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TWO-PERSON DYNAMIC EQUILIBRIUM:

TRADING IN THE CAPITAL MARKET

Abstract

When several investors with different risk aversions trade competitively
in a capital market, the allocation of wealth fluetuates randomly between them
and acts as a state variable against which each market participant will want
to hedge. This hedging motive complicates the investors' portfolio choice and
the equilibrium in the capital market. Although every financial economist is
aware of this difficulty, to our knowledge, this issue has never been analyzed
in detail. The current paper features two investors, with the same degree of
impatience, one of them being logarithmic and the other having an isocelastic
utility funetion. They face one risky constant-return-to-secale staticnary
production opportunity and they can borrow and lend to and from each other.
The behaviors of the allocation of wealth and of the aggregate capital stock
are characterized, along with the behavior of the rate of interest and that of
the security market line. The two main results are: (1) given the particular
menu of assets under consideration, investors in equilibrium do revise their
portfolios over time so that some trading takes place, (2) when the two
investors 'disagree' about whether the economy should be expanding or
contracting, it is possible for the allocation of wealth and the capital stock
to admit steady-state distributions. It is also possible for these to
randomly oscillate between two extreme attracting points. This is in contrast
to the certainty case, where aggregate wealth becomes either very large or
very small and one investor in the long run holds all the wealth. The
existence of trading opens the way to a theory of capital flows and market
trading volume.
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1. Introduction h

The question of dynamic asset pricing has been addressed so far, mostly
under the assumption of identical investors (Lucas (1978), Cox, Ingersoll and
Ross (1985)). The asset prices so obtained are then purely virtual prices,
since no trading takes place in the capital market. Models such as that of

Constantinides (1982) featuring heterogeneous consumers have produced an asset

pricing equation based on an aggregation argument; but these models have not
so far been disaggregated in order to make portfolio choices explieit. The
finance profession, that is, has no theory to offer to account for trading
volume and capital flows between capital market participants, under conditions
of rational expectations and symmetric information. The present paper aims to
fill this gap.

Since our aim is to generate trading in the capital market, we must avoid
circumstances which are known to induce constancy of the investors' ownership
shares in the various assets, even though investors are not identical to each
other. The work of Rubinstein (1974) has outlined these circumstances: if
investors all have Hyperbolic-Absolute-Risk-Aversion (HARA) utility functions,
with the same impatience parameter and the same cautiousness parameter (but
are otherwise different from each other), it is Pareto optimal for them to
adopt a linear consumption sharing rule (see also Wilson (1968)). They do so
by forever holding a fixed share of the market portfolic, and a fixed amount
of a consol bond offering riskless payments. Such portfolio policies
obviously require no trading: investors just live off the income generated by
their constant portfolio,

There are several ways in which we can choose to deviate from the
Rubinstein base case. Investors may differ in their impatience parameter,

The question has been examined by Becker (1980) under conditions of certainty;



the result is that the least impatient investor will hold all the wealth in

the long run. It seems unlikely that new insights would be gained by the
ntroduction of risk into Becker's amalysis. We therefore retain the
Rubinstein assumption of equal rates of impatience across investors.

Instead, we examine investors whose utility functions are isoelastic,
with differing levels of relative risk aversion. Iscelastic utility functions

belong to the HARA class of utility functions and, in their case, the
cautiousness parameter of Rubinstein is simply equal to the relative risk
aversion. In this way, the investors considered here differ in their
cautiousness parameter, and we can expect that a linear sharing rule and a
constant policy which consists in holding the riskless asset and the market
portfolio will not be optimal for them.

Even then, it should be clear that the volume of trading so generated is
predicated on the particular menu of asset which we choose. In the present
paper investors have access to shares of stock in a risky constant-return-to-
scale production technology and they can borrow and lend short-term from each
other at the riskless rate. Given this menu, a nonzero volume of trading will
occur in response to output shocks. Considering, however, that this menu of
securities is sufficient for the capital market to be complete in the sense of
Harrison and Kreps (1979), it is always possible to introduce another menu of
securities with the same characteristic which will reduce trading down to
zero. The non-linear sharing rule which is Pareto optimal when two investors
have different but constant relative risk aversions can be easily derived. A
single security with a payoff structure replicating that sharing rule would
reduce trading down to zero if it were made available.' And indeed one can

argue that two investors with the given relative risk aversions would



naturally get together and design such a contract in order to eliminate the

inconvenience of trading.

