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We propose a simple test for the random walk hypothesis using variance
estimators derived from data sampled at different frequencies. This Hausman-
type specification test exploits the linearity of the variance of random walk._
increments in the observation interval by comparing the (per unit time)
variance estimates obtained from distinct sampling intervals. Test statistics
are derived for both the i.i.d. Gaussian random walk and the more general
uncorrelated but possibly heteroscedastic random walk. Monte Carlo
experiments indicate that although the finite-sample behavior of our
specification test is comparable to that of the Dickey-Fuller t-test and the
Box-Pierce Q-statistic under the i.i.d. null, our test is more reliable than
either of these tests under a heteroscedastic null. We also perform
simulation experiments to compare the power of all three tests against two
interesting alternative hypotheses: a stationary mean-reverting Markov
process which has been interpreted as a 'fads' model of asset prices, and an
explosive non-Markovian process which exhibits essentially the opposite time
series properties. By choosing the sampling frequencies appropriately, the
variance ratio test is shown to be as powerful as the Dickey-Fuller and Box-
Pierce tests against both alternatives. As an empirical illustration, we
perform our test on weekly stock market data from 1962 to 1985 and strongly
reject the random walk hypothesis for several stock indexes.
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1. INTRODUCTION.

Whether or not an economic time series follows a random walk has long
been a question of great interest to economists, Although its origins lie in
the modelling of games of chance, the random walk hypothesis is also an

implication of many diverse models of rational economic behavior. ' In this
paper, we propose an alternative test of the random walk hypothesis which is

particularly simple to implement. The test is based upon a comparison of

varlance esuluatars abtalned fron data sampled at diffevent Irequencies, and

exploits the fact that the variance of random walk increments is linear in the
sampling interval. Therefore the variance of, for example, quarterly
differences must be three times as large as the variance of monthly
differences. Comparing the (per unit time) variance estimates from quarterly-
to monthly data within a given time span will then yield an.indication of the
plausibility of the random walk specification. Such a comparison is formed
Quantitatively along the lines of the Hausman [1978] specification test and is
quite easy to perform.

Since the random walk model is a special case of what has come to be
known as the unit root hypothesis, a few comments concerning the relation of
our variance-based tests to those in the unit root literature may be
appropriate. Due to the nonstationarity of time series with unit roots, it is
now well known_that the standard regression test statistics do not possess the
usual limiting distributions. Nevertheless such limiting distributions have
been tabulated numerically by Dickey and Fuller (1979, 1981] so that unit root
tests may still be performed using their significance points.2 However,
because these tabulated distributions depend critically upon nuisance

parameters (e.g. the drift of the random walk), there has been some



statistic is the invariance of its limiting distribution to the value of any
nuisance parameéters. In particular, the asymptotic distributions of the
proposed statistics are all Gaussian and do not depend upon whether the drift
is zero or not. This is in sharp contrast to the usual regression
t-statistic, whose limiting distribution depends discontinuously upon the
presence or absence of a non-zero drift.3 Of course, it must be emphasized

that our variance-based statistic tests only the random walk special case of

the unit root hypothesis, whereas Phillips (1985, 1986], Phillips and Perron

[1986], and Perron [1086] show that the Dickey-Fuller distributions are

asymptotically appropriate for a more general class of procosesse:s."l

In Section 2, we develop our specification test statistics and derive
their limiting distributions under two distinct fofms of the random walk null-
hypothesis: a random walk with independent and identically distributed
increments, and with uncorrelated but weakly dependent heterogenecusly
distributed heteroscedastic increments. In order to obtain consistent
estimates of our test statistics’ asymptotic variance in the latter case, we
employ the results of White {1980] and White and Domowitz [1984]. Since our
inferences are based entirely upon asymptotic approximations, we perform Monte
Carlo experiments to deduce the quality of those approximations in finite
samples and report those results in Section 3. The simulation experiments are
conducted under two null hypotheses: the i.i.d. Gaussian random walk and a
random walk with uncorrelated but heteroscedastic increments. For purposes of
comparison, we also report corresponding results for the Box-Pierce Q-
statistic and the Dickey-Fuller t-statistic. The results indicate that,
although the three test statisties are comparable under the i.i.d. null, the

variance ratio test is generally more reliable than the other two in the
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three tests under two specific alternative hypotheses which have particular
economic significance: a mean-reverting Markov process which has been
interpreted as a 'fads' model of asset prices, and an explosive non-Markovian
process which is an empirically more relevant alternative for stock returns.
We show that, although the Dickey-Fuller test is more powerful than the Box-
Pierce against the first alternative and vice-versa against the second, the

variance ratio test is as powerful as both tests against both alternatives for

appropriately chosen sampling intervals. As an illustrative empirical
example, we perform our test on weekly stock market data from 1962 to 1985 and
report those results in Section 5. For several stock indexes the random walk

hypothesis is strongly rejected. We conclude in Section 6.

2. THE SPECIFICATION TEST.

We begin by defining our null hypothesis explicitly; let X, denote a

stochastic process which satisfies the following recursive relation:

Xt = f Xt_1 * e E[Et] = 0 for all t . (1a)

or

A, = u + € AXt = Xt - Xt_1 {1b)

where the drift u is an arbitrary parameter. The notion of a random walk
considered in this paper essentially reduces to the restriction that the
disturbances e; are serially uncorrelated, or that innovations are
unforecastable.” In Section 2.1, we develop our test under the restrictive
null hypothesis that the eb's are independently and identically distributed
normal random variates. However, since the unforecastability of increments is
in fact the hypothesis of interest, we construct a heteroscedasticity-robust
test statistic in Section 2.2 for the weaker null hypothesis that the

disturbances are serially uncorrelated.



2.1 I.I.D. GAUSSIAN DISTURBANCES.

Let the null hypothesis Hy denote the case where the ¢, 's are i.i.d.

t

. . . 2
normal random variables with variance % hence:

Hoie, i..d. N(O, cg) . (2)

£

Note that in addition to homoscedasticity, we have made the assumption of

independent Gaussian increments as in Dickey and Fuller [1979, 1981], Evans
and Savin [1981, 1984], and Bhargava {1986]. 4n example of such a
specification is the exact discrete-time process Xt obtained by sampling the

following well-known continuous-time process at equally spaced intervals:

dX{t) = udt + cOdW(t) . (3)

This process is usually referred to as arithmetic Brownian motion with drift
and corresponds to a lognormal diffusion price process often used in
continuous-time models of financial asset prices.

Suppose we obtain nq + 1 observations XO, X1, v ey an of Xy where both
n and q are arbitrary integers greater than one. Considering the following

estimators for the unknown parameters yu and 02

o
~ 4 ng :
U= nq kfi {Xk - Xk-1] z nq [an - XO] . (4)
R nq R
2 _ 1 _ _ 2
9 = nq k§1 [Xk xk-T ul (5)

The estimator ai is simply the sample variance of the first-difference of X5

it corresponds to the maximum likelihood estimator of the parameter ug and

therefore enjoys the usual consistency, asymptotic normality and efficiency

properties. Now consider the following alternative estimator of ag. Suppose



we consider the variance of g-th differences of Xt which, under Hy, is q times

the variance of first-differences. By dividing by q, we obtain the

estimator cg(q) which also converges to og under H,, where:

1

n A 9
n7 5 B Feq 0% (6)

;2(q) z
b 1 gk qk-q

We have written cs(q) as a function of q (which we term the aggregation value)

to emphasize the fact that a distinct alternative estisator of o may be

formed for each q. Under the null hypothesis of a Gaussian random walk, the

two estimators ci and cg(q) should be "close", therefore a test of the random
walk may be constructed by computing the difference Jd(q) = cb(q) - oz and
checking its proximity to zero. Alternatively, a test may also be based upon_

a2(q)

3 - 1, which converges
a
a

the dimensionless centered variance ratio Jr(q)
in probability to zero as well.6

In order to formally base a test upon Jd(q), the sampling distribution of
the difference is obviously required. Singe ;i is asymptotically efficient
under H,, we may use Hausman's [1978] insight that the asymptotic variance of
Jd(q) is simply the difference of the asymptotic variances of ;g(q) and 32.
Moreover, a straightforward appliecation of the delta-methdd'yields the

corresponding asymptotic distribution of the centered variance ratio Jr(q)

hence we have (proofs of all the theorems are given in the hppendix):

Theorem 1: Under the null hypothesis Hy, the statistics Jd(q) and J.(q) have

the following asymptotic distributions:



/nq J4(Q) 2 N(o, 2(q - l)og] (Ta)
/Ma J (@) 2N, 2(q - 1)) . (7o)

For each q, the statistics Jd(q) and J.(q) provide a comparison of the
variance of increments over the sampling interval h to the variance of

increments over gh. Under the null hypothesis H, the latter must be q times

the former quantity,

P Jyla and () are vased upon variapes (O Crom

OVErL30ning -th diffovemes of NE), @ el et 10 congidar

corresponding test statistios based upon overlapping differences. In this way
the variance estimator of g-th differences is based upon ng-q+1 observations
instead of only n observations in the non-overlapping case, possibly yielding-

a more efficient estimator, Therefore, we define the following estimator

2

4\2 .
cc(q) of g5°

ng .
a (q) = — I [Xk - Xk_q - qu]2 . (8)

Using az(q), define the corresponding difference and ratio test statistics as:

"2
My(a) = o (q) - o M.(q) = i 1. (9)
a

We then have the following result:

Theorem 2: Under the null hypothesis Hqy, the statistics (9) have the

following asymptotic distributions:



As expected, the asymptotic variances of Md and Mr are less than their non-

overlapping counterparts, ' In particular, the asymptotic relative efficiéncy

(ARE) of M to J is simply:7

e = 53 (11)

For q = 2, the M statistics are twice as efficient as the J's, Alternatively,

when g = 2 twice as many observations are required with J as with M in order

to obtain the same limit diStPiDUDiQUtB HQHCY@F' Dnc HHE Uecreases

Wokanically Wit g e 15 ounded bl by 1.5, This suggets that ¥ may he

the preferred test statistiec,
In order to develop some intuition for these variance ratios, observe

that for an aggregation value q of 2, the Mr(q) Statistic may be re-expressed-

as:

- 1 *\2 "2
M(2) = 0D - — [(x, - x) - W« (o = Xy 4 = W] (12)

Une an-
a

hence for q = 2 the Mr(q) statistic is approximately the first-order
autocorrelation coefficient estimator o(1) of the differences of X. More

generally, we have the following Corollary to Theorem 2:

Corollary 2.1:

1

M(a) ¢ EEU ooy 282 Doy 200 o(n?)  (13)

Lo

1 1

where op(n 2) denotes terms which are of order smaller than n e in

probability.



