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Abstract

Transferring physical capital and transferring production and sales
activities from one country to the other typically entails large adjustment
costs. The model of this paper features two homogeneous stocks of physical

capital located in two different countries separated by an 'ocean'. The two
physical stocks are optimally invested in a random production process yielding

real returns, consﬁmed by local residents, or transferred abroad. Retro-
fitting, transferring and re-building capital equipment, and increasing
production and sales abroad either takes time (during which capital is idle)
or consumes real resources. As a result, the price of capital-consumption
goods located in one place is not equal to that of goods located in the other
pPlace. The stochastic process for this deviation from the Law of One Price
(LOP) is obtained. By construction, this process is compatible with finaneial
market efficiency and with the possibility of (costly) trade in commodities.
Whereas empirical studies have found no evidence against the hypothesis that
LOP deviations follow a martingale, the theoretiecal process which I find,
exhibits mean reversion {as well as a fair degree of conditional hetero-

Scedasticity) when investors are risk averse.
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1. Introduction

Many, perhaps most, goods_have an asset character. Some are storable,
some can be invested into a production process, others are consumer
durables. When goods have an asset character the dynamic behavior of their
price is not simply driven by current flow supply and demand; rather, their

price tends to follow a quasi-martingale as do the prices of securities in an

efficient market. This rule applies in particular to the relative price of
physical capital located in two different countries and, by extension, to any
commodity which is a close substitute to physical capital.

This insight lead Roll (1979) to postulate the so-called 'ex-ante'
version of the Purchasing Power Parity doctrine. His reasoning was based on
the activities of a risk-neutral speculator who could engage in foreign-
exchange transactions and store commodities in two countries, without being
allowed to ship them from one place to the other. Despite the absence of
direct spatial arbitrage, Roll argued, goods prices in the two countries are
not without link: their relative price (the deviation from the Law of One
Price) must follow a martingale.1 And, indeed, deviations from Purchasing
Power Parity (arising mainly from deviations from the LOP) have been found
empirically to follow a process which cannot be distinguished statistically
from a martingale (Rogalski and Vinso (1978), Roll {1979), Adler and Lehman
(1983), Huizenga {(1986)).

Roll's reasoning, however, is not incontrovertible, for several
reasons. It contains one inconsistency. Speculators consume goods to live;
they presumably consume the goods available in their respective countries and
evaluate returns in real units of these goods. But no capital market
equilibrium is possible between risk-neutral investors who evaluate returns in

different units, when the relative prices of these units fluctuate randomly.
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Roll's reasoning must therefore be extended to incorporate risk-averse
consumer-investors. This extension will prove fatal to the strict martingale

result (but not to the spirit of ex-ante PPP).

Furthermore, at least two aspects of the Roll reasoning cry out for a
generalization. First, it is unrealistie to postulate that storage is the
only intertemporal utilization of physical goods. Production and, generally,

physical investment opportunities must be made available in both countries.
The question is interesting because these investment opportunities' rates of
return must have an impact on the conditionally expected rate of change of the
deviation from the LOP.

Secondly, the total absence of physical transfers of goods in Roll's
model is equally unrealistic. Trade economists should be unwilling to admit
the possibility that deviations from the LOP eould forever wander away from
the zero mark: beyond a point, surely, spatial arbitrage becomes profitable
and goods which are nontraded when the deviation is small, get to be traded
when the deviation is larger than the cost of trading. Hence there should be
some reversion tendency in the LOP deviation. There is an apparent conflict
between the LOP reversion produced by trade (no matter how costly) and the
Roll argument in favor of a martingale.

The model presented in this paper resolves this conflict by producing a
stochastic process for LOP deviations which is compatible with market
efficiency and with the possibility of moving goods across the world, while
being able also to invest them as productive assets in more than one
country. It is found that, under risk aversion, the process of LOP deviations
is a not a marginale.?

In developing this model, I have borrowed from at least two strands of

literature. The first strand comprises International Asset Pricing Models
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(IAPMs) of various kinds; it has been reviewed by Adler and Dumas (1983).
Generally models of international asset pricing have_focused on the fact that
investors of different countries consume goods available in their country of
residence and, therefore, when PPP does not hold (at the levei of consumer
prices), evaluate real returns from their investments differently.3 This

feature is mirrored here: the two national categories of investors I will

consider will consume goods located in their respective countries, As a
result, an IAPM will formally hold. It will not be plagued, however, by some
of the inconsistencies which are present in this literatur‘e.!1l

Secondly, the macroeconomic literature on capital formation has
emphasized an interpretation of Tobin's g theory (cf. Tobin (1961, 1969),
Brainard and Tobin (1968)) based on costs or delays inecurred when installing
capital (ef. Eisner and Strotz (1963), Gould (1968), Lucas (1967a, b) Mussa
(1977), Treadway (1969), Kydland and Prescott (1982)). This literature has
recently been extended to stochastic settings notably by Pyndick (1982), Abel
(1983, 1985) and applied to the Finance field notably by Brennan and Schwartz
(1985), Majd and Pyndick (1987) and Myers and Majd (1987). A 'symmetric’
literature considers costs incurred when dismantling or retro-fitting capital,
the limiting case being the one where investment is irreversible (Nickell
(1974), McDonald and Siegel (1986), Pyndick (1986), Bertola (1987)). Such a
specification also causes Tobin's g to be different from 1. The deviation
from the LOP which I derive here is in the nature of a Tobin's q which would
reflect both kinds of costs of adjustment. While Tobin's g is defined as the
price of installed capital relative to its market (or consumpﬁion) value, my
LOP deviation is defined as the price of physical capital located in one
country relative to the price of capital located in the other, when it is

costly to transfer capital between the two places in either direction.5'6



1

Finally, the model of this paper may be viewed as a real-side alternative
to some recent efforts at explaining international capital flows, made by
international monetary economists. The work of Svensson (1985) and Stockman-
Svensson (1987) relates capital flows to monetary poliey via a cash-in-advance
constraint, We make no attempt to introduce money in our setting, although

that could certainly be done.

For mathematical techniques, I am indebted to the work of Constantinides
(1986) and Grossman-Laroque (1987) on portfolio choice under transactions
costs, and to Krylov (1981)'s formulation of the optimal-stopping problem.

The outline of the paper is as follows. Section 2 explains and defends
the modelling choices (assumptions) which have been made. Sect;on 3 shows the
mathematical derivation leading to the kingpin of the model: the indirect
welfare funection for various types of wealths. Section 4 describes how the
goods move across the world in general equilibrium. Section 5 features the
main result: the process for deviations from the Law of One Price. Section &
examines the consequences of LOP deviations for differences in real interest

rates between countries.

