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random walk hypothesis via Monte Carlo simulations under two null and three
alternative hypotheses. These results are compared to the performance of the
Dickey-Fuller t and the Box-Pierce Q statisties. Under the null hypothesis of
a random walk with independent and identically distributed Gaussian
increments, the empirical size of all three tests are comparable. Under a
heteroscedastic random walk null, the variance ratioc test is more reliable
than either the Dickey-Fuller or Box-Pierce tests. We compute the power of
these three tests against three alternatives of recent empirical interest: a
stationary AR(1), the sum of this AR(1) and a random walk, and an integrated
AR(1). By choosing the sampling frequency appropriately, the variance ratio
test is shown to be as powerful as the Dickey-Fuller and Box-Pierce tests
against the stationary alternative, and is more powerful than either of the
two tests against the two unit-root alternatives.
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1. INTRODUCTION.

Whether or not an economic time series follows a random walk has long
been a question of great interest to economists. Although its origins lie in
the modelling of games of chance, the random walk hypothesis is also an

L Several

implication of many diverse models of rational economic behavior.
recent studies have tested the random walk theory by exploiting the fact that
the variance of random walk inerements is linear in the sampling interval.?
Therefore the variance of, for example, quarterly increments must be three
times as large as the variance of monthly differences. Comparing the [per
unit time] variance estimates from quarterly to monthly data will then yield
an indication of the random walk's plausibility. Such a comparison may be
formed quantitatively along the lines of the Hausman [1978] specification test
and is developed in Lo and MacKinlay [1987]1. Due to intractable
nonlinearities, the sampling theory of Lo and MacKinlay [1987] is based on
standard asymptotic approximations.

In this paper, we investigate the quality of those approximations under
the two most commonly advanced null hypotheses: the random walk with
independently and identically distributed Gaussian increments, and with
uncorrelated but heteroscedastic increments. Under both null hypotheses, the
variance ratio test is shown to yield reliable inferences even for moderate
sample sizes. Indeed, under a specific heteroscedastic null the variance
ratio test is somewhat more reliable than both the Dickey-Fuller t and Box-
Pierce portmanteau tests.

We also compare the power of these tests against three empirically
interesting alternative hypotheses: a stationary AR(1) which has been

advanced as a model of stock market fads, the sum of this AR(1) and a pure

random walk, and an ARIMA(1,1,0) which is more consistent with stock market
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data. Although the Dickey-Fuller t test is more powerful than the Box-Pierce
Q against the first alternative and vice-versa against the second, the
variance ratio test is comparable to the most powerful of the two tests
against the first alternative, and more powerful against the second two

alternatives when the variance ratio's sampling intervals are chosen
appropriately.

Since the random walk is closely related to what has eome to be known as
a "unit root" process, a few comments concerning the variance ratic test's
place in the unit root literature are appropriate. It is obvious that the
random walk possesses a unit root. In addition, random walk increments are
required to be uncorrelated. Although earlier studies of unit root tests
[e.g. Dickey and Fuller [1979, 1981]] also assumed uncorrelated increments,
Phillips [1986, 1987], Phillips and Perron [1986], and Perron [1986] show that
much of those results obtain asymptotically even when increments are weakly
dependent.3 Therefore, the random walk model is a proper subset of the unit
root null hypothesis, This implies that the power of a consistent unit root
test against the random walk hypothesis will converge to the size of the test
asymptotically.

The focus of random walk tests also differs from that of the unit root
tests. This is best illustrated in the context of Beveridge and Nelson's
[1981] decomposition of a unit root process into the sum of a random walk and
a stationary process.u Recent applications of unit root tests propose the
null hypothesis that the random walk component does not exist, whereas tests
of the random walk have as their null hypothesis that the stationary component
does not exist.?

Since there are some important departures from the random walk that unit

root tests cannot detect, the variance ratio test is preferred when the



attribute of interest is the uncorrelatedness of increments. Moreover, in
contrast to the dependence of the unit root test statistics' distributions on
nuisance parameters, the variance ratio's limiting distribution is Gaussian
and independent of any nuisance parameters.6 Although we report simulation
results for the Dickey-Fuller t and the Box-Pierce Q tests for comparison with
the performance of the variance ratio test, we emphasize that these three

tests are not direct competitors since they have been designed with different
null hypotheses in mind.

The paper is organized as follows. 1In Section 2 we define the variance
ratio statistic, summarize its asymptotic sampling theory, and define the
Dickey-Fuller and Box-Pierce tests. Section 3 presents Monte Carlo results
for the three tests under two null hypotheses and Section 4 contains the power
results for the three alternative hypotheses. We summarize and conclude in

Section 5.

2. THE VARIANCE RATIO TEST.

Since the asymptotic sampling theory for the variance ratio statistic is
fully developed in Lo and MacKinlay [1987], we present only a brief summary
here. Let X, denote a stochastic process satisfying the following recursive
relation:

X, =u+ X + €

t - E[et] = 0 for all t . (1a)

t ]

or
A, = X, - X (1b)

where the drift u is an arbitrary parameter. The essence of the random walk

hypothesis is the restriction that the disturbances e, are serially

t

uncorrelated, or that innovations are unforecastable from past innovations.

We develop our test under two null hypotheses which capture this aspect of the



random walk: independently and identically distributed Gaussian increments,

and the more general case of uncorrelated but weakly dependent and possibly

heteroscedastic increments.

2.1 THE I.I.D. GAUSSIAN NULL HYPOTHESIS.

Let the null hypothesis H1 denote the case where the st's are i.i.d.

. \ \ P
normal random variables with variance ¢ hence:

Hy te, i..d. N(O, %) . (2)

In addition to homoscedasticity, we have made the assumption of independent
Gaussian increments as in Dickey and Fuller [1979, 1981] and Evans and Savin
[1981a,b, 19841.7 Suppose we obtain nq + 1 observations X5, Xy, . . ., an of

Xt where both n and q are arbitrary integers greater than one. Considering

the following estimators for the unknown parameters u and 02:

; =L gq (x, -%X .]z= L (X - X.] (3)
T nq K=1 k k-1 ~ ng “"'ng 0" -
R nq n
2 _ 1 _ _ 42
°a ¥ ng k£1 [xk X1 ul (4

The estimator 32 is simply the sample variance of the first-difference of X3
it corresponds to the maximum likelihood estimator of the parameter 02 and
therefore possesses the usual consistency, asymptotic normality and efficiency
properties,

Consider the variance of g-th differences of X¢ which, under H,, is q
times the variance of first-differences. By dividing by q, we obtain the
estimator ;s(q) which also converges to 02 under H,, where:

1

~2 ~.2
6 (q) = —= £ [X - X - qul® . (5)
b nq2 K=q k k-q



We have written cg(q) as a function of q [which we term the aggregation value]

to emphasize the fact that a distinct alternative estimator of 02 may be

formed for each q.8 Under the null hypothesis of a Gaussian random walk, the

two estimators ai and oi(q) should he "close", therefore a test of the random

walk may be constructed by computing the difference Md(q) = cg(q) - az and
checking its proximity to zero. Alternatively, a test may also be based upon
cg(q)
the dimensionless centered variance ratio Mr(q) == - 1, which converges
g
a

in probability to zero as well.9 It is shown in Lo and MacKinlay [1987]
that Md(q) and Mr(q) possess the following limiting distributions under the

null hypothesis Hy:

— a 2(29-1)(q-1) *

/ng M (q) = N(o, 3 o) (6a)
— a 2(2g9-1)(g-1)

/ng M (q) ~ N(o, 3 ) . (6b)

An additional adjustment which may improve the finite-sample behavior of
the test statistics is to use unbiased estimators Ei and Eg(q) in computing

Md(q) and Mr(q), where:

ng -
-2 _ 1 _ Y-
ng -
5 21 _ - au)? - - -4
op{a) = kiq (X, Xk_q qu)” , m=q(ng - q+ 1) nq) . {7p)

We denote the resulting adjusted specification test statisties ﬁd(q) and
ﬁr(q). Of course, although the variance estimators Ei and Eg(q) are unbiased,

only ﬁd(q) is unbiased; ﬁr(q) is not,



2.2 THE HETEROSCEDASTIC NULL HYPOTHESIS.
Since there is already a growing concensus that many economic time series

possess time-varying veolatilities, we derive a version of our specification
test of the random walk model which is robust to heteroscedasticity. As long

as the increments are uncorrelated, the variance ratio must still converge to
one in probability even with heteroscedastic disturbances. Heuristically,

this is simply because the variance of the sum of uncorrelated increments must
still equal the sum of the variances. Of course, the asymptotic variance of
the variance ratios will depend on the type and degree of heteroscedasticity
present. By controlling the degree of heterogeneity and dependence of the
process, it is possible to obtain consistent estimators of this asymptotic
variance. To relax the i.i.d. Gaussian restriction of the st's, we follow
White's {1980] and White and Domowitz's [1984] use of mixing and moment
conditions to derive heteroscedasticity-consistent estimators of our variance

ratio's asymptotic variance. We require the following assumptions

on {st}, which form our second null hypothesis H2:
Hyt (A1) For all t, E[et] = 0, E[etet_T] = 0 for any © # 0.

(42) {et} is y-mixing with coefficients ¢(m} of size r/{(2r-1) or is a-
mixing with coefficients a(m) of size r/{r-1), r > 1 such that for

all t and for any t = 0, there exists some & > 0 for which:

2(r+8)
E’etet—rl <A< o, (8)
T
(43)  lim 11 E[e2] = o0 < = .
T+e "tz
(A4)  For all t, E[etet_jstet_k] = 0 for any non-zero j, k where j # k.

Assumption (A1) is the essential property of the random walk that we wish to



test. Assumptions (42) and (A3) are restrictions on the degree of dependence
and heterogeneity which are allowed and yet still permit some form of law of
large numbers and central limit theorem to obtain. This allows for a variety
of forms of heteroscedasticity including deterministic changes in the variance
[due, for example, to seasonal components] as well as Engle's [1982] ARCH
processes [in which the conditional variance depends upon past

information].‘IO Assumption (A4) implies that the sample autocorrelations

of € are asymptotically uncorrelated.!! Under the null hypothesis H2, Wwe may

obtain heteroscedasticity-consistent estimators §(j) of the asymptotic

variance &8{j) of the autocorrelations o(j) of aX Using the fact that the

£
variance ratio may be written as an approximate linear combination of
autocorrelations [see (12) below] yields the following limiting distribution

M 12
for Mr(q).