Specifically, variance ratios computed with an aggregation value q are
(approximately) linear combinations of the first q - 1 autocorrelation
coefficient estimators of the first differences with arithmetically declining
weights.9

One further adjustment which may improve the finite-sample behavior of
the test statistics is to use unbiased estimators Ez, Ei, and Ei in computing

J;(q) and M:(q), 1 = d, r. In particular, we have:

roitin: e el ae bt st o ag:

ng -

2 _ 1 . Y

% * Tng - 1) kf1 (Xk Ly - W) (14a)
n —

-2 _ 1 _ _“2

° * (nq - q) k§1 (qu qu—q qr) (14b)

nq "
2 _1 } - . ) s
o, = - kiq (Xk Xk-q qu)” , mzq{ng ~q+ 1){1 nq) . (14¢)

We denote the resulting adjusted specification test statisties ji(q) and
ﬁi(q), respectively, where i = d, r. Of course, although the variance
estimators Eg, Eg, and Eg are unbiased, only the adjusted variance difference

is unbiased; the variance ratio is not.

2.2 WEAKLY DEPENDENT HETEROGENEOUS DISTURBANCES.
Since there is already a growing concensus that many economic time series
possess time-varying volatilities, a rejection of the random walk hypothesis
due to the presence of heteroscedasticity would not be of much interest. We

therefore wish to derive a version of our specification test of the random



converge to one in probability even with heteroscedastiec disturbances,
Heuristically, this is simply due to the fact that the variance of the sum of
uncorrelated inerements must still equal the sum of the variances despite
heteroscedasticity. oOf course, the asymptotic variance of the variance ratios
will clearly depend upon the type and degree of heteroscedasticity present.
However, by controlling the degree of heterogeneity and dependence of the

process, it is possible to obtain consistent estimators of the asymptotic

S SRR 0 OB 0 el e £, Gttt of

the et's, we follow White's [1980] and White and Domowitz's [1984] use of

mixing and moment conditions to derive heteroscedasticity-consistent
estimators of our variance ratio's asymptotic variance. More formally, we

require the following assumptions on {et}: -

(A1)  For all t, E[et] = 0, E[Etst-r] = 0 for any t = 0.

(A2) {et} is y-mixing with coefficients w(m) of size r/{2r-1) or is a-
mixing with coefficients a{m) of size r/(r-1), r > 1 such that for

all t and for any t 2 0, there exists some § for which:
2(r+6)
E[etst_T] <A<, (2)

T
(A3)  lim % I E[ei] - ug (a.
Tra “£=21

(A4)  For all t, E{Etet-jetet-k] = 0 for any non-zero j, k where j = k.

These assumptions then form our second null hypothesis Hy. Assumption (A1) is
the essential property of the random walk which we wish to test, Assumptions

(A2) and (A3) are restrictions on the degree of dependence and heterogeneity



of heteroscedasticity including deterministic changes in the variance (due,
for example, to seasonal components) as well as Engle's [1982] ARCH processes
(in which the conditional variance depends upon past information), Assumption
(A4} implies that the sample autocorrelations of €, are asymptotically
uncorrelated, Although this assumption may be weakened considerably, it would
be at the expense of computational simplieity since in that case the

asymptotic covariances of the autocorrelations must be estimated and taken

into aecount in Corollary 3.1 below. !0

Under the conditions (A1)~(A4), we may obtain heteroscedasticity-

consistent estimators of the asymptotic variance of the first-difference
autocorrelations of Xt. Applying Corollary 2.1 ahove then yields a
heteroscedasticity-consistent estimator of the asymptotic variance of our

variance ratios M and M. In particular, we have:

Theorem 3: Denote by &(J) the asymptotic variance of the j-th order
autocorrelation coefficient p(j) of Axt. Let e, satisfy

Assumptions (A1)-(AY4) above. Then

(a) The statistics Jy(al, Jpla), My(q), M.(q), ﬁa(q), ﬁ;(q) all
converge aimost surely to 0 for all qQ a8 T increases without

bound.

{(b) . The following is a heteroscedasticity-consistent estimator

of &(3):
g -2 ~.2
. k_§+1(xk - xk_-‘ - l-l) '(xk’J - Xk-J—1 - u)
§(J) = = Ba - . (15)
[z - x - wfP

k=1



Corollary 3.1: Let 8(q) denote the asymptotic variance of the variance

" ratios /nq M (q) and /ng ﬁr(q) under Hy, Then the following

Is a consistent estimator of a(q):

A Q‘ -
8(q) = I [Eiﬂa:_ll]z - 6(3) . (16)

Tests of H, and H, may then be based upon the normalized variance ratios z,

a0d g reﬁpeﬁmly Lt

2, = /nq H (q) - (22 - ;3(“ -~ )t 2y (17a)
2, = voq K (@) - 8 ¥(q) 2 N, 1) . (17b)

An equivalent and somewhat more intuitive method of arriving at formula
(15) is to consider the regression of the increments Axt on a constant and the
J-th lagged increment Axt-j' The estimated slope coefficient is then simply
the j-th autocorrelation coefficient and the estimator g(j) of its variance is
numerically identical to White's [1980] heteroscedasticity-consistent
covariance matrix estimator, Note that White [1980] requires independent
disturbances whereas White and Domowitz [198Y4] allow for weak dependence (of
which uncorrelated errors is, under suitable regularity conditions, a special

case).

3. FINITE-SAMPLE PROPERTIES OF THE TEST STATISTICS UNDER HT AND Hs.

Since the inferences proposed above are based upon asymptotic arguments,

.
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indicate that tests based upon the other statistics proposed in Section 2
generally yield less reliable inferences hence, in the interest of breviéy, we
only report the results for Hr(q).12 For purposes of comparison, we also
report the results of Monte Carlo experiments performed for the Box-Pierce Q-
statistic (BP-Q) and the Dickey-Fuller t-statistic (DF).

Before turning to the simulations, we develop the following inequalities

for the variance of M (q) which provide considerable intuition for the Monte
Carlo results, Becall that fﬂ ) Nl ]’

F

variance of the test statistic ﬁp(q) is given by V, where:

q2-§q+1
R R %H 5. (18)
3ng q

Note that the rational function of {18) enclosed in brackets is, for all
natural numbers q, bounded between } and 1 and monotonically increasing in

g. Therefore for fixed n, this implies upper and lower bounds Vyy and VL for
the variance V. Table 1 displays such upper and lower bounds for several

. values of n. A bound may also be derived for the statistic ﬁr(q) itself;
since variances are nonnegative, it is clear that 1 + ﬁr(q) > 0, hence a lower
bound for ﬁr(q) is -1. This yields the following lower bound on the

asymptotically standard normal test statistic Zy:

Inf[#_(q)]
Inflz,] = —T— = -

- (19)
InflvV]

i
v

Table 1 also displays this lower bound for several values of n. Note that n
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in computing the variance ratio statistic ﬁr(q). We shall return to these

lower bounds later.

Tables 2-8 summarize the results of the Monte Carlo experiments. Tables
2a,b report the finite-sample behavior of the z, and z, statisties
respectively under the homoscedastic i.i.d. null hypothesis H1. Tables 3 and
4 report corresponding results for 2y and z, under two specific

heteroscedastic null hypotheses in which the variance of the increments follow

SRTSTR) ST a, AT s C sl et of

the Box-Pierce Q-statistie with and without heberoscedasticity corrections

respectively under the homoscedastic null. Table 6 reports the empirical
quantiles of the Dickey-Fuller t-statistic under the homoscedastic null.
Tables 7a,b compare the empirical sizes of the variance ratio, Box-Pierce, and
Dickey-Fuller tests with and without heteroscedasticity corrections
respectively, under one heteroscedastic alternative. Tables 8a,b perform the
same comparison but for a more extreme form of heteroscedasticity. All

simulations are based upon 20,000 replications.13

3.1 FINITE SAMPLE PROPERTIES OF z, AND z, UNDER Hy AND H,.

When the true data-generating process (DGP) is an i.i.d. random walk, the
results in Tables 2a,b show that the empirical size of 5 percent tests based
upon either the Zq Or 2z, statistics are close to their nominal value for
aggreg&tion values less than cne-eighth of the sample size.“l However, Tables
3a,b indicate that when the true DGP is heteroscedastic, the zy-statistic
rejects far too often, Specifically, in Table 3a the variance of the random

walk disturbances is assumed to follow a stationary AR(1) process of the form:



2 2 .
1n o0, = ¥ In 9yt L, , 1.i.d. N(0,1) (20a)

¢ - w0, =L (20b)

Ing
1= e

where the parameter ¥ is set to 0.50,15 Observe that for sample sizes of 512,

the empirical size of 3 5 percent test with q = 2 15 14,7 percent. However,
as the results in Table 3b indiecate, the empirical size of a test based upon

the heteroscedasticity-robyst statistie 2> is much closer to the nominal Value

for ageregation values lass than one-fourth the sample size,

5 percent 25 test with q = 2 and 512 observations has an empirical size of 4.9

For example, the

percent. Tables 4a,b provide the Same comparisons when the autoregressive
coefficient v is 0.80 {which increases the unconditional volatility of the
variance), Under this more severe form of heteroscedasticity, Z4 induces even
more rejections. For example, with a sample size of 512 and q = 2, the
empirical size of a 5 percent test is now 34.7 percent. Nevertheless using
the Z5 statistic to perform the Same test yields a rejection rate of 4.2

percent, considerably closer to its nominal 5 percent level.