2. Modelling choices.

I consider a‘world economy populated with consumers who are identical to
each other, except for the fact that they live (in equal numbers) in two
different geographic locations (countries), with the constraint that they can
only consume goods physically available in their country of residence.’ There
is only one good, except for the fact that one must distinguish two versions
of this good, depending on its physical location at any given time. In both
locations, the good in gquestion ecan be consumed, invested in a random,

constant-return-to-scale production process, or transferred abroad.



The world is perfectly symmetrical: not only have the consumer-investors
of both countries the same risk aversion, which is assumed constant,8 but
their initial endowments are such as to warrant a symmetric treatment (more

details below). Furthermore, the production processes of both countries have
the same expected rate of return and standard deviation of rate of return.

The output shocks in the two countries are uncorrelated.

Shipping capital abroad takes time or consumes resources; this assumption
is made as a convenient device to produce LOP deviations and to explore their
dynamic behavior in financial market equilibrium. Depending on the
interpretation, shipping may entail a real cost or an opportunity cost; viz.
while goods are on ship, they do not serve as physical capital in the
production process, so that an output flow is foregone.

For reasons of symmetry and portfolio diversification, consumer-investors
of both countries would ideally like the two stocks of goods accumulated in
the two countries to be equal to each other. Despite this faét, an imbalance
can develop, and can even persist, as a result of cumulated random output
shocks, and optimal shipments and consumption rates. If and when an imbalance
develops between the two stocks of goods, it may not pay to correct it by
transferring goods from the country where they are more abundant to the
country where they are less abundant. Instead, within a range of tolerance,
the consumer-investors who are fortunate enough to be in the country where
abundance prevails, consume more, (without having to offer their foreign
counterpart any compensationg) and, in doing so, contribute to some
rebalancing. The first order of business (sections 3 and 4) is to determine
this range of tolerance within which no shipping takes place.

Since one is only interested in obtaining prices, it is possible to avoid

the painful derivation of portfolio holdings and financial market equilibrium,



by assuming that consumer-investors can achieve a (constrained) Pareto optimal
allocation of consumption, by means of a sufficiently rich (perhaps complete)
capital market. This is a Pareto optimum constrained by the fact that trade
between the two countries is costly. The assumption of Pareto optimality is
tenable considering that the model includes no hindrance to the exchange of
securities or goods between inclividuals,10 only to the movements of goods

between locations; if a person ships goods from one place to the other, he or
she suffers the real or opportunity cost of shipping, whether or not he
retains ownership of the goods, whereas, if a person sells a stock of goods to
another, without moving them, no cost is born, whether or not the buyer and
the seller reside in the same country. Under this assumption, the capital-
market and goods-market equilibrium can be replicated advantageously by an
appropriate central planning problem.11 Impliecit prices--which goqld prevail
explicitly in decentralized markets--can then be obtained as the derivatives
of the appropriafe indirect welfare function for (the various forms of)

wealths,

3. The central planning problem.

I assume that all consumers initially start their lives with endowments
of goods, such that the appropriate central welfare function devotes equal
weights to the utility levels of the households of the two countries. 12+'13

Accordingly, the central optimization problem is written as follows:

o + 1(c*)V)du

(1) V(K, K*) = Max E J'e'p(ll—t)( Lo

1
c,ch t t Y
Xx,x%20

s.t.:

Whenever x = x* = 0:
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(2) dK (uKt ct)dt + cthzt
* % _ % %o %

(3) th (aKt ct)dt + othzt .

If, at some time t, x > 0:
{4a) K =K -x

(4b) K* = K¥ 4+ sx s <1
T T=

If, at some time 1, x* > O:

(5a) K¥ - K* - x¥
T i T
(5b) K =K + sx ;
T = T
where:

1 - vy 1is the degree of risk aversion common to all investors;

c is the rate of consumption of the good located in one location which I
arbitrarily label the 'home location';

ck is the rate of consumption of the good located in the other location
arbitrarily labelled the 'foreign location';

X is the (lumpy and positive} amount of goods being transferred, at time
T, from the home country to the foreign country;

x* is the (lumpy and positive) amount of goods being transferred at time
T, from the foreign country to the home country;

§ < 1 reflects either shipping cost or production foregone during shipping

delay.1u.

K, K* are the stocks of capital located in the home and foréign countries

respectively.



Equation (1) is the equally-weighted welfare function of the central
planner. Equations (2), (4a) and (5b) indicate that the stock K of goods
located in the home country is depleted by:

-consumption at home (¢):

-shipments (x);
and replenished by;

-output K(adt + odz), where dz is white noise;

-the arrival of an amount sx* of goods, transferred from abroad.

This problem has two state variables K and K*. Considering that the
utility-of-consumption function is isoelastic, it is reasonable to assume that
the 'correct' solution of this problem15 has a value function V which is
homogenous of degree y in K and K*, and symmetric with respect to these two
variables. I now make use of these properties to characterize the solution
and to reduce the dimensionality of the preblem,

I first rewrite problem (1 - 5) as an Optimal Stopping Problem (Krylov
(1981)):

T
K, K¥) = Max E -p(u=t) 1 oy L 1 amyY)g
(6) V(K, K¥*) c?:* . { e (Y Cy* Y (c*) )du
x,x%0

+E e_p(T—t)V(K - X_ + sx*, K* - x*  3x )
t T T T T T T

subject to constraints (2) and (3). 1 > t is the first time at which x or

x* > 0.
As has been noted by Constantinides (1986), the first order conditions

with respect to the shipping decisions x and x* are: '
(Ta) VI(K - x, K*¥ + sx) = 3V2(K - x, K* + sx) ;

(Tb) sV1(K + sx¥, K¥ . x¥) - V2(K + sx¥, K% - x¥)
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These equations implicitly assume that x and x* are not simultaneously
positive. Considering the homogeneity and symmetry of the function V, it is

clear that these first-order conditions will be satisfied along (at least) one

pair of rays:

(8a) K- x = A(K* + sx)

(8b) K* - x* = A(K + sx*) ;

of slopes A(>1) and 1/x in the (K, K*) plane. These two rays delimit a cone

(K < AK* and K* < AK), within which the optimal decision is x = x* = 0, If,

however, K > AK*, or K* > AK, the optimal decision is to choose x > 0 or

x* > 0 satisfying equations (8a) and (8b) respectively; i.e., the optimal

decision is to ship in such a way as to get back to the frontier of the cone.
Outside the cone, the indirect indifference 'curves' are straight lines,

as shown in figure 1. I.e. there exists a function U{) such that:

(9a) V(K, K*) = U(K* + sK) when K > AK* ;
and:
(9b) V(K, K*) = U(K + sK*) when X* > aK .