M.(2) % N[0, v(q)] (9a)
where

q-1 - g-1 . -
W) = ¢ [R5y, w(g) = & [2lez1}2.5y) (9b)

=1 q 3=1 d

nq ~ 2 ~ 2

5 k_§+1(xk T X m WKy - X gy - W)
8(J) = — = (9¢)

Q ~ 212
[z (x -x - we
oq kT Tk

Tests of H, and H, may then be based on the normalized variance ratios zq(q)

and zz(q) respectively where:

T

z,{q) = /nq M (q) - (2(2a-D(g-1))-

39 N(O, 1) . {10a)

Y

z,(a) = /g H_(q) - Q) N(O, 1) . (10b)



2.3 VARIANCE RATIOS AND AUTOCORRELATIONS.
To develop some intuition for the variance ratio, observe that for an

aggregation value q of 2, the Mr(q) statistic may be re-expressed as:

M (2) = o(1) - ==

hence for q = 2 the Mr(q) statistic is approximately the first-order

autocorrelation coefficient estimator p{1) of the differences of X. More

generally, we have the following relation for g > 2:

(o) = e oo L A8 o) b Ly g vo 7l (1)

where op(n'%) denotes terms which are of order smaller than n™? in
probability. Equation (12) provides a simple interpretation for the variance
ratio computed with an aggregation value q: it is [approximately] a linear
combination of the first g-1 autocorrelation coefficient estimators of the
first differences with arithmetically declining weights. Note the similarity
between this and the Box-Pierce [1970] Q-statistic of order g-1:

q-1 .,

Q1(Q-1) =T kf1 p- (k) (13)
which is asymptotically distributed as x2 with g-1 degrees of freedom.13
Using (9c) we can also construct a heteroscedasticity-robust Box-Pierce
statistic in the obvious way, which we denote by Qz(q-T). Since the Box-
Pierce Q-statistics give equal weighting to the autocorrelations, and are
computed by squaring the autocorrelations, their properties will differ from
those of the variance ratio test statisties.

For comparison, we also employ the Dickey-Fuller t test. This involves

computing the usual t-statistic under the hypothesis g = 1 in the regression:



(14)

Xt =y + wk o+ th-1 + v

t

and using the exact finite sample distribution tabulated by Fuller [1976],

Dickey and Fuller [1979, 1981], and Nankervis and Savin [1985].”“'15

3. PROPERTIES OF THE TEST STATISTIC UNDER THE NULL HYPOTHESES.

To gauge the quality of the asymptotic approximations in Section 2, we

perform simulation experiments for the ﬁp(q) statistie under both the Gaussian
i1.1.d. null hypothesis and a simple heterscedastic null. More extensive
simulation experiments indicate that tests based upon the unadjusted statistic
M.(q) generally yield less reliable inferences hence, in the interest of
brevity, we only report the results for ﬁr(q). For comparison, we also report
the results of Monte Carlo experiments performed for the Box-Pierce Q-
statisties and the Dickey-Fuller t-statistie, All simulations are based on

20,000 replications. '®

3.1 THE GAUSSIAN I.I.D. NULL HYPOTHESIS.

Tables 1a and 1b report the results of simulation experiments conducted
under the independent and identically distributed Gaussian random walk null
H1. The results show that the empirical sizes of two-sided 5 percent variance
ratio tests based on either the z1(q) or zz(q) statistics are close to their
nominal values for sample sizes greater than 32. Not surprisingly, for an
aggregation value g of 2 the behavior of the variance ratio is comparable to
that of the Box-Pierce Q-statistic since ﬁr(2) is approximately equal to the
first-order serial correlation coefficient. However, for larger aggregation
values the behavior of the two statisties differ.

Table 1a shows that as the aggregation value q increases to one-half the
sample size, the empirical size of the Box-Pierce Q1—test generally declines

well below its nominal value. whereas the size of the variance ratio's =.-test



seems to first increase slightly above and then fall back to its nominal
value. For example, with a sample size of 1024, the size of the 5 percent Q-
test falls monotonically from 5.1 to 0.0 percent as q goes from 2 to 512: the
size of the 5 percent z1-test starts at 5.2 percent when q = 2, increases to
6.2 percent at q = 256, and settles at 5.1 percent when q = 512.

Although the size of the variance ratio test is closer to its nominal

value for larger q, this does not necessarily imply that large values of q are
generally more desirable. To examine this issue, Table 1a separates the size
of the variance ratio test into rejection rates of the lower and upper tails
of the 1, 5, and 10 percent tests. When q becomes large relative to the
sample size, the rejections of the variance ratio test are almost wholliy due
to the upper tail. One reason for this positive skewness of the z,(q)-
statistie is that the variance ratio is bounded below by zero, hence a related
lower bound obtains for the test statistic.17 Although this is of less
consequence for the size of the variance ratio test, it has serious power
implications and will be discussed more fully in Section 4.1,

Table 1b reports similar results for the heteroscedasticity-robust test
statistics z,(q) and Q,. For sample sizes greater than 32, the size of the
variance ratio test is close to its nominal value when g is small relative to
the sample size, As q increases for a given sample, the size increases and
then declines, as in Table 1a. Again, the variance ratio rejections are
primarily due to its upper tail as q increases relative to the sample size.

In contrast to the Q1—test, the heteroscedasticity-robust Box-Plerce test Q2-
test increases in size as more autocorrelations are used. For example, in
samples of 1024 observations the size of the 5 percent Qz—test increases from

5.1 to 11.3 percent as q ranges from 2 to 512. In contrast, the size of the



variance ratio test starts at 5.2 percent when q = 2, increases to 6.6 percent
at q = 256, and falls to 5.8 percent at q = 512.

Tables la and b indicate that the empirical size of the variance ratio
tests is reasonable even for moderate sample sizes, and is closer to its
nominal value than the Box-Pierce tests when the aggregation value becomes

large relative to the sample size. However, in such cases most of the

variance ratio's rejections are from its upper tail; power considerations will
need to be weighed against the variance ratio test's reliability under the
null,

Since the sampling theory for the Q- and z-statistics obtain only
asymptotically, the actual size of any test based on these statisties will of
course differ from their nominal values in finite samples. Although Table 1
indicates that such differences may not be large for reasonable aggregation
values, %t may nevertheless seem more desirable to base tests upon the
regression t-statistic for which Fuller [1976], Dickey and Fuller [1979,
1981], and Nankervis and Savin [1985] have tabulated the exact finite sample
distribution. Due to the dependence of the t-statistic's distribution on the
drift u, an additional nuisance parameter {(a time-trend coefficient) must be
estimated to yield a sampling distribution that is independent of the drift.
Although it has been demonstrated that the t-statistic from such a regression
converges in distribution to that of Dickey and Fuller, there may be some
discrepancies in finite samples. Table 2 presents the empirical quantiles of
the distribution of the t-statistic associated with the hypothesis g8 = 1 in
the regression (14). A comparison of these quantiles with those given in
Fuller [1976, Table 8.5.2] suggests that there may be some significant
differences for small samples, but for sample sizes of 500 or greater the

quantiles in Table 2 are almost identical to those of Dickey and Fuller.



3.2 A HETEROSCEDASTIC NULL HYPOTHESIS.
To assess the reliability of the heteroscedasticity-robust statistic
zz(q), we perform simulation experiments under the null hypothesis that the

disturbance ¢_ in (1) is serially uncorrelated but heteroscedastic in the

t
following manner. Let the random walk disturbance ey satisfy the relation
AN where A, 1s i.i.d. N{O, 1) and 0, satisfies:
1n 02 = y+1n 02 + . ~ N(0,1) (15)
t t-1 t £ ! )
At and L, are assumed to be independent. The empirical studies of French,

Schwert, and Stambaugh [1987] and Poterba and Summers [1986] posit such a

process for the variance. Note that ci cannot be interpreted as the

unconditional variance of the random walk disturbance st since ai is itself

stochastic and does not correspond to the unconditional expectation of any

random variable. Rather, conditional upon ci, £

If, in place of {15), the variance ci were re-

parameterized to depend only upon exogenous variables in the time t-1

€, is normally distributed with

expectation 0 and variance ai.

information set, this would correspond exactly to Engle's [1982] ARCH process.

The unconditional moments of e, may be readily deduced by expressing the

process explicitly as a function of all the disturbances:
t t

€, = A clp - I exp[% L
k=1

t'kck] (16)

Since Y kt’ and T, are assumed to be mutually independent, it is apparent

that €y is serially uncorrelated at all leads and lags [hence Assumption (A1)

is satisfied] but is non-stationary and temporally dependent. Moreover, it is
. 2

evident that E[Etet-JEt-k

is also satisfied. A straightforward calculation yields the moments of ¢

] = 0 for all t and for j # k hence Assumption (A4)

t:



t 2t
t 0 p!2p 2 - lIJ2

E2p+1

Ef £

1=0, p=0,1,2,... (17b)

From these expressions it is apparent that, for v ¢ (0,1), e, possesses

bounded moments of any order and is unconditionally heteroscedastic; similar

calculations for the cross-moments verify Assumption (A2). Finally, the

following inequality is easily deduced:

2

5
i)

< exp[—2—] < = (18)

n
L Ele
2(1 - %)

1
n k=1

thus Assumption (A3) is verified. Note that the kurtosis of ¢_ is:

t
£
E[si] E[ogw ]
— > 5 - 3 - — 2 3 (19)

by Jensen's inequality. This implies that, as for Engle's [1982] stationary

ARCH process, the distribution of e¢_ is meore peaked and possesses fatter tails

t
than that of a normal random variate. However, when ¥ = 0 or as t increases

without bound, the kurtosis of e, is equal to that of a Gaussian process.

t
Table 3a reports simulation results for the z-, Q-, and Dickey-Fuller t-
statisties under the heteroscedastic null hypothesis with parameter ¢ =
0.50. It is apparent that both the z4~ and Q1-statistics are unreliable in
the presence of heteroscedasticity. Even in samples of 512 observations, the
empirical size of the 5 percent variance ratio test with q = 2 is 14.7
percent; the corresponding Box-Pierce 5 percent test has an empirical size of
14.6 percent. In contrast, the Dickey-Fuller t-test's empirical size of 4.9

percent is much closer to its nominal value. This is not surprising since

Phillips [1987] and Phillips and Perron [1986] have shown that the Dickey-



Fuller t-test is robust to heteroscedasticity [and weak dependence] whereas
the z,- and Q-statistics are not. However, once the heteroscedasticity-
robust z,- and Q,-statistics are used, both tests compare favorably with the
Dickey-Fuller t-test. In fact, for the more severe case of heteroscedasticity
considered in Table 3b [where ¢ = 0.95], the variance ratic and Box-Pierce
tests using Z, and 02 are both considerably more reliable than the Dickey-

Fuller test.18 For example, when q/T is } in sample sizes of 512 observations
the sizes of 5 percent tests using z, and Q, are 4.7 and 5.7 percent

respectively; the size of the 5 percent Dickey-Fuller test is 21.6 percent.

4. POWER.

Since a frequent application of the random walk has been in modelling
stock market returns, it is natural to examine the power of the variance ratio
test against alternative models of asset price behavior. We consider three
specific alternative hypotheses. The first two are specifications of the
stock price process that have received the most recent attention: the
stationary AR(1) process [as in Shiller [1981] and Shiller and Perron [1985]}],
and the sum of this process and a random walk [as in Fama and French [1987]
and Poterba and Summers [1987]].19 The third alternative is an integrated
AR{1) process which is suggested by the empirical evidence in Lo and MacKinlay
[19871.