The particular menu we have chosen to consider (shares of stock and
riskless asset) can be defended on the grounds that it involves standardized
securities only. By 'standardized securities' we mean securities whose
contractual definition requires no knowledge of the distribution of risk

aversions in the population of investors.® Indeed the present model should be
viewed as a simplification of an economy with an arbitrary distribution of
risk aversions across the population. In that more general economy trading
could be reduced to a volume of zero only by the introduction of as many
tailor-made contracts as there would be classes of investors with the same
risk aversion (minus one). In general it would be very impractical to achieve
this goal because the tailoring of these contracts would require the knowledge
of everyone's risk aversion. In contrast, two standardized securities of the
type considered here can satisfy every investor provided they are willing to
engage in some trading.3

Along with some trading volume, our paper will produce a variable
distribution of wealth across investors, but one which does not necessarily
converge to 100% ownership by one of them. It will also produce a variable
rate of interest the stochastic process of which will be fully endogenized.

The model is laid out in section 2. The equilibrium of the capital
market is characterized in section 3. Section 4 exhibits the equilibrium
relationship between the aggregate capital stock and the distribution of
wealth at any time, for a given initial wealth distribution; we dub this
relationship 'a wealth sharing rule'. Section 5 provides a derivation of the

dynamics of the aggregate economy and, correspondingly, of the distribution of



wealth between investors. In section 6, the behavior of the rate of interest

1s obtained and the amount of trading in the market is quantified.

2. The model
The capital market of our model economy is populated with but two

investors, with the same rate of impatience o, but different risk aversions.

The analysis is greatly simplified and does not lose its illustrative power if

we restrict one investor to have a logarithmic utility function, while the
other one exhibits any degree of risk aversion 1-y where y is the power of his
iscelastic utility f‘unction:4

(1) Max E [ e - cYdt ; y<1,p<1,

and ¢ is his finite rate of consumption of a single good.

Recall (Merton (1971)) that the logarithmic case can be obtained as the
limit of the above case for y - 0; we shall therefore simply write the
optimizing equations for the investor with the power utility function.?

The two investors consume a single good and have access to two investment
opportunities:

- they can buy shares in one6 constant-return-to-scale production
activity, whose random output per unit of capital has a constant
gaussian distribution with fixed parameters a and o;

- they can borrow and lend to and from each other at the equilibrium
riskless! rate r, which varies over time in an endogenous fashion.

Other notations are as follows:

W: wealth of the non-logarithmic investor;
W*: wealth of the logarithmic investor;

S = W+W*: aggregate wealth and capital stocka;



X, x*:  share of each investor's wealth invested in the risky
production opportunity;

¢, c*: consumption rates of the two investors;
() w = W/(W+ W*¥): the non-logarithmic investor's share of total wealth,

The dynamies of the aggregate capital stock simply reflect the flows of

goods:

(3) dS = {aS - ¢ - c*)dt + o8dz

The dynamics of an investor's wealth for a given investment decision x and a

given consumption decision ¢ are well known:
(4) dW = {Wfr + x(a - r)] - c}dt + Wxodz ,

where dz 1s the random white noise affecting production. In this equation,
the rate of interest r is the market rate. It is not constant over time. In
fact, we can reasonably postulate that it is a funetion of the distribution of
wealth: r = r(w). The formulation of the two investors' optimization problem
must, therefore, incorporate the behavior of the distribution of wealth.?
Applying Ito's lemma to the definition (2) of w and using the equation
for the dynamics of wealth (3), as well as the analogous equation for the log

investor, we obtain:

(5) dw:w(1-m){[(x—x*)(a-r) -%+%

- (x - x)(ux + (1 - w)x*)o]dt + (x - x*)odz]

Not surprisingly, the allocation of wealth would be constant if the two
investors were to hold the same portfolio (x = x*). The allocation of wealth
also admits two natural boundaries at w = 0 and w = 1: if one investor
happened to hold all the wealth, he thereafter would hold all the wealth

forever and, conversely, starting from an interior point (0 < w < 1), the



boundaries cannot be reached in finite time. Both of these statements can be
proved on the basis of equation (5) by applying standard boundary
classification arguments.10 The only assumption needed for this proof is that
x and x* (the fractions of each person's wealth invested in the risky
security) are bounded functions. This will be shown to be true for isoelastic

investors; indeed such investors never 'go for broke,' taking finite positions

in the risky asset even when their wealth is shrinking to zero. We return

later to the question of the boundary behavior of this economy.

The maximization of (1) subject to (4) and {5) with respect to c and x
(but taking the behavior of r and therefore of w as given in order to
represent pure competition) is a standard dynamic program, Existence and
uniiqueness of the solution of this program is not guaranteed by the
Welerstrass theorem because the budget set is not compact. Cox and Huang
(1986) offer an alternative proof of existence (but not uniqueness) within the
class of policies which are such that investors never reach zero wealth in
finite time.'! The partial differential equation for its (undiscounted) value

function J(W, w) is a Hamilton-Jacobi equation which can be written easily:

(6) 0 = g?i {% e¥ -~ od + %% [W{y + x(a - ¥)) - ¢]

2 2 -
——% W2x202 + 3J chm}

L1
W aWdw

nl—

L0 P —w
Jw

where & and w are the drift and the diffusion coefficients of w, as shown in

equation (5) above.



