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ABSTRACT

In this paper, we test the random walk hypothesis for weekly stock market
returns by comparing variance estimators derived from data sampled at
different frequencies. The random walk model is strongly rejected for the
entire sample period (1962-1985) and for all sub-periods for a variety of
aggregate returns indexes and size-sorted portfolios. Although the rejections
are largely due to the behavior of small stocks, they cannot be completely
attributed to the effects of infrequent trading or time-varying volatilities.
Moreover, the rejection of the random walk for weekly returns does not support
a mean-reverting model of asset prices.
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[. INTRODUCTION.

Since Keynes' (1936, Chapter 12) now famous pronouncement that most
investors' decisions "can only be taken as a result of animal spirits--of a
spontaneous urge to action rather than inaction, and not as the outcome of a

weighted average of benefits multiplied by quantitative probabilities," a
great deal of research has been devoted to examining the efficiency of stock

market price formation. In Fama's (1970) survey, the vast majority of those
studies were unable to reject the "effiecient markets" hypothesis for common
stocks. Although several seemingly anomalous departures from market
efficiency have been well-documented,1 many financial eccnomists would agree
with Jensen's (1978) belief that "there is no other proposition in economics
which has more solid empirical evidence supporfing it than the Efficient
Markets Hypothesis."

Although the precise formulation of an empirically refutable efficient
markets hypothesis is obviously model specific, historically the majority of
such tests have focused on the forecastability of common stock returns.
Within this paradigm, which has been broadly categorized as the "random walk"
theory of stock prices, few studies have been able to statistically reject the
random walk model. However, several recent papers have uncovered empirical
evidence which suggests that stock returns contain predictable components,
For example, Keim and Stambaugh (1986) find statistically significant
predictability in stock prices using forecasts based upen certain
predetermined variables. In addition, Fama and French (1987) show that long
holding-period returns are significantly negatively serially correlated,
implying that 25 to 40 percent of the variation of longer-horizon returns is

predictable from past returns,
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In this paper, we provide further evidence that stock prices do not
follow random walks by using a simple specification test based upon variance
estimators. Our empirical results indicate that the random walk model is
generally not consistent with the stochastic behavior of weekly returns,
especially for the smaller capitalization stocks. However, in contrast to the
negative serial correlation which Fama and French (1987) find for longer
horizon returns, we find significant positive serial correlation for weekly

and monthly holding-period returns. For example, using 1216 weekly

observations from September 6, 1962 to December 26, 1985 we compute the weekly
first-order autocorrelation coefficient of the equal-weighted CRSP index to be
30 percent! The statistical significance of our results is robust to
heteroscedasticity. We also develop a simple model which indicates that these
large autocorrelations cannot be solely attributed to the effects of
infrequent trading. This empirical puzzle becomes even more striking when we
show that autocorrelations of individual securities are generally negative,

Of course, these results do not necessarily imply that the stock market
is inefficient or that prices are not rational assessments of 'fundamental'
values; As Leroy (1973) and Lucas (1978) have shown, rational expectations
equilibrium prices need not even form a martingale sequence, of which the
random walk is a special case. Therefore, without a more explicit economic
model of the price-generating mechanism, a rejection of the random walk
hypothesis has few implications for the efficiency of market price
formation. Although our test results may be interpreted as a rejection of
some economic medel of efficient price formation, there may exist other
plausible models which are consistent with the empirical findings. Our more
modest goal in this study is to employ a test which is capable of

distinguishing among an interesting set of alternative stochastic price



processes. Our test exploits the fact the variance of the inerements of a
random walk is linear in the sampling interval. If stock prices are generated
by a random walk (possibly with drift) then, for exampie, the variance of
monthly-sampled log-price relatives must be four times as large as the
variance of a weekly sample. Comparing the (per unit time) variance estimates

obtained from weekly and monthly prices may then indicate the plausibility of

the random walk theory.2 Such a comparison is formed quantitatively along the

lines of the Hausman (1978) specification test and is particularly simple to

LIpigment,

In Section 2 we derive our specification test for both homoscedastic and
heteroscedastic random walks. The main results of the paper are given in
Section 3, where rejections of the random walk are extensively documented for
weekly returns indexes, size-sorted portfolios, and individual securities.
Section U4 contains a simple model which demonstrates that infrequent trading
cannot fully aecount for the magnitude of the estimated autocorrelations of
weekly stock returns. In Section 5 we discuss the consistency of our
empirical rejections with a mean-reverting alternative to the random walk

model. We summarize briefly and conclude in Section 6.

2. THE SPECIFICATION TEST.

Dencte by Pt the stock price at time t and define Xt z 1n Pt

price process. OQur maintained hypothesis is given by the recursive relation:

as the log-

Xt = U+ Xt—1 * e . (1)

We assume throughout that for all t, E[at] = 0. Although the traditional
random walk hypothesis restricts the et's to be independently and identically
distributed Gaussian random variables, there is mounting evidence that
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normality. Since it is the unforecastability or uncorrelatedness of price
changes that is of interest, a rejection of the i.i.d. Gaussian random walk
due to heteroscedasticity or non-normality would be of less import than a
rejection which is robust to these two aspects of the data. In Section 2.2 we
develaop a test statistic which is sensitive to correlated price changes but is
otherwise robust to many forms of heteroscedasticity and non-normality.
Although our empirical results rely solely on this statistice, for expositional

purposes we also present in Section 2.1 the sampling theory for the more

roatriativa §.1.4. Caussian random walk.

2.1 HOMOSCEDASTIC INCREMENTS.,

We begin with the null hypothesis that the disturbances €, are
independently and identically distributed normal random variables with

: 2
variance 0ot thus:

H: ¢

. 2
. i.i.d. N(O, cro) . (2)

In addition to homoscedasticity, we have made the assumption of independent
Gaussian increments. An example of such a specification is the exact
discrete-time process Xt obtained by sampling the following well-known

continuous-time process at equally spaced intervals:
dX(t) = udt + o dW(t) . (3)

This It; process corresponds to the popular lognormal diffusion price process.
One important property of the random walk X, is that the variance of its

increments is linear in the observation interval. That is, the variance of

Ly - X¢_, is twice the variance of Xy - Xy _4. Therefore, the plausibility of

the random walk model may be checked by comparing the variance estimate of



essence of our specification test; the remainder of this section is devoted to
developing the sampling theory required to compare the variances
quantitatively,

Suppose we obtain 2n+1 observations Xos K1y oony X5n Of X, at equally
spaced intervals and consider the following estimators for the unknown

parameters u and ci:

R : n .