Outside the cone, when shipping is optimal, wealth, which otherwise must be
measured by two numbers K and K*, can be measured as one number equal to the
amount of the good located in the country where it is scarce, plus the
"translated amount" of the good located where it is abundant. The translation
factor in both cases is s < 1, which is the shipping loss factor. More
specifically, based on the postulated homogeneity of degree y of the function
V, the function U which applies outside the cone must be of the following

form:

(10a) U(K* + sK) = u(K* + sK)Y/v when K > yk* -
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(10b) U(K + sK*) = u(K + sK*)V/y when K* > AK .

where y is a positive number to be determined.16
FIGURE 1 GOES HERE

When the solution x, x* of (8), (as well as the solution ¢, c* of obvious
first-order conditions for the consumption rates),17 have been
substituted in, the optimization problem reduces to a choice of two parameters
v and A and the Hamilton-Jacobi equation characterizing the function V can be
written as follows for values of K and K* in the interior of the cone:18

. i

(11) 0 = [l - 1)V Ll [% D N FR LIS

Y 1

+ VoK + Vyak® + %V1102K2 + ;vzeozx*2 .
K¥/)% < K < AK¥
subject to:
(12a) V1(K, K*) = SVZ(K, K*) when K = aK* ;
(12b) sV1(K, K*) = V2(K, K*) when AK = K¥* ;
(13a) V(K, K¥) = % (K* + sK)Y when K = AK* :
(13b) V(K, K*) = % (K + sk*)Y when AK = K* .

where equations (12a, b) follow from (7a, b}, while equations (13a, b) follow
from (9a, b) and (10a, b).
Since the unknown function V(K, K¥) is required to be symmetric, equation

(11) determines it up to one constant of integration. For a given value of y,
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one of the two boundary conditions (13a, b) determines this constant, while
condition (12a) or (12b) determines x. If u were given, that is, we would
have a standard optimal-stopping problem in the manner of Krylov (1980) and
boundary conditions (13) and (12) could be interpreted as the 'value-matching’
and 'smooth-pasting' (or 'high-contact') conditions respectively. These
conditions were made famous in the finance literature by Samuelson (1965),

McKean (1965) and Merton (1973) in their treatment of the American-put pricing
problem, with optimal early exercise. The smooth-pasting condition (12) is
the first-order condition with respect to the optimal stopping time (in our
case, this is the time to start shipping). It guarantees that, at the
stopping point, the indirect-utility funetion is not only continuous (value
matching) but also that its first derivatives are continuous. 9

In our context, however, as in Constantinides (1986) and in Grossman-
Laroque (1987), the parameter u is to be chosen optimally, in such a way that
the level of the indirect-utility function V(K, K*) is maximized. This opens
the quest for an additional boundary condition which would represent the
first-order condition with respect to that parameter.

To this aim, consider again system (11 - 13) but regard it now as being
parameterized by A instead of u. Call V(K, K¥, x) the general (symmetric)
solution of (11), where x is the constant of integration. Assume that the
value of V is monotonically related to this constant of integration, so that
maximizing V is equivalent to choosing the largest possible value of y. This
function V satisfies the following system of boundary conditions, for K = AK*

(and an analogous one for K* = xK)zO:

(14a) Vir, 1, ¥) = 5(1 +sa)Y
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p(1 + sh)Y_1s
)7

V1(Av 19 X)

Vz(lr 1, X)

(15a)
{1t + sa

L)

Now, totally differentiate this system with respect to the choice of i,
imposing that dy/di = 0. Equation (1la) gives:

(16) Va1, ) = 5(1 +sa)V s+ 9’%‘1—" (1 +s0)

which, in conjunction with (15a}, imposes that du/di = 0 as well. Next,

differentiate (15a) under both dy/dx = O and du/dx = 0. This yields several

dependent equations.

(17a) Vi 10 =y = D0 1)
(17b) Vo 0 1, 00 = uly - DT+ s1)7 s
(17e) Voolh, T, %) = uly = D(1 + a0,

These equations are dependent under (15a) by virtue of Euler's theorem for
homogeneous functions, so that only one of them can be kept or one combination
of them. No matter what form is chosen, equations (17) impose now the
condition that the second derivatives of the value function be continuous at
the stopping point.

This is a higher form of contact than is encountered in traditional
optimal stopping problems (e.g. the early exercise of options) where the
boundary at stopping time is fixed, and only the time at which to stop at this
boundary is to be chosen optimally. Here, the boundary itself (the value of
¥) is an object of choice. A 'higher-order contact' or 'super-contact' is
then imposed to determine this additional dimension of choice. This condition
apparently has not been recognized by Constantinides (1986) or Grossman-

Laroque (1987). Constantinides ultimately imposes the condition by his choice
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of integration constants (see below our rendition of Constantinides) but he
does not recognize the resulting super contact. Grossman-Laroque optimize the
choice of u (their M) after solving a system analogous to (11 - 13). They
apparently do not realize either that higher contact results from this
optimization. |

Knowing that not only the value of the function, and its first

derivatives, but also its second derivatives are continuous at the boundary,
we can deduce that, at the boundary point, the boundary function
(u/y)(K* + sK)Y (when K = AK¥) must satisfy the second-order differential

equation (11). This generates a relationship between y and A which is very

useful in obtaining solutions?!:

B . 2
(18) o= (- W (" e1) -1
Y Y
2.2
ra+ 3y -1 l_I_§_L"§ 02
{1 + s1)

Finally, one can make use again of the homogeneity of the V function to

introduce a change of variable and of unknown function:

K
(19a) i <
(19b) V(K, K*) = % (K + K*)Y I(w)

% (K* + sK)Y = % (K «+ E®)Y (1 - w + sw)Y
% (K + sk*)Y = % (K + K5)Y (w+ s(1 - o))’

in order to reap a major advantage: the transformation of the unknown function
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into a function of only one variable, and the transformation of the partial

differential equation (11) into an ordinary differential equation. Details of
this substitution, and the way in which the resulting boundary-value problem

is solved numerically,? are laid out in Appendix II.
For purposes of comparison, it is useful to have a lower bound for the
scaled indirect utility function I{w). One lower bound is provided by an

approximation wherein shipments are optimally chosen but consumption rates in
the two countries are suboptimal. This approximation is in the spirit of the
one used by Constantinides (1986). Specifically, if one sets the rates of
consumption, out of the two stocks of goods, to be constant and equal in both
countries,23

{20) e/K = c*/K¥% = g ,

then the Hamilton-Jacobi equation pertaining to the inside of the cone,
subject to boundary conditions (12) has an explicit solution in the following

form;

(21) (K, K*, B, A) = w(B)(KY + K*Y) + &(8, A)(KY SK*® 4+ K°K#V7F)

?

where ¢ = e(B) and 'y - ¢ are the two solutions (assumed to be real and

positive) of the following characteristic equation:

2
(22) 0z-p+y(a-8)+3y-ely-e-10+3%ele-Na
while v and § are given by:

Y
(23) w8) = - 8 7y >
-p + y(a - B) + Iv(y - 1o

s 4+ Y]
(2h) §(8, 1) = vy - -
, s(y - e)a® - EAE_1 + 5eAT 4 (y - eATE 1
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The opening of the cone X and the constant rate of consumption B are then
chosen to maximize V. As far as X is concerned, this can be done uniformly
and the question reduces to that of maximizing 6(8, 1) with respect to k.24
The result depends on 8. Maximizing V (equation (21) above) with respect to
the artificial consumption rate 8 cannot be done uniformly; i.e. one obtains a
different answer for different values of K/K*. A particular value can be

obtained for the perfect-diversification situation K/K* = 1, This procedure

will be referred to below as 'the Constantinides approximation'.