3.2 COMPARISON WITH THE BOX-PIERCE Q-STATISTIC.

Since the variance ratio ﬁ;(q) is asymptotically equivalent to a specific
linear combination of the first q-1 autocorrelations of the increments Axt, it
is natural to compare the finite sample behavior of ﬁr(q) with the
corresponding Box-Pierce Q-statistic (BP-Q). This is done in Tables 5a,b.
Table 5a reports the empirical size of tests based on Z, and the Q-statistics
at the 1, 5, and 10 percent levels under 3 homoscedastic DGP.16 Not
surprisingly, for q = 2 their sizes are comparable since the ﬁ;(q)

statistic is approximately equal to the firstenrdon cowes 1 .



statistics differ. In particular, although the Q-statistic does not reject
often enough at the 5 percent level as q approaches one-eighth the sample
size, the size of the z4 test is relatively closer to its nominal value. For
example, in sample sizes of 1024, the empirical size of the Q-statistie test
is 2.8 percent using 127 autocorrelations whereas the 24 test has a size of
5.2 percent with q = 128, Nevertheless, note that the Q-statistic seems to

perform somewhat better than z4 at the 1 percent level, and both are

comparable at the 10 percent level, Table 5b reports similar size comparisons

0! 1 ederotetasti et satisies o, o 00 mdr the e

homoscedastic data-generating process, with similar results.

3.3 COMPARISON WITH THE DICKEY-FULLER t-TEST.

Since the sampling theory for both the Q and z statistics are asymptotic_
in nature, the actual size of any test based upon these statistics will of
course differ from their nominal values in finite samples. Although the
results in Tables 2-5 indicate that such differences may not be large for
reasonable aggregation values, it may nevertheless seem more desirable to base
tests upon the regression t-statistic for which Fuller [1976], Dickey and
Fuller (1979, 1981], and Nankervis and Savin [1985] have tabulated the exact
finite sample distrbution. However, due to the dependence of t-statistic's
distribution upon the drift u, a time trend must be included in the regression
of Xt on Xt-1 in addition to a constant term in order to yield a sampling
theory for the t-statistic which is independent of u. Although it has been
demonstrated that the t-statistie from such a regression converges in

distribution to the Dickey-Fuller distribution, there may be some

discrepancies in finite samples. Table 6 presents the empirical quantiles of



X =z u+ wt + 8%

£ (21)

g1tV -
A comparison of these quantiles with those given in Fuller [1976, Table 8.5.2]
suggest that there may be some significant differences for small samples, but

for sample sizes of 500 or greater the quantiles in Table 6 are almost

identical to those of Dickey and Fuller,
An additional comparison which may be performed across the variance

ratlo, Box-Pierce, and Dickey-Fuller statistics is their respective finite

sample propertles under heteroscedastieity, Table Ta reports the enpirical

gi!@ﬁ Gf thé 21, DD-G, and Dp statistics under the DGP (20) for y = 0.50. Not

surprisingly, DF is much better behaved than z, and BP-Q statistics since the
~ DF statistic has been shown by Phillips [1986] and Phillips and Perron [1986]
to be robust to heteroscedasticity whereas the other two statistics are not, )
However, once we use z5 and BP-Q* to perform our tests, they both compare

favorably to DF in Table 7. Moreover, for the more severe case of

heteroscedasticity associated with v = 0.80, both the 2, and BP-Q* tests have

empirical sizes closer to the nominal size than the DF test. For example,
Table 8b reports empirical sizes of 5.2, 4.7, and 7.9 percent for the Zo,
BP-Q*, and DF tests respectively.

Several conclusions may be drawn from these simulation experiments.
First, although the finite sample properties of Z4 do not differ considerably
from their asyﬁptotic counterparts when the true data generating process is an
i.i.d. random walk, significant discrepancies may arise in the presence of

heteroscedasticity. This, however, may be corrected by using the statistiec Zs



comparable for 10 percent tests and smaller for the Q statistic at the 1
percent level. Finally, the discrepancies between empirical and nominal Sizes
for tests based upon 25, BP-Q*, and the Dickey-Fuller t-statistic are similar
under mild heteroscedasticity, but for a more volatile variance process the DF
test may yleld less reliable inferences than either the variance ratio or Box-

Pierce tests.

4, POWER,

In this section, we explore the poser of our varianee ratio test against

MwM%ﬂWMMammmmmeMMMwmmm

alternatives are formulated in continuous time although their discrete-time
analogues will become apparent. The first is the well-known mean-reverting
Ornstein-Uhlenbeck process which has often been used as a model of interest )
rates.17 For contrast, we also consider a second alternative hypothesis which
is nonstationary and‘exhibits essentially the opposite time series

properties. For reasons which will become evident in the exposition below, we

call the first alternative a 'price fads' model and the second a 'returns

fads' model.

4.1 POWER AGAINST A MEAN-REVERTING ALTERNATIVE.
As an alternative to the random walk model for asset prices, several
recent studies have examined what Shiller {1981] describes as a 'fads’
model: market prices fluctuate according to investors' fads which have
exponentially decaying influence. In discrete time, this hypothesis has been

implemented by supposing that deviations from the rational exmenkatrimm ~e k.



continuous time, one representation of the fads model ig given by the

Ornstein—Uhlenpeck (0.U.) process:

oF dx(t) - -yp[X(t) - up]dt + o dH(t) v, >0 (22)

where X(t) denotes the log-price process in P(t}, as in Shiller and Perron
[1985]1. 1In order to develop some intuition for the empirical implicationg of

this alternative, we report some of itg population moments (all conditional

upon X(0) = XO):

vy t
B [X(t)] = a *+ (- a e "p (23a)
2
o -2y t
. p)
Vary[x(t)] = 55; (1-e (23b)
02 --2'rpt1 -yp(tz-t1)
Covo[x(t1),x(t2)] = 55; (1-e Je ty Sk, (23c)
¥
1-e Zth1 YP(t €)
Corro[x(t1),x(t2)] 2 ————-:E;EE; e t, St . (23q)
1 -e

From (23a), we see that for large t the log-price X(t) tends to its steady-
state value of ap. Note that X(t) is a stationary process if E[X I = %

and Var[XO] = g /2up, and is a Gaussian process agsuming X, is Gaussian.

Since tﬁe process is Gaussian and Markov, these moments completely
characterize its finite-dimensional distributions which, in turn, are given by

products of its conditional distributions:
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Sinee (22) possesses the following solution on [O,T]:18

ot vt t -y (t-s)
X(t) = X(0)e P + a (1 - e Py s % [e ®  dis) (25)
0

its discrete-time representation is given by the recursive relation:

Xk = ap + w(h)[Xk_1 - ap] t o (26)

-1 h K =y (Kie3)
where ¥ = K(kh), w(h) = e b S [ e P dW(s), Elz
kh-h

k]=0!

E[c2] - E;_ Qszh . i
ck] = 3 (1 -e ) and g is Gaussian for all k. Qbserve that for more
finely sampled data the autoregressive coefficient y(h) is closer to unity and
is the continuous-time analogue of Phillips's {[1986] discrete-time 'near- B
integrated' time series.

Further intuition for the empirical properties of the 'price fads' model
(22) may be obtained by examining the steady-state first-order autocorrelation
coefficient p(1) of continuously compounded returns over arbitrary holding
periods t. More formally, let R(t,t+t) = X{(t+t) - X(t). Then we have:

(1) = lim =-l-e . (27)

tre VAR[R(t,t+1)]

COV[R(t,t+t), R(ter,t+21)] “Ypt

Observe that the first-order autocorrelation of returns is always negative
under the price fads alternative, approaches -0.50 for longer holding periods
T, and approaches 0.00 for shorter holding periods. Table 9 presents values
of p(1) for 1 to 12 holding-period returns under three distinct parameter
values Yp corresponding to autoregressive coefficients y(h) of 0.95, 0.96, and

0.99 (per period, i.e., for h = 1) respectively in equation (26). Entries in



short holding-period returns, the price fads alternative may exhibit
significant (negative) autocorrelation for longer holding periods.

In order to determine the power of our test against K1 via simulation
experiments, we must choose values for the parameters (ap, cp, Yp). Since the
power results are obviously sensitive to our selection, we choose parameter

values which correspond roughly to reasonable empirical values of weekly stock

returns data and which yield an interesting range of power across sample sizes

and aggregation values. Therefore, we set the uncondit{onal Varianeé 0f

weekly returns to 0.0004 and assume that the weekly first-order
autocorrelation coefficient of log-prices is 0.96 (implying a weekly steady-
state first-order autocorrelation of -0.020 for returns). These two
assumptions imply.ap = 0.0202 and yp = 0.041 at h = 1 week.'9 Since the value
of ap does not affect our test statistics, we set it to zero without loss of
generality. Using these values for (ap, cp' yp), we simulate 20,000
realizations of the price series for a variety of sample sizes, compute the z-
statistics as well as the Box-Pierce and Dickey~Fuller statistics, and
summarize the empirical power of those tests in Tables 10-11.