WoE o k§1 (Xk - Xk-l) 5 (in - XO) (4a)
2n

21 ~ 2

oSz 5 [N =K -l (ub)
k=1
n

2 1 ~ 2

% = B o m B - AT (e)

The estimators ; and ;i correspond to the maximum-likelihood estimators of the
1 and oi parameters; Gg is also an estimator of cg but uses only the subset of
n+1 observations XO, X2, XH’ ceny X2n and corresponds formally to one-nalf
times the variance estimator for increments of even-numbered observations.
Under standard asymptotic theory, all three estimators are strongly
consistent. That is, holding all other parameters constant, as the total
number of observations 2n increases without bound the estimators converge

almost surely to their population values. In addition, it is well-known that

both cz and ci possess the following Gaussian limiting distributions:

- "2 2, a 4
/on (ca - oo) ~ N(O, 200) (5a)
/30 (a2 - %) 2 N0, ucg) . (5b)

Of course, it is the limiting distribution of the difference of the variances

which interests us. Although it may readily be shown that such a difference



1s also asymptotically Gaussian with zero mean, the variance of the limiting

distribution is not apparent since the two variance estimators are clearly not

-~

asymptotically uncorrelated. However, since the estimator Ui is
asymptotically efficient under the null hypothesis H, we may apply Hausman's
(1978) result which shows that the asymptotic variance of the difference is

simply the difference of the asymptotie variances.3 If we define

A

J, = 02 - 02, Ehen we have the result:
d b a

/2n J, 2 n(o, 203) ) (6)

Using any consistent estimator of the asymptotic variance of Jq, 2 standard
significance test may then be performed. A more convenient alternative test

statistic is given by the ratio of the variances Jr:u

>

LN
Ht
o

-1, /2n J, 2 n(o, 2) . (7)

oo

Q >

Although the variance estimator ;g is based upon differences of every other
observation, alternative variance estimators may be obtained by using
differences of every g-th observation. Suppose that we obtain ng+!
observations XO, XT’ ey an where g is any integer greater than 1. Define
the estimators:

- ng

_ ] . -

* nq kf1 (Xk - Xk—1) " ng ( nq XO) (8a)
N ng -~
2 _ 1 2



21 ~2
ab(Q) o kfI [qu - qu_q - qu] (8c)
" . ;i(q)
Jd(q) = ob(q) - Jp(q) = ;2 -1 (8d)
a

The specification test may then be performed using:5

Theorem 1: Under the null hypothesis H, the asymptotic distributions of Jd(q)

and J.(q) are given by:

/ngq Jy(a) 2 x(o, 2(q - 1)a2] (9a)
/nq J.(a) 2n(0, 2(q - 1)) . (9b)

Two further refinements of the statisties Jd and Jr result in more desirable
finite sample properties. The first is to use overlapping g-th differences of
X, in estimating the variances by defining the following estimator of Ui:

1 n

~ q -
ai(q) =5 o (X, -x - au)?. (10)
ng  k=q d

This differs from the estimator ;g(q) since this sum contains nq - q + 1 terms
whereas the estimator ai(q) contains only n terms. By using overlapping g-th
increments, we obtain a more efficient estimator and hence a more powerful
test. Using ai(q) in our variance ratio test, we define the corresponding

difference and ratio test statistics as:

oM

(q)

2
a

2 g
a

My(a) = o3(a) - o M.(q) = 1. (1)

Q >

The second refinement involves using unbiased variance estimators in the

calculation of the M statistics. Denote the unbiased estimators as 32 and



cc(q) where

nq .
2 2
BT (122)
nq .
=2 21 2 .
i AL LR R VR =) (1)

and define the statistiea:

Mﬂ(n) : Eg(q) .Eg T PR

Although this does not yield an unbiased variance ratio, simulation
experiments show that the finite-sample properties of the test statistics are
closer to their asymptotic counterparts when this bias ad justment is made.6
Inference for the overlapping variance differences and ratios may then bhe

performed using:

Theorem 2: Under the null hypothesis H, the asymptotic distributions of the

statisties My{a), M.(q}, ﬁd(q), and ﬁr{q) are given by:

/nd My(a) 2 /ag M (q) 2 N(o, 2(2q‘;;(q'1) ag) (14a)
/nq M (a) 2 /g H_(a) 2 n(o, E(EQ‘;;(Q‘1’) . (14b)

In practice, the statisties in (14) may be standardized in the usual manner

(e-g., z(q) = vnq ‘r(q),(2(2q-;;(q-1)J-% 2 N0, 1)].

To develop some intuition for these variance ratios, observe that for an

aggregation value q of 2, the Mp(q) statistic may be re-expressed as:

Mn(z) = ;(1) - _l”_") [(X1 - Xﬁ - U)2 -+ (X,. - X.. = - ;)2] ; {1{‘!) (1q\



hence for q = 2 the M.(q) statistic is approximately the first-order
autocorrelation coefficient estimator p{1) of the differences. More

generally, it may be shown that:

i) 2 Bl o L ARGy, L2000 (16)

~

where p(k) denotes the k-th order autocorrelation coefficient estimator of the

first-differences of Xt.7 Equation (16} provides a simple interpretation for

the variance ratios computed with an aggregation value q: they are (approxi-

TACRLY) Linaap somhinations of the fipst 4-1 autocorrelation coefficients

estimators of the first differences with arithmetically declining weights.8

2.2 HETEROSCEDASTIC INCREMENTS.

Since there is already a growing consensus among financial economists
that volatilities do change over time,9 a rejection of the random walk
hypothesis due to heteroscedasticity would not be of much interest. We
therefore wish to derive a version of our specification test of the random
walk model which is robust to changing variances. As long as the increments
are uncorrelated, even in the presence of heteroscedasticity the variance
ratlo must still approach unity as the number of observations increase without
bound since the variance of the sum of uncorrelated increments must still
equal the sum of the variances. However, the asymptotic variance of the
variance ratios will clearly depend upon the type and degree of
heteroscedasticity present. One possible approach is to assume some specific
form of heteroscedasticity, and then calculate the asymptotic variance of
ﬁr(q) under this null hypothesis. However, to allow for more general forms of
heteroscedasticity, we employ an approach due to White (1980) and White and

Domowitz (198Y4). This approach also allows us to relax the requirement of



returns' well-documented empirical departures from normality.’o Specifically,

We assume: 1

H*. (1) For all t, E[Et] = 0, E[etet-r] = 0 for any t # 0.

(ii) {et} is ¢-mixing with coefficients o(m) of size r/{2r-1) or is a-
mizxing with coefficients a{m) of size r/(r-1), r > 1 such that for

all t and for any t 2 0, there exists some § for which:

‘2(1"1-6)

Efetst_ A<, (17
T
(1i1) lim 7z Elel] = of < = .
T+o “£=1
(iv) For all t, E[stet_jetat_k] = 0 for any non-zero j, k where j = k.

This null hypothesis assumes that Xt possesses uncorrelated increments but
allows for quite general forms of neteroscedasticity, including deterministic
changes in the variance (due, for example, to seasonal factors) and Engle's
[1982] ARCH processes (in which the conditional variance depends upon past
infermation).

Since ﬁr(q) still approaches 0 under H*, we need only compute its
asymptotic variance {call it 8(q)] to perform the standard inferences. We do
this in two steps. First, recall that the following equality obtains
asymptotically:

q-1

IRCHER" &;—i—é(j) . (18)
j=1

Second, note that under H* [Condition (iv)] the autocorrelation coefficient

estimators p(j) are asymptotically uncorrelated.12 If we can obtain

asymptotic variances &§(j) for each of the p(j) under H¥, we may readily



calculate the asymptotic variance 6(q) of ﬁr(q) as the weighted sum of the

§{]) where the weights are simply the weights in (18) squared. More formally,

we have:

~

Theorem 3: Denote by §(Jj) and 8(q) the asymptotic variances of p(j) and

Mr(q) respectively. Then under the null hypothesis H¥:

(a) The statisties J,(q), J,.(q), My(q), Mo(a), H,(a), ﬁr(q) all converge

almost surely to O for all q as n increases without bound.