4. The equilibrium process for the allocation of physical capital

Everything one may want to know about the equilibrium behavior of the
economy, which I am considering, can be derived from the knowledge of the
function I(w). In this section, I concentrate on the dynamics of the physical
stocks of capital, whereas the main object of our exercise--the dynamies of
prices--will be considered in the next two sections. As far as physical
quantities are concerned, two topies are of interest: the size of the cone of
no shipping and the behavior of quantities inside the cone. Even though no
shipping takes place inside the cone, endogenous consumption rates do tend to
rebalance the stocks of goods.

The size of the cone, i.e., the value of A, the tolerated imbalance--has
been obtained, by the numerical process described in Appendix II, for varying
degrees of risk aversion and varying degrees of risk. The results are
displayed in table 1.

Observe that, under certainty (o = 0), increasing risk aversion {which
is, in fact, decreasing the rate of intertemporal substitution and decreasing
the rate of inter-personal substitution) monotonically reduces the opening of
the cone.? Under any level of risk, the variation as a function of risk

aversion is still monotonic and coperates in the same way. In particular,



observe that as one approaches risk neutrality, the cone of no shipping widens
indefinitely so that shipping occurs almost never.26

But note the manner in which increasing risk affects the size of the
cone: it increases it.°! This is somewhat surprising because increasing risk
apparently has an effect opposite to that of increasing risk aversion.

Furthermore, in the context of portfolio choice under transactions costs,

Constantinides (1986) found that increasing risk decreased the opening of the

cone of no transactions (see his Table 3, page 854). But there éfe several
differences between Constantinides' problem and ours. OQur praoblem is
symmetric as far as the choice of assets is concerned: we choose between two
physical investments of equal volatility but located in different places,
whereas his investor faced a choice between a risky and a riskless asset.
Increasing risk in his context meant increasing the risk of one ésset only,
not both as we do here, Furthermore, our problem is symmetric as far as the
origin of consumptioh is concerned: people of each country consume out of the
stock of goods available locally, whereas Constantinides' investors consumed
only out of the wealth invested in one asset: the riskless one. Finally,
Constantinides utilized an approximate optimization procedure yielding a
suboptimal result, while our results are optimal.28

In order to verify that these differences between the two settings
account for the difference in the results, we applied the 'Constantinides
approximation' to the present problem.29 The results are displayed in Table
2. They confirm that the opening of the cone decreases with increasing risk
aversion but increases with higher risk. The values obtained for A in Table 2
are uniformly lower than those of the exact Table 1, This makes sense: when
differential consumption rates in the two countries are allowed to bring about

some rebalancing, less shipping is needed. The difference between Table 1 and



Table 2 reflects the effect of constraining consumption rates out of available

stocks, to being equal in the two countries (and constant over time).
TABLES 1 AND 2 GO HERE

The behavior of w (the allocation of the goods between the two places)
inside the cone, as a result of production shocks and differential consumption

rates, can be obtained easily from the knowledge of the value function,

Applying Ito's lemma to the definition (19a) of w produces:
dk  dK* dK+2 dK¥*,2
(25) dw = w(1 - W)= - 5 - w(f) + (1 - ) (58] .

Based on {2) and (3), this is also:

(26) do = w(1 - w){{- % + %; + (1 - 20)6%)dt + ov2 dz}

where dz = (dz - dz*)//2 is a standardized white noise. Finally, defining the

following quantities, in order to save on notations:
(27) N(w) = I(w) + 1 T'(@)(1 - w)
(28) D(w) = I(w) + T I'(w)(~ w)

we have, in sequence (based on (15b)):

(29a) Vo= (K + K%Y Nw)

(290) Uy = (K + K97 'D(w)
1

(30a) &= v

(30b) = T (D(w) ¥
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and substituting (39a, b) into (35) fully determines the behavior of w inside

the cone,

I have displayed in figures 2 and 3 the conditional expected change
(drift) and the conditional standard deviation (diffusion coefficient,
including a sign reflecting the direction of the effects of the shocks dz and
dz*) of the w process as functions of the current level of w (which puts the w

process in the form of an autoregressive process of order 1), for the
numerical values of the parameter indicated in Appendix II. These deseribe

the process inside the cone. Observe the following:

-the drift is zero at the centerpoint (w = 0.5) when the two stocks of goods
are balanced. It is constant in a neighborhood of the edges of the cone. The
sign of the drift, which reflects purely the differential consdmption rates,
is always such as to draw w towards the centerpoint or equivalently towards

the interior of the cone. The process is AR(1) but necessarily a non linear

AR(1);

-the diffusion coefficient {i.e., the volatility of the allocation of goods
bebween the two locations) is variable (equal to w(1 - w)/2), so that the
process must be classified as AR(1) with conditional heteroscedasticity. The
coefficient is always of the same sign and is largest in absolute value at the
centerpoint. On the edges, the diffusion coefficient does not vanish, so that
the edges do not act as a natural boundary: there is a positive probability
of reaching them in finite time. They are in fact 'regular béundaries' in the
sense of Feller'.30

FIGURES 2 AND 3 GO HERE

Because of the nature of the boundaries--i.e., because they can be

reached--it behooves us to specify the behavior of the process on the
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boundaries. This behavior follows from our earlier description of optimal

shipping decisions: when w is close to a boundary (on the inside of the cone)
4 random output shock (dz > Adz* on the right boundary; Adz < dz* on the left
boundary) can create such an imbalance as to trigger immediate shipping. The
amount of the shipment will be exactly such as to bring w back to the frontier
immediately (see figure 4), Nonetheless, the process cannot spend a finite

time on the frontier, because the probability of dz - Adz* (or Adz - dz*, as

the case may be) being of the same sign steadily during a finite period of
time is zero. In other words, the time spent on the boundary is not zero (as
it would be if the boundary were a reflecting one); it is infinitely small but
strictly positive,31 i.e. it is not strictly equal to zero, as would be‘the

case if the boundary were regular and reflecting (or were a natural boundary).
FIGURE 4 GOES HERE

5. The equilibrium process of deviations from the Law of One Price

Even though I have formulated the optimization problem as a centralized
one, one can infer the prices which would prevail in a deceﬁtralized market
economy, by looking at the first derivatives of the value function V(K, K¥).
This was, of course, the main purpose of the determination of this function.