Tables 10a,5 report the power of 10, 5, and 1 percent tests against K1
based upon the Z4, Dickey-Fuller, and Box-Pierce statistics for different
sample-size/aggregation-value combinations. Table 10a uses a base observation
pericd of h = } (week), whereas Table 10b uses a base observation period of
h = 4 (weeks). The critical values of all three test statistics were
empirically determined by simulation under the homoscedastic null.

An interesting pattern emerges from Table 10a. For a given number of
observations, the power of the test increases with the aggregation value q.

The explanation for this pattern lies in the behavior of serial correlations



resembles a random walk as the observation interval h decreases. This is
confirmed by the first-order serial correlations which grow farther away from
0 as the observation interval increases. Therefore, under this alternative it
becomes easiest to deteect departures from the random walk by comparing the

most coarsely-sampled data to the finest. This corresponds exactly to using

larger aggregation values q. A further demonstration of this property is

given in Table 10b which reports the power of the variance ratio test using a

Vadt OUGTYRGLON QErlod o 4 feeks (1< 4), Note that Within & fized calendar

tine span of 512 weeks, the power of 2 5 pereent st based on 512 veekly

observations using q = 2 is 6.6 percent, whereas the same test based on 128
monthly observations using q = 32 is 46.5 percent!

Although for larger aggregation values the power of the variance ratio -
test exceeds that of the Dickey-Fuller t-test, the difference is generally not
significant. However, the variance-based test clearly dominates the Box-
Pierce Q-test. For example, with a sample of 512 observations the power of a
5 percent variance ratio test is 46.5 percent (q = 64) whereas the power of
the Box-Pierce Q-statistic (using 63 autocorrelations) is 8.4 percent!

Against the alternative K1, we conclude that the variance ratio test (with
apbropriate q) is roughly comparable to the Dickey-Fuller t-test, but is
considerably more powerful than the Box-Pierce test.

Although the critical values of the test statistics in Tables 10a,b were
determined via simulation under the i.i.d. null hypothesis, it may also be of

interest to compare power when asymptotic critical values are used. In



to determine rates of rejection. From the entries in Table 11a, it is evident

that the asymptotic critical values yield less powerful tests; a 5 percent
test with a sample size of 512 and q = 32 has 34.4 percent power using
critical values of the empirical distribution whereas the asymptotic critical
values yleld 14.7 percent power. Table 11b reports similar results for the

heteroscedasticity-robust statistic Zy. Also, note that the power does not

increase With q monotonically but declines after some point. This is not

surprising since we have shown in Section 3 and Table 1 that the lower bound

O 2 Increases as  becones lavge relative to the mumber of observations

nq. More specifically, observe that under K, the increments Axt display
negative serial correlat?on hence the variance ratio of coarser to finer
sampled data converges in probability to a value less than unity. This -
implies that rejections of the null hypothesis ought generally to be due to
extreme negative realizations of z4. However, if q is equal to half the
sample size (n = 2), Table 1 shows that the lower bound of zq 1s -1.72 hence
the test will never reject the null hypothesis! In view of this danger, we
restrict q to be no more than one-eighth the sample size in all our power

simulations.

4.2 POWER AGAINST A NONSTATIONARY ALTERNATIVE.
One of the implications of K1 is that log-prices are positively
autocorrelated at all lags (see (23d)). Letting R(t;, t,) =
X(tz) - X(t1) denote the (continuously compounded) total return for the
holding period [t1, t2], it may readily be shown that returns over any two
non-overlapping finite holding-periods are always negatively autocorrelated.

Specifically, the autocovariance function for returns is given by:



0 -yp(t1+t2+t3+tu)

e [
EYP

y (t.+t.) v t vy t Yt Y t
eP 172 +1”e92-ep'uep3-ep"150 (28)

where 0 < t1 s't2 < t3 < tu. This result is not surprising since, loosely

speaking, if the process is to be mean-reverting then large changes from the
steady-state mean @, ought to be followed by smaller ones, It does, however,
seem to be inconsistent with the empirically observeqd positive serial
correlation in weekly stock returns,20 We therefore consider another closely

related alternatiye hypothesis under which returns ape positively

e, Sl Mol Dty

-price process by

retlirng o3 an (.0, Process and deriving the 10

integration. More formally, let R(t) denote the instantaneous return of a

Security at time t with price P(t). Then we have:

M: X(t) +

B(t D(t
R(t) = ﬁ%E% . B4 5%;% (29)

where D(t) is the dividend flow of the Security at time t. For simplicity, we
assume that D(t) = 0 for al] t so that the retuprn consists solely of capital
appreciation.2! Observe that if the log~price process X(t) were any type of
diffusion, the instantaneéus return R{t)} is no longer well-defined since the
sample paths of P(t) are nowhere differentiable. However, if we begin by
first specifying the dynamics of R(t), then equation (29) may be used to

define the log-price process X(t). Speeifically, we have:

dR(t) = -yr(R(t) - a )dt + o dW Y, >0 (30a)

t

X(t) Xo + [ R(s)ds . (30b)
0

I}



this alternative instantaneous returng are méan-reverting whereag log-prices

are explosive.r The moments of the log-price process under the returns fads

model K2 are given by:

1 b
E[X(t)] - g+ at+ " [R(0) - o ]l1-e i (31a)
2 2
] vt -yt
Var[x(t)] - >t —"—3 [1-¢ ")fe * _ 3] (31b)
YI‘ EYI‘
2 4
0 ] oyt -r t
Cov[!{(bj),x(t )] - -—; t, + —% [e T1, 0 P2 _ 2
Yt‘ 27!‘
(t,-t,) (t,+t,) e
e T2y ey b st

finite~holding period returnsg R(ti, tJ) are positively autocorrelated at all

lags since for 0 < t1 < t2 s t3 g tu we have:

CovlRy,t,),Rty, b)) -

2
i‘"_ e—yr(t1+t2+t3+t4)[eyr(t1+t2) v t v t Y tu vy &

derivativeg,2? Mbreover, the first-order autocorrelation pattern of
continuously compounded returns across holding periods differs considerably
between K and Kr. To see this, we calculate the steady-state first-order

autocorrelation of returns under K2 to be:

-y T
COV[R(t,t+t), R(t+r,t+21)] [1 -e T ]2
p(1) = lim . .




As the holding period t increases p(1) approaches zero, and as the holding
period becomes smaller p(1) approaches unity. The last three columms of Table
9 display values of p(1) for 1 to 12 holding-period returns for Y. =2 6, and
11, In contrast to the autocorrelations of the price fads model, under a

returns fad the first-order autocorrelation is positive for all holding
periods. Moreover, as the holding period increases from 1 to 12 periods the

autocorrelation (for Y, = 2) declines from 32.9 percent to 2.2 percent. This

IIpLies that. for & process RLth y « 2 uhen b = T veek, the autocorvelation of

weekly returns 1s quite large whereas the corresponding monthly or quarterly
returns exhibit considerably smaller autocorrelation. This observation will
play an important role in explaining the empirical results of Section 5.

Although X(t) is no longer a Markov process under K2, the Markov property
may be restored by considering the return and log-price processes jointly,

i.e.,
R(t) -y 0 R(t) Y. g

dz{t) = d = + dt + dW . (34)
X(t) 1 0 X(t) 0 0

Since the vector process Z(t)} is Markov and Gaussian, its finite-dimensional
distributions are completely characterized by its first two moments and, for
purposes of simulating discrete observations of Z, we calculate its

conditional distribution to be:

2(t5)[2(t,) ~ MVN(y,, z,) (35a)

where

Uz = ] (35b)
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which yield an interesting range of power. The entries in Table 9 suggest
that Y, = 6 might be a plausible alternative to the random walk. Using the
Same value of the weekly returns variance of 0.0004 as in the price fads
simulation, this implies a value of 0.0693 for 9, When h = 1 period. Finally,

Since a, is the Steady-state mean of returns, we set it to 0.004 when h =

alternative. The organization of Tables 12-13 corresponds exactly to that of
Tables 10-11, Tables 12a,b report power results against alternative K2 based
upon the 29, Dickey-Fuller, and Box-Pierce Statistics; Table 12a uses a base

observation pericd of h = 1, whereas Table 12b sets h = 4, Empirical eritica]

values are used in Tables 12a,b and asymptotic eritieal values are used in
Tables 13a,b,

Tée >



has comparable power to the variance ratio test, and both strongly dominate
the Dickey-Fuller t-test. For example, with a sample size of 512 a 5 peEcent
variance ratio test has 60.8 percent power (q = 2), Box-Pierce has 62,1
percent power (essentially the first-order autocorrelation coefficient), but

Dickey-Fuller has only 5.8 percent power!

The pattern of decreasing power in ¢ is understandable in light of the

autocorrelation patterns of Table 9, Unlike the price fads alternative, the

returns fads alternative behaves more likg a random walk with coarser

saphing)  Therefore, 4 CONDAr1Son of varianea 4t inators based on coarser to

finer data is less able to reveal returns fads. Table 12b reinforces this
point; since the base observation period is h = Y4, the process is closer Lo a
random walk than the observations used in Table 12a, implying less powerful -
tests. Indeed, the results of Tables 12a,b imply that the simple first-order
serial correlation coefficient of the increments (using the most finely
sampled data) would yield a more powerful test than variance ratios with
higher aggregation values.

Tables 13a,b report the power of tests based upon 24 and Z, respectively
using asymptotic critieal values. In contrast to the price fads case, against
the returns fads there is no loss of power in using asymptotic eritical
values. Whereas the difference in power arising from using empirical versus
asymptotic critical values may be as large as 41 percentage points for the 5
percent test against the price fads alternative, the largest difference

between 5 percent tests of Tables 12a and 13a is about 6 percentage points.