(b) The following is a heteroscedasticity-consistent estimator of 8(j):

nq

~.2 ~\2
. k_;+1(xk TR oW Ry - K gy W)
§(3) = == - (19)
[ zq(x S K, - wP)?
k=1 < k=1

(¢) The following is a heteroscedasticity-consistent estimator of a{q):

~ q-
8(q) =
J=1

[ELQ_:_Jl]2 C8()) . (20)

Despite tne presence of general heteroscedasticity, the standardized test
statistic z*(q) = ﬁr(q)//e is still asymptotically standard normal. In
Section 3 we use the z*(q) statistic to empirically test for random walks in

weekly stock returns data.

3. THE RANDOM WALK HYPOTHESIS FOR WEEKLY RETURNS.

To test for random walks in stock market prices, we focus on the 1216-
week time span from September 6, 1962 to December 26, 1985. Our choice of a
weekly observation interval was determined by several considerations. Since

our sampiing theory is wholly based upon asymptotic approximations, a large



number of observations is appropriate. While daily sampling yields many
observations, the biases associated with non-trading, the bid-ask spread,
asynchronous prices, etc, are troublesome. Weekly sampling is the ideal
compromise, yielding a large number of observations while minimizing the

biases inherent in daily data.
The weekly stock returns are derived from the CRSP daily returns file.
The weekly return of each security is computed as the return from Wednesday's

closing price to the following Wednesday's close. If the following

Wednesday's price is missing, then Thursday's price (or Tuesday's if
Thursday's is missing) is used. If both Tuesday's and Thursday's prices are
also missing, the return for that week is reported as missing.13

In Section 3.1 we perform our test on both equal and value-weighted CRSP
indexes for the entire 1216-week period as well as for 608-week sub-periods
using aggregation values gq ranging from 2 to 16.1u Section 3.2 reports
corresponding test results for size-sorted portfolios and Section 3.3 presents

results for individual securities.

3.1 RESULTS FOR MARKET INDEXES.

Tables 1a and 1b report the variance ratios and test statistic z*(q) for
CRSP NYSE-AMEX market return indexes. Table 1a presents the results for a
one-week base observation period and Table 1b reports similar results for a
four-week base observation period. The values reported in the main rows are
the actual variance ratios [ﬁr(q) + 1) and entries enclosed in parentheses are
the z*(g).1°

Panel A of Table 1a displays the results for the CRSP equal-weighted
index. The first row presents the variance ratios and test statisties for the
entire 1216 week sample period and the next two give the results for the two

608 wesl <rth_onarisadc Tham mariAam 10m Tlr 11711 bicrrvomd b omoomr d e s b s a4 e



the usual significance levels for the entire time period and all sub-periods.
Moreover, the rejections are not due to changing variances since the z*(q)

statistics are robust to heteroscedasticity. The estimates of the variance
ratio are larger than 1.0 for all cases. For example, the entries in the
first column of Panel & correspond to variance ratios with an aggregration
value g of 2 which, in view of equation (15), are approximately equal to one

plus the first-order autocorrelation coefficient estimator of weekly returns,

The entry in the first row, 1.30, implies that the first-order autocorrelation

H fekLY Teng 15 apmrorinately 3 penent. The vandem vl hypothesis s

easily rejected at common levels of significance. The variance ratios
increase with q, but the magnitudes of the z*(q) statistics do not. Indeed,
the test statisties seem to decline with q hence the significance of the
rejections becomes weaker as coarser-sample variances are compared to weekly
variances. Our findings of positive autocorrelation for weekly holding-period
returns differs from Fama and French's (1987) finding of negative serial
correlation for long holding-period returns. This positive correlation is
significant not only for our entire sample period but for all sub-periods as
well.

The rejection of the random walk hypothesis is much weaker for the value-
weighted index as Panel B indicates, nevertheless the general patterns
persist. The variance ratios execeed 1.0, and the z*¥(g) statisties decline as
g increases. The rejections for the value-weighted index are primarily due to
the first 608 weeks of the sample period.

Table 1b presents the variance ratios using a base observation period of

four weeks hence the first entry of the first row, 1.15, is the variance ratio

AF AT a R r1mmels b ey e o Yy



weighted index. This is consistent with the relatively weak evidence against
the random walk which previous studies have found using monthly data.
Although the test statistics in Tables fa and 1b are based on nominal
stock returns, it is apparent that virtually the same results would obtain
with real or excess returns. Since the volatility of weekly nominal returns
Is so much larger than that of the inflation and T-bill rates, the use of
nominal, real, or excess returns in a volatility-based test will yield

practically identical inferences.

3.2 RESULTS FOR SIZE BASED PORTFOLIOS.

An implication of the work of Keim and Stambaugh (1986) is that,
conditional on stock and bond market variables, the logarithm of wealth
relatives of portfolios of smaller stocks do not follow random walks. For
portfolios of larger stocks their results are less conclusive. Conseguently,
it is of interest to explore what evidence our tests provide for the random
walk hypothesis for the logarithm of size based portfolio wealth relatives.

We compute weekly returns for five size based portfolios from the NYSE-
AMEX universe on the CRSP daily return file. Stocks with returns for any
given week are assigned to portfolios based on which quintile their market
value of equity is in. The portfolios are equal-weighted and have a
continually changing composition.16 The number of stocks included in the
portfolios varies from 2036 to 2720.

Table 2 reports the ﬁr(q) test results for the size-based portfolios
using a base observation period of one week. Panel & reports the results for
the portfolio of small firms (first quintile), Panel B reports the results for
the portfolios of medium-sized firms (third quintile), and Panel C reports the
results for the portfolio of large firms (fifth quintile). Evidence against

the random walk hypothesis for small firms is strone far all Fime mamsade



considered. In Panel A& all the z*(q) statistics are well above 2.0, ranging
from 3.52 to 11.92. A4s we proceed through the panels to the results for the
portfolio of large firms the z*(q) statistics become smaller, buf even for the
large firms portfolio the evidence against the null hypothesis is strong. As
in the case of the returns indexes, we may obtain estimates of the first-order

autocorrelation coefficient for returns on these size-sorted portfolios simply

by subtracting 1.0 from entries in the q = 2 column. The values in Table 2

indicate that portfolio returns for the smallest quintile have a 42 percent
weekly autocorrelation over the entire sample period! Moreover, this
autocorrelation reaches 49 percent in sub-period 2 (May 2, 1974 to

December 26, 1985). Although the serial correlation for the portfolio returns
of the largest quintile is much smaller (14 percent for the entire sample
period), it is statistically significant.

Using a base observation interval of four weeks, much of the evidence
against the random walk for size-sorted portfolios disappears. Although the
smallest quintile portfolio still exhibits a serial correlation of 23 percent
with a z*(2) statistic of 3.09, none of the variance ratios for the largest
quintile portfolic are significantly different from one. 1In the interest of
brevity, we do not report those results here and refer interested readers to
Lo and MacKinlay (1987a).