One can then proceed in two steps, optimizing consumption first, and then

the portfolio. The first-order condition with respect to consumption is:

y-1_8d
(7) T

Substituting the optimal consumption decision into the original Hamilton-

Jacobl equation, one can verify that a function of the form:

1

(8) J(W, w) = " Wl (w)

is a solution,12 I( ) being a function, yet to be determined. We simply
assume from now on that the solution is unique within the class of solvent
policies envisaged by Cox and Huang (1986).73 One is then left with the

second problem of optimization, with respect to the portfolio x:
1

(9) 0= -p+ (1-y1""
) -
+YMaX{r‘+x(a—r')+£(Y— 1)x202+%—xum}
X
e IMc2
+1 m+i-I w

The first-order condition with respect to x is evidently:

~

2 It
(10) a-r+ {(y - 1)xg +I—cw=0

so that the optimal portfolio is:

[] -~

a -+ — ow

I

(11) X =
(1 - y)e°

The optimal portfolio is of the well-known form applying to an isoelastic

investor, except for the last term of the numerator. This term represents



hedging against shifts in the distribution of wealth, which induce shifts in
the rate of interest.

The Hamilton-Jacobi equations (6) and the first-order conditions (7) and
(10) are ' sufficient to guarantee that the market allocation will be Pareto

optimal. We quickly verify that fact now. Define:

28 vl
(12) p=ay* W T(w)
»

These are of course the two investors' marginal utilities of wealth. We aim
to show that they are proportional to each other at all times. This result is
obtained by applying Ito's lemma to (12) and (13), and substituting into the
resulting equations for dp and dp*, the Hamilton-Jacobi equations (6)
(differentiated with respect to the investor's wealth) as well as the first

order conditions (7) and (10).'2 1In the end one gets:

d dp* -
(14) EE—I—J%—-:(p-r')dt—a—b—Ldz.

Whatever be the value of the ratio k = p/p* at the initial point in time, this

ratio thereafter remains forever at the same value.16 Hence we have:
(15) W (w) = k 1/(oW)

The Pareto-optimality result confirms that this continuous-trading market is
complete. Indeed it is a 'Black-Scholes economy' (see Harrison and Kreps
(1979)). Equation (15) will be useful below where deriving the behavior of

aggregate and individual wealths,



3. Equilibrium
The equilibrium concept used in this paper is the standard rational-
expectations equilibrium defined by Radner (1972).17 It is a quadruple of
functions {x*(w), z(w), r(w), I{w)} satisfying equations (16), (17), (18) and
(24) below.
Instantaneously, the equilibrium is characterized by:

a) the non-logarithmic investor's portfolio optimality condition (8),
which reads as follows, when the form of the diffusion coefficient w
is made explicit:

(16) o -r=(1-1y)ox - hfn‘;’) w(1 = w)a°(x - x*) ;

b) the logarithmic investor's portfolio condition: it is well known
since Hakansson (1971) (see also footnote #10 above) that such an
investor exhibits no hedging motive, i.e., that his function I* is a

constant (equal to 1/p); hence:
(17 @ -1 = ozx* ;
¢) a 'supply equals demand' condition:
(18) wx + (1 - wix*=1.

Solving these three equations simultaneously, one obtains all the

endogenous variables as a function of w:

1
L
(19) S N R
A
(20) R
02
(21) [‘:q-———-—-—-—-—-—-——-—-,
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where: )
1-§mww)
(22) X = '
1-v- T w(l - w)

is best interpreted as the non-logarithmic investor's risk tolerance "ad justed
for the hedging motive,” since, in effect, his decision is mean-variance
optimizing, in the static sense, but at a level of risk aversion different

from 1 - y. Similarly, by analogy with the CAPM, wr + 1 - w can be seen as
the market's risk tolerance, also adjusted for the hedging motive.

The reason why the standard mean-variance framework survives, with a
minor change,18 despite the introduction of one more state variable and the
nonstationarity of the rate of interest, is that this additional state
variable w is perfectly correlated with wealth (cf. equations (3) and (5)).19

Over time, the equilibrium is further characterized by the dynamics (4)
of the distribution of wealth (with x, x*, r, c/W, c*/W* substituted in) and
by the two functions I and I*. We mentioned above that I* is a constant equal
to 1/p; therefore c¥*/W* = p. Once these elements are taken into account, the

dynamics of w, for a given I function, are:

1
2 2 —_—
(23) dw = w(1 - w){[- wo (A - 1) - IY—1 + p]dt + —A=-1 cdz}
{wr + 1 - w)2

and, finally, substituting equations (13) to (15), and (17) above, we obtain

the differential equation to be satisfied by the unknown function I{w):
1

(24) 0= -p+ (1 - Y)IY-1

#le - Gt - M - 0 ()]



where X is given by (22).
The problem of the determination of equilibrium is thus reduced to that

of solving the nonlinear ordinary second-degree differential equation (24)

(coupled with (22}), subject to two boundary conditions,ZO'21 corresponding to

the two natural barriers w = 0 and w = 1:

(25) 1(0) 1 -y 1-v

1]

1 - v 1=y

(26) I(1) 5
p - v(e - H{1 - v)o%)

Everything one might want to know about the equilibrium path, will follow from
this I(w) function: once it is known, equations (15) (19) to (23), and the
equation of footnote #9, give aggregate and individual wealths, portfolio
choices, the rate of interest, the market price of risk, the dynamics of the
allocation of wealth, and consumption choices.