Before presenting the simulation results, we consider an important
limitation of the variance ratio test in Section #.1. In Section 4.2 we
compare the power of the variance ratio test with that of the Diekey-Fuller
and Box-Pierce tests against the stationary AR(1) alternative. Section 4.3

reports similar power comparisons for the remaining two alternatives.



4.1 THE VARIANCE RATIO TEST FOR LARGE q.

Although it will become apparent in Sections 4.2 and 4.3 that choosing an
appropriate aggregation value g for the variance ratio test depends intimately
on the alternative hypothesis of interest, several authors have suggested
using large values of q generally.go But because the variance ratio test
statistic is bounded below, when q is large relative to T the test may have

little power. To see this, let the [asymptotic] variance of the test

statistic ﬁr(q) be denoted by V, where we have from (6b):

(20)

2 3n

3
M- SEDICELD Y B D i 1]
3nq q2

Note that for all natural numbers q, the bracketed function in (20} is bounded
between } and 1, and is monotonically increasing in q. Therefore, for fixed

n, this implies upper and lower bounds V. = 3 and V for the variance

= 2
U~ 3n L~ 3n

V. Since variances must be nonnegative, the lower bound for ﬁr(q) is -1
[since we have defined ﬁr(q) to be the variance ratio minus 1]. Using these

two facts, we have the following lower bound on the [asymptotically] standard

normal test statistic zi(q) z ﬁr(q)//V:

-1

inflz,(q)] =+ ——— = - 1. [3—“1* : (21)
inf[vV] /N

L

Note that n is not the sample size [which is given by nq], but is the number

of non-overlapping coarse increments [increments of aggregation value q]

available in the sample, and is given by %.
If q is large relative to the sample size T, this implies a small value

for n. For example, if % = }, then the lower bound on the standard normal

test statistic z1(q) is -1.73; the test will never reject draws from the left

tail at the 95 percent level of significance!



0f course, there is no corresponding upper bound on the test statistic so
in principle it may still reject via draws in the right tail of the
distribution. However, for many alternative hypotheses of interest the
population values of their variance ratios are less than unity,21 implying
that for those alternatives rejections are more likely to come from large
negative rather than large positive draws of 21(q). For this reason, and

because of the unreliability of large-sample theory under the null when q/T is
large, we have chosen q to be no more than one-half the total sample size

throughout this study.

4.2 POWER AGAINST A STATIONARY AR(1) ALTERNATIVE.
As a model of stock market fads, Shiller [1981] has suggested the

following AR(1) specification for the log-price process

X, =a+o[X_, -al+e e, = N(0,0%) (20)

£ t t

where ¢ is positive and less than unity. To determine the power of the
variance ratio test against this alternative, we choose values of the
parameters (¢, oi, ai) that yield an interesting range of power across sample
sizes and aggregation values. Since the power does not depend on a, we set it
to zero without loss of generality. Table 5a reports the power of the
variance ratio, Dickey-Fuller t, and Box-Pierce Q tests at the 1, 5 and 10
percent levels against the AR(T)Ialternative Wwith parameters

(4, 03) = (0.96, 1). The critical values of all three test statistics were
empirically determined by simulation under the i.i.d. Gaussian null. In the
interest of brevity, we report the empirical eritical values in Table U4 for
the variance ratio test only.22

For a fized number of observations, the power of the variance ratio test

first increases and then declines with the aggregation value q. The increase



can be considerable; as the case of 1024 observations demonstrates, the power
1s 9.2 percent when q = 2 but jumps to 98.3 percent when q = 256. The
explanation for the increase in power lies in the behavior of the AR(1)
alternative over different sampling intervals: the first-order
autocorrelation coefficient of AR(1) inecrements grows in absolute value
(becomes more negative) as the inerement interval inereases. This implies
that, although Xt may have a root close to unity (0.96), its first-differences

behave less like random walk increments as the time interval of the increments
grows. It is therefore easier to detect an AR(1) departure from the random
walk by comparing longer first-difference variances to shorter ones, which is
precisely what the variance ratio does for larger q. However, as q is
increased further the power declines. This may be attributed to the
imprecision with which higher-order autocorrelations are estimated for a fixed
sample size. Since the variance ratio with aggregation value q is
approximately a linear combination of the first g-1 autocorrelations, a larger
value of q/T entails estimating higher-order autocorrelations with a fixed
sample size. The increased sampling variation of these additional
autocorrelations leads to the decline in power.23

Although the most powerful variance ratio test is more powerful than the
Dickey-Fuller t-test, the difference is generally not large. However, the
variance ratio test clearly dominates the Box-Pierce Q-test. With a sample of
512 observations the power of a 5 percent variance ratio test is 51.4 percent
[q = 128] whereas the power of the corresponding Q-test is only 7.1 percent.
However, with an aggregation value of g = 2 the variance ratio has comparable
power to the Box-Pierce test. Again, this is as expected since they are quite

similar statisties when q = 2 [the variance ratio is approximately one plus



the first-order autocorrelation coefficient and the Box-Pierce statistic is
the first-order autocorrelation squared].

We conclude that, against the stationary AR(1) alternative, the variance
ratio test is comparable to the Dickey-Fuller t test in power and both are

considerably more powerful than the Box-Pierce test.

4.3. TWO UNIT ROOT ALTERNATIVES TO THE RANDOM WALK.

Several recent studies have suggested the following specification for the
log-price process Xy s

X, =Y + 2 {(21)

where Y, is a stationary process and Z, is a Gaussian random walk independent

of Yt.zl4 To be specific, let Y, be an AR(1}, thus:

<
0"

-a]+s

a + ¢-[Y

t-1

. e L.i.do N(O, ci) (22a)

v, 1, 1l.i.d. N(O, ci) (22b)
Again, without loss of generality we set a to 0; p is set to 0.96; Ui is
normalized to unity, and 03 takes on the values 0.50, 1.00, and 2.00 so that
the conditional variability of the random walk relative to the stationary
component is two, one, and one-half respectively. Tables 5b-d report the
power of the variance ratio, Dickey-Fuller t, and Box-Pierce Q-tests against
this alternative. Note that this specification contains a unit root [it is an
ARIMA (1,1,1)] hence, asymptotically, the power of the Dickey-Fuller t-test
should equal its size.25 However, since Schwert [1987a,b] has shown the
finite-sample behavior of the Dickey-Fuller test to be quite erratic, we
report its power for comparison.

Table 5b gives the power results for the Zq=, Q4-, and t-statisties

against this ARIMA(1,1,1) alternative where the variance of the random walk



innovation is twice the variance of the AR(1) disturbance. Although none of
the tests are especially powerful under these parameter values, the variance
ratio test seems to dominate the other two. For a sample size of 1024, the
power of the variance ratio test is 24.1 percent for g = 32 whereas the
corresponding power of the Dickey-Fuller and Box-Pierce tests are 10.4 and 7.9
percent respectively,

As in the case of the stationary AR(1) alternative, the power of the

variance ratio test also rises and falls with q against the ARIMA(1,1,1)
alternative. In addition to the factors discussed in Section 4.2, there is an
added explanation for this pattern of power. For small to medium differencing
intervals the increments of Xt behave much like increments of an AR(1), hence
power increases with q in this range. For longer differencing intervals the
random walk component dominates, hence the power declines beyond some
aggregation value q.

As the variance of the random walk's disturbance declines relative to the
variance of the stationary component's, the power of the variance ratio test
increases. Table 5c reports power results for the case where the variances of
the two components' innovations are equal, and in Table 5d the variance of the
random walk innovation is half the variance of the AR(1) innovation. In the
latter case, the 5 percent variance ratio test has 89.8 percent power for g =
32 and T = 1024 compared to 41.7 percent and 18.U4 percent power for the
Dickey-Fuller and Box-Pierce tests respectively. Although the qualitative
behavior of the three tests are the same in Tables 5b-d, the variance ratio
test is considerably more powerful than the other two when the variance of the
stationary component is larger than that of the random walk. Moreover, the
pattern of power as a function of q clearly demonstrates that against this

alternative, it is not optimal to set q as large as possible.26



Since both the stationary AR(1) and the AR(1) plus random walk are not
empirically supported by Lo and MacKinlay's [1987] results for weekly stock
returns, we consider the power of the variance ratio test against a more

relevant alternative hypothesis suggested by their empirical findings: an
integrated AR(1), i.e., an ARIMA(1,1,0). Specifically, if X, is the log-price

process then we assume:

(Xt - Xt-1) = k(X - X

- 2
o1 t_2) + T r, i.i.d. N(0, oc) . (23)

t

where |k| < 1. Since this alternative obviously possesses a unit root, we
expect the standard unit root tests to have poor power against it.
Nevertheless for comparison we report the power of the Dickey-Fuller t-test
along with the power of the variance ratio and Box-Pierce tests. The
parameters («, ui) are set to (0.20, 1) for all the simulations in Table 5e.
Unlike its behavior under the stationary AR(1) alternative, against this
integrated process the variance ratio's power declines as q increases. With a
sample size of 1024, the power of a 5 percent test is 100 percent when q = 2
but falls to 9.3 percent when g = 512. In contrast to the AR(1), the behavior
of the integrated process's increments is farthest from a random walk for
short differencing intervals [since the increments follow a stationary AR(1)
by construction]. As the differencing interval increases, the autocorrelation
of the increments decreases and it becomes more difficult to distinguish
between this process and the random walk.

Observe that for smaller aggregation values the variance ratio test is
more powerful than the Q test, but the Q test dominates when q is large. This
result is due to the fact that the Box-Pierce Q does not distinguish between
the upper and lower tails of the null distribution [since Q is the sum of

squared autocorrelations] whereas the variance ratio test does.



5. CONCLUSION.

Our simulations indicate that the variance ratio test of the random walk
hypothesis generally yields reliable inferences under both the i.i.d. Gaussian

and the heteroscedastic null hypotheses. By selecting the aggregation value g
appropriately, the power of the variance ratio test is comparable to that of
the Box-Pierce and Dickey-Fuller tests against the stationary AR(1)

alternative, and is more powerful than either of the two tests against the two
unit-root alternatives. However, because of the variance ratio's skewed
empirical distribution, caution must be exercised when q is large relative to
the sample size.

These results emphasize dramatically the obvious fact that the power of
any test may differ substantially across alternatives. A sensible testing
strategy must consider not only the null hypothesis but also the most relevant
alternative. Although the variance ratio test has advantages over other tests
under some null and alternative hypotheses, there are of course other
situations in which those tests may possess more desirable properties.
Nevertheless, the Monte Carlo evidence suggests that the variance ratio test
has reasonable power against a wide range of alternatives.27 The simplicity,
reliability, and flexibility of the variance ratic test make it a valuable

tool for inference.



FOOTNOTES

'See, for example, Gould and Nelson [1974], Hall [1978], Lucas [1978],
Shiller [1981], Kleidon [1986], and Marsh and Merton [1986].

2See, for example, Campbell and Mankiw [1987], Cochrane [1987a, b], Fama
and French [1987], Huizinga [1987}, Lo and MacKinlay [1987], and Poterba and
Summers [1987].