The results for size-based portfolios are generally consistent with those
for the market indexes. The patterns of variance ratios increasing in q and
significance of rejections decreasing in g which we observed for the indexes
also obtain for these portfolics. The evidence against the random walk
hypothesis for the logarithm of wealth relatives of small-firms pertfolics is
strong in all cases considered. For larger firms and a one-week base

observation interval, the evidence is also inconsistent with the random



walk. However, as the base observation interval is increased to four weeks,

our test does not reject the random walk model for larger firms.

3.3 RESULTS FOR INDIVIDUAL SECURITIES.
For completeness, we perform the variance ratio test on all individual

stocks which have complete return histories in the CRSP database for our

entire 1216-week sample period, yielding a sample of 625 securities. Due to

space limitations, we report only a brief summary of these results in Table

3. Panel A contains the cross-sectional means of variance ratios for the
entire sample as well as for the 100 smallest, 100 intermediate, and 100
largest stocks. Cross-sectional standard deviations are given in parentheses
below the main rows. Since the variance ratios are clearly not cross-
sectionally independent, these standard deviations cannot be used to form the
usual tests of significance; they are reported only to provide some indication
of the cross-sectional dispersion of the variance ratios.

The average variance ratio for individual securities is less than unity
when q = 2, implying that there is negative serial correlation on average.
For all stocks, the average serial correlation is -3 percent, and -6 percent
for the smallest 100 stocks. However, the serial correlation is both
statistically and economically insignificant and provides little evidence
against the random walk hypothesis. For example, the largest average z¥(q)
statistic over all stocks occurs for q = 4 and is -0.90 (with a cross-
sectional standard deviation of 1.19); the largest average z*(q) for the 100
smallest stocks is -1.67 (g = 2, cross-sectional standard deviation of
1.75). These results complement French and Roll's (1986) finding that daily
returns of individual securities are slightly negatively autocorrelated.

For comparison, Panel B reports the variance ratios of equal and value

weighted portfolios of the 625 securities. The results are consistent with



those in Tables 1 and 2; significant positive autocorrelation for the equal-
weighted portfolio, and less significant positive autocorrelation for the
value-weighted.

That the returns of individual securities have statistieally
insignificant autocorrelation is not surprising. Individual returns contain
much company-specific or "idiosyncratic” noise which makes it difficult to
detect the presence of predictable components. Since the idiosyneratic noise
is largely attenuated by forming portfelios, we would expect to uncover the
predictable "systematic" component more peadily when securities are combined.
Nevertheless the negativity of the individual securities' autocorrelations is
an interesting contrast to the positive autocorrelation of portfolic returns.

Since this is a well-known symptom of infrequent trading, we consider such an

explanation in the next section.

4. SPURIOUS AUTOCORRELATION INDUCED BY NON-TRADING.

Although we have based our empirical results on weekly data to minimize
the biases associated with market micro-structure issues, this alone does not
insure against their possibly substantial influences. In this section, we
consider explicitly the conjecture that infrequent or non-synchronous trading
may induce significant spurious correlation in stock returns. '’ The common
intuition for the source of such artificial serial correlation is that small
capitalization stocks trade less frequently than larger stocks. Therefore,
new information is impounded first into large-capitalization stock prices and
then into smaller-stock prices with a lag. This lag induces a positive serial
correlation in, for example, an equally-weighted index of stock returns. Of
course, this induced positive serial correlation would be less pronounced in a
value-weighted index. Since our rejections of the random walk hypothesis are

most resounding for the equal-weighted index, they may very well be the result



of this non-trading phenomenon. To investigate this possibility, we consider
the following simple model of nontrading.18
Suppose our universe of stocks consists of N securities indexed hy i,

each with the return generating process:

R, = RMt teg i=1..,N, (21)

HMt represents a factor common to all returns (e.g., the market) and is

assumed to be an independently and identically distributed random variable

with mean My and variance e The it term represents the idiosyncratic

component of security i's return and it is also assumed to be i.i.d. (over
both i and t), with mean O and variance cﬁ. The return-generating process may
thus be identified with N securities each with a unit beta such that the
theoretical R® of a market model regression for each security is 0.50.

Suppose that in each period t there is some chance that security i does
not trade. One simple approach to modelling this phenomenon is to distinguish
between the observed returns process and the virtual returns process., For
example, suppose security i has traded in period t-1; consider its behavior in
period t. If security i does not trade in period t, we define its virtual
return as R;. (which is given by (21)), whereas its observed return R? is

t
0. If security i then trades at t+1, its observed return R® is defined to

ig+1
be the sum of its virtual returns Rit and Rit+1’ hence non-trading is assumed
to cause returns to cumulate. The cumulation of returns over periods of non-
trading captures the essence of spuriously induced correlations due to the
non-trading lag.
To calculate the magnitude of the positive serial correlation induced by

non-trading, we must specify the probability law governing the non-trading

event. For simplicity, we assume that whether or not a security trades may be



modelled by a Bernoulli trial, so that in each period and for each security
there is a probability p that it trades and a probability 1 - p that it does
not. It is assumed that these Bernoulli trials are i.i.d. across securities
and, for each security, they are i.i.d. over time. Now consider the observed

return Rg at time t of an equally-weighted portfolio:

R = o g RS, - (22)
i
) _
The obscrved retuen B, for GGGUTLLY | gy D¢ Expressad 4
Rip = Xjp(0)-Ry FigdDRyp g+ %@ Ry o+ v - (23)

where Xit(j)’ J=1,2, 3, ... are random variables defined as:

1 If i trades at t.
{ (24a)

0 Otherwise,

xit(o)

1 If 1 does not trade at t-1 and i trades at t.
X, (1) = { (24b)
0 Qtherwise,

1 If i trades at t and does not trade at t-1 and £-2.

X, {(2) (24c¢,

il

0 Otherwise.

The X;(j) variables are merely indicators of the number of consecutive
periods before t in which security j has not traded. Using this relation, we

have:

=

R X. (1)-R +

1
it ie-1 YN I H @R o (25)

=)
[ e =

o] 1
e = n X (0 Ry +

[l v B
e



security's return is idiosyncratic and has zero expectation, the following

approximation obtains:

<t O
n
=j—

[t e Bt
-
—
o
Nt
j=>
+

It is also apparent that the averages % L Xit(J) become arbitrarily close,
again for large N, to the probability oflj consecutive no-trades followed by a
trade, i.e.:

N

‘m ) = pe(] - p)d
pélm T i Xit(J) = p-(1 - p) . (27)

The observed equal-weighted return is then given by the approximation:

ne

2
R p-HMt + p-(1 - p)'RMt-1 + p{1 - p) .RMt-E + e . (28)

o
t
Using this expression, the general jth-order autocorrelation ccoefficient

o{j) may be readily computed as:

Q
£-1]

VAR[Rz]

COV[RE, R

o(j) = = (1-p)J . (29)
Assuming that the implieit time interval corresponding to our single period is
one trading day, we may also compute the weekly (five-day) first-order

autocorrelation coeffieient of Rz as:

W p(1) + 20(2) + + - - + 59(5) + UYp(6) + + - - + a(9)
(1) = 5 + 85(1) + 60(2) « bo(3) + 25(H) - 30

By specifying reasonable values for the probability of non-trading, we may
calculate the induced autocorrelation using equation (30). To develop some

intuition for the parameter p, observe that the total number of securities



N

which trade in any given period t is given by the sum I Xit
1

assumptions, this random variable has a binomial distribution with parameters

{0). Under our

(N, p) hence its expected value and variance are given by Np and Np(1-p)
respectively. Therefore, the probability p may be interpreted as the fraction
of the total number of N securities which trades on average in any given
period, A value of 0.90 implies that, on average, 10 percent of the
securities do not trade in a single period.