It is unlikely that equation (24) subject to boundary conditions (25) and
(26) should have a known analytiecal solution. Considering, however, that the
domain of variation of w is a closed set, and that the behavior of I on the
boundary is well specified, this two-point boundary value problem of the
Dirichlet type lends itself to numerical analysis.22 We choose to present the
results not in the form of the I funection itself23 but in terms of the
stochastic behaviors of aggregate wealth and of the distribution of wealth

(section 5). At equilibrium these two variables are in fact related to each
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other; our first task (section 4) is to obtain this relationship which we call

'a wealth sharing rule'.

4. The equilibrium wealth sharing rule
Along the equilibrium path the distribution of wealth and the aggregate
capital stock fluctuate in tandem. In effect, when and if the capital stock

increases, the more highly levered investor (the one with the smaller risk

aversion; see section 6 below) reaps a larger share of the increase than does
the less levered investor. The manner in which aggregate wealth is
dynamically distributed between the two investors is the direct product of the
way in which aggregate consumption is distributed between them. The concept
of 'consumption sharing rule' has been introduced by Wilson (1968) and
Rubinstein {1974); it is designed precisely to describe the way in which
consumption is allocated. In a complete {(and therefore Pareto optimal)
market, marginal rates of substitution are equated across individuals. This
implies that, at any time, the levels of the marginal utilities of the various
investors are proportional to each other.zu The proportionality relationship
is valid both for the marginal utilities of consumption and for the marginal
utilities of wealth, since the two are equated at the optimal level of
consumption (see equation (7) above).

In our setting the consumption sharing rule is written as:
(27 CY-1 =k 1

where k is the coefficient of proportionality between marginal utilities. We
have already written and proved the proportionality relationship between
marginal utilities of wealth in the form of equation (15). By substituting
into this equation the definition of w, we obtain now the relationship between

aggregate wealth S and the distribution of wealth:
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(28) SYmY_1I(w) =k 1
p{1 - w)

This relationship which we label the 'wealth sharing rule'é? is, of course,
valid at all times, including the initial time. It allows one to determine

the constant k on the basis of the initial wealths of the two investors.
FIGURE 1 GOES HERE

Figure 1 provides a plot of the wealth sharing rule for the two cases
Yy > 0 and vy < 0, and for given initial wealths. It is apparent that whenever
the aggregate capital stock S increases, the wealth of the person with the

lower risk aversion increases more than proportionately. In other words:

{(29) when vy > 0, S and w are positively related;

when vy < 0, S and w are negatively related.

In fact, if S goes to infinity, the person with the smaller risk aversion ends
up owning almost all the wealth, and if the aggregate capital stock goes to
zero, the person with the larger risk aversion captures it almost entirely.
5. Expanding vs. contracting economies and the associated behavior of the
distribution of wealth
The dynamics of the aggregate capital stock S = W + W* were written as

equation (3) above. Substituting consumption behavior into (3) gives:

(30) L . gw)dt + odz
where: glw) = a - - {1 - w)p

- W
I(m)1/(1-y)

or equivalently:

(31) dins = [g(w) - 3 o°]dt + odz .
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The drift term g(w) in (30) is henceforth called 'the expected rate of growth

of the economy'.

Whenever the expected rate of growth g is (strictly) larger than 02/2 in
a neighborhood of w = 0 and in a neighborhood of w = 1, we shall say that the
economy is an expanding one; whenever it is (strictly) smaller in two such
neighborhoods, we shall say that the economy is a contracting one. This

terminology is justified by the following observation: in circumstances where
the expected rate of growth is uniformly larger than 02/2 for all values of S
larger than some fixed value, the aggregate capital stock has a positive

6 and when the expected rate of

probability of becoming infinitely large®
growth is uniformly larger than 02/2 for all values of S smaller than some
fixed positive value, S has a zero!probability of reaching zero27; whereas
when the expected rate of growth is smaller than 02/2 uniformly in
neighborhoods of 0 and +=, the aggregate capital stock has a positive
probability of reaching zeroc and a zero probability of becoming infinite.28