3Dickey and Fuller (1979, 1981] make the stronger assumption of
y
independently and identically distributed Gaussian disturbances.

uﬂlso, see Cochrane [1987c] who uses this fact to show that trend-
stationarity and difference-stationarity cannot be distinguished with a finite
amount of data.

SWe are grateful to referee 2 for this insight.

6The usual regression t-statistic's limiting distribution depends
discontinuously on the presence or absence of a non-zero drift {see Nankervis
and Savin [1985], and Perron [1986]]. This dependence on the drift may be
eliminated by the inclusion of a time trend in the regression, but requires
the estimation of an additional parameter and may affect the power of the
resulting test., Section U reports power comparisons.

TThe Gaussian assumption may, of course, be weakened considerably. We
present results for this simple case only for purposes of comparison to other
results in the literature that are derived under identical conditions. In
Section 2.2 we relax both the independent and the identically distributed
assumptions.

8A1though we have defined the total number of observatons T = ng to be

divisible by the aggregation value q, this is only for expositional
convenience and may be easily generalized.

9The use of variance ratios is, of course, not new. Most recently,
Campbell and Mankiw [1987], Cochrane [1987a, b], Fama and French (19871,
French and Roll [1986], and Huizinga [1987] have all computed variance ratios
in a variety of contexts. However, those studies do not provide any formal
sampling theory for our statisties. Specifically, Cochrane [1987a], Fama and
French [1986], and French and Roll [1986] all rely upon Monte Carlo
simulations to obtain standard errors for their variance ratios under the
null. Campbell and Mankiw [1987] and Cochrane {1987b] do derive the
asymptotic variance of the variance ratio but only under the assumption that
the aggregation value q grows with [but more slowly than] the sample size T.
Specifically, they use Priestley's [1981, p. 463] expression for the
asymptotic variance of the estimator of the spectral density of AX, at
frequency zero with a Bartlett window as the appropriate asymptotig variance
of the variance ratio. But Priestley's result requires [among other things]
that g + =, T + », and q/T » 0. In this paper, we develop the formal sampling
theory of the variance ratio statistics for the more general case.

Our variance ratio may, however, be related to the spectral density
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the increments AXt at frequency zero, we have the following relation:

rf(0) = v(0) + 2- ¢ (k)
k=1

where y(k) is the autocovariance function. Dividing both sides by the
variance y(0} then yields:

wf%50) = 1+ 2.1 p(k)
k=1

where f* is the normalized spectral density and p(k) is the autocorrelation
function. Now in order to estimate the quantity =f*(0), the infinite sum on
the right-hand side of the preceding equation must obviously truncated. 1If,
in addition to truncation, the autocorrelations are weighted using Newey and
West's [1987] procedure, then the resulting estimator is formally equivalent
to our M (q) statistic. Although he does not explicitly use this variance
ratio, Hﬂizinga [1987] does employ the Newey and West [1987] estimator of the
normalized spectral density.

1010 addition to admitting heteroscedasticity, it should be emphasized
that Assumptions (A2) and (A3} also follow for more general heterogeneity and
weak dependence. Our reason for focusing on heteroscedasticity is merely its
intuitiveness; it is more difficult to produce an interesting example of, for
example, an uncorrelated homoscedastic time series which is weakly dependent
and heterogeneocusly distributed.

11Although this assumption may be weakened considerably, it would be at
the expense of computational simplicity since in that case the asymptotic
covariances of the autocorrelations must be estimated. Specifically, since
the variance ratio statistic is asymptotically equivalent to a linear
combination of autocorrelations, its asymptotic variance is simply the
asymptotie variance of the linear combination of autocorrelations. If (ah4)
obtains, this variance is equal to the weighted sum of the individual
autocorrelation variances, If (A4) is violated, then the autocovariances of
the autocorrelations must also be estimated. This is readily accomplished
using, for example, the approach in Newey and West [1987]. Note that an even
more general [and possibly more exact] sampling theory for the variance ratios
may be obtained using the results of Dufour and Roy [1985]. Again, this would
sacrifice much of the simplicity of our asymptotic results.

12pn equivalent and somewhat more intuitive method of arriving at (9e) is
to consider the regression of the increments AX_ on a constant and the j-th
lagged increment AX, .. The estimated slope co&fficient is then simply the j-
th autocorrelation Soafficient and the estimator §(j) of its variance is
numerically identical to White's {1980] heteroscedasticity-consistent
covariance matrix estimator. Note that White [1980] requires independent
disturbances whereas White and Domowitz [1984] allow for weak dependence {of
which uncorrelated errors is, under suitable regularity conditions, a special
case]. Taylor [1984] also obtains this result under the assumption that the
multivariate distribution of the sequence of disturbances is symmetric.



13Since we include the Box-Pierce test only as an illustrative comparison
to the variance ratic test, we have not made any effort to correct for finite-
sample biases as in Ljung and Box [1978].

1uDue to the dependence of the t-statistic's distribution on the drift yu,
a time trend t must be included in the regression to yield a sampling theory
for the t-statistic which is independent of the nuisance parameter.

15Yet another recent test of the random walk hypothesis is the regression
test proposed by Fama and French [1987]. Since Monte Carlo experiments by
Poterba and Summers [1987] indicate that the variance ratio is more powerful
than this regression test against several interesting alternatives, we do not
explore its finite-sample properties here.

16Null simulations were performed in single-precision FORTRAN on a DEC
VAX 8700 using the random number generator GGNML of the IMSL subroutine
library. Power simulations were performed on an IBM 3081 and a VAX 8700 also
in single-precision FORTRAN using GGNML.

17More direct evidence of this skewness is presented in Table 4, in which
the fractiles of the variance ratio test statistic are reported. 3See also the
discussion in Section 4.1,

18This provides further support for Schwert's [1987b] finding that,
although the Dickey-Fuller distribution is still valid asymptotically for a
variety of non-i.i.d. disturbances, the t-statistic's rate of convergence may
be quite slow.

19The latter specification is, of course, not original to the finanecial
economics literature but has its roots in Muth [1960] and, more recently,
Beveridge and Nelson [1981].

20por example, Campbell and Mankiw's [1987] asymptotic sampling theory
requires that q goes to infinity as the sample size T goes to infinity
[although q must grow at a slower rate than T)]. Also, for a sample size of T
Huizinga [1987] sets q to T - 1.

21Far example, as q increases without bound the variance ratio
[population value] of increments any stationary process will converge to 0.
For the sum of a random walk and an independent stationary process, the
variance ratio of its increments will also converge to a quantity less than
unity as q approaches infinity.

22pjebold [1987] tabulates the finite sample distributions of actual
variance ratios under many other null hypotheses of interest. Although we
have not compared each of ocur empirical guantiles with his, we have spot-
checked several for consistency and have found discrepancies only in the
extreme tail areas. For example, with a sample size of 1024 and q = 2,
Diebold's implied value for the upper 0.5 percent gquantile of our test
statistic z, is 2.48 [using his Table 16], whereas our value in Table U is
2.63. There are at least two possible causes for this discrepancy. First,
Diebeld's results are based on 10,000 replications whereas ours use 20,000,
Second, we simulated the bias-corrected statistic whereas Diebold employed the
unad ijusted variance ratio. For lareer tail areas. this discrepancvy vanishes



23If the variance ratio test were performed using asymptotic critical
values against the AR(1) alternative, there is another cause of the power to
decline as q increases. Under the AR(1) model, it is apparent that the
theoretical values of the variance ratios are all less than unity, implying
that the expectations of the z, statistics are negative. But it is shown in
Section 4.1 that the z, statistic is bounded below when the asymptotic
variance is used to form z,, and that the lower bound is an increasing
function of the ratio of q to the sample size. Therefore, when the deviation
of the alternative from the random walk is in the form of negative draws of Zy
fas in the AR(1) case], the variance ratio test cannot reject the null
hypothesis when q is large relative to the number of observations. This is
yet another reason we choose g to be less than or equal to one-half the sample
size.

EuSee, for example, Summers [1986], Fama and French [1987], and Poterba
and Summers [1987].

2570 see this, observe that (21) has the following ARIMA(1,1,1)
representation:

(1 - pLY(1 - L)Xt (1 - aL)v

t

2, 2 2
5 (1 +p )cE + 20I

v {1 + 12)

where A= 003 + ci and g

26In fact, the q for which the variance test has the most power for a
given sample size will depend on the ratio of the stationary component's
innovation variance to the variance of the random walk's disturbance.
Unfortunately, this fact cannot be cbserved in our tables because we have set
q to be powers of 2 for computational convenience. If the variance ratio
test's power were tabulated for q = 2, 3, 4, . . ., T-1, it would be apparent
that against this ARIMA(1,1,1) alternative the optimal q changes with the
ratio of the innovation variances of the two components.

273ee Hausman [1988] for further evidence of this.
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TABLE ta

Empirical sizes of nominal 1, 5, and 10 percent two-sided variance ratio tests of the random walk null hypothesis with homoscedastic distur-
bances. The statistic z,(q) is asymptotically N(0,1) under the i.i.d. random walk. The rejection rates for each of the I, 5, and 10 percent tests are

broken down into upper and lower tail rejections to display the skewness of the z,-statistic’s empirical distribution. For comparison, the
empirical sizes of the one-sided Box-Pierce (Q-test (Ql) using q-1 autocorrelations are also teported. Each set of rows with a given sample size
forms a separate and independent simulation experiment based on 20,000 replications.

