L=ws —w) ot + (i ~n+ ) wy +rw,] ~C}
+%waW’2[(1 - Wy —w,)zci +W§0:§ —2p¢p(l — Wy —w,)wa'kO'p] -pJ
+JO'* (al + b1y O +b121l1) +Jn(a2 + by O +b227l?)
+%Ja¢u*0i +%J1m0?: + Joy Poy Oo On
+JWaxW(pakk(1 ~Wp = W) OxCq — Pa;pwbo'ao'p)

+Jwx W (P (1 —wp — W,) Ok On — Prp W5 O Tp) .

Differentiating with respect to C, w,, and w,, one obtains;

(B) C=1Jw

(©) JwW (~o +i =T +0,) +TawW? (~(1—ws —w,) O} +Ws G} = i (1 — 2wy ~w,) G4 6,

~Jwo W{(Poyk Ok Oa + Poyp OaGp) — Jwr W (Prk 1 On + Prp O 6,) =0

(D) JwW (=0 +7) +Jww W (—~(1=ws = w,) O + piy W5 .G,
—Iwo, WPwt Ok Ca — Jwa WP 0, Gr =0,

Using equattons (C) and (D), we can solve for the optimal portfolio proportions, wj, and

w, . Substituting these proportions back into equation (A), we then have a partial differential

equation for J(W, oy, ©). Merton (1971) shows that the solution to this differential equation is

of the form;

(E) J=%1nW+H(0tk,n').
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Since nominal and real bonds are assumed to be in zero net supply, we have W(¢) = K().
Using conditions (B) and (E), we arrive at equation (6) in the text, Using condition (E) along

with conditions (C) and (D), setting w, =w, =0, we arrive at equations (7) and (8) in the text.
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Appendix B

This appendix gives the state space representation used to estimate the bond pricing

model when bond prices, y,,, are observed at more frequent intervals than are survey inflation

forecasts, Yorr

(A)

(B)

(©

(D)

The measurement equation (24b) can be re-written as:

[Ym:'_ [(111 Uﬂlzil [ Bl:l l:euj'
Y= = X + +

Y 21 O Ba &
Now define a new vector of observations, ¥ ,» where

[ yu

| Y21

= F}'uJ when yy,.; is not observed at time #-1 .

0

Y, :l when yy,; is observed at time ¢-1

In addition, define the vector w, such that

W, =Yy 1-B,, wheny,,  isobserved at t-1

=0, otherwise .

A new vector of state variables, X,, can be defined where

M PR
th = -+
wy 01 ox 0l wy €1

is the form of the new state transition equation.

(E)

The measurement equation corresponding to this state equation is;

€1
Y, =a;X; +b; "f"_o]



where

onp op 0 . ——
a = 0 wiieh Y. 15 cbserved at 1-1

I

l'au o 0

= B 0 otherwise
[B1] .

b = when yy.; is observed at -1

| B2 |

= Bl otherwise .
| 0

Calculation of the likelihood function when a, and bI are deterministic functions of time is

similar to the method given in section IV of the text. See Harvey (1981, p. 110) for details.



Footnotes

IFor simplicity, we assume a single technology. However, this assumption could be

weakened to allow for multiple technologies, without changing the form of the process followed

by the equilibrium real interest rate, e.g. see CIR (1985a).

YThe formulation in equation (5) allows the govermnment’s monetary policy to be

modelled as one in which real capital shocks to the price level may or may not be accommodated.

P = -1 could be regarded as a non-accommodating monetary policy, while if p i = 0, capital
shocks are completely offset.

3The stochastic components of equations (3) and (4), Gudzy and Grd z,, may also be
correlated.

“As with the Vasicek (1977) and Langetieg (1980) models, leaving out this restriction
still leads to sensible bond prices when the nominal interest rate is currently positive.

SA state space representation is also used by Hansen and Singleton (1987) to test asset
pricing models by a general method of moments (GMM) technique. Their procedure allows for
greater generality in consumers’ utility but relies on the use of consumption data.

6chhnically, error due to slight data misalignment in the measurement equations will
imply a non-zero correlation between the error terms in the state transition equation and the
measurement equations. Our estimation procedure assumes this correlation to be zero.
However, it is clear that if the data misalignment is small relative to the observation interval, then
this correlation between the measurement equation error terms and the state equation errors will
be small.