These assertions can be verified by applying boundary classification
techniques {(cf. Karlin and Taylor (1981), pp. 226 ff). But they can be
understood intuitively on the basis of equation (31) which gives the behavior
of the logarithm of the capital stock. Note that the diffusion coefficient in
the stochastic differential equation for 1nS is constant. In that case
boundary and asymptotic behavior are properly understood on the basis of the
drift term alone; its sign determines whether the economy is expanding or
contracting. Its functional form will also allow us to decide whether or not
the economy reaches a steady state.?9

When w= 0 (i.e. the logarithmic investor is alone), the expected rate of

growth is seen to be equal to:

{32) g0 = a - p .
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When w = 1 (i.e. the non-logarithmic investor is alone) the expected rate of

growth is found from equations (30) and (26) to be equal to:

(32) RO YRS LS
=Y
(34) . §L91; W

Intuition suggests that in all cases the expected rate of growth of the

economy g{w) is a continuous function which reaches a finite number of maxima
and minima between g{(0) and g(1). In fact, numerical analysis indicates that
the function of g{w) is typically monotonic between g(0) and g(1) but that it
is possible to construct examples (for instance, by choosing parameter values
for which g(0) = g(1)) in which g(w) has one maximum or minimum. Observe
further, by examining equation (34), that the direction of the inequality
between g{(0) and g(1) does not simply hinge upon the sign of ¥.

Finally, recall from figure 1 and our analysis of equation (28) (the
wealth sharing rule) that w and S are positively related when vy > 0 and
negatively related when y < 0.

We have now gathered all the information needed to describe the behavior

of our economy. Four cases will have to be distinguished30:

2

Case #1: g(0), g(1) < o/2:

The economy is a contracting one.31 There is not steady state distribution
for the capital stock or for any of the variables in this economy. No matter
what the initial conditions may be, the probability density for the capital
stock forever recedes towards zero. The probability of eventually reaching a
zero capital stock (in infinite expected time!) is equal to one.

Correspondingly, the probability is equal to one that the person with the

o o I P L o
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is an attracting barrier; if y ¢ 0, w = 1 is attracting).

Case #2: g(0), g(1) > a°/2:

The economy is an expanding one. There is no steady state distribution for
the capital stock or for any of the variables in this economy. No matter what
the initial conditions may be, the probability density for the capital stoek

forever recedes towards infinity. The probability of eventually reaching an
infinite capital stock (in infinite expected time!) is equal to one (provided
of course that the initial capital stock is not zero}. Correspondingly, the
probability is equal to one that the person with the lower risk aversion will
ultimately own all the wealth (i.e. if v > 0, w = 1 is an attracting barrier;

if vy < 0, w = 0 is attracting).

FIGURE 2 GOES HERE
Case #3: g(0) < 0°/2 < g(1) and y > 0
OR: g(0) > 0%/2 > g(1) and y < 0

The economy is neither a contracting one nor an expanding one. The case
definition implies that the economy tends to expand when the capital stock is
already very large and to contract when the capital stock is very small. This
situation is illustrated in Figure 2. While 'instability' is a word which
comes to mind to describe this situation, the following is a more rigorous
rendition. There is no steady state distribution for the capital stock or for
any of the variables in this economy. No matter what the initial conditions
may be (other than w = 0 or w = 1), the probability density for the capital
stock sometimes recedes towards infinity and sometimes recedes towards zero.

Even after it has receded towards one boundary (zero or infinity) for some
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time, there is a positive probability that an appropriate succession'of shocks
will initiate a transition towards the other boundary. The probability of
eventually reaching a zero capital stock (in infinite expected time!) is
always positive and so is the probability of reaching an infinite capital
stock. Since the allocation of wealth w is monotonically related to aggregate

wealth, it exhibits a similar kind of behavior.

FIGURES 3, 4 GO HERE
Case #4: g(0) « 02/2 < g(1) and vy < 0
OR: g(0) > 02/2 >g(1) and vy > 0O

Again the economy is neither a contracting one nor an expanding one. But it
tends to expand when the capital stock is low and to contract when the capital
is large. This 'stable' situation is illustrated in figure 3. There exists a
steady state density for the capital stock and for all the variables of this
economy . No matter what the initial conditions may be, the probability
density for the capital stock converges to the stationary measure. One such
stationary measure (for the logarithm of the capital stock) is displayed in
figure 4. The probabilities of eventually reaching a zero or an infinite
capital stock are both always zero. The allocation of wealth, like the
aggregate capital stock to which it is monotonically related, also admits a
stationary measure.

Under certainty (o = 0), one of the two endpoints would necessarily be
the long-run outcome: when the two investors have the same rate of impatience
p, the one with the lower risk aversion3® would end up owning all the wealth,
when the rate of impatience p is less than the earning rate a = r (expanding

economy), and the opposite would be true in the opposite case.33 1t is easy
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to see that cases #3 and 4 could not have arisen under cer‘tainty.3Ll In
particular, if the volatility of the output were zero, there would be no
possibility for a stable economy as in case #4. The case of uncertainty is

therefore qualitatively different from the case of certainty.