5. AN EMPIRICAL EXAMPLE USING WEEKLY STOCK RETURNS.




obtained from the Center for Research in Security Prices (CRSP) daily returns
file over the 1216-week pericd from September 6, 1962 to December 26, 1985. 4
more complete empirical investigation is conducted in Lo and MacKinlay

[1987]. Tables 1la,b report results for the entire sample period as well as
various sub-periods, aggregation values ranging from 2 to 64, and for base

observation intervals of 1 and 4 weeks.

Table 1Ha presents the results for a one-week base observation period.

Ty 13y Whg aggregation YaluG q 13 Ueasured In one=week unity hence the

mmmmwﬁmmﬂmumemmmmwmmmem

Table 14a. The entries reported in the main rows are the actual estimated
variance ratios (i.e., ﬁr(q) + 1). The values enclosed in parentheses
immediately below the main rows are the corresponding 21-staﬁistics and the
second set of parenthetical entries are the zg-statistics which are robust to
heteroscedasticity. Panel A presents results for the CRSP equal-weighted
index, and Panel B reports similar results for the CRSP value-weighted

index. Within each panel, the first row reports results for the entire 1216-
week sample period, the next two give the results for the two 608-week sub-
periods, and the last four rows contain results for the four 304-week sub-
periods.

It is clear from Panel A that the random walk null hypothesis may be
rejected at all the usual significance levels for the entire sample period and
all sub-periods. Moreover, the rejections are not due to heteroscedasticity
since the Z,-statisties also reject the heteroscedastic random walk. Also,
note that the estimates of the variance ratio are larger than 1.0 for all

cases. Specifiecally, consider the entries in the first column of Table 14a's



consistent estimate of the first-order serial correlation coefficient of
weekly returns. The entry in the first row, 1.30, implies that the first-
order autocorrelation for weekly returns is approximately 30 percent. Since

the 1.30 ratio is based upon 1216 observations, the standard test of the

first-order autocorrelation coefficient (based upon the standard error
1//1216 = 0.03) easily rejects the random walk hypothesis at any significance

level. In addition, note that the variance ratios increase with q. This

Inplies that there 1 positive [legt-onder aubaconrelasion 2t Lower

frequencies as well, For example, the variance ratio for the entire sample
with g = 4 is 1.64. Since 1.64 exceeds 1.30, this implies that one-fourth of
the estimated variance of four-week returns exceeds one-half the estimated
variance of two-week returns, or that two-week returns are also positively
correlated.

Although the variance ratios increase with q, note that the magnitude of
the z, and z, statistics do not. Indeed, the test statistics seem to decline
with g hence the significance of the rejections becomes weaker as coarser-
sample variances are compared to weekly variances. This pattern is
inconsistent with the price fads alternative K1 in which the power is an
increasing function of q. If price fads were indeed present in the data, we
should observe more significant rejections for larger q. Moreover, since
price fads imply negative serial correlation of returns, we should also
observe variance ratios less than 1.0. However, the results of Table 14a are
clearly inconsistent with these implications and support those of the returns
fads alternative instead: positive serial correlation which declines for

longer holding-periods, implying variance ratios greater than 1.0 and weaker



Although the rejection of the random walk hypothesis is much weaker for
the value-weighted index as Panel B of Table 14a indicates, nevertheless the
general patterns persist. The variance ratios also exceed 1.0 and the zy and
2, statistics decline as q increases. Note that the rejections for the value-
weighted index are primarily due to the first 304 weeks of the sample period.

Table 14b presents the variance ratios using a base observation period of

4 weeks hence the first entry of the first row, 1.15, is the variance ratio of

the eight-week returns to four-neek rewrng, €tc, Note that with 4 fase

intarval of a month, we generally do not reject the random walk model even for

the equal-weighted index. This result lends further support to the returns
fads alternative K2 since, as Table 9 shows, the weekly-sampled process can
deviate considerably from a random walk whereas increments of the monthly-
sampled process may be very close to white noise.

These empirical results indicate that weekly'stock returns simply do not
conform to a random walk process. Moreover, the pattern of rejections
suggests that the mean-reverting price fads alternative is not a plausible
model for deviations from the null hypothesis, whereas the returns fads model
seems to be more consistent with the data. Although neither alternative
hypothesis is grounded in any formal model of economic behavior, the empirical
results would suggest that mean-reverting models of prices may be a less
fruitful line of investigation.

Since the rejections are stronger for the equal-weighted index, this
suggests that the smaller capitalization stocks are driving much of the
inferences. Because the market for these "small" stocks is generally thinner
than for larger capitalization issues, a natural objection to our empirieal

results is whether or not the rejections are due merely to mismeasurement of



market's micro-structure. Although these issues are beyond the scope of our
empirical example, they are examined in more detail in Lo and MacKinlay
(1987]. The results in that investigation indicate that our rejections of the
random walk cannot be explained by the usual infrequent trading arguments, nor
are they due to the use of nominal instead of real or excess returns, Given

the extraordinary difference in volatility of nominal returns relative to

inflation and T-bill rates, it should be obvious that the use of nominal,

real, or excess returng ip volatility'D&SEU Lests will yIEld PF&Ctically

dontio] wasults

6. CONCLUSION,

In this paper, we have proposed a simple variance-based specification
test of the random walk hypothesis. Although the finite-sample properties of
this test are comparable to those of the Dickey-Fuller and Box-Pierce tests
under the homoscedastic random walk null hypothesis, our test statistic yields
more reliable inferences than the other tests under a heteroscedastic random
walk. Further Monte Carlo experiments were performed in order to deduce the
power of our test against two interesting alternative hypotheses. Against the
price fads alternative, the variance ratio test (with larger aggregation
values q) and Dickey-Fuller t-test are of comparable power; both dominate the
Box-Pierce Q-test. Against the returns fads alternative, the variance ratio
test (with sma%ler q) and the Box-Pierce test are of comparable power; both
dominate the Dickey-Fuller t-test. The simplieity and versatility of the
variance ratio test suggests that it may be of more practical use than the

other two. Using the Heterageadacti s ru mmbareme oo ot



Type II errors and must be determined on a case-by-case basis. Moreover, our
results emphasize the truism that the reliability of inferences depend
intimately upon the alternative hypothesis of interest. As the empirical
evidence demonstrates, although we reject the random walk hypothesis, it is
not rejected in the direction of a mean-reverting alternative as in Fama and
French [1986] but is more consistent with our second non-stationary

alternative. Other applications of oup specification test must obviously re-

examine the power issue on 3 case-by-case DHSIS. ﬁlthougﬂ He navc ﬁnown tnat
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under specifie null and alternatives, there are of course many other
situations in which those tests may possess more desirable properties.
Consequently, in order to select a sensible testing strategy, one must

consider not only the null hypothesis but also the most relevant alternative

hypothesis.



FOOTNOTES

'See, for example, Gould and Nelson (19741, Hall [1978], Lucas [1978],
Shiller [1981], Kleidon [1986], Marsh and Merton [1986], ete,

2Other important contributions in this substantial and still growing
literature are Dickey [1976], Fuller [1976], Evans and Savin [1981, 1984],
Sargan and Bhargava [1983], Nankervis and Savin [1985], Schwert [1985],
Bhargava [1986], Cavanagh [1986], Stock and Watson [1986a, 1986b].

3See, for example, Nankervis and Savin (1985] and Perron (19861, Of
course, this dependence upon the drift may be eliminated by the inelusion of a
time trend in the regression, However, this requires the estimation of an

esione parasser e Y aleh 18 v of g UL st
perforn pover Conpar 15068 EXLICISY in Section |

uIn particular, they show that the Dickey-Fuller significance points are
asymptotically correct even in the presence of weakly dependent
heterogeneously distributed disturbances which satisfy certain mixing and
moment conditions.

5Note that the hypothesis of interest here is the uncorrelatedness of the
innovations, whereas the general hypothesis of a unit root focuses on the
nonstationarity of the process induced by the unit slope coefficient. In
particular, the seminal papers by Phillips [1985], Phillips and Perron [1986],
and Perron [1986] have extended the applicability of unit root tests to cover
the case of disturbances which are weakly dependent.

6The use of variance ratios is, of course, not new. Most recently,
Campbell and Mankiw [1987], Cochrane (19861, Fama and French [1986], French
and Roll [1986], and Huizinga [1986] have all computed variance ratios in a
variety of contexts, However, those studies do not provide any formal
Sampling theory for our statisties. Specifically, Cochrane [1986], Fama and
French [1986], and French and Roll (1986] all rely upon Monte Carlo
simulations to obtain standard errors for their variance ratios under the
null. Campbell and Mankiw do derive the asymptotiec variance of the variance
ratio but only under the assumption that the variance parameter is known.
Specifically, they use Priestley's [1981, p. u463] expression for the
asymptotic variance of the estimator of the spectral density of aX., at
frequency zero with a Bartlett window as the appropriate asymptotig variance
of the variance ratio. But Priestley's result is for the neon-normalized
Spectral density estimator, i.e., it gives the asymptotic variance of only the
numerator of the variance ratio. If the population variance parameter were
known, then Campbell and Mankiw's [1987] expression would be appropriate.
However, under the more common assumption that the variance is unknown, the
asymptotic correlation between the numerator and the denominator of the
variance ratio must be accounted for in calculating the ratio's limiting
distribution (e.g. by the delta-method). 1In this paper, we develop the formal
sampling theory of the variance rabtim araksoks . e foot WS o
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mf(0) = v{0) + 2- £ y(k)
k=1

where y(k) is the autocovariance function. Dividing both sides by the
variance y(0) then yields:

Tf*(0) = 1+ 2+ ¢ p(k)
k=1

where f* is the normalized spectral density and p(k) is the autocorrelation
function. Now in order to estimate the quantity =f*(0), the infinite sum on

the right-hand side of the preceding equation must obviously truncated. If,
in addition to truncation, the autocorrelations are weighted using Newey and

West's [1987] procedure, then the resulting estimator is formally equivalent

MMMMHMMMﬂMmMMmmHMMWMMmMMM

ratio, Huizinga [1986] does employ the Newey and West [1987] estimator of the
normalized spectral density.