Indeed, define p as the price of physical capital located at home
relative to capital located abroad, {the price of a unit of K relative to a

unit of K*). This price is obviously given by:

V1(K, K¥*)
(31) p = V;Tﬁj_ﬁi7 .
Because of the homogeneity of V, p is a function of w only. This function is

(recall (29a, b), (27), (28)):
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_ N(w)
(32) plw) = D(a)

The Law of One Price prevails when p=1.

Even though p is the price which would indeed prevail in the goods/
capital market, if one were organized in this economy, it would be
inconvenient to study the stochastic process of p itself, whose definition is
asymmetric in nature: interchanging the two goods changes p into 1/p, which is

a non linear transformation. The symmetry will be preserved if, instead, one
studies the behavior of the relative deviation from the LOP. This relative

deviation m will be defined as:

. _Dp -1 _ 5 Nuw) - Dw) .
(33) "% 172 " 2 Nw) + Dlw)

p being the price of a unit of K, 1 being the price of a unit of K¥, = is the
difference between these two prices, relative to the average price. Knowing
the I(w) function, equations (27), (28) and (33) provide = as a function of
w. Since the process of w is known,32 it is an easy matter to obtain the
process of =.

The functions p{w) and =»(w) are displayed in figures 5 and 6. The =
function is indeed symmetric whereas the p function, in fact, is not. As
expected, and as has been imposed by the boundary conditions (13a, b) p
reaches the values s and 1/s at the two extremities: under active shipping,
the good located in the country of abundance {(from where shipping originates)
is s times less valuable than the good located in the country where it is
scarce. At the boundaries, » reaches, of course, the correSponding values
+ 2(s - 1)/{1 + s). The slope x'(w) at those points is zero by virtue of the
super contact condition (17).33 When no shipping takes place, the price is

somewhere between s and 1/s, depending on the degree of imbalance in the two
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stocks of goods. Under perfect balance in the quantities, = = 0 and the LOP

prevails.

FIGURES 5 AND 6 GO HERE

I have displayed in figures 7 and 8 the conditional expected change
(drift) and the conditional standard deviation (in fact the signed diffusion

coefficient) of the © process as functions of the current level of = (which
puts the = process in the form of an autoregressive process of order 1), for

the now usual numerical values of the parameters. Observe the following:

-the drift of the process reflects a reversion tendency, since the drift in
figure 7 is negative for a positive deviation from the LOP and vice-versa.
Mean reversion is particularly strong near the borders. This is true despite
capital market efficiency (or rational expectations). The reason for this
phenomenon is twofold: first, w itself exhibits mean reversion (see section
3) as a result of differences in consumption rates between the two countries;
secondly, the n{w) function relating the LOP deviation to the quantity
imbalance tapers off as one reaches the boundaries (see figure 6), reflecting
the fact that the price, as a result of shipping, will not be able to escape
from the interval [s, 1/s]. The mean reversion of the LOP deviation displayed
in figure 7 shows conclusively that the process of deviations from the LOP is

not a martingale.3u

~figure 8 indicates that the process of deviations is strongly
heteroscedastic: the conditional standard deviation is much smaller near the
boundaries than at the centerpoint. In fact, the standard deviation of the
process becomes zero at the boundaries. It has been noted above that the

slope of the n{w) function is zero at the boundaries; this accounts for a
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diffusion coefficient of = equal to zero, even though that of w is not zero.
Despite the zero volatility at the boundaries, the extreme values s and 1/s
have a positive probability of being reached in finite time. The boundaries,
here again, are regular boundaries and boundary behavior is qualitatively the
same as for the w process. In fact, considering the shape of the w({w)
function noted above (see again figure 6), and considering the transformation

of distances which it induces, the 7 process is 'near' its boundaries more

frequently than did the w process.35

FIGURES 7 AND 8 GO HERE

6. The real interest rate differential

As soon as the relative price of two goods, or two varieties of a good,
fluctuates over time, the rate of interest measured in units of one of them is
not equal to the rate of interest measured in units of the other.36
Furthermore, if the fluctuations of the relative price are random, é financial
asset which would be riskless when its rate of return is evaluated in units of
one of the goods, no longer is when its rate of return is evaluated in terms
of the other. One must, therefore, be careful to distinguish four quantities

which are conceptually quite different:

-quantity 1: the rate of interest on an asset which is riskless in terms of K

(the good located at home); this is the own rate measured in units of K

itself;

-quantity 2: the expected value of the rate of return on this K-riskless
asset measured in terms of K* (the good located abroad);37 guantities 1 and 2
differ only by the expected value of the change in the relative price; i.e;

they differ if and only if the price does not follow a martingale process;
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-quantity 3: the own rate of interest on an asset which is riskless in terms

of K¥; quantities 2 and 3 differ by a 'risk premium';38

-quantity 4: the expected rate of return on the K*-riskless asset measured in
terms of K; quantity 4 differs from quantity 3 by the expected price change;39

quantity 4 differs from quantity 1 by a risk premium.uo

Below, I measure the spread between quantity 1 (denoted r) and quantity 3
(denoted r*), and I call this spread 'the' real interest rate differential.
But I break down this total (diagonal) spread into a component related to the
expected price change and one which constitutes a risk premium, In this way,
the field is completely covered and the other quantities can be reconstructed,
if one so desires.

It has been shown by Cox, Ingersoll and Ross (1985) (and their proof
could be replicated in our context) that, in a decentralized economy, the
riskless interest rate is equal to the discount factor of utilities (p in our
notation; see equation (1)) minus the conditionally expected rate of change in

the (undiscounted) marginal indirect utility of wealth. It follows thatu1:

1  EdV,)
¥ _ - e ————
(3%) re=rs= v, Tdt V. " dt

But, applying Ito's lemma successively to V, and V, given by (29a, b), then

again to = given by (33}, and a third time to N and D, one obta.insu2

(35) r*% - p = A E(AN) 1 E(dD)

(36) r* - p = y E{dn) _ {_ T+ 21 @)2 L 2((_1_[_)_)2

Y D



(37) P* -r = LI' E(dﬂ)

{_ T+ 2 [N'(m)]2 L ; 2 [DSE:;]Q

+

3 Nﬁ%ﬁ%%%é%l} 2o2w2(1 - m)2

In equation (37), the first term reflects the expected price change (obtained
in section 5 above), while the second term reflects the risk premium.