6. Fluctuations in the rate of interest and volume of trading

4

As the allocation of wealth fluctuates between borrower and lender, the

security market line of the traditional CAPM should be viewed as pivoting
around one fixed point representing the risky production opportunity, while
the variable slope of the line determines the current value of the riskless
rate of interest.

As we shall verify in the next section, the person with the smaller risk
aversion is under all circumstances the one who borrows. A positive output
shock shifts the wealth distribution towards him. At the next point in time,
he will still be a borrower and since he is now richer he will borrow more
than before, thereby driving up the rate of interest. The behavior of the
allocation of wealth is thus mirrored in the stochastic behaviors of the
market price of risk 1/(wd + 1 - w) and of the equilibrium riskless rate of
interest r, which are monotonic functions of w via egquations (21) and (22)
above .3 They both admit two natural barriers, at 1 and 1 - y for the market
price of risk, and at e - 02 and ¢ - (1 - y)o2 for the rate of interest.
These values correspond to the endpoints w = 0 and w = 1, where one of the two
investors would impose his risk aversion and his corresponding value of the
rate of interest.

It follows from the analysis of the last section that there are four
possible long-run behaviors of the rate of interest, depending on the case

situation at hand: 1in cases 1 to 3 one or both of the two boundaries are

AbbErnamabirma (il meb abkbatrmallol rfT o e omememm M o Elirm T bt man e e X o LY
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in the stochastic sense. Whenever there exists a stable interior distribution
of the allocation of wealth, so is there one for the rate of interest, which
wanders between the two extreme values, while tending to return to the stable

interior region.
FIGURE 5 GOES HERE

For empirical purposes, it is of interest to formulate the process for
the rate of interest in an autoregressive from (the resulting formulation is
necessarily AR(1) since every process in this economy is Markovian}. This is
accomplished in continuous time by writing the stochastic differential
equation for r, which contains a drift term and a diffusion term. Examples of
the resulting drift function are displayed as Figure 5. The drift function is
of necessity nonlinear since it is zero at the boundary points; in addition it
can change sign and admit one maximum and minimum (despite the fact that the
economy is, in this figure, unambiguously a contracting one).36 This is a
highly nonlinear AR(1) process. The diffusion term of the rate of interest is
also by no means constant37: it is zero at the two barriers and exhibits a
maximum somewhere in between. Hence this is a heteroscedastic AR(1)
process. Although this model is one of the most simple one can conceive,
while still exhibiting a variable rate of interest, the process so obtained is
nuch more complex than any of those which have been previously utilized to
model interest rate behavior (cf. e.g. the Ornstein-Ohlenbeck process used by
Vasicek (1977)).

The current model includes only one risky asset, so that it is not
exactly appropriate to discuss the relative pricing of assets. Assets which
are in zero net supply may nonetheless be priced. Since the present

formulation has been able to generate an interesting behavior for the short-
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term rate of interest, one might think ofuapplying it to the pricing of

bonds. Rather than expressing the price of the bond as a function of a
driving variable such as the allocation of wealth, which is not observable, it
is empirically more useful to express it as function of the short-term rate of
interest r, 38 as has been done for instance, by means of a 'pseudo-arbitrage’
reasoning, by Vasieek (1977) and Brennan and Schwartz (1982). These authors

commonly introduce an assumption designed to disconnect their bond market
equilibrium from the general equilibrium of the economy, which they do not
Wwish to model. They assume that the market reward for bearing interest-rate
risk is a constant.

It is important to realize that such an assumption would not be tenable
in a general-equilibrium setting such as the current one where the variation
of the interest rate arises from the heterogeneity of individuals. Indeed,
the market reward for bearing interest-rate risk would be egual to the market
price of risk, as defined above,39 times the volatility of the output. It
follows from what we said and from equation (21) that the market price of risk
and the rate of interest are (negatively) linearly related and that their
volatilities are proportional to each other. It would therefore not be
permissible to assume that the market price of interest-rate risk is constant,
in a setting which allows for the kind of interest-rate uncertainty which we
have modelled here. In this model, that is, the interest rate cannot be
fluctuating if the market price of risk is assumed constant. Unwarranted
assumptions regarding the behavior of the market price of risk are one danger
of the 'pseudo-arbitrage' approach against which Cox, Ingersoll and Ross
{1985b) have already warned.