7See, for example, Lehmann [1983, p. 345, Theorem 2.1].
8see Lehmann {1983, Chapter 5.21.

Note the similarity between the variance ratio and the Box-Pierce Q-
statistic which is a linear combination of the squared autocorrelations with
all the weights set identically equal to unity. It is this similarity which
motivates our comparison of the variance ratio to the Q-statistiec in Sections
3 and 4.

1OSpecif‘ically, since it is shown in Corollary 2.1 that the variance
ratio statistic is asymptotically equivalent to a linear combination of
autocorrelations, its asymptotic variance is simply the asymptotic variance of
the linear combination of autocorrelations. If (A4) obtains, this variance is
equal to the weighted sum of the individual autocorrelation variances. If
(Al8) is violated, then the autocovariances of the autocorrelations must also
be estimated. This is readily accomplished using, for example, the approach
in Newey and West [1987]. Note that an even more general (and possibly more
exact) sampling theory for the variance ratios may be obtained using the
results of Dufour and Roy [1985]. Again, this would sacrifice much of the
simplicity of our asymptotic results.

11Taylor [1984] also obtains this result under the assumption that the
multivariate distribution of the sequence of disturbances is symmetrie.

127ne complete set of results are available from the authors upon
request,

13nu11 simulations were performed in single-precision FORTRAN on a DEC
VAX 8600 using the random number generator GGNML of the IMSL subroutine
library. Power simulations were performed on an IBM 3081 also in single-
precision FORTRAN using GGNML.



unreliable inferences in even the largest samples, we do not report results

for larger values of q. The complete set of simulation results are available
from the authors upon request.

BMore formally, let the random walk disturbance ¢_ be given by the
relation €, = 0.}, where A is i.i.d. N(0, 1) and 9 saEisfies relation (20)

(it is assumed that A, and t, are independent), The empirical studies of
French, Schwert, and Stambaugh {1985] and Poterba and Summers [1986] posit
such a process for the variance. Note that ci cannot be interpreted as the
unconditional varianee of the random walk disturbance ¢, Since os is itself

stochastic and does not correspond to the unconditional expectation of any

randon variable. Rather, conditional upen uE, eu 18 normally distributed with

expectation 0 and varianee o.. Ify, in place of (20), the variance ui were re-

parameterized to depend only upon exogenous variables in the time t - 1
information set, this would correspond exactly to Engle's [1982] ARCH process.

The unconditional moments of ¢ may be readily deduced by expressing the
process explicitly as a function of“all the disturbances:

t
3 1
ey = A0y k?1 exp[2 v ck]

Since Y A, and L, are assumed to be mutually independent, it is apparent
that ¢, 'is Eerially uncorrelated at all leads and lags (hence Assumption (A1)

is satfsfied) but is non-stationary and temporally dependent. Moreover, it is
evident that E[eset_Jet_k] = 0 for all t and for § # k hence Assumption (A4)

is also satisfied. A straightforward calculation yields the moments of ¢ :

t
2 op” 2p)! 1 - °°
¢ p!2p 2 1 - wz

E[e§p+1] =0, p=o0,1,2,..

From these expressions it is apparent that, for ¢ ¢ (0, 1), ¢, possesses
bounded moments of any order and is unconditionally heterosce&astic; similar
calculations for the cross-moments yield Assumption (A2). Finally, the
following inequality is easily deduced:

5

2
E[ef] < exp|
¢ 2(1 - 4°)

| <o

n
1z
n -

k=1

thus Assumption (A3) is verified. Note that the kurtosis of €L is given by:
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E[sﬁ] E[agw ]
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P t
(E[et]) (E[cg$ ])2

by Jensen's inequality. This implies that, as for Engle's [1982] stationary
ARCH process, the distribution of ¢, is more peaked and possesses fatter tails
than that of a normal random variatg. However, when ¥ = 0 or as t increases
without bound, the kurtosis of £ is equal to that of a Gaussian process.

16Since the Box-Pierce statistic is the sum of squares, tests based on
the Q-statistic are one-sided, whereas the z-statistic tests are two=sided.

17See, for example, Vasicek [1977] and Cox, Ingersoll, and Ross [1985a,
1985b].

Y

18The "solution" is in the sense of Ito [1951]i that is, the stochastis
Integral in (%) is an Ito T

1qOP course, the valug of b depends upon the tine wnits used bo neasure

data hence our results may be interpreted more generally as applicable to the
case where h = 1 period, where the actual length of the period is arbitrary.
However, since our empiriecal investigations employ weekly data, we choose
parameter values with the implicit understanding that h = 1 means one week.
Therefore, although our results also apply to cases where h = 1 corresponds to
one year, the particular parameter values we have chosen would he quite
implausible for such a sampling interval.

20See Section 5 and Lo and MacKinlay [1987].

21This, of course, entails no loss of generality if all dividends are re-
invested in the security or if the dividend-price ratio is a nonstochastic
funetion of time,

22)Note that the mean-square differentiability of X(t) may not be
consistent with any continuous-time equilibrium model of asset prices.
Specifically, Harrison, Pitbladdo, and Schaefer [1984] show that continuous-
time price processes in frictionless markets with continuous sample paths must
be of unbounded variation to rule out arbitrage. We therefore do not advocate
the returns fads process as an economically reasonable alternative to the
lognormal diffusion; its use is merely to illustrate the power of our test
against an alternative in which returns are positively autocorrelated. Note,
however, that the returns fad model may be an appropriate model for aggregate
wealth (e.g., in a single-good representative agent model).



where

: n n
Vb = Var[——é: I (ei - qogh)] = —El— X Uar[ei - qogh] (A1-4a)
h/ng k=1 h™nq k=1
= -51— . nqzaghz z 2qag . (A1-4b)
h™nq

Since ci is the maximum-likelihood estimator of ag under the null hypothesis

(1), it is asymptotically efficient. Therefore, following Hausman's (1978)

At e L e O v of A ) i sl

the difference Vy - V, of the asymptotic variances of /ng ‘“5 - og) and
/nq (;i - ag) respectively. Thus we have
/0 34() = /7 (of - 62) 2 N(0, 2(a=T)ap) . (1-5)

The asymptotic distribution of the ratio then follows by applying the "delta-

2 2

: — "2 "2
" -
method" to the guantity v/nq [g(ca,cb) g(oo,ao

)) where g{u,v) = %, hence:

= - 1) 2 N0, 2(q-1)) . (41-6)

Procof of Theorem 2:

In order to derive the limiting distributions of vnq M, and vnq M., we

d
require the asymptotic distribution of /ng (oc - cg). Because oz is computed
using overlapping observations, its asymptotic behavior is somewhat more
complicated to deduce. OQur approach is to re-express this variance estimator

as a function of the autocovariances of the (Xk - Xk-q) terms and then employ

well-known limit theorems for autocovariances. Consider then the quantity:



A nq n q -~
2 1 2 i 2
oC s 1 [X-% - qu®:-_ r [z - uh)] (A2-1a)
c nq2h k=q k k-q 2 q 3= k j+1 k-j
nq q -~
-l 1 [z J+1]2 (42-1b)
nqhkq 3=1
where Temgot Xk-j+1 - Kk_J - uh, But then we have:
nq[Qa\ 2q—1 Q"'2.\ A A A ] ( )
— I In + Zn 1 +22n .+ 2n 0 A2-2a
nq2h k=q j=1 k-j+1 j=1 K=J+1 k-] j=1 k-j+1 k-J 1 K k-q+1
1 nq AE q.1 AE AZ
2 [q ) nk - L [{q ) k]nk t knn - +k+1}
ngh k=1 k=1 -9
ngq . q-1 PN - 4
+2g-1) k§2 %M1~ 2 kEZ[[q - k]nk k-1 * [k - 1]nnq-q+k+1nnq-qva-lgc]
ng ~ « q-1 ~ - - -
+2(q - 2) k£3 TkMk-2 ~ 2 kf3([q b k]nknk—E + [k - 2}nrlq-q-a-i<+-1nr‘1q-q+k-1]
ng . a
+ 2 kiq nknk_q+1] (A2-2b)
;(0) - op(n_%) + gig—é—ll ;(1) - op(n*%) + gig—é—g— ;(2) - op(n_i)
L., + % ;(q - 1) (A2-2¢)
A ng . .
where v(]J) = E&H b MMy 5 and o (n J") denotes a gquantity which is of order

k=j+1
smaller than n'% in probability. Now define the gx1 vector vy =

-~

[y(o) v(1) ... v(q - 1)]'. A standard limit theorem for sSample



A

— 2 4 .
/g (v - ope,) 2 N(o, oO[Iq + e]e1]) (A2-3)

where e, is the qx1 veector [1 0 ... 0]' and I_ is the identity matrix of order

q
q. Returning to the quantity /Ea (ug - oé), we have:

/ng (32 - cg) = /nq [[;(0) - cg] + ngﬁi*ll ;(T) + s
(42-1)

20 . L -3
. v(g - 1)] - /nq op(n ) .