SIZE OF 1 PERCENT TEST SIZE OF 5 PERCENT TEST SIZE OF 10 PERCENT TEST
Lower Upper Lower Upper Lower Upper

Sample q Tail  Tail Size  Size Tail Tal Size Size Tail  Tal Size  Size

Size 7@ z@ zl@ Q 2@ 7@ z@ Q i) 7@ zl@ Q
32 2 0005 0006 0011 0006 0.027 0030 0057 0044 0057 0058 0115 0093
32 4 0.000 0.020 0020 0007 0005 0049 0054 0035 0.028 0078 0106 0.073
32 g 0000 0035 0035 0.007 0000 0065 0065 0028 0.000 0.088 0.088 0.056
32 16 0000 0027 0027 0.004 0.000 0050 0050 0016 0000 0073 0073 0030
64 2 0.005 0005 0.010 0.008 0026 0027 0053 0.047 0051 0053 0104 0.094
64 4 0.000 0014 0.014 0.008 0013 003% 0052 0040 0.037 0067 0104 0.084
64 8 0.000 0.023 0.023 0.010 0002 0052 0053 0.039 0.01¢ 0077 009 0073
64 16 0000 0034 0.034 0.011 0000 0062 0062 0034 0.000 0084 0084 0.057
64 32 0.000 0027 0027 0006 0000 0050 0050 0015 0000 0068 0068 0.025
128 2 0006 0.005 0011 0010 0.028 0.027 0055 0051 0053 0.051 0104 0.099
128 4 0001 0009 0.011 0.009 0.017 0.035 0052 0046 0041 0.061 0102 0092
128 8 0000 0.0t6 0016 0.011 0.008 0044 0052 0044 0032 0070 0102 0.087
128 16 0.000 0025 0025 0011 0001 0055 0056 0.041 0014 0.081 0095 0076
128 32 0.000 0.037 0.037 0.0H1 0.000 0066 0066 0031 0.000 0.087 0087 0.054
128 64 0000 0.029 ' 0.029 0.004 0.000 0.054 0054 0010 0.000 0072 0072 0017
256 2 0005 0004 0009 0009 0026 0.025 0051 0049 0050 0051 0101  0.099
256 4 0002 0008 0010 0010 0.021 0031 0052 0049 0.045 0.056 0.100 0.095
256 8 0.001 0013 0014 0011 0.013 0.038 0051 0047 0036 0.064 0100 0092
256 16 0000 0016 0016 0012 0.006 0045 0051 0.048 0028 0072 0099 0092
256 32 0000 0026 Q026 0011 0.000 0055 0055 0042 0013  0.080 0093 0077
256 64 0.000 0037 0037 0.007 0.000 0065 0065 0023 0.000 0088 0.088 0043
256 128 0.000 0029 0029 0.001 0.000 0052 0052 0004 0.000 0072 0072 0007
512 2 0.005 Q005 0010 0010 0025 0026 0051 0450 2.050 0051 0101 0100
512 4 0003 0008 001 0009 0022 0030 0052 0046 0.046 0055 0102 0.093
512 8 0002 0010 0012 0.009 0018 0035 0052 0046 0.042 0060 0102 0092
512 16 0.001 0013 0013 0010 0013 0039 0052 0045 0035 0063 0099 0090
512 32 0000 0019 0019 0010 0.005 0047 0052 0043 0027 0072 0099 0083
512 64 0.000 0028 0028 0.008 0.000 0056 0057 0032 0.0i2 0080 0.092 0062
512 128 0.000 0036 0036 0004 0.000 0064 0064 0013 0.000 008 0.086 0.025
512 256 0000 0029 0029 0000 0.000 0052 0052 0.001 0000 0072 0072 0001
1024 2 0.004 0.006 0010 0010 0024 0028 0052 0051 0.049 0052 0100 0.099
1024 4 0003 0007 0016 0010 0020 0030 0050 0050 0.046 0055 0101 0.096
1024 8 2002 0010 0012 0010 0016 0032 0048 0.048 0.041 0058 0.098 0.09
1024 16 0001 0011 0012 0010 0014 0036 0051 0046 0.038 0062 0100 0.092
1024 32 0.000 0015 0016 0010 0010 0041 0051 0045 0.033 0067 0100 0.089
1024 64 0.00¢ 0019 0019 0.010 0004 0045 0050 0.043 0026 0070 0095 0.081
1024 128 0.000 0025 0025 0.006 0000 0054 0055 0.028 0.0t 0078 0090 0.053
1024 256 0.000 0034 0034 0.001 0000 0062 0062 0.006 0.000 0082 0082 0013

1024 512 0.000 0028 0028 0.000 0000 0051 0051 0.000 0.000 0089 0069 0.000




TABLE 1b

Empirical sizes of nominal 1, 5, and 10 percent two-sided variance ratio tests of the random walk null hypohesis with homoscedastic distur-
bances. The statistic z,(q) is asymptotically N(0,1) under the more general conditions of heteroscedastic and weakly dependent {but uncorre-

lated] random walk increments. The rejection rates for each of the 1, 5, and 10 percent tests are broken down into upper and lower tail rejections
10 display the skewness of the Z,-statistic’s empirical distribution. For comparison, the empirical sizes of the heteroscedasticity-robust one-sided

Box-Pierce Q-test (Q,) using g-1 autocorrelations are also reported. Each set of rows with a given sample size forms a separate and independent
simulation experiment based on 20,000 replications.

SIZE OF 1 PERCENT TEST SIZE OF 5 PERCENT TEST SIZE OF 10 PERCENT TEST
Lower Upper Lower Upper Lower Upper

Sample q Tail  Tal Size  Size Tal Tail Size  Size Tal  Tail Size  Size
Size Q) g @ Q g zQ @ Q () @) zQ @
32 2 0005 0007 0012 0006 0033 0038 0071 0049 0064 0070 0134 0107
32 4 0000 0024 0025 0009 0011 0061 0072 0044 0.038 0090 0.128 0.097
32 8 0000 0042 0042 0014 0.000 0075 0075 0.054 0007 0.098 0105 0104
32 16 0000 0035 0035 0025 0000 0065 0065 0071 0.000 0087 Q087 0123
64 2 0004 0006 0010 0007 0027 0030 0057 0048 0.056 0.058 G114 0102
64 4 0.001 0014 0015 0.009 0016 0044 0060 0046 0041 0073 0114 0096
64 8 0000 0027 0027 0013 0004 0.058 0.061 0.053 0025 0084 0109 0100
64 16 0000 0038 0038 0021 0000 0069 0069 0066 0.001 0080 0092 0116
64 2 0000 0034 0034 0032 0.000 0059 0059 0.084 0.000 0079 0079 0134
128 2 0006 0005 G011 0009 0029 0028 0057 0052 0.055 0054 0.109 0103
128 4 0001 0010 Q012 0010 0018 0038 0056 0.049 0.043 0064 0.107 0101
128 8 0000 0017 0017 0012 0010 0046 D0.056 0053 0.035 0073 0109 0.103
128 16 0000 0027 0027 0017 0001 0059 0060 0.060 0.017 0085 0103 0110
128 32 0.000 0040 0040 0027 0000 0071 0071 0075 0.000 0092 0.093 0124
128 64 0000 0.036 0036 0041 0000 0063 0.063 0095 0.000 0082 0.082 0.143
256 2 0.005 0004 0010 0009 0026 0026 0052 0030 0.051 0052 0103 0100
256 4 0.002 0008 0010 0011 0022 0.032 0054 0050 0.045 0057 0103 0098
256 8 0.001 0014 0015 0012 0014 0039 0053 0050 0.038 0065 0.104 0101
256 16 0.000 0018 O0.018 0.015 0007 0047 0054 0059 0.030 0074 0104 0110
256 32 0.000 0027 0.027 0.019 0.001 0.057 0.058 0068 0016 0083 0.099 0119
256 64 0.000 0040 0.040 0.029 0.000 0.070 0.070 0083 0.000 0093 0.093 0137
256 128 0.000 0035 0.035 0.047 0.000  0.060 0060 0.108 0.000 0081 0.081 0.161
512 2 0.005 0005 0010 0010 0.025 0026 0051 00350 0.050 0052 0141 0100
512 4 0.003 0008 0.011 0.009 0022 0031 0052 0047 0.047 0056 0103 0095
512 8 0.001 0010 0012 0011 0018 0035 0053 0.047 0.043 0061 G104 0095
512 16 0001 0013 0014 0011 0013 0039 0052 0050 0.037 0065 0.101 0100
512 32 0.000 0020 0020 0014 0006 0048 0.054 0.056 0.029 0073 0103 0107
512 64 0000 0030 0030 0018 0001 0059 0059 0.066 0.014 0083 0.097 0.118
512 128 0.000 0039 0039 0030 0000 0068 0068 0085 0000 0090 0090 0138
512 256 0000 0.034 0034 0048 0000 0060 0060 0110 0.000 0.080 0080 0.164
1024 2 0004 0006 0010 0010 0024 0028 0052 0.051 0049 0052 0101 0100
1024 4 0003 0007 0010 0010 0020 0030 0050 0.050 0.046 0056 0102 0097
1024 8 0002 0010 0012 0010 0017 0032 0.050 ‘0.049 0.041 0058 0099 0098
1024 16 0001 0011 0012 0010 0.015 0036 0051 0050 0.038 0063 0101 0098
1024 32 0001 0016 0016 0.012 0010 0041 0052 0052 0.034 0067 0101 0103
1024 64 0000 0020 0020 0016 0005 0.046 0051 0062 0027 0071 0099 0114
1024 128 0.000 0026 0026 0.021 0.001 0056 0057 0071 0.014 0081 00%4 0123
1024 256 0000 0036 0036 0032 0.000 0066 0066 0091 0000 0087 0087 0146

1024 512 0.000 0033 0033 0047 0.000 0:058 0:058 0.113 0.000 0076 0076 0.170
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TABLE Ja

Empirical sizes of nominal 1, 5, and 10 percent [two-sided] varance ratio tests of the random walk null hypothesis with heteroscedastic
disturbances. The statistic z,(q) is asymptotically N(0,1) under the i.i.d. random walk; the z,(g) statistic is asymptotically N(0,1) under the more

general condiions of heteroscedastic and weakly dependent {but uncorrelated] increments. For comparison, the empirical sizes of the
[two-sided] Dickey-Fuller t-test (D-F), the {one-sided} Box-Pierce Q-test (Q,) and its heteroscedasticity-consistent counterpart (Qz) [both using

q-1 autocorrelations] are also reported. The specific form of heteroscedasticity is given by In o =ln 62, +;, & £..d. N(®,1) and y = 0.50.

Each set of rows with a given sample size forms a separate and independent simulation experiment based on 20,000 replications.

1 PERCENT TEST 5 PERCENT TEST 10 PERCENT TEST

Stze q 7@} Q g Q 3 Q Q) Q @ Q ) Q

32 2 0.024 0014 0015 0.003 0093 0.069 0071 0.036 0.16t 0133 0.141 0.098
32 4 0.028 0010 0.030 0.005 0071 0.047 0076 0035 0.132 0.094 0.133  0.080
32 8 0.032 0.008 0.039  0.009 0064 0.028 0075 0.042 0.088 0.054 0.112  0.087
32 16 0.023 0003 0.036 0.017 0.047 0.011 0065 0054 0070 0.020 0.089 0.100
32 D-F 0.023 0.073 0.124

64 2 0.037 0.029 0.008 0.004 0107 0.094 0.055 0.039 0175 0.158 0.118  0.098
64 4 0.029 0.023 0.016 0.006 0.088 0.078 0.061  0.037 0.155 0.134 0.116 0.087
64 8 0.030 0.016 0.028 0.009 0.066 0.053 0.063 0045 0119 0.099 0.108 0.092
64 16 0035 0012 0.038 0016 0065 (.036 0.068 0.056 0.090 0.061 0.097 0101
&4 32 0.026 0Q.003 0.034 0.025 0.049 0012 0061 0.071 0071 0.020 0.082 0.118
64 D-F 0.019 0.066 0.116

128 2 0043 0.039 0.007 0.005 0.123 0115 0051 0.043 0195 0.184 0.109 0.098
128 4 0.033 0.032 0013  0.007 0.104 0103 0053 0.039 0.174 0169 0.106 0.087
128 8 0.028 0025 0.018 0.008 0.077 0.080 0.053 0.045 0.138 0134 0102 0.090