Asset holdings by the two investors are given by the values of x and x*

(equations (20) and (19)), for the non-logarithmic and the logarithmic
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investors respectively. It is always found that x > 1 (while x* < 1) when

y > 0 and that x < 1 (while x* > 1) when y < 0. In other words, as has been
indicated several times, the less risk averse person levers himself in order
to invest more than his wealth into equity. He is a perennial borrower. x

and x¥ represent the shares of each investor's wealth invested in the risky
asset. However, the two investors' shares of ownership in the risky

production opportunity are equal to xw and x*(1 - w) respectively.
FIGURES 6a, 6b GO HERE

Trading takes place in the capital market since x*{1 - w) and xw are non-
constant funetions of a fluctuating w; for, this implies that one investor
buys shares from and sells shares to the other, as time passes. In contrast
to previous theories of dynamie capital market equilibrium, the present model
accounts for (some) trading volume. Indeed figures 6a and 6b display the
shares of ownership as functions of the allocation of wealth and it is clear
that they are no constant: when cone investor owns almost all the wealth,
almost all of his wealth is allocated to the risky asset and, by necessity, he
owns almost all the shares of this asset. The other investor may or may not
be a borrower, depending on his risk aversion, but his leverage always remains
finite (x < 1/(1 - y), x¥ < 1 - y) so that he can only own a small fraction of
the shares of the risky asset. As an investor's share of wealth fluctuates,
s0 does his share of ownership of the risky asset; and, of course, his share
of wealth does fluctuate because, as a result of different risk aversions, the
two investors make up their portfolios differently. Our model provides scope
for capital flows between investors; the current-account balance between them

is not equal to zero.
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7. Conclusion

The current model, to our knowledge, is the first to present a self-
contained account of dynamic capital market equilibrium, involving investors
Wwith different taste parameters. The theory is self contained in the sense
that all state variables are identified and have a well-specified,
endogenously determined, stochastic process. The model exhibits a

stochastically variable distribution of wealth, which sometimes admits a
stable interior distribution, and a variable short rate of interest with the
same property. It also produces trading in the capital market,

The agenda for future research includes an extension to the international
setting, with several productive assets, endogenous default and deviations

from purchasing-power parity, and possibly also several currencies.
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FOOTNOTES

TThat is the only security which would achieve that resuit. In
particular, a menu of assets including the stock plus a long-term consol would
not eliminate trading any more than does the menu considered here.

%The existence of riskless borrowing and lending is nonetheless

predicated on the fact (assumed known by all parties) that all investors have

isoelastic utilities. Only these utilities will guarantee that investors will
never be in a situation where they are unable to repay. Otherwise a credit
rationing scheme would have to be superimposed on the debt contracting
activity in order to allow riskless borrowing and lending. Alternatively the
possibility of default could be introduced in the definition of debt
instruments; but the menu of securities would then differ from the one we
consider here,

3The history of capital markets, especially in recent years, is
characterized by a gradual evolution from standardized towards specialized
securities. The fact that standardized securities anteceded specialized ones
empirically demonstrates their practicality. For as long as the move towards
specialized securities is not complete--and we should expect that it never
will, the bulk of the market capitalization remaining in standardized form--
the kind of trading we describe here will effectively take place.

uNote that the horizon is infinite.

51t is necessary to ensure in any given economy that the integral of
equation (1) converges both for the logarithmic investor and for the non-
logarithmic one. Since isoelastic utilities are not bounded, the positivity
of the discount rate is not a sufficient condition for convergence. Please

refer to footnote 16 below.
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6The present interpretation of the model features one centralized
production unit which issues shares of stock. The two investors will trade
these shares because the aggregate dividend which is distributed is the one
which is socially desirable. At any given time, this dividend is excessive
for the consumption needs of one investor and insufficient for the needs of
the other. The former will then buy some shares from the latter. In another

interpretation, there would be two identical (and perfectly correlated)
production units operated in the backyards of the two investors. Each one
could then help himself to the amount of dividend he individually desires and
no trading of shares would be needed. The two interpretations are equivalent
because of constant returns to scale, but the former one presented here seems

more "natural." In both interpreations, there would be the same amount of

trading in the short-term riskless asset.

7Endogenous default resulting from unwillingness to pay is left for
future research. 1Inability to pay is ruled out by one well-known property of
isoelastic utility function: when consumption tends to zero, marginal utility
tends to infinity.

8Nealth and physical capital stock have the same value because of the
assumption of constant returns to scale.

9The assumption that the equilibrium interest rate is a function of the
distribution of wealth is innocuous. Ultimately in equilibrium all variables
are one-to-one functionally and monotonically related (see below). This is
because aggregate output follows a Markov diffusion process and is the single
source of shocks in this economy. Hence we could have equivalently assumed
that the rate of interest is a function of aggregate wealth or of the wealth
of one of the two investors. Expressing it as a function of the distribution

of wealth is convenient because that variable, in contrast to aggregate or



personal wealth, takes values in the compact set [0, 1] and because it appears
naturally in the 'supply equals demand' condition ({18) below).

103¢e Karlin and Taylor (1981), pp. 226 £f.