Every element on the right-hand side of (37) is already known as a
funetion of w.u3 This equation, therefore, yields the real interest-rate
differential as a function of the physical imbalance w. The differential and
its components are plotted as figure 9§, for the usual numerical values of the

parameters (recall that these parameters included a risk aversion equal to

2). Observe the following:

-the differential, the expected price change and the risk premium are zero at

the centerpoint w = 0.5; this is the result of the symmetric definition of the

price variable w;

-the rate differential behaves very much like the expected price change. They
both increase monotonically with the physical imbalance; they both reach a
maximum on the edges of the cone. A large real-rate differential is an
indication of strong expected reversion in the LOP deviationuuu It ecan
equally well be said that shipping is triggered when the interest rate
differential reaches its largest possible value, or when the deviation from

the LOP reaches its largest possible value:



-25-

-the risk premium, which is the difference in the expected rates of return of
home vs foreign assets measured in the same units,u5 behaves in an interesting
way: (i) its sign is always such as to reduce the absolute value of the
interest rate differential; it is equal to zero and changes sign when the

physical imbalance w passes the centerpoint w = 0.5; (ii) it is equal to zero

again on the edgesj46 (when the price variable 7 has a zero volatility; see

figure 8 and the comments in section 5); (1il) it reaches its largest absolute
value somewhere between the centerpoint and the edges, so that the risk
premium and the expected price change do not co-vary in the same way in a
neighborhood of the centerpoint and in a neighborhood of the extremities; (iv)
despite the fairly large amount of risk assumed in our numerical example, the
risk premium remains small in comparison to the expected price change and its
possible fluctuations over time are also small in comparison with those of the
expected price change. These results are of some interest in view of Fama
(1984)'s remark that risk premia and expected exchange rate changes must co-
vary in a systematic way (and undergo fluctuations of comparable magnitudes),
in order to account for the discrepancies which have been observed, in the

foreign exchange markets, between forward rates and subsequent spot rates.
FIGURE 9 GOES HERE

7. Conclusion

The main result of this paper pertains to the dynamic behavior of
deviations from the Law of One Price under sluggish quantity adjustment. The
deviations do not follow a martingale process, Considering the Markov
specification of the model, it is not surprising that the process found should
be AR{1). It is also not surprising that the deviation should remain between

two boundary values. The more interesting aspects concern the non linearity
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and heteroscedasticity of the AR(1) process. The conditionally expected
change of the deviation is a non linear function of the current deviation {see
figure T); its sign is such as to produce mean reversion (which is strongest
when the deviation is largest, near and at the boundaries). The conditional

standard deviation of the deviation is largest when the deviétion is zero, it
is zero when the deviation is at its largest possible value, at the

boundaries. As a result, the process is most of the time at or near one of
the boundaries which means that LOP deviations typically last "a long time."
Boundary behavior is also interesting: the boundaries can be reached in
finite time with positive probability; once it is at the boundaries, the
deviation spends there an infinitely small, but strictly positive, amount of
time.

Econometricians will have to determine whether empirical techniques (in
the space or frequency domains) which have been applied in the past to the
study of LOP deviations, remain valid for this type of process. Even if they
do, there is no doubt that the knowledge of the exact form of the process
should help greatly increase the power of the tests. At the very least, the
theory indicates that observations of changes in LOP deviations should be
segregated according to the current value of the absolute deviation. For
instance, the empirical analysis would have the strongest power in detecting
mean reversion when the absolute deviation is large; for this is the situation
where the reversion tendency is largest and the standard deviation smallest.

Throughout this article, one has stopped short of calling the LOP
deviation 'the real exchange rate', for the reason that the mbdel features no
currencies.u7 But this may be unnecessary timidity. Existing monetary models
fall into two categories: the 'flexible-price' models introduce money but

often assume that Purchasing-Power Parity holds. Since one major interest of
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introducing money in an international model would be to explain the very high
observed correlation between nominal and real (i.e. purchasing-power deflated)

exchange rates, such an assumption, which sets the real rate at 1, guts these
48

models.

Another category of monetary models succeeds in 'explaining' the high
correlation between nominal and deflated exchange rates. I am referring to

the 'sticky-price' models. Unfortunately, they are silent on the reasons
which cause commodities prices to he sticky. Surely, it has something to do
with the trading technology. While the technology which has been chosen here
may not be the most adequate to generate price stickiness, one essential idea
has nonetheless been captured: to the extent that costs of ad justments in
moving capital from country to country are higher than in moving ecapital
within a country, we can expect international prices of physical assets to be
more volatile than intranational prices.

One aspect does necessitate an apology: trade, in our model, often does
not take place and, when it does, it is jittery, since it is a direct response
to the last output shocks in the two countries. These features surely
contradict casual experience. Furthermore, they cause this model to fall
short of a simple reconciliation of the traditional flow and stock approaches
to international capital rno'.a'emna-nl:s.u9 The jittery behavior of trade is the
direct product of the linearity (actually proportionality) of shipping costs
which was assumed for convenience.® Under a concave cost structure,

shipments would be smoothed out. This problem, however, remains to be solved.
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Appendix I:

The 'time-to-ship' interpretation

Instead of constructing the model around an out-of-pocket shipping cost,
it 1s equally possible to regard the international transfer of capital as an
activity which takes time. During that transfer time capital is idle so that
an opportunity cost comes into the picture.

In this formulation, the objective function is still, of course, as in

equation (1). But the equations describing the dynamics of the system are as

follows:

whenever x = x* = 0,

(11 dw1t = (W1ta -e + ¢W3t)dt + witudz
(12) dwzt = -¢N2tdt + Wztcdz*

(13) dw3t = —¢W3tdt + w3t0dz

(14) dwut = (Hutu - ct + ¢W2t)dt + wHtOdZ* ;

if, at some time v, x > 0:

(I5) W = W - X

1t Tt- T

(16) WET - w2r— TR

if, at scme time t, x* > Q:

(I7) wur : qu- B x:
(18) W3T = W3T_ + xt ;

where:
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X is the (lumpy and positive) amount of goods being loaded, at
time 7, into ships which will sail from the home country to the

foreign country;

x¥ is the (lumpy and positive) amount of goods being loaded, at
time 1, into ships which will sail from the foreign to the home

country;

w1t,w1T and W1T_ are the stocks of goods located in the home country at time 1
and t- respectively;

Wzt,W2T,W21_ represent the stocks of goods in transit, being transported from

the home to the foreign country;
w3t,w3t,w3t_ represent the stocks of goods in transit, being transported from
the foreign to the home country;

wut,wut,qu“ are the stocks of goods located in the foreign location.