128 16 0.030 0.020 0.027 0.013 0.063 0.055 0.059 0.052 0.106 0.095 0.097 0.096
128 32 0.036 0012 0.038 0.021 0.065 0033 0067 0.064 0.086 0.056 0091 0.112
128 64 0026 0.003 0032 0.030 0050 0.008 0.059 0.082 0.070 0.014 0.081 0.132

128 D-F 0.016 0.061 0.111

256 2 0.053 0.050 0.008 0.007 0.134 0.129 0.047 0.045 0207 0200 0.102 0.096
256 4 0.041 0.043 0.010 0.007 0112 0122 0049 0.042 0,183  0.192 0.101  D.08S
236 3 0.029 0.033 0.014 0.009 0.087 0.096 0.050 0044 0152 0.161 0.099  0.093

256 16 0.025 0023 0.020 0.010 0.067 0.073 0.052 0050 0122 0127 0.098 0.097
256 32 0029 0018 0.027 0016 0057 0053 0.055 0057 0.096 0.091 0.092 0106
256 64 0.035 0010 0.037 0023 0063  0.027 0.065 0.073 0.083 0049 0.087 0126
256 128 0.027 0.001 0.032 0035 0.050 0.003 0058 0.091 0.070 0.005 0.079 0145

256 D-F 0.012 0.058 0.111

512 2 0058 0.056 0.008 0.007 0.147 0.146 0.049 0.047 0223 0220 0.105 0.102
512 4 0.046 0051 0.011  0.008 0.125 0.138 0053 0.045 0201 0218 0.104 0.094
512 8 0.033 0.038 0.013  0.009 0101 0.113 0.052 0.047 0.169 0.183 0105 0.097

512 16 0.026 0.029 0.016 0.010 0076 0.086 0054 0.050 0.136 0.146 0103  0.098
512 32 0.024 0020 0.020 0.012 0.064 0.065 0.056 0054 0115 0116 0.101 0104
512 64 0.027 0013 0.026 0.016 0058 0.044 0.057 0.060 0.097 0.077 0096 0.111
512 128 0.035 0.005 0.037 0024 0.062 0.017 0.065 0.075 0.085 0030 0.089 0128
512 256 0.027 0.000 0.032 0.036 0.052 0.001 0.059 0.095 0.071 0.002 0.079 0.149

512 D-F 0.010 0.049 0.099
1024 2 0.059 0.058 0.008 0.008 0.148 0.148 0.046 0.046 0222 0222 0.097 0096
1024 4 0.047 0.057 0.009 0.009 0.128 0148 0.050 0.049 0.197 0.226 0.100 0100
1024 8 0.031 0.039 0010 0.008 0101 0116 0.050 0.046 0.167 0.193 0160 0.095

1024 16 0.021 0.029 0011 0010 0.079 0.095 0.050 0.051 0.139 0160 0101 0.100
1024 32 0.020 0022 0015 0012 0.063 0.073 0.051 0053 0119  0¢.130 0.100 0102
1024 64 0023 0016 0.021 0014 0.057 0.058 0.054 0.057 0.106 0100 0099 0.107
1024 128 0.03¢ 0009 0.030 0.019 0.061 0.033 0061  0.068 0.096 0.061 0.097 0119
1024 256 0.037 0.002 0.039 0.027 0.064 0.008 0.068 0.083 0.088 0.015 0093 0137
1024 512 0.028 0.000 0.034 0.041 0052 0.000 0.059  0.104 0.070 0.000 0.080 0.161

124 D-F 0.012 0.054 0.105




TABLE 3b

Empirical sizes of nominal 1, 5, and 10 percent [two-sided] variance ratio tests of the random walk null hypothesis with heteroscedastic
disturbances. The statistic z,(q) is asymptotically N(0,1) under the i.i.d. random walk; the 2,(q) statistic is asymptotically N(0,1) under the more

general conditions of heteroscedastic and weakly dependent [bat uncorrelated] increments. For comparison, the empirical sizes of the
(two-sided] Dickey-Fuller t-test (D-F), the (one-sided] Box-Pierce Q-test (Q,) and its heteroscedasticity-consistent counterpart (Q,) [both using

q-1 autocorrelations] are also reported. The specific form of heteroscedasticity is given by In 0:2 =yln 0'?.1 +&, 4 iid N©,1) and yw=0.95.
Each set of rows with a given sample size forms 2 separate and independent simulation experiment based on 20,000 replications.

1 PERCENT TEST 5 PERCENT TEST 10 PERCENT TEST

l

Size q 2 Q {q) Q, gy Q nig) Q, (@} Q g Q

32 2 0.087 0.054 0.024 0.002 0.1%6 0.151 0.080 0.028 0279 0.231 0.157 0.084
32 4 0.052 0.054 0.033 0.005 0.140 0.142 0.080 (.031 0229 0225 0.130 0068
32 8 0.046  0.031 0.037 0.008 0.077 0.083 0070 0037 0.104 0.134 0.097 0076
32 16 0.028 0006 0032  0.012 0.055 0019 0.060  0.040 0.078 0.032 0.084 0074
32 D-F 0.088 0.159 0.216
64 2 0166 0142 0014 0002 0.288 0.26t 0.059 0.031 0377 0347 0.126  0.088
64 4 0127 0193 0.022 0.005 0.258 0341 0.068 0.032 0353 0439 6.117  0.076
64 8 0.072 0173 0.032 0.008 0.158 0312 0.066 0.03% 0262 0406 0.099 0.081
64 16 0.057 0.084 0.035 0011 0089 0167 0062 0.045 0.115 023t 0.085 0.086
64 32 0.037 0013 0032 0.016 0.066 0.029 0.059 0044 0.089 0.044 0.081 0.077
64 D-F 0.106 0.186 0.252
128 2 0.265 0.252 0.008 0.002 0391 0377 0.043 0.031 0.467 0458 0.106 0088
128 4 0231 0398 0.016  0.005 0366 0554 0055 0034 0.450 0638 0.103 0.078
128 8 0150 0.447 0.026 0009 0302 0.596 0057 0.040 0.400 0677 0.087 0.084
128 16 0.085 0361 0030 0012 0.176  0.505 0.058 0.044 0.289  0.585 0.083 0.087
128 32 0.060 0169 0.031 0014 0.093 0.267 0056 0.046 0.120 0329 0076 0.090
128 64 0.03¢ 0023 0.029 0018 0.067 0.041 0.053 0.048 0.088 0.055 0.073 0.083
128 D-F 0.124 0.206 0.273
256 2 0367 0359 0.005 0.003 0493 (487 0.036 0.031 0.564 0557 0.095 0.087
256 4 0.343 0592 0.013  0.006 0472 0717 0.048 0.033 0.544 0778 0091 0076
256 8 0284 0.691 0.022  0.009 0429 (.802 0.054 0.040 0513 0852 0.087 0.081

256 16 0177 0.662 0.028 0011 0340 0771 0.058 0.043 0443 0824 0.082 0.082
256 32 0.096 0.513 0.031 0.014 0193 0.623 0.060 0.047 0314 0678 0.081 0.088
256 64 0071 0241 0.035 0019 0102 0329 0.060 0.053 0.127 0383 0079  0.094
256 128 0.043 0,030 0031 0022 0072 0.047 0.055 0.055 0.094 0060 0074  0.092

256 D-F 0.134 0.223 0.289

512 2 0476 0474 0.003 0003 0.582 0.581 0.0356 0.034 0.645 0.640 0093 0090
512 4 0453 0740 0011 0G.005 0565 0.830 0.045 0.035 0631 0873 0.090 0082
512 8 0401 0.858 0021 (.008 0528 0921 0.051 0.038 0.600 0945 0.083 0.083

512 16 0317 0.868 0024 0.011 0461 0925 0.054 0.045 0.541 0946 0.080 0.089
512 32 0.183 0.786 0.029 0011 0.356  0.858 0.056 0.045 0456 0.8%0 0.079 0.090
512 64 0099 0.5%4 0033 0014 0196 0678 0060 0.051 0315 0721 0.081 0.094
512 128 0.073 0301 0.037 0.019 0104 0374 0063 0058 0.129 0414 0.081 0.100
512 256 0.044 0,03t 0.032 0024 0072 0.047 0.055 0057 0.094 0.060 0075 0.097

512 D-F 0.134 0216 0.282
1024 2 0576 0575 0.003 0003 0667 0.666 0035 0033 0719 0718 0.091 0.089
1024 4 0.559 0.851 0.010 0.006 0.651 0908 0.045 0.036 0.702 0931 0.096 0.083
1024 8 0513 0944 0.019 0.009 0620 0971 0049  0.040 0.680 0.982 0.086 0.084

1024 16 0.445 0959 0.024 0.010 0.565 0981 0.053 0.043 0631 0988 0.080 0.088
1024 32 0336 0931 0.026 0.010 0483 0960 0056 0.042 0563 0971 0081 0.083
1024 64 0.198 0.830 0029 0012 0364 0.885 0.058 0.046 0464 0907 0.080 0.089
1024 128 0.100  0.621 0.031 0.015 0.197 0.689 0060 0.053 0316 0724 0.084 0.094
1024 256 0.072 0320 0.036 0021 0.103 0376 0.063 0.059 0.130  0.409 0.085 0.101
1024 512 0.043  0.033 0031 Q024 0070 0.045 0.055 0.060 0.090 0.052 0.075 0.101

1024 D-F 0.127 0214 0.281




Empirical quantiles of the [asymptotically] N(0,1) variance ratio test
statistic 21(q) under simulated i.i.d. Gaussian random walk increments, where

q is the aggregation value.
separate and independent simulation experiment based on 20,000 replications.