Table 4 presents the theoretical daily and weekly autocorrelations
induced by non-trading for non-trading probabilities of 10 to 50 percent. The
first row shows that when (on average) 10 percent of the stocks do not trade
each day, this induces a weekly autocorrelation of only 2.% percent! Even
when the probability of non-trading is increased to 50 percent (which is guite
unrealistie), the induced weekly autocorrelation is 17 percent.19 We conclude
that our rejection of the random walk hypothesis cannot be solely attributed
to infrequent trading.

The positive autocorrelation of portfolio returns and the negative
autocorrelation of individual securities is puzzling. Although our stylized
model suggests that infrequent trading cannot fully account for the 30 percent
autocorrelation of the equal-weighted index, the combination of infrequent
trading and Roll's (1984} bid-ask effect may explain a large part of the small
negative autocorrelation in individual returns.

One possible stochastic model which is loosely consistent with these
observations is to let returns be the sum of a positively autocorrelated
common component and an idiosyncratic white noise component. The common
component induces significant positive autocorrelation in portfolios since the
idiosyncratic component is trivialized by diversification. The white noise

component reduces the positive autocorrelation of individual stock returns,



and the combination of infrequent trading and the bid-ask spread effects drive
the autocorrelation negative. Of course, explicit statistical estimation is
required to formalize such heuristics and, ultimately, what we seek is an
cconomic model of asset prices which might give rise to such empirical
findings. This is beyond the seope of our present paper, but is the focus of

current investigation.

5. THE MEAN-REVERTING ALTERNATIVE TO THE RANDOM WALK.

Although the variance ratio tast has shoun weekly stock returns to be

WWMMMWWMWMMWMJMMMMMM&ﬂwW

expliecit guidance towards a more plausible model for the data. However, the
pattern of the test's rejections over different base observation intervals and
aggregation values q does shed considerable light on the relative merits of
competing alternatives to the random walk. For example, one currently popular
hypothesis is that the stock returns process may be described by the sum of a
random walk and a stationary mean-reverting component, as in Summers (1986)
and Fama and French (1987).20 One implication of this alternative is that
returns are negatively serially correlated for all holding periods. Another
implication is that, up to a certain holding period, the serial correlation
becomes more negative as the holding-period increases.2! If returns are in
fact generated by such a process, then their variance ratios should be less
than unity when q = 2 [since negative serial correlation is implied by this
process]. Also, the rejection of the random walk should be stronger as g
increases [larger 2*(q) values for larger q].22 But Tables 1 and 2 and those
in Lo and MacKinlay (1987a) show that both these implications are contradicted
by the empirical evidence,?3 Weekly returns do not follow a random walk, but

do not fit a stationarv mean-reverting altamrmar v am e ..



Of course, the negative serial correlation in Fama and French's (1987)
study for long (three- to five-year) holding-period returns is, on purely
theoretical grounds, not necessarily inconsistent with positive serial
correlation for shorter holding-period returns. However, our results do
indicate that the sum of a random walk and a mean-reverting process cannot be

a complete description of stock price behavior.

6. CONCLUSION.

We have rejected the random walk hypothesis for weekly stock market

returns using a simple volatility-based specification test. These rejeetions

cannot be completely explained by infrequent trading op time-varying
volatilities. The pattern of rejections indicate that a stationary mean-
reverting model of Shiller and Perron (1985), Summers (1986), Poterba and
Summers (1987), and Fama and French (1987) cannot account for the departures
of weekly returns from the random walk.

As we stated in the introduction, the rejection of the random walk model
does not necessarily imply the inefficiency of stock price formation. OQOur
results do, however, impose restrictions upon the set of plausible economic
models for asset pricing; any structural paradigm of rational price formation
must now be able to explain this pattern of serial correlation present in
weekly data. As a purely descriptive tool for examining the stochastic
evolution of prices through time, our specification test also serves a useful
purpose, especially when an empirically plausible statistical model of the
price process is more impo-tant than a detailed economic paradigm of
equilibrium. For example, the pricing of complex financial claims often
depend critically upon the specific stochastic process driving underlying

asset returns. Since such models are usually based upon arbitrage



of less consequence. One specific implication of our empirical findings is
that the standard Black-Scholes pricing formula for stoek index options is
misspecified,

Although our variance-based test may be used as a diagnostic check for
the random walk specification, it is a more difficult task to determine

precisely which stochastic process best fits the data., The results of French

and Roll (1986) for return variances when markets are open versus when they

are closed adds yet another dimension to this challenge. The construction of
a single stochastic process which fits both short and long holding-period
returns data is one important direction for further investigation. However,
perhaps the more pressing problem is to Specify an economic model which might
give rise to such a process for asset prices, and will be pursued in

subsequent research.



FOOTNQTES

1See, for example, the studies in Jensen's (1978) volume on anomalous
evidence regarding market efficiency.

°The use of variance ratios is, of course, not new. Most recently,
Campbell and Mankiw (1987), Cochrane (1987a, b), Fama and French (1987},
French and Roll (1986), and Huizinga (1987) have all computed variance ratios

in a variety of contexts. However, those studies do not provide any formal
sampling theory for our statisties. Specifically, Cochrane (1987a), Fama and
French (1986), and French and Roll (1986) all rely upon Monte Carlo
simulations to obtain standard errors for their variance ratios under the
null. Campbell and Mankiw (1987) and Cochrane (1987b) do derive the
asymptotic variance of the variance ratio but only under the assumption that
the aggregation value q grows with (but more slowly than) the sample size T.
Specifically, they use Priestley's (1981, p. 463) expression for the
asymptotic variance of the estimator of the spectral density of Axt at
frequency zero with a Bartlett window as the appropriate asymptotic variance
of the variance ratio. But Priestley's result requires (among other things)
that ¢ + », T » =, and q/T » 0. In this paper, we develop the formal sampling
theory of the variance ratio statistics for the more general case.

Our variance ratio may, however, be related to the spectral density
estimates in the following way. Letting f(0) denote the spectral density of
the increments axt at frequency zero, we have the following relation:

@

1£(0) = y(0) + 2- £ (k)
k=1

where y(k) is the autocovariance function. Dividing both sides by the

variance y(0) then yields:



mf*(0) = 1+ 2. ¢ po(k)
k=1

where f* is the normalized spectral density and o(k) is the autocorrelation
function. Now in order to estimate the quantity nf*¥(0), the infinite sum on
the right-hand side of the preceding equation must obviously truncated. If,

in addition to truncation, the autocorrelations are weighted using Newey and

West's (1987) procedure, then the resulting estimator is formally equivalent

to our ﬁr(q) statistic. Although he does not explicitly use this variance
ratio, Huizinga (1987) does employ the Newey and West (1987) estimator of the
normalized spectral density.