Equations (I1) énd (I5), for instance, indicate that the stock Wyp of
goods located in the home country is depleted hy:

-consumption at home (eyds

-shipments (Xt);
and replenished by:

-output W1t(adt + odz) (where dz is white noise);

-the arrival of an amount ¢w3tdt of goods, representing a constant
fraction ¢ of the goods in transit in the direction of the home country.,

Equations (I2) and (16) indicate that the amount of goods W,, in transit
from the home to the foreign country, is what it is as a result of shipments x
from one end, and arrivals ¢w2dt at the other. In addition, the stock of
goods aboard the ships receives random proportionals shocks Hzcdz*, which are
perfectly correlated with the output shocks of the destination country. The

purpose of this specification ig that aFanle F mrmde alonmmd ol $ oo xa1 o
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constitute investments media; shipping as a financial asset will be dominated
by production at the destination point; shipping will therefore be undertaken
solely for the purpose of conveying capital from one place to the other as
needed.?! 1In our model, there will be only two sources of risk: the output
shocks in the two countries, which will affect the goods already in the

country, as well as those about to reach it. The minute capital is loaded

onto ship it transfers from one risk area to another, even though it will
start earning returns only upon arrival.

This assumption reduces the dimensionality of the problem: it leads to a
simple aggregation of the stocks of goods in transit with those located at the

destination point. Indeed multiply equations (I2) and (I3) by a factor s

equal to:

. /o
(19) S = Ty 4/a < 1

and add them to equations (I4) and (I1) respectively. Then define the

guantities:
(110) K = W + sk
(111) K*=WH+SW2 .

K is the stock of goods already at home or which will eventually reach the
home country, given the 'shipping loss factor' s. The result of this grouping

of equations is identical to equations (2) - (5b) of the text.
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Appendix II:

Reducing the dimension of the boundary-value problem

The implementation of the change of variable {19a) and of the change of
unknown function (19b) produces the following result

X

-+ 150 - ar!

(I11) 0 o

H

x 1

(1o LI )T

+

p o+ Y[a - %02(1 - Y)(NE + (1 - '”)2)]

1"
+ 02 %— m2(1 - m)2

°(1 - v Dut - e - 1)

subject to 'value matching":

(I12a) I{w) (1 - w + sw)Y when w =

1+ 3

(112h) T{w) wlw + s{1 - ©))Y when w =

1T + X

'smooth-pasting':

—i
|
—
+
[#7]

(II3a)

T YT 4+ sa 1 + A
It 1 -8 1
(II3b) SR ArararTe m—— when o = T
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'super contact':

2
'y _ o (-1 +s) A
(I ) ST YT e+ se when w = T + A
2
e o (1-5s) o]
[I ] =Y o+ s(1 - w) when w = 1+ A

Note, however, that the symmetry of the function can be exploited to solve the

equation on one side only (e.g., for w < 0.5) ) and to replace the boundary

conditions with:

(114) I{w) = u(w + s(1 - w)}¥ when u = T
(I15a) 1'(0.3) = 0

1’ 1 -8
(115b) T " ¥+ s{1 - w) when w = 1 -

while the 'super contact' condition can be replaced by the relationship (18)
between u and X derived in the text.

Our solution procedure is more efficient than that outlined by Grossman-
Laroque( 1987):
Step 1. For some trial values’? of A, use (18) to obtain the corresponding
value of u and use (II5b) and (II4) to obtain I and I' at the point

w = 1/(1 + l).

Step 2. These values of I and I' provide initial conditions for (I1), so that

this equation can then be continued®3 until w = 0.5. If 1'(0.5) = 0 (i.e.,
boundary condition (II5a) is satisfied), exit. Otherwise, pick a new value of
A5u and go back to step 1.

Based on the following numerical values:
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(116) o

it
)
3
—_

0.15 Y

so that s = 1.22, the optimum is obtained, in this particular case, for u =

1047.9422 and A = 2.66325. The interpretation is that the optimal program

allows the stock of goods in one country to be as high as 2.66325 times the
stock of goods in the other, before any shipping is decided.?® For lower
values of y (e.g., u = 1000), it is not possible to find a A such that I'(0) =
0.5; and higher values (e.g., u = 1048, 1125, 1250, 1500) are, by definition,

not optimal, as they yield a lower level of V(K, K*).56
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Footnotes

TI.e. a process without mean reversion.

This is not totally surprising, considering that asset prices
themselves, under risk aversion, do not follow a martingale; of. Lucas {1978).

3n a recent contribution to this literature, Benninga and Protopapadakis
(1986) have introduced explicitly delays in international trading. They

derived an IAPM but did not solve for the resulting general equilibrium
explicitly.

uFor instance most international portfelio choice models {including
Adler-Dumas (1983)) introduce deviations from the Law of One Price and
different loci of consumption but do not recognize the distribution of goods
between locations (and the distribution of wealth between people) as state
variables. This criticism was already formulated in Adler and Dumas'
concluding section.

In order to simplify, I do not distinguish within each country between
investment goods (installed or not installed) and consumption goods.
Furthermore, I assume constant returns to scale, implying no rents. Hence, by
construction, in each eountry, the traditional Tobin's g is equal to 1. But
this assumption could be relaxed.

b1n the international context, Dixit (1987a, b)'s work on market exit and
entry is related to this literature, at least as far as the mathematical
apparatus is concerned. It differs from the present work in that it
incorporates set-up (or sunk) costs, while I consider proportional costs.

TBut they can own stocks of goods physically located abroad.

8The assumption of constant relative risk aversion (isoelastic utility)
is made only in order to reduce the dimensionality of the optimization

program; cf. Appendix II,
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9n the literature dealing with 'the demand for storage' (cf. Brennan
(1958)), this advantage is called a 'convenience yield'.
10This is in contrast to the models of Black (1974§ or Stulz (1981).

11This shorteut has been used previously by Lucas and Pfescot(1971), and

Constantinides (1982).

121n a Pareto-optimal market, these weights are constant over time and

across states of nature.

13No attempt is made here to relate the welfare weights to the initial
endowments. Note, however, that these weights reflect not only the relative
wealths of the investors, but also the locational composition of the aggregate
physical stocks, For instance, under equal welfare weights, if, at any time,
a person lives in the country where goods happen to be more abundant, this
locational advantage must be compensated--initially or because of risk-sharing
contracts--by lower personal wealth.

1‘U‘e’-\ppendi:-( I spells out the 'Time-to-Ship' interpretation.

Sas in all financial investment problems, solvency constraints are
implied. Investors with an isocelastic utility always satisfy them. The
‘correct' solution for V is the one which satisfies the sglvéncy constraints.

16Equations (10), in turn, imply that (7) must have an infinity of
solutions such as (8) indexed by their corresponding value of A; for, if one
considers a solution (8) corresponding to a given value of A, then all the
other values ' > A generate a solution as well, by virtue of (10). In other
words, if a given cone is optimal, a wider one also is. These observations
were already made by Constantinides (1986). In what follows, I shall
conventionally utilize the smallest cone; i.e., the smallest value of i.

Muhich are:

T Ly
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18Existence and uniqueness of the solution have not been proven, This
can presumably be done along the lines of Krylov {1981) and Grossman-Laroque
(1987). In particular, the parameter p, the discount factor of utilities of
equation (1), must be larger than some number, in order to guarantee existence
of the solution of (12) below, as well as the convergence of the integral in

(1). See footnote 21.