Each set of rows with a given sample size forms a

TABLE

4

T q 0.005 0.010 0,025 0.050 0.100 0.900 0.950 0.97% 0.990 0.995
32 2 -2.56 -2.33 -1.99 -1.70 -1.35 1.33 1.72 2.04 2.1 2.65
32 4 <196 -1.86 -1.67 -1.49 -1.28 1,45 1.95 2.43 3.02 3.34
32 8§ -1.52 -1.47 -1.38 -1.28 -1.1 1.50 2.22 2.87 3.72 L.28
32 16 -1.13  -1.11 -1.06 -1.01 -0.92 1.34 1.96 2.63 3.39 3.99
64 2 -2.56 -2.35 -1.97 -1.66 -1.29 1.31 1.67 1.99 2.38 2.61
64 y -2.16 -2.01 -1.79 -1.54 -1.26 1.37 1.83 2.22 2.72 3.10
64 g -1.86 -1.75 -1.59 -1.42 -1.21 1.43 1.99 2.51 3.17 3.67
64 16 -1.47 -1.43 -1.35 -1.26 -1.12 1.46 2.18 2.86 3.82 4,48
64 32  «1.,10 -1.08 -1.04 -0.99 -0.92 1.29 1.96 2.63 3.50 4,10
128 2 -2.63 -2.36 -2.01 -1.68 -1.29 1.30 1.66 1.98 2.35 2.56
128 ¥y -2,30 -2.11 -1.81 -1.57 -1.27 1.33 1.76 2.15 2.56 2.85
128 8§ -2.05 -1.92 -1.7T1 -1.50 -1.24 1.39 1.86 2.32 2.88 3.24
128 16 -1.77 -1.69 -1.54 -1.40 -1.20 1.46 2.04 2.59 3.28 3.86
128 32 -1.45 -1.31 -1.33 -1.23 -1.11 1.50 2.25 2.95 3.84 4,60
128 64 -1.10 -1.08 -1.04 -0.99 -0.91 1.33 2.07 2.76 3.67 4.36
256 2 -2.59 -2.34 -1.97 -1.65 -1.29 1.30 1.66 1.96 2.31 2.54
256 4y .2,33 -2.18 -1.89 -1.60 -1.26 1.31 1.70 2.08 2.49 2.81
256 8§ -2.20 -2.03 -1.77 -1.33 -1.25 1.34 1.78 2.19 2.72 3.04
256 16 -2.00 -1.87 -1.67 -1.47 -1.22 1.40 1.88 2.33 2.91 3.39
256 32  -1.77 -1.67 -1.53 -1.38 -1.18 1.45 2.03 2.62 3.29 3.76
256 64 -1.45 -1.40 -1.32 -1.23 -1.10 1.51 2.24 2.99 3.91 4,57
256 128 -1.09 -1.07 -1.03 -0.98 -0.91 1.33 2.02 2.72 3.63 4,22
512 2  -=2.57T -2.31 -1.96 -1.65 ~1.29 1.28 1.65 1.98 2.33 2.58
512 y 2.4 -2.24 -1.90 -1.61 -1.28 1.32 1.70 2.05 2.46 2.76
512 8 -2.38 -2.13 -1.83 -1.58 -1.26 1.33 1.75 2.11 2.58 2.91
512 16 -2.17 =-2.02 -1.76 -1.,52 -1.23 1.35 1.79 2.18 2.70 3.09
512 32 -1.97 -1.86 -1.66 1,47 -1.22 1.39 1.92 2.39 2.93 3.39
512 64 -1.74 -1.67 -1.53 -1.38 -1.19 1.44 2.06 2.68 3.4 3.83
512 128 -1.43 -1.39 -1.31 -1.22 -1.10 1.48 2.22 2.95 3.91 4. 64
512 256 -1.09 -1.07 =-1.03 -0.98 -0.91 1.30 2.00 2.70 3.58 4. 27
1024 2 -2.52 -2.28 -1.94 -1.63 -1.27 1.30 1.66 2.00 2.36 2.63
1024 y 2,45 -2.19 -1.88 -1.60 -1.27 1.33 1.71 2.04 2.43 2.71
1024 8 -2.35 -2.14 -1.81 -1.56 -~1.24 1.33 1.72 2.09 2.55 2.85
1024 16 -2.,22 -2.05 -1.80 -1.54 -1.,25 1.35 1.77 2.18 2.62 2.97
1024 32 -2,10 -1.96 -1.73 -1.51 -1.23 1.36 1.83 2.27 2.76 3.10
1024 64  -1.94 -1.84 -1.65 -1.46 -1.23 1.40 1.89 2.41 2.95 3.33
1024 28 -1.76 -1.66 -1.53 -1.38 -1.18 1.43 2.02 2.58 3.35 3.93
1024 56 -1.43 -1.39 -1.3t -1.23 -1.10 1.45 2.21 2.92 3.82 4,70
1024 512 -1.09 -1.07 -1.03 -0.98 -0.91 1.27 1.97 2.68 3.56 4.36



Table 5a

Power of the [two-sided] variance ratio test [using the z,{q) statistic]

against the stationary AR(1) alternative Xt = ¢Xt-w +
and ¢ = 0.96.
(Q,) and the [two-sided] Dickey-Fuller t-test (D-F) are also reported. Each

€ &g

i.i.d. N(O,1}

For comparison, the power of the [one-sided] Box-Pierce Q-test

set of rows with a given sample size forms a separate and independent

simulation experiment based on 20,000 replications.

1 PERCENT TEST

5 PERCENT TEST

10 PERCENT TEST

Sample
Size q ZT(Q) Q1 21(Q) Q; Z1(q} Q‘|
32 2 0.008 0.009 0.047 0.0L7 0.093 0.097
32 y 0.009 0.009 0.049 0.0u5 0.101 0.096
32 8 0.009 0.010 0.048 0.0L8 0.096 0,098
32 16 0.009 0.010 0.049 0,050 0.101 0.099
32 D=F 0.010 0.050 0.098
654 2 0.009 0.008 0.048 0,048 0.097 0.100
64 3 0.009 0.009 0.046 0.050 £.093 0.099
h4 ) 0.008 0.0%0 0.044 €.051 0.093 0.107
64 16 0,008 0.010 0.043 0.050 0.086 0.101
64 32 0.009 0.010 0.04Y4 0.051 G.088 0.104
64 D-F 0,009 0.042 0.084
128 2 0.010 0.010 0.047 0.050 0.100 0.106
128 4 0.010 0.011 0.051 0.053 0.102 0.106
128 8 0.011 0.011 0.050 0.054 0.102 0.104
128 16 0.012 ©.009 0,053 0.056 0.102 a.112
128 32 0.010 C.009 0.053 0.054 0.103 0.112
128 [ 0.010 ¢.009 0.046 0.053 0.088 0.108
128 D-F 0.008 0.047 0.095
256 2 0,011 0.012 0.057 0.062 0.111 0.115
256 il 0.017 0.013 0.061 0.062 0.121 0.120
256 8 0.021 0.013 0.079 0.066 0.146 0.123
256 16 0.028 0.013 0.101 0.060 0.180 0.121
256 32 0.030 0.012 0.123 0.059 0.217 6.118
256 hY 0.031 0.012 0.130 0.060 0.227 0.114
256 128 0.026 0.011 0.103 0.054 0.189 0.110
256 D-F 0.025 0.118 0.207
512 2 0.016 0.017 0.066 0.070 0.125 0.131
512 y 0.023 0,019 0.090 0.082 0.165 0.150
512 8 0,038 0.020 0.140 0.087 0.227 0.162
512 16 0.075 0,020 0.225 0.088 0.3 0.161
512 32 0.144 0.019 0.3M 0.083 0.491 0.158
512 64 0.203 0.017 0.469 0.079 0.640 0.140
512 128 0.196 0.016 0.514 0.071 0.686 0.130
512 256 0.097 0.014 0.345 0.C64 9.517 0.124
512 D-F 0.189 0.478 0.654
1024 2 0.026 0.025 0.092 0.091 0.159 0.162
1024 4 0.053 £.033 0.165 0.114 0.257 0.206
1024 8 0.124 0.034 0.304 0.136 0.413 0.238
1024 16 0.272 0.038 0.497 0.146 0.632 0.254
1024 32 0.510 0,034 0.755 0,134 0.853 0.235
1024 64 0.769 ¢.025 0.928 0,107 0.970 0.197
1024 128 0.859 0,023 £.981 0.092 0.995 0.170
1024 256 0.855 2.019 0.983 0.080 G.997 0.155
1024 512 0.530 0.018 0.844 0.075 0.93¢ G147
1024 D-F 0.915 0.993 0.99¢%




Power of the [two-sided] variance ratic test [using the

t

Fuller t-test (D-F) are also reported.

Table 5b

i.i.d. N9, %),
povwer of the [one-sided] Box-Pierce Q-test (Q1) and the

z,(q) statistic]
against the ARIMA(1,1,1} alternative X, = Y. + 7. where 1 = 0.96Yt_1 te
e, i.i.d. N{O,1) and 2, =2 v Y, ¥

t!

For compari{son, the
[two~sided] Dickey-~

Each set of rows with a given sample

size forms a separate and independent simulation experiment based on 20,000

replications.
1 PERCENT TEST 5 PERCENT TEST 10 PERCENT TEST
Sample ’

Size q zy(Q) Q z,(q) Q z,{q) Q,
32 2 0.008 ¢.010 0.045 0.048 0.095 0.098
32 4 2.010 g.010 0.0u5 0.0L7 0.098 0.096
32 8 0.010 0.011 0.047 0.049 0,094 0.101
32 16 0.009 0.010 0.046 0.051 0,094 0.100
32 D-F g.010 0.049 0.094
bl 2 0,009 0.010 0.048 0,048 0.096 0.100
64 4 ¢.010 0.010 0.046 0.05C 0.094 0.102
64 8 0.009 0.009 0.0u5 0.050 0.092 0.104
64 16 0.009 0.0069 0.044 0.052 0.089 g.101
64 32 0.010 0.010 0.047 0.051 0.091 0.104
6l D-F 0.009 D.046 0.094

128 2 0.009 0.010 0.0L6 0.051 3.098 0.104

128 ! 0.031 0.011 0,052 0.053 C.C99 0.104

128 8 0.012 0.011 0,053 0.052 c.104 0.102

128 16 0.011 0.011% 0.052 0.054 0.103 0.107

128 32 0.009 4.009 C.0M4T 0.653 0.102 0.10%

128 64 0.010 0,009 0.045 0.053 0.087 0.106

128 D-F 3.009 0.048 0.101

256 2 0.010 0.012 0.054 0.059 0.106 0.111

256 4 £.015 0.012 0.055 0.057 0,113 0.115

256 8 0.015 0.011 0.068 0.059 0.126 0.118

256 16 0.018 g.02 0.075 0.054 0.138 0.106

256 32 0.016 0.013 0.072 0.054 0.131 0.109

256 6l 0.01% 0.012 0.063 0.056 0.117 0.106

256 128 0.014 0.010Q 0.055 0.052 0.107 0.104

256 D=F 0.01% 0.069 0.129

512 2 0.014 0.014 0.061 0.065 0.119 0.123

512 i 0.018 G.017 0.077 0.074 0.1 0.139

512 8 0.025 0.016 g.101 0.072 0.178 0.140

512 16 0.034 0.01%4 0.124 0.071 0.210 0.133

512 32 0.636 0.014 0.120 0.064 0.206 0.129

512 64 0.027 0.014 0.095 0.065 0.170 0.119

512 128 4.020 0.013 0.079 0.064 0,138 0.112

512 256 0.015 0.012 0.063 0.059 0.120 0.115

512 D-F 0.021 0.081 0.147

1024 2 0.024 0.023 0.085 0.085 0.150 0.153

1024 4 0.040 0.024 0.132 0.091 0.207 0.169

1024 8 0.065 ¢.023 0.196 0,097 0.290 077

1024 16 0.096 0.021 G.236 0.092 0.355 0.163

1024 32 0.094 0.017 0.211 0.079 0.355 0.144

1024 64 0.064 0.014 0.178 0.067 0.277 0.129

1024 128 0.030 0.013 0.118 0.061 0.197 0.120

1024 256 0.025 0.011 0,085 0.057 0.148 0.7

1024 512 C.021 0.012 0.0T4 0.057 d.132 0.112
1024 D-F 0,032 0.104 0.173




Table 5e

Power of the [two-sided] variance ratio test fusing the ZT(Q) statistic]

against the ARIMA(1,1,1) alternative X, = Y, + 7, where ¥, = O.96Yt_1 v e,
e, i.i.d. N(Q,1) and 2t = Zt-1 + Yt, Yt i.1.d. H(Q,1). For comparison, the
power of the [one-sided] Box-Pierce Q-test (Q1) and the {two-sided] Dickey-