3Briefly, Hausman (1978) exploits the fact that any asymptotically
efficient estimator of a parameter 8, say ée, must possess the property that
it is asymptotically uncorrelated with the difference éa - 6e where Sa is any
other estimator of 8. If not, then there exists a linear combination of

Be and Ba - ee which is more efficient than ee’ contradicting the assumed

efficiency of 8, The result follows directly then since:

~ -~

AVAR{e_] = AVAR[8_+ 6_ - 8 ] = AVAR[0_] + AVAR[® - @ ]
a e a e e a e
=> AVAR[Ba - ee] = AVAR[ea] - AVAR[Ge]

where AVAR[-] denotes the asymptotic variance operator.
uNote that if (02)2 is used to estimate og, then the standard 't-test' of
Jq = 0 will yield inferences identical to those obtained from the

corresponding test of Jr = 0 for the ratio since

"2

~2
J o, - o J
d . b =2 = < - N0, 1)
/.l /2 o /2
20a a

SProofs of all the theorems are given in the Appendix.



6According to the results of Monte Carle experiments in Lo ang MacKinlay

(1987b), the behavior of the bias-adjusted M Statistics [which we denote as

Md(q) and ﬁr(q)] does not depart significantly from that of their asymptotie

limits even for small Sample sizes. Therefore, all our empirical results are

based upon the ﬁr(q) statistie,
7See equations (42-2) ip the Appendix.

8Note the similarity between these varianee ratios ang the Box-Pierce

Q-statistic which is a lineap combination of sQuared autocorpglgtiong with all

mwmmwuwmmenmemmmMmummm

finite-sample behavior of Whe variance ratiog ks he comparable to that of the

Q-statistic under the null hypothesis, they can have very different power
properties under various alternatives. See Lo and MacKinlay (1987b) for
further detajls.

9See, for example, Merton (1980), Poterba and Summers (1985), and French,
Schwert, and Stambaugh (1987).

100f course, second moments are still assumed to pe finite otherwise the
variance ratio is no longer well-defined; this rules out distributions with
infinite variance such as those in the stable Pareto-Levy family (with
characteristic exponent less than two)} proposed by Mandelbrot (1963) and Fama
(1965). We do, however, allow for many other forms of leptokurtosis, such as
that generated by Engle's (1982) conditionally heteroscedastic ARCH process.

1"Ccmdition (i) is the essential property of the random walk which we
Wwish to test. Conditions (i1) and (iii) are restrictions on the degree of
dependence and heterogeneity which are allowed and yet still permit some form
of the law of large numbers and the central limit theorem to obtain. See

White (1984Y fram . . . o



asymptotically uncorrelated. This condition may be weakened considerably at
the expense of computational simplicity; see footnote 12,

12Although this restriction on the fourth cross-moments of e may seem

£
somewhat unintuitive, it is satisfied for any process with independent

increments (regardless of heterogeneity) and alse fer linear Caussian ARCH

processes. This assumption may be relaxed entirely, requiring the estimation

of the asymptotic covariances of the autocorrelation estimators in order to

estimate the limiting variance 9 of ﬁr(q) via relation (18). Although the

resulting estimator of 8 would be more complicated than (20), it is

conceptually straightforward and may be readily formed along the lines of
Newey and West (1987). An even more general (and possibly more exact)
sampling theory for the variance ratios may be obtained using the results of
Dufour (1981) and Dufour and Roy (1985). Again, this would sacrifice much of
the simplicity of our asymptotic results.

13The average (over all securities) fraction of the entire sample where
this oceurs is less than 0.5 percent of the time for the 1216-week sample
period.

1I‘ttlxcidit:ional empirical results (304-week subperiods, larger q values,
etc.) are reported in Lo and MacKinlay (1987a).

15Since the values of z*{q) are always smaller than the values of z(q) in
our empirical results, to conserve space we report only the more conservative
statisties. Both statistics are reported in Lo and MacKinlay (1987a).

16We also performed our tests using value-weighted portfolios and
obtained essentially the same results. The only difference appeared in the
largest quintile of the value-weighted portfolio, for which the random walk

hypothesis was generally not rejected. This, of course, is not surprising



given that the largest value-weighted quintile is quite similar to the value-
weighted market index.
17See, for example, Scholes and Williams (1977) and Cohen, Hawawini,

Maier, Schwartz, and Whitcomb (1983),
1BAlthough our model is formulated in discrete time for simplicity, it is
In fact slightly more general than the Scholes and Williams {1977) continuous-

time model of non-trading. Specifically, Scholes and Williams implicitly

assume that each security trades at least once within a given time interval by

"ignoring periods over which no trades occur" (pg. 311), whereas our model
requires no such restriction. 4s a consequence, it may be shown that, ceteris
paribus, the magnitude of spuriously induced autocorrelation is lower in
Scholes and Williams (1977) than in our framework. However, the qualitative
predictions of the two models of non-trading are essentially the same. For
example, both models imply that returns for individual Securities will exhibit
negative serial correlation, but that portfolio returns will be positively
autocorrelated.

19Several other factors imply that the actual size of the spurious
autocorrelations induced by infrequent trading are lower than those given in
Table 4. For example, in calculating the induced correlations using equation
(29), we have ignored the idiosyncratic components in returns due to
diversification whereas, in practice, perfect diversification is never
achieved. But any residual risk increases the denominator of (29) and does
not necessarily increase the numerator (since the eit's are cross-sectionally
uncorrelated). To see this explicitly, we simulated the returns for 1000
stoeks over 5120 days, calculated the weekly autocorrelations for the virtual
returns and for the observed returns, computed the difference of those

autocorrelations, repeated this procedure 20 times and then averaged the



differences. With a (daily) non-trading probability of 10 percent, the
simulations yield a difference in weekly autocorrelations of 2.1 percent, 4.3
percent for a non-trading probability of 20 percent, and 7.6 percent for a

non-trading probability of 30 percent.
Another factor which may reduce the spurious positive autocorrelation
empirically is that, within the CRSP files, if a security does not trade its

price is reported as the average of the bid-ask spread. As long as the
specialist adjusts the spread to reflect the new information, even if no trade
occurs the reported CRSP will reflect the new information. Although there may
still be some delay before the bid-ask spread is adjusted, it is presumably
less than the lag between trades.

Also, if it is assumed that the probability of no-trades depends upon
whether or not the security has traded recently, it is natural to suppose that
the likelihood of a no-trade tomorrow is lower if there is a no-trade today.
In that case, it may readily be shown that the induced autocorrelation is even
lower than that computed in our i.i.d. framework.

203hiller and Perron (1985) propose only a mean-reverting process (the
Ornstein-Uhlenbeck process) whereas Poterba and Summers (1987) put forth the
sum of a random walk and a stationary mean-reverting process. Although
neither studies offer any theoretical justification for these processes, they
both motivate their alternatives as models of investors' fads.

21If returns are generated by the sum of a random walk and a stationary
mean-reverting process, their serial correlation will be a U~shaped function
of the holding period; the autocorrelation becomes more negative as shorter
holding-periods lengthen, but gradually returns to zero for longer holding-~
periods because the random walk component dominates. The curvature of this U-

shaped function depends upon the relative variability of the random walk and



mean-reverting components, Fama and French's (1987) parameter estimates imply
that the autocorrelation coefficient is monotonically decreasing for holding-
periods up to three years, i.e., the minimum of the U-shaped curve occurs at a
holding period greater than or equal to three years,

227his pattern of stronger rejections with larger q is also only true up
to a certain value of q. In view of Fama and French's {1987) results, this
upper limit for ¢ is much greater than 16 when the base observation interval

is one week. See footnote 21.