7A similar problem arises in identifying the unobservable "sources of risk” in empirical

work based on the Arbitrage Pricing Model of Ross ( 1976). Identification of these risk factors is
unique only up to a nonsingular linear mapping.

8Juster and Comment (1980) give a detailed description of this data series.

’See Carlson (1977) for a description of the Livingston survey anc the logio of picking §

and 14 month forecast horizons when using this data.



This is consistent with the results of other research on interest rates, such as Summers

(1982) and Mishkin (1987).

"Given the non-zero correlation between the innovations in the real rate and expected

inflation, arise of 6, in the real rate would be expected to produce a change of p,y Gy in the level
of expected inflation. For the current set of parameter estimates, this implies a fall in expected
inflation equal to .0053.

12However, these point estimates imply negative eigenvalues.

13Reported in personal correspondence from Professor Thomas Juster.
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bll

-.15635
(.08497)

Gr

.02440
(.00189)

By

-.00020
(.00801)

.00089
(.00001)

Table A

Parameter estimates using monthly 30, 90, 180, and 345 day
Treasury bills and semi-annual 8 and 14 month Livingston
CPI forecasts, 1964-1986.

278 monthly observations

(Standard errors in parentheses.)

by, by,
11039 16398
(.05469) (.07938)

On Prr
.01337 -.39419
(.00147) (.14934)

B, Bs By Bs
-.00176 -00497 -01144 00838
(.02390) (.04763) (.09071) (.03606)

Fa
00129
(.00018)

Likelihood ratio test of H: byy = by =p, =0.
—2In{L (80) /L (8)) =12.74

Y2 (3)[1% = 11.34

b22

-.16598
(.05285)

B

01687
(.06274)



Table B

Parameter estimates using monthly 30, 90, 180, and 345 day
Treasury bills and monthly University of Michigan Institute for
Social Research 12 month inflation forecasts, 1978-1986.

108 monthly observations

(Standard errors in parentheses.)

bll b12 b21
-.03713 -.12929 -01051
(.18566) (.14926) (.18507)

G, On Prr
.03137 01572 -.16470
(.00396) (.00354) (.31839)

By B, Bs By
-.00018 -.00717 -.01639 -.03539
(.00754) (.02210) (.04367) (.08175)

4! T2

00103 00567
(.00003) (.00063)

Likelihood ratio test of H: b1z = by =p,r =0.
—2In(L (60) /L (8)) =0.71
x*(3)]10% = 6.25

b22

-.17837
(.14938)

Bs

.03495
(.02457)



bll

-.69459
(.19651)

o)

T

11626
(.01110)

By

00004
(.00445)

.00033
(.00001)

Likelihood ratio test of Hy: b1z = by =p,r =0.

Table C

Parameter estimates using monthly 30, 90, 180, and 345 day
Treasury bills and semi-annual 8 and 14 month Livingston
CPI forecasts, 1964-1975.

140 monthly observations

(Standard errors in parentheses. )

b12

06249
(.10657)

Cn

.10682
(.01077)

Bz B3

-.00276
(.02654)

-.00071
(.01333)

.00084
(.00027)

~2In(L (80) /L (8)) = 269.44

v2(3)[1% = 11.34

b21
21089
(.20547)
Pr
-.98925
(.21829)
B, Bs
-.00711 -.01952
(.05029) (.04690)

b22

-.20358
(.10443)

Bs

-02876
(.07739)



bll

-25149
(.09477)

8

r

.09384
(.01048)

By

-.00041
(.00868)

00061
(.00001)

Likelihood ratio test of Hy: by = by =p.y =0.

Table D

Parameter estimates using monthly 30, 90, 180, and 345 day
Treasury bills and semi-annual 8 and 14 month Livingston
CPI forecasts, 1975-1986.

140 monthly observations

(Standard errors in parentheses.)

b12

17228
(.15836)

On

.09837
(.01204)

Bz B3

-.00282
(.02586)

-00767
(.05125)

.00108
(.00019)

~2In(L (60) /L (8)) = 137.93

v (3)[1% = 11.34

b21

21089
(.08837)

Pra

-.94882
(.22412)

Bs

-01861
(.09641)

Bs
02819

(01226)

b22

-.61310
(.14615)

Bs

05161
(.02102)
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Figure 4
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Figure 5
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