Applying the 'delta=method' to (A2«4) in view of equation (A2e3) then yields

the following result:

/nq (Qi - cg) 2 N(o, V) (A2-5a)
where
b (2(q - 1)12 4 2y2 4
V, =204 + [-(—q—a——-—)—] g * e ¥ (a] % (42-5b)
4 2 A1,
= 200[1 + 5 (z 39)] (A2-5¢)
q  J=1

v

u
N
Q

4
. 0[3 +3ql o (A2-54d)

Given the asymptotic distributions (A1-1) and (A2-5), Hausman's (1978) method
may be applied in precisely the same manner as in Theorem 1 to yield the

desired result:

— a 2(2q - 1){gq - 1) 4
/nq ¥,(q) = N(o, e %)

/md M (q) 2 N(o, H=Dla = 1)y



Proof of Theorem 3:

(a} We prove the result for ﬁr(q); the proofs for the other statistics follow
almost immediately from this case. Define the increment process

Yt = Xt - Xt-1 and define p(t) as:

1 T - N
) 7 th (=) - (Y, - w) )
p(t) = T p z BT) (A3-1)
r tf? e =)

Consider first the numerator A(t) of p(1):

T . R T - -
A(r) = % z (Yt - u)-(Yt_T - u} = % I {u-u+ et)-(u - u+ et_r) (A3~2a)
t=t : t=t
T T T
_ T-1+1 T2 oy oyl 1 _
= 7 (e=u)+ (u-p) T L+ (u-u) T f St T L €€ . (A3-2b)
t=1 t=1 t=7

~ 8.5,
Since u + yu, the first term of (A3-2b) converges a.s. to zero as

T + =, Moreover, under Assumption (A2) it is apparent that {et}
satisfies the conditions of White's [1984] Corollary 3.48, hence
Assumption (A1) implies that the second and third terms of (A3-2b) also
vanish a.s. Finally, because €8 . is clearly a measurable function of
the et's,‘{stet_r} is also mixing with coefficients of the same size

as {et}. Therefore, under (42) Corollary 3.48 of White [1984] may also
be applied to {etst-r} for which (A1) implies that the fourth term of

(A3-2b) converges a.s. to zero as well. By similar arguments, it may

also be shown that

b 3
[}
[/}

B(7) = % (v, - w2 .+ &2, (A2_2)%



- a.s.
Therefore, we have o{(t) + 0 for all 7 ¢ 0, hence we conclude:

_ a.s.
Mr(q) + 0as T+,

(b) By considering the regression of increments Axt on a constant and lagged

increments Axt_J, this follows directly from White and Domowitz [1984].

Proof of Corollary 3.1:

This result follows trivially from Corollary 2,1 and ﬂssumption (ﬂq)u
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Table 1

Upper and lower bounds on the standard deviation of zy and lower bound on Zy
itself, for several values of n,

n ' v y Inf{z,]
2 0.333 0.667 -1.732
4 0.167 0.333 -2.,ulg
3 0.083 0.167 -3.464
16 0.042 0.083 -4,899
32 0.021 0.042 -6.928
64 0.010 0.021 -9.798
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Table 5a

Empirical size of nominal 1, 5, and 10 percent tests of the random
walk null hypothesis with homoscedastic disturbances using the 24-
statistic corresponding to M _(q) vs. the Box-Pierce Q-statistie
(BP-Q) with q-1 autocorrelations. Each set of rows corresponding
to a given sample size forms a separate and independent simulation
experiment based upon 20,000 replications.

Sngie q 1 Percent Test 5 Percent Test 10 Percent Test
32 2 0.010 0.006 0.056 0.044 0.110 0.093
R

64 2 0.010 0.008 0.052 0.047 0.103 0.094
64 b 0.014 0.008 0.055 Q.040 0.106 0.084
b4 8 0.026 0.010 0.057 0.039 0.100 0.073
128 2 0.009 0.010 0.050 0.051 0.100 0.099
128 y 0.012 0.009 0.051 0.046 0,100 0.092
128 8 0.016 0.011 0.050 0.044 0.098 0.087
128 16 0.022 0.011 0.053 0.041 0.090 0.076
256 2 0.010 0.009 0.052 0.049 0.103 0.099
256 y 0.011 0.010 0.052 0.049 0.102 0.095
256 8 0.013 0.011 0.051 0.047 0.102 0.092
256 16 0.019 0.012 0.053 0.048 0.101 0.092
256 32 0.026 g.on 0.056 0.042 0.096 0.077
512 2 0.010 0.010 0.051 0.050 0.102 0.100
512 il 0.010 0.009 0.051 0.046 0.099 0.093
512 8 0.012 0.009 0.053 0.046 0.100 0.092
512 16 0.014  0.010 0.052 0.045 0.101 0.090
512 32 0.019 0.010 0.055 0.043 0.099 0.083
512 64 0.027 0.008 0.057 0.032 0.093 0.062
1024 2 0.010 0.010 0.049 0.051 0.102 0.099
1024 I 0.010 0.010 0.050 0.050 0.100 0.096
1024 8 0.010 0.010 0.048 0.048 0.099 0.096
1024 16 0.011 0.010 0.050 0.046 0.098 0.092
1024 32 0.014 0.010 0.050 0.045 0.095 0.089
1024 64 0.018 0.010 0.051 0.043 0.097 0.081
1024 128 0.024 0.006 0.052 0.028 0.090 0.053




Table 5b

Empirical size of nominal 1, 5, and 10 percent tests of the random
walk null hypothesis with homoscedastic disturbances using the Zg-
statistic corresponding to M (q) vs. the heteroscedasticity-
consistent Box-Pierce Q-statfstic (BP-Q%) with q-1 autocorrela-
tions. EBach set of rows corresponding to a given sample size forms
a separate and independent simulation experiment based upon 20,000
replications.

Sample

Size 1 Percent Test 5 Percent Test 10 Percent Test

2, BP-Q¥ Z5 BP-Q* Zy BP-Q¥*

A T 1 S O
) 0.0 0.000 oM 0.0l 843t .00

=

6l

2 0.010 0.007 0.056 0.048 0.112 0.102

64 4 0.016 0.009 0.061 0.046 0.118 0.096
64 8 0.028 0.013 0.063 0.053 0.112 0.100
128 2 0.008 0.009 0.051 0.052 0.105 0.103
128 4 0.013 0.010 0.053 0.049 0.105 0.101
128 8 0.017 0.012 0.054 0.053 0.105 0.103
128 16 0.025 0.017 0.058 0.060 0.098 0.110
256 2 0.01M1 0.009 0.053 0.050 0.105 0.100
256 u 0.011 0.011 0.053 0.050 0.105 0.098
256 8 0.013 0.012 0.054 0.050 0.107 0.101
256 16 0.020 0.015 0.056 0.059 0.105 0.110
256 32 0.027 0.019 0.060 0.068 0.102 0.119
512 2 0.010 0.010 0.051 0.050 0.102 0.100
512 4 0.010 0.009 0.051 0.047 0.099 0.095
512 8 0.012 0.011 0.054 0.047 0.101 0.095
512 16 0.015 0.011 0.054 0.050 0.103 0.100
512 32 0.020 0.0114 0,057 0.056 0.103 0.107
512 64 0.030 0.018 0.060 0.066 0.098 0.118
1024 2 0.010 0.010 0.049 0.051 0.102 0.100
1024 o 0.010 0.010 0.051 0.050 0.100 0.097
1024 8 0.010 0.010 0.048 0.049 0.100 0.098
1024 16 0.011 0.010 0.050 0.050 0.099 0.098
1024 32 0.014 0.012 0.051 0.052 0.097 0.103
1024 ol 0.018 0.016 0.053 0.062 0.100 0.114
1024 128 0.025 0.021 0.054 0.071 0.095 0.123
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Table Ta

Empirical size of nominal 1, 5, and 10 percent tests of the random walk
null hypothesis under heteroscedastic disturbances using the z,-statistic
corresponding to Mr(q), the Box-Pierce Q-statistic (BP-Q) with g-1
autocorrelations, and the Dickey-Fuller t-s&atistic (DF). The specific
form of heteroscedasticity is given by In 6, 2 v lnog, _, + T, L, L.i.d.
N(O,1), v = 0,50, Each set of rows corresponding to d given sample size
forms a separate and independent simulation experiment based upon 20,000
replications.

Sample

Size ! Percent Test 5 Percent Test 10 Percent Test

2y BP-Q DF zy BP-Q OF zy  BP-Q  OF
e o 00 0.0 0023 0.093 0009 0.073 0960 03 0,1

U N (R

T —— mame S S ——
—“

b2 0,037 0.029 0.019  0.107 0.000 0.066 0.175 0.158 0.116
6l Y 0,020 0.023 0.019 0.088 0.078 0.066 0.155 0.13% 0.116
I 8 0.030 0.016 0.019 0.066 0.053 0.066 0.119 0.099 0.116
128 2  0.043 0.039 0.016 0.123  0.115  0.061 0.195 0.184 0.111
128 Yy 0.033 0.032 0.016 0.104 0.103 0.061 0.174 0.169 0o.111
128 8 0.028 0.029 0.016 0.077 ¢.080 0.061 0.138 0.134 0.11
128 16 0.030 0.020 0.016 0.063 0.055 0.061 0.106 0.095 0.111
256 2 0.053 0.050 0,012 0.134 0.129 0.058 0.207 0.200 0.1
256 4 0.0 0.043 0.012 0.112 0.122 0.058 0,183 0.192 0.111
256 8 0.029 0.033 0.012 0.087 0.096 0.058 0.152 0.161 0.111
256 16  0.025 0.023 0.012 0.067 0.073 0.058 0.122  0.127  0.111
256 32 0.029 0.018 0.012 0.057 0.053 0.058 0.096 0.091 0.111
512 2 0.058 0.056 0.010 0.1u7 0.146 0.049 0.223 0.220 0.099
512 y 0.046 0.051 0.010 0.125 0.138 0.049 0.201 0.218 0.099
512 8 0.033 0.038 0.010 0.101 0.113 0.049 0.1589 0.183 0.099
512 16 0.026 0.029 0.010 0.076 0.086 0.049 0.136 0.146 0.099
512 32 0.024 0.020 0.010 0.064 0.065 0.049 0.115 0.116 0.09g
512 64 0.027 0.013 0.010 0.058 0,044 0.049 0.097 0.077 0.099
1024 2 0.059 0.058 0.012 0.148 0.148 0.054 0.222 0.222 0.105
1024 4 0.047  0.057 0.012 0.128 0.148 0.054 0.197 0.226 0.108
1024 8 0.0 0.039 0.012 0.101 0.116 0.054 0.167 0.193 0.105
1024 16 0.021 0.029 0.012 0.079 0.095 0.054 0.139 0.160 0.108
1024 32 0.020 0.022 0.012 0.063 0.073 0.054 0.119 0.130 0.105
1024 64 0.023 0.016 0.012 0.057 0.058 0.054 0.106 0.100 0,108
- 1024 128 0.030 0.009 0.012 0.061 0.033 0.054 0.096 0.061 0.105