23See Lo and MacKinlay (1987b) for explicit power calculations against
this alternative and against a more empirically relevant model of stock

prices.



APPENDIX

Proof of Theorem 1:

Under the i.i.d, Gaussian distributional assumption of the null
hypothesis H, Ui and Ui are maximum likelihood estimators of 05 with respect
to data sets of every observation and every g-th observation respectively (the

dependence of US on q is suppressed for notational simplieity). Therefore, it

is well-known that:

=7 2 4
/ng (oa - co) < N(O, 200) (A1-1)
/ng (;ﬁ - cg) 2 N(o, 2qog) ) (81-2)

Since, under the null hypothesis H, 82 is the maximum-likelihood estimator

of cg using every observation, it is asymptotically efficient. Therefore,
following Hausman's (1978) approach, we conclude that the asymptotic variance
of /nq (;5 - Ss) is simply the difference of the asymptotic variances of

— "2 2 — "2 2
/nq (cb - co) and v/ng (aa - uo). Thus we have

/79 J(r) = /og (a2 - ;i) 2 y(o, 2(q-1)o2) . (A1-3)

The asymptotic distribution of the ratio then follows by applying the "delta-

2

method" to the quantity vng (g(cz,oi) - glog

,ag)] where g(u,v) = %, hence:

Q

/nq J () = /nq (=5 - 1) 2 N(O, 2(g-1}) . (A1-14)

Q >
DJI‘\JIO"[\)

Proof of Theorem 2:

To derive £he limitine distrihitianag A Jmm M amd s =



suppressed for notational convenience).
variance estimator as a function of the autocovariances of the (X

terms and then employ well-known limit theorems for autocovariances.

the quantity:

" ng ng g
P 1 2 1
T LR ) R M (A
k- +
° n’kq g n° keg gs1 KT
__*_n ]
nakq

where ”k-J+1 = Xk-j+1 - Xk-j - u. But then we have:

1 nq[q~2 2q_1'\ ~ ZQEEA ~
- I In . .+ I n L UYL R
ng® keg joq k=3 joq k=ge17k-g jop K=3+17k-g-1

ng . q-1 - ~

1 [ 2 2 2
—an—E([q—k]n +kn_ ]
nq2 k=1 k k=1 k ng-gq+k+1

ng . . q-1( n" on

+2(q -1 £ nn -2 I (fq-kknn .+ [k -
k=2 k'k-1 k=2 k k-1
ng . = q-T( A

+2(q -2) & n.n =2 L {[lg-klnn .+ [k
k=3 k k-2 k=3 k 'k~-2

+

nq . .
+ 2 qu nknk-q+1]
3(0)-o(n1’)+ "()-op(n“l’ne—(—g;—z"

v(2

- 2]"

)

Xk-j_

11n

Our approach is to re-express this

k = Xk-q)

;)]2 (A2-1a

A~

A ]

-~

nnq—q+k+1nnq—q+k]

-~

nnq-q+k+1”nq—q+k-1]

- op(n*%)

Consider

(A2-2a)

(A2-2b)



R ng . .
where y(j) = — £ nn .and o (n'i) denotes a quantity which is of order
nq k=j+1 K'k- P N

smaller than n'i in probability. Now define the gqx1 vector y =

{;(0) ;(?) - ;(q - 1)]'. A standard limit theorem for sample

autocovariances y of a stationary time series with independent Gaussian

increments is {see, for example, Fuller {1976, Chapter 6.3)]:

~
—

2 . a i ,
/nq (y - 0081) ~ (0, oo[Iq + 8181]) (42-3)

where e is the gx1 vector [1 0 ... 0]' and I_ is the identity matrix of order

q

A

q. Returning to the quantity {ﬁa (Ui - Ui), We have;

/mq (o2 - o2) = /g [(5(0) - o2) + a1 Iy,

q
(A2-4)
. % ¥(q - 1)] - vnq op(n'%) .
Combining (42-3) and {A2-4) then yields the following result:
/g (;i - og) 2 N0, v ) (A2-5a)
where
V=200 4 [3i97§~ll]20g . [%)2cg - 202[29 . %a] . (&2-5b)

Given the asymptotic distributions (A1-1) and (A2-5), Hausman's (1978) method
may be applied in precisely the same manner as in Theorem 1 to yield the

desired result:

/nq M (q) 2 nfo, 281= ;;(q =1) cg]

/nd M (q) ® (o, A2A=Dla = 1)



The distributional results for ﬁd(q) and ﬁr(q) follow immediately since
asymptotically these statistics are equivalent to Md(q) and Mr(q)

respectively.

Proof of Theorem 3:

(a) We prove the result for ﬁr(q); the proofs for the other statistics follow

almost immediately from this case. Define the increment process

Yt = Xt - xt-T and define p(t) as:

;g - ~
R hq z (Yt - u) (Yt_T - )
~ t=T _A("-')
p(t) = T = B(4) - (A3-1)
1 tLe
t=1
Consider first the numerator A(z) of ;(1):
, nq N - 1 1q - -
A(1) = nq f (Yt - u)°(Yt_T - u) = nq f (p - u + et)-(u - u o+ Et-r) (A3-2a)
t=1 t=T
- A ng “ ng 1q
e L - I oy A -
* = (p=u)"+ (u-u) “qtfret+ (u-u) nqtist_; “qtffet for - (A3-2b)
. a.s

Since y + .u, the first term of (43-2b) converges a.s. to zero as

ng » «, Moreover, under Assumption (A2) it is apparent that {et}
satisfies the conditions of White's [1984] Corollary 3.48, hence H*'s
Condition (i) implies that the second and third terms of (A3-2b) also
vanish a.s, Finally, because €. is clearly a measurable function of

the st's, {etet T} is also mixing with coefficients of the same size

as {et}. Therefore, under Condition (ii), Corollary 3.48 of White [1984]

may also be applied to {stet_T} for which Condition (i) implies that the



fourth term of (A3-2b) converges a.s. to zero as well. By similar

arguments, it may also be shown that

2
- ol (43-3)

Therefore, we have o(t) » 0 for all t = 0, hence we conclude:

_ a.s.
Mr(q) + Oasng+» =,

(b) By considering the regression of increments AXt on a constant and lagged
increments ﬂXt 3 this follows direectly from White and Domowitz (1984).
Taylor (1984) also obtains this result under the assumption that the

multivariate distribution of the sequence of disturbances is symmetric.
(¢) This result follows trivially from equation (14) and Condition (iv).

Q.E.D.
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TABLE 1a

Variance ratio test M (q) of the random walk hypothesis for CRSP
equal and value weighEed indexes using a one-week base observation
Interval for the sample period September 6, 1962 to December 26,
1985 and sub-periods. The actual variance ratios are reported in
the main rows, with the z*(q) statistics given in parentheses
immediately below each main row.