19(12&) can equivalently be written as a pair of equations:

(12a') V,(K, K*) = u(K* + k)Y

when K = aK*

V(K K#) = u(K* + sK)Y!

The equivalence, under (13a), results from Euler's theorem for homogeneous
function. (12'a) says that the first derivative has the same value, to the
right and to the left of the stopping point.

20g¢e previous footnote. Under (14a), the two equations of (15a) are
dependent.

2lThe existence of a solution to this equation must be imposed as a
condition for the existence of a solution to the optimization problem.

22There is no known explicit solution using standard functions. This is
true even in the logarithmic case y = 0.

23Rather than being optimally chosen at each point in time, and different
in the two countries, in such a way as to bring about some rebalancing.

2HWhen ¢ is maximum, 'super contact' obtains. The reader can verify this
fact, if he is willing to refer to the original text of Constantinides. On
page 849, equations (13) and (14) express the first-order high contact. Then,
as explained in the paragraph which follows equation (15), these equations are
differentiated in order to determine the proper integration constants A1 and

A5. This is tantamount to imposing higher-order second-degres contact.
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Synder certainty (o = 0), it is valid to assume that shipment takes
place once only and thereafter rebalancing is done simply by means of

differential consumption rates; consequently the value function inside the

cone is:
I(w) = u'(w’ + (1 - w)Y)

for some u'. The value of A which satisfies equations (12a, b) is:

1
A = (1/5)1_Y.

2b7he limiting situation would be the one envisaged by Roll (1979).
Under risk neutrality, strictly speaking, no equilibrium of the capital market
exists,

2Ty wider cone, when risk increases, does not necessarily translate into
less frequent shipping. The larger volatility makes reaching the boundaries
of a given cone more likely, while a wider cone has the Opposipe effect.
Which effect dominates, as far as the frequency of shipping is concerned, has

not been determined.

28Except for the approximation entailed in the use of a numerical

technique.

29Please refer to the end of the previous section for détails of the
specification.

30see Cox and Miller (1965) pages 219ff or Karlin and Taylor (1981} pages
226FF.

31The boundaries are obviously not absorbing or reflecting, which are
standard boundary types. They seem to be of the 'sticky' type; cf. Karlin and
Taylor (1981) page 233 and page 257.

32350e the previous section.
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33Outside the cone, of course, n{w) = s or 1/s and n'(w) = 0. The

continuity in the first derivative of »(w) arises from the continuity, already
noted, in the second derivatives of V(K, K*) at the boundary.

3u0bserve also that the behavior of the drift is such Lhat sampling at
discrete points in time would produce serial correlation 6f'the price changes;

observations taken discretely would not follow an AR(1) process,

35This is not in contradiction with the fact, already noted a propos the
w process, that occurrences of actual boundary occupation last an infinitely
small amount of time,

36'I‘his is obvious; but, for an explanation of this relationship and a
recent empirical investigation of real rate differences across countries, see
Cumby and Obstfeld (1984).

37This is the expected 'real' rate of return on the K-riskless asset,
from the point of view of someone (presumably residing in the foreign country)
who consumes the good located abroad.

381n what follows, the term 'risk premium' will not necessarily mean that
the designated quantity would be equal to zero under risk neutrality, only
that it would be zero in the absence of risk.

391 shall continue to measure the price by means of the symmetrical
variable =, so that the expected price change mentioned here is simply the
opposite of the expected price change mentioned previously a propos quantity 2
vs quantity 1. In this way, I spare the reader the ludicrous arguments
arising from Jensen's inequality.

qund one which is exactly the opposite of the premium mentioned earlier
a propos quantities 2 and 3. Again, this desirable feature is the result of

the symmetric definition of the price variable .
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uTIn the following equations, E is the expected value operator

conditional on the current values of K and K*.

quecall that the diffusion coefficient of w is available in equation

(26).
43The derivatives N'(w) and D'(w) are easily obtained from (27) and (28).
uuFrankel (1979) reached a similar conclusion but in the context of a
monetary model.

uSEquation (37), that is, is a special case of an International Capital
Asset Pricing Model. The general form of the IAPM will not be developed here;
but it is clear that it involves three covariance terms: one is the
covariance of a security's rate of return with the price variable p {(or =} and
the other two are the covariances with the K and K¥* outputs. To the extent
that, in general equilibrium, the price p is itself functionally related to K
and K*, these three terms collapse into two. In the special case where the
security in question is the 'foreign' real rate, the risk premium involves the
covariances of the price p with the two outputs. These are the elements
contained in the second term of (37); cf. Benninga and Protopapadakis (1986).

46This could be shown analytically.

u70ne person offered the comment that my "model has nothing to do with
the real appreciation of the dollar during the 80s." That person, no doubt,
had a point. |

48As a substitute, international monetary economists traditionally focus
on the behavior of the relative price of traded vs. non-traded commodities
within a given country, and ecall this price the real exchange rate,

Y9For instance, we cannot define an elasticity of capital flows with
respect to the exchange rate or with respect to the interest rates.

901¢ generated tractable boundary conditions.
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5T alternative but more complex specification would have achieved the

same result by introducing a riskless output activity in each country, along

with riskless shipping,

52The trial values we used were the suboptimal values of the

Constantinides approximation (see end of Section 3).

3This was implemented numerically by means of the Runge-Kutta method of

order four. See Abramovitz and Stegun (1972), p. 897.

54Based on the observed discrepancy between I'(0.5) and 0.

2Note that the opportunity cost of shipping in this numerical example is
fairly high: ¢ = 0.5 (I am referring here to the 'time-to-ship' interpretation
of Appendix I); in each period of time, only half of the goods in transit
reach their destination. Transportation is quite slow! |

56Note that, in this numerical example, y is negative.
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Table 1

The opening of the cone of no shipping as a function of risk and

risk aversion. (N.B. 1.22 = 1/s) . The table gives the value of

A. For numerical values of the parameter, other than y and o,
(27) in appendix II.

see

explicit formula; e.g., when o

Some values in this table are obtained by an

=0, vy = (1/8)1/1-Y.

Other values
are obtained by a numerical procedure (see appendix II).

Risk Aversion Risk (o)
Ty 0 0.02 0.1 0.45 0.5
2 1.1045 1.3447 1.9813 2.647 2.66438
1 (log) 1.22 3.2609
1/2 1.4884 3.3598 4,1831
0 (neutral) @ w - o w
Table 2

The opening of the cone formed by the Constantinides approximation.

Risk Aversion g
T-x 0.02 0.04 0.1 0.4 0.5
2 1.18 1.26 1.38 2.26 NA
1 1.28 1.55 2.525
1/2 1.56 3.22
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Figure 6: THE FUNCTION PI(OMEGA)
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