M heir proof does not require that the budget set be compact. It can be
applied to our case provided that the riskless rate of interest is bounded

from above. This will turn out to be true in our setting: the interest rate

is in fact bracketed by the values a - 02 and a - (1 - y)a2 (see below).

12y B.: as a result: oW = 17/ (y-1}

13The J function for the logarithmiec investor takes a somewhat different
from: 1

JH(WH, 1 - w) = 5 InW* + K(1 - w) ,

where K( ) is a function which is well defined and finite as long as p > 0 and
r is bounded. In other words, in the case of the logarithmic investor I* -
1/p. As a result c* = pW¥*,

1”We use the plural to refer to the fact that one such equation obtains
for each investor.

15The steps are identical to those followed by Cox, Ingersoll and Ross
(1985a).

16 d(p/p*) _ 0
p/p* "

173ee also Duffie and Huang (1985).

1BAS a matter of fact, if we had introduced a multiplicity of assets, we
could have proved that a Tobin separation theorem applies to the present
situation.

1911 fact, in equilibrium, w is funetionally related to aggregate wealth
and to each person's wealth; see below.

20an alternative to (26) is I'(1) = O, which could be obtained by

AP armmrib s mb T FTPUY v Trvmmed fovry b rrm T agom A
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21Boundedness is the true underlyiné"boundary condition' which produces
(25) and (20). Once it is assumed that the unknown function I is bounded, the
reader will note that (25) and (26) follow from the ODE itself when inserting
w=0orw=1"1into it. This is a consequence of the nature of the boundaries
of the stochastic process for w. Conversely the boundedness condition is
compatible with the ODE (24) if and only if it is possible to obtain the

values (25) and (26) for I from the ODE. This is possible if and only if:

U2
1 - Y]

p > Y(a - 02 +

(NP

and
o> Y[u - % (1 - Y)Uz]

220, smith (1978).

23Diagr'ams and tabulations for the I( ) function are available from the
author upon request. The function is increasing when y < 0 (risk aversion
larger than 1) and decreasing when y > O.

2gee equation (14) above.

25Equation (28) gives us the wealth sharing rule from the I{w)
funetion. A reverse procedure would have been conceivable: the relationship
W(S) or W*(S) between a person's wealth and aggregate wealth can be shown to
satisfy a Black-Scholes differential equation. Because the rate of interest
is endogenous, however, the equation in question is a nonlinear one. One can
then use equation (28) to perform a change of unknown function from W(S) or
W%(S) to I(w); equation (24) would result from this procedure. The
interpretation of the Black-Scholes equation for the wealth sharing rule is
that the more risk averse person in effect holds a call on aggregate output.
If such a call were available no trading would be needed, as was indicated in

the introduction. For more details see Dumas (in preparation).
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2611 other words, += is an 'attracting boundary.'

271 .e. zero is a non-attracting boundary.

281n the current model, all of these events oceur, if at all, after an
infinitely large expected time: the boundaries are not 'attainable.'

291n a previous version of this paper, the economy had been characterized
on the basis of the drift term of the distribution of wealth. Some of the

conclusions were incorrect precisely because the diffusion coefficient of w is
not a constant (see equation (23)). I am grateful to Andy Abel for pointing
out this fact. No such difficulty arises when we use 1lnS as a reference
variable,

307 do not consider the borderline cases g(0) = 02/2 and g(1) = 02/2
because they are special cases arising for specific parameter combinations
only and, above all, because their analysis would require the knowledge of the
local behavior of g(w) close to w = 0 and w = 1, knowledge which I do not
have.

31This, of course, does not mean that capital stock decreases with
probability one over any given interval of time. The capital stock does
fluctuate up and down but, in accordance with our definition above, the
probability of reaching a capital stock equal to zero is positive. A4s always
that event will occur only after an infinite expected time. These warnings
apply in the other cases as well.

32pisk aversion would act then only as a measure of elasticity of
substitution between consumption at different points in time,

33When a = p, the long-run allocation of wealth would be determined by
the initial situation.

34Refer to equation (34) above: when ¢ = 0, g(1) and g(0) are either

both positive or both negative.
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35y, is an increasing function of w when 1 - y < 1, a decreasing one

otherwise; the opposite is true for the market price of risk. As a function
of the accumulated capital stock, however, the equilibrium rate of interest is
always increasing (and the market price of risk is a decreasing function). In
other words, the correlation coefficient between the risky output and the rate
of interest is equal to +1.

36Figure 5 represents a situation in which y = 0.5 and the non-
logarithmic investor is therefore the less risk averse one. In terms of the
classification of section 5, the parameter values correspond to case #1
(contracting economy).

3Tut it is always positive (except at the boundaries), reflecting the
fact that a positive output shock induces a rise in the rate of interest; see
above.

38And, of course, of the time to maturity.

391 e. the slope of the security market line 1/(wx + 1 - w); see equation

(21} and the explanation which follows.
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