Number q of base observations aggregated

. Number n ) .
Time of baseq to form variance ratio
period observations

2 4 8 16

A. Equal-Weighted CRSP NYSE-AMEX Index.

620906-851226 1216 1.30 1.64 1.94 2.05
(7.51)* (8.87)* (8.48)% (6.59)*

620906-740501 608 1.31 1.62 1.92 2.09
(5.38)* (6.03)* (5.76)* (4.77)%

T40502-851226 608 .28 1.65 1.93 1.91

(5.32)% (6.52)% (6.13)% (4.17)%

B. Value-Weighted CRSP NYSE-AMEX Index.

620506-851226 1216 1.08 1.16 1.22 1.22
(2.33)* (2.31)* (2.07)% (1.38)
620906-T40501 608 1.15 1.22 1.27 1.32
(2.89)% (2.28)% {(1.79) (1.46)
TU0502-851226 608 1.05 1.12 1.18 1.10
(0.92) (1.28) {(1.24) {0.46)

*Indicates significance at the 5 percent level,

Note: Under the random walk null hypothesis the value of the variance ratio
1s 1.0 and the test statistic has a standard normal distribution
(asymptotically).



TABLE 1b

Variance ratio test M (q) of the random walk hypothesis for CRSP
equal and value weighEed indexes using a four-week base observation
interval for the sample period September 6, 1962 to December 26,
1985 and sub-periods. The actual variance ratios are reported in
the main rows, with the z*(q) statistics given in parentheses
immediately below each main row.

Number q of base observations aggregated

Time Numer nq to f : b
eriod of hase O 1orm varlance ratio
P observations

2 4 8 16

A. Equal-Weighted CRSP NYSE-AMEX Index.

620906-851226 304 1.15 1.19 1.30 1.30

(2.26)% (1.54) (1.52) (1.07)
620906-740501 152 1.13 1.23 1.40

(1.39) (1.32) (1.46)
T40502-851226 152 1.15 1.11 1.02

(1.68) (0.64) (0.09)

B. Value-Weighted CRSP NYSE-AMEX Index.

620906-851226 304 1.05 1.00 1.11 1.07

(0.75) (0.00) (0.57) (0.26)
620906-740501 152 1.02 1.04 1.12

{0.26) (0.26) {0.46)
T40502-851226 152 1.05 0.95 0.89

(0.63) (-0.31) {(-0.42)

*Indicates significance at the 5 percent level.

Note: Under the random walk null hypothesis the value of the variance ratio
is 1.0 and the test statistic has a standard normal distribution
{asymptotically).



TABLE 2

Variance ratio test M (q) of the random walk hypothesis for size-
sorted portfolios usiﬂg a one-week base observation interval for
the sample period September 6, 1962 to December 26, 1985 and sub-
periods. The actual variance ratios are reported in the main rows,
with the z*(q) statistics giver in parentheses immediately below
each main row.

Number g of base observations aggregated

Number ngq
Time £ i ]
e of base 0 form variance ratio
P observations

2 4 8 16

A. Portfolic of firms with market values in smallest NYSE-AMEX quintile.

620906-851226 1216 1,42 1.97 2.49 2.68

(8.81)#% (11.58)# (11.92)% (9.65)%

620906-740501 608 1.37 1.83 2.27 2.52

(6.12)% (7.83)% (7.94)* (6.68)%

740502-851226 608 1.49 2.14 2.76 2.87

(6.40)% (8.66)% (9.06)% (7.06)%

B. Portfolio of firms with market values in central NYSE-AMEX quintile.

620906-851226 1216 1.28 1.60 1.84 1.91

620906-740501 608 1.30 1.59 1.85

(7.38)% (8.37}* (7.70)% (5.78)*

2.0
(5.31)% (5.73)*% (5.33)% (4.42)%

T40502-851226 608 1.27 1.59 1.80 1.69

(5.31)% (5.73)% (5.33)% (4. 42)%

C. Portfolio of firms with market values in largest NYSE-AMEX quintile.

620906-851226 1216 1.14 1.27 1.36 1,34
(3.82)* (3.99)* (3.45)% (2.22)%

620906-740501 608 1.21 1.36 1.45 1.44
(4.04)* (3.70)% (2.96)* (2.02)*

T40502-851226 608 1.09 1.20 1.27 1.18
(1.80) (2.18)* (1.95) (0.87)

*Indicates significance at the 5 percent level.

Note:

Under the random walk null hypothesis the value of the variance ratio
is 1.0 and the test statistic has a standard normal distribution
(asymptotieally).



TABLE 3

Means of variance ratios over individual securities with complete
return histories from September 2, 1962 to December 26, 1985 (625
stocks). Means of variance ratios for the smallest 100 stocks, the
middle 100 stocks, the largest 100 stocks, are also reported. For

purpases of comparison, the final two rows report the variance

ratios for equal and value weighted portfolios respectively of all

625 stocks. Parenthetical entries for averages over individual
securities are standard errors of the cross-section of variance
ratios. Parenthetical entries for portfolio variance ratics are
the heteroscedasticity-robust 2*(q} statistics. All variance
ratios are computed with a hase observation interval of cne week.

Number q of base observations aggregated

Number ng o £ ) y
SAMPLE of base ¢ form variance ratio
observations 5 y 8 16

A. Averages of variance ratios over individual securities.

A1l Stocks 1216 0.97 0.94 0.92 0.89
(625 Stocks) (0.05)" (0.08) (0.11) (0.15)
Small Stocks 1216 0.94 0.91 0.90 0.88
{100 Stocks) (0.06) (0.10) (0.13) (0.18)
Medium Stocks 1216 0.98 0.97 0.96 0.93
{100 Stocks) (0.05) (0.09) (0.12) (0.15)
Large Stocks 1216 0.97 0.94 0.86 0.86
(100 Stocks) (0.04) (0.07) (0.11) (0.17)
B. Variance ratios of equal and value weighted portfolios of all stocks.
Sdual-Weighted 1216 1.21 1.64 .65 1.76

* * *

(625 Stocks) (5.94) (6.71)% (6.06) (4.25)
gzigggyféghted 1216 1.04 1.08 1.12 112
(625 Stocks) (1.30) (1.24) (1.16) (0.76)

*indicates significance at the 5 percent level.

1Because the variance ratios are not cross-sectionally independent, the
standard errors cannot be used to perform the usual significance tests; they
are reported only to provide an indication of the cross-sectional dispersion

of the variance ratinma



Magnitudes of spurious autocorrelations of return
non-trading phenomena for dail
10 to 50 percent.

TABLE 4

s induced by the
Y non-trading probabilities 1 - p of
The theoretical values of daily j-th order

aptocorrelations o(j) and weekly first-order autocorrelation
p (1) are all zero in the absence of the non-trading problem.

Probability of

Non-trading o{1) 2(2) 5(3) o (k) 2(5) (1)
1-p
0.10 0.1000 0.0100 0.0010 . 0001 0.0000 0.0211
0.20 0.2000 0.0400 0.0080 0.0016 0.0003 0.0454
0.30 0.3000 0.0900 0.0270 0.0081 0.0024 0.0756
(.40 0.4000 0.1600 0.0640 0.0256 0.0102 0.1150
0.50 0.5000 0.2500 0.12580 0.0625 0.0312 0.1687