Fuller t-test (D-F) are also reported. Each set of rows with a given sample

size forms a separate and independent simulation experiment based cn 20,000

replications.
1 PERCENT TEST 5 PERCENT TEST 10 PERCENT TEST
Sample :

Size q Z1(q) Qn' Z}(Q) QT Z1(Q) Q1
32 2 0.008 0.010 0.0u49 0.049 0.095 0.099
32 4 0.010 0.010 0.0L6 0.051 0.093 0.102
32 8 0.009 0.012 0.045 0.052 0.092 0.106
32 16 0.008 0.012 0.045 0.053 0.094 0.102
32 D-F 0.096
64 2 0.010 0.010 0,048 0.049 0.096 0.102
64 4 0.008 0.009 0.048 0.054 0.100 0.105
64 8 0.009 0.009 0.047 0.054 0.099 0.1
64 16 0.010 0.009 0.048 0.054 0.095 0,105
64 32 0.010 0.009 0.047 0.052 0.093 0.107
64 D-F 0.092

128 2 ¢.010 0.012 0.0l9 0.056 0.102 0.113

128 Y 0.012 0.013 0.062 0.058 0.115 0.113

128 8 0.014 0.013 0.062 0.061 0.122 0.115
128 16 0.016 0.012 0.068 0.060 0.125 0.118

128 32 0.013 0.012 0.060 0,059 0.117 ¢.115

128 64 0.012 0.012 0.053 0.058 0.098 0.112

128 D-F 0.114

256 2 0.013 0.015 0.060 0.065 0.114 0.122

256 y 0.021 0.015 0.073 0.071 0.142 0.136

256 8 G.027 0.015 0.103 0.072 0.178 0.137

256 16 0.034 0.013 0.120 0.062 0.212 0.122

256 32 0.026 0.013 0.120 0.058 0.207 0.117

256 64 0.023 0,014 0.092 0.062 0.165 0.118

256 128 0.019 0.012 ¢.072 0.056 0.133 ¢.112

256 D-F 0.098 0.175

512 2 0.022 0.023 0.087 0.092 0.151 0.159

512 4 0.036 0,026 0.129 09.106 0.209 0.188

512 8 0,058 0.024 0.19 0.100 0.254 0.186

512 16 0.088 0.021 0.251 0.093 0.377 0.169

512 32 0.095 0.019 0.257 2.081 0,387 0.153

512 64 0.067 0.018 0.194 0.076 0,311 0.136

512 128 0.044 0.017 0.146 0.070 Q.224 0.129

512 256 0.028 0.014 0.106 0.064 0.171 0.124

512 D-F 0.053

1024 2 0.038 0.036 0.122 0.123 0.201 0.206

1024 y 0.085 0,046 0.230 0.156 0.337 0.261

1024 8 0.173 0.043 0.393 0.162 0.513 0.272

1024 16 0.285 0.035 0.513 .42 0.654 0.245

1024 32 0.3C5 0.028 0.552 0.116 0.686 0.203

1024 &Y 0.213 0.021 0.426 0.091 0.571 0.169

1024 128 0.093 0.019 0.259 0.078 0.381 0.148

1024 256 0.062 0.01% 0.169 0.068 0.262 0.134

1024 512 0,040 0.012 0 19¢ A NRE ~ o omAn PO



Table 5d

Power of the [two-sided] variance ratic test [using the 21(q) statistic]

against the ARIMA(1,1,1) alternative Xt = Yt + Ly where ¥
gy i.1.d. N(0,1) and 2

g7 fper T Ty

=2

Y

t

[ 0.96Y,

i.1.d. N(0,2}. For comparison, the

1

power of the [cne-sided] Box-Pierce Q-test (Q1) and the [two-sided] Dickey-

Fuller t-test {D-F) are also reportec.

size forms a separate and independent

Zach set of rows with & given sample

simulation experiment based on 20,000

replications.
1 PERCENT TEST 5 PERCENT TEST 10 PERCENT TEST
Sample
Size q 2-1(q) Q1 Zﬂq) Q1 Z1(Q) Q1
32 2 0.008 0.010 0.045 0.048 0.061 0.097
32 i 0.010 0,010 0.048 0.050 0.093 0.103
32 8 0.009 0.012 0.046 0.054 0.096 0.110
32 16 0.008 0.012 0.04Y 0.054 0.093 n.102
32 D-F 0.009 0.048 0.093
64 2 0.011 0.012 0.050 0.054 0.103 0.112
64 4 0.013 0.012 0.050 0.061 0.104 0.115
64 8 0.011 0.013 0.052 0.059 0.104 0.119
64 16 0.011 0.013 0.0u7 0.062 €.095 0.116
64 32 0.010 0.013 0.04Y4 0.060 0.089 0.115
64 D-F 0.010 G.047 0.094
128 2 0.011 0.014 0.054 0.061 0.106 0.117
128 4 0.014 0.014 0.070 0.065 0.127 0.128
128 8 0.019 0.014 0.080 0.068 0.149 0.127
128 16 0.023 0.012 0.089 0.065 0.156 0.124
128 32 0.016 0.011 0.084 0.062 0.155 n.120
128 64 0.014 0.012 0.063 0.057 0.120 0.113
128 D-F 0.015 0,072 0.139
256 2 0.018 ¢.021 0.075 0.084 0.139 0.146
256 4 0.035 0.020 0.102 0.088 0.182 0.167
256 8 0.047 0.019 0.155 0,088 0.255 0,166
256 16 0.067 0.016 0.205 0.081 0.324 0.151
256 32 0.060 0.016 0.207 0.072 0.331 0.139
256 64 0.043 0,015 0.160 0.069 0.268 0.128
256 128 0.032 0.0%2 0.108 0.063 0.196 0.123
256 D-F 0.050 0.170 0.273
512 2 0.032 0.035 0.113 0.119 0.187 0.196
512 3 0.063 0.040 0.193 0.149 0.299 0.249
512 8 0.121 0.03% 0.322 0.145 0. 448 ¢.251
512 16 0.210 0.031 0.463 0.124 0.607 0.220
512 32 0.255 0,025 0.516 0.104 0.669 0,192
512 64 0.178 0.021 0. 406 0.091 0.567 0.165
512 128 0.103 0.018 0.280 0.082 0.399 0.150
512 256 0.059 0,017 0.186 0.073 0.283 0.142
512 D-F 0.132 0.306 Q.427
1024 2 0.068 0.065 0.187 0,187 0.282 0.287
1024 4 0.170 0.095 0.374 0,256 0.496 0.391
1024 8 0.371 0.092 0.638 0.292 0.745 0.4bo
1024 16 0.613 0.074 0.825 0.249 0.904 0.396
1024 32 0.711 0.053 0.898 0.184 0.951 0.304
1024 64 0.576 0.035 0.811 0.134 0.899 0.230
1024 128 0.281 0.028 0.559 0.110 0.699 0.192
1024 256 0.163 0.022 0.344 0.090 a.471 0.16%
1024 512 0.100 0.021 0230 N NRE A 9920 A 100



Table e

Power of the [two-sided] variance ratio test [using the statistic 21(q)]

against the ARIMA(1,1,0) alternative aX

t

cAX

v

t=1
k = 0.20. For compariscn, the power of the [cne-sided] Box-Pisrce Q-test (Q)

£t Ve

i.i.d. N(G,1),

and the [two-sided] Dickey-Fuller t-test (D-F) are also reported, Each set of

rows with a given sample size forms a separate and independent simulation

experiment based c¢n 20,000 replications.

1 PERCENT TEST

5 PERCENT TEST

10 PERCENT TEST

Sample
Size q 2, (q) & zq{q} Q z¢(q) Qy
32 2 0.057 0.037 0.176 ¢.128 0.270 0.213
32 4 0.046 0.021 0.141 Q.094 0.226 0.167
32 8 0.029 0.022 0.098 0.086 0.168 0.157
32 16 0.026 0,023 0.095 0.085 0.166 0,147
32 D-F 0.143 0.240 0.301
64 2 0.148 0.119 0.342 0.292 0.463 0,417
64 'l 0.104 0.071 0.263 0.195 ¢.368 0,298
64 8 0.059 0.050 0.168 0.156 0.254 0.248
64 16 0.03% 0.040 0,114 0.135 0.181 0.218
64 32 0.032 0.036 0.097 0,123 Q.164 0.209
a4 D-F 0.143 0,240 0.308
128 2 0.377 0.323 0.600 0.564 0.719 0.687
128 4 0.257 0.197 0,455 0,413 0.575 0.542
128 ] 0.122 0.126 0.280 0.305 0.388 0,422
128 16 0.059 0.082 0.167 0.231 0.254 0.344
128 32 0.034 0.058 0.108 0.184 0.175% 0.290
128 ol 0,029 0.050 0.093 0.166 0.153 0.268
128 D~F 0.138 0.235 0.302 _
256 2 0.7 0.709 0.887 0.876 0.934 0.928
256 4 0.526 0.529 0.7u4d 0.749 0.836 0.836
256 8 0.276 0.361 0,498 0.612 0.614 0.728
256 16 0.12% 0.229 0.298 0.454 0. 401 0.588
256 32 0.069 0.160 0.172 0.348 0.261 0.479
256 ol 0.036 0.115 0.105 0.285 0.177 0.400
256 128 0,032 0,088 0.095 0.211 0.158 0.362
256 D-F 0.138 0.238 0.299
512 2 0.972 0.969 0.993 0.993 0.997 0.997
512 il 0.871 0.918 0.957 0.976 0.978 0.988
512 8 0.57T 0.813 0.779 0.931 0.855 0.965
512 16 0.290 0.652 0.523 0.845 0.633 0.909
512 32 0.139 0. 481 0.300 0.706 0.407 0.809
512 64 0.069 0.320 0.168 0.571 0.263 ©.688
512 128 0.035 0.227 g.112 0,455 0.181 0.580
512 256 0.032 0.182_ 0.097 0.380 0.159 0.51¢9
512 D=F 0.136 0.236 0.304
1024 2 1.000 1.000 1.000 1.000 1.000 1.000
1024 [ 0,996 0.999 2.999 1.000 1.000 1.000
1024 8 0.893 0.995 5.969 0.999 0.985 1.000
1024 16 0.585 0.978 0.783 0.996 0.862 0.998
1024 32 0.301 . 34.918 0.509 0.976 0.629 0.989
1024 el 0.144 0.767 0,295 0.911 G.411 0.952
1024 128 0.061 0.581 0.176 3.792 0.265 0.874
1024 256 0.035 .41 0.110 0.663 G174 0.780
1024 512 0.028 0.334 0.093 0.586 0.157 0.710
1024 b-F 0.142 0,248 0.314