Empirical size of nominal 1, 5, and 10 percent tests of the random walk
null hypothesis under heteroscedastic disturbances using the z
corresponding to M (q), the heteroscedasticity-consistent Box-

statistie (BP-Q¥)
statistic (DF).

by In o

2 lna

with q-1 autocorrelations, and the Dickey-Fuller t-
Ehe specific form of heteroscedasticity is given
} i.i.d. N(0,1)}, v = 0.50.

corresponding to a given sample size forms a separate an

+ L, Ct

Table 7b

simulation experiment based upon 20,000 replications,

-statistic
gierce Q-

Each set of rows
d independent

Sample
Sige 1 Percent Test 5 Percent Test 10 Percent Test

25 BP-Q* oF Z5 BP-Q¥ DF 25 BP-Q¥ DF

R E 00T 0003 0023 001 0.0% 001 0 0.0 0.t
3 S LI X A
64 -2 0.008 0.004 0.019 0.055 0.039 0.066 0.118 0.098 g.116
64 I 0.016 0.006 0.019 0.061 0.037 0.066 0.116 0.087 0.116
6L 8 0.028 0.009 0.019 0.063 0.045 0.066 0.108 0.092 0.116
128 2 0.007 0.005 0.016 0.051 0.043 0.061 0.109 0.098 0.111
128 4 0.013  0.007 0.016 0.053 0.039 0.061 0.106 0.087 0.111
128 8 0.018 0.008 0.016 0.053 0.045 0.061 0.102  0.090 0.111
128 16 0.027 0.013 0.016 0.059 0.052 0.061 0.097 0.096 0.111
256 2 0.008 0.007 0.012 0.047 0.045 0.058 0.102 0.096 0.111
256 Y 0.010  0.007 0.012 0.049 0.042 0.058 0.101 0.089 0.111
256 8 0.014  0.009 ©0.012 0.050 0.044  0.058 0.099 0.093 0.111
256 16 0.020 0.010 0.012 0.052 0.050 0.058 0.098 0.097 0.111
256 32 0.027 0.016 0.012 0.055 0.057 0.058 0.092 0.106 0.111
512 2 0.008 0.007 0.010 0.049  0.047 0.049 0.105 0,102 0.099
512 4 0.011 0.008 0.010 0.053 0.045 0.049 0.104 0.094 0.099
512 8 0.013  0.009 0.010 0.052 0.047 0.049 0.105 0.097 0.099
512 16 0.016 0.010 0.010 0.054 0.050 0.049 0.103  0.098 0.099
512 32 0.020 0.012 0.010 0.056 0.054 0.049 0.101  0.104  0.099
512 64 0.026 0.016 0.010 0.057 0.060 0.049 0.096 0.111  0.099
1024 2 0.008 0.008 0.012 0.046 0.046 0.054 0.097 0.096 0.105
1024 Y 0.009 0.009 0.012 0.050 0.049 0.054 0.100 0.100 0.105
1024 8 0.010 0.008 0.012 0.050 0.046 0.054 0.100 0.095 0.105
1024 16 0.011  0.010 0.012 0.050 0.051 0.054 0.101 0.100 0.105
1024 32 0.015 0.012 0.012 0.051 0.053 0.054 0.100 0,102 0.105
1024 64 0.021 0.014 0.012 0.054 0,057 0.054 0.099 0.107 0.105
1024 128 0.030 0.019 0.012 0.061 0.068 0.054 0.097 0.119 0.105




autocorrelations, and the Dickey-Fuller t-s

N(0,1), ¥ = 0.80.
forms a separate and independent simulation ex

Table 8a

Empirical size of nominal 1, 5, and 10 percent tests of the random walk
null hypothesis under heteroscedastic disturbances using the z,-statistic
corresponding to M (q), the Box-Pierce Q-statistic (BP-Q) with g-1
r ., o
Eatlstlc (BF). The specific
form of heteroscedasticity is given by Ino_ = ¢ ln g

+ Ct’ 5

i.i.d.

Each set of rows correspdnding to 3 given sample size

periment based upon 20,000

replications.
Sample
Size 1 Percent Test 5 Percent Test 10 Percent Test
2 2
J 20600 00 0 0N 06 020 01w IR
0% 0,082 0.031 0083 0.10 0.009 0.106  0.181 0.165 0.1
64 2 0.091 0.078 0.042 0.195 0.176 0.101 0.275 0.254 0.161
64 4 0.069 0.089 0.042 0.162 0.194 0.101 0.2U6 0.278 0.161
64 8 0.054 0.068 0.042 0.104 C.149 0.101 0.178 0.216 0.161
128 2 0.136  0.127 0.041 0.249 0.237 0.100 0.332 0.320 0.163
128 b 0.111 0.164 0.041 0.223 0.301 0.100 0.306 0.397 0.163
128 8 0.072 0.148 0.041 0.166 0.27 0.100 0.248 0,357 0.163
128 16 0.058 0.095 0.041 0.103 0.181 0.100 0.173 0.251 0.163
256 2 0.182 0.176 0.032 0.302 0.293 0.093 0.383 0.376 0.153
256 4 0.154 0.253 0.032 0.273 0.399 0.093 0.355 0.491 0.153
256 8 0.106 0.246 0.032 0.219  0.39t  0.093 0.307 0.482 0.153
256 16 0.064 0.180 0.032 0.147  0.301 0.093 0.230 0.381 0.153
256 32 0.050 0.101 0.032 0.092 0.184 0.093 0.154  0.247 0.153
512 2 0.223 0.220 0.026 0.347 0.343  0.079 0.429 0.425 0.135
512 y 0.198 0.322 0.026 0.322 0.473 0.079 0.405 0.565 0.135
512 8 0.146 0.331 0.026 0.266 0.486 0.079 0.347 0.578 0.135
512 16 0.092 0.263 0.026 0.196 0.408 0.079 0.279 0.497 0.135
512 32 0.058 0.176 0.026 0.127 0.288 0.079 0.204 0.366 0.135
512 64 0.047 0.098 0.026 0.085 0.172 0.079 0.135 0.224 0.135
1024 2 0.264 0.261 0.020 0.391 0.390 0.073 0.468 0.467 0.126
1024 y 0.231 0.389 0.020 0.360 0.540 0.073 0.442  0.627 0.126
1024 8 0.181  0.414 0.020 0.307 0.575 0.073 0.391  0.661 0.126
1024 16 0.121 0.345 0,020 0.237 0.504 0.073 0.322 0.590 0.126
1024 32 0.072 0.241 0.020 0.164 0.379 0.073 0.246 0.469 0.126
1024 64 0.044 0.150 0.020 0.104 0.254 0.073 0.175 0.328 0.126
1024 128 0.037 0.076 0.020 0.071 0.139 0.073 0.118 0.188 0.126




Table 8b

Empirical size of nominal 1, 5, and 10 percent tests of the random walk
-statistic
ierce Q-

null hypothesis under heteroscedastic disturbances using the z
corresponding to M (q), the heteroscedasticity-consistent Box-
statistic (BP-Q*) with q-1 autocorrelations, and the Dickey-Fuller t-

:

statistic (DF). ghe specific form of heteroscedasticity is given
Each set of rows

by ln o,

=Y Inag

*C,Ct

. i.i.d. N(O,1), v = 0.80.
corresponding to 2 given sample size forms a separate and independent

simulation experiment based upon 20,000 replications.

Sg?gée | Percent Test 5 Percent Test 10 Percent Test
Zg BP-Q* DF 29 BP-Q* DF 25 BP-Q* OF
¥ ¢ 0.019 0.002 0.043 0.074 0.038 0.106 0.198 0.091 016
32 § 0.032 0.005 0.003 0.076 0.033 06.106 0.128 0.078 0.162
6l 2 0.009 0.002 0.042 0.051 0.033 0.101 0.113  0.089 0.161
64 4 0.018 0.005 0.042 0.060 0.035 0.101 0.110 0.080 0.161
64 8 0.031 0.009 0.042 0.066 0.038 0.101 0.103  0.083 0,161
128 2 0.006 0.004 0.041 0.046 0.037 0.100 0.107 0.094 0.163
128 4 0.013 0.005 0.041 0.053 0.034 0.100 0.105 0.080 .0.163
128 8 0.023 0.008 0.041 0.059 0.039 0.100 0.098 0.081 0.163
128 16 0.031  0.011  0.041 0.062 0.047 0.100 0.094 0.091 0.163
256 2 0.006 0.004 0.032 0.045 0.040 0.093 0.100  0.094 0.153
256 b 0.011  0.006 0.032 0.048 0.039 0.093 0.101 0.086 0.153
256 8 0.017 0.009 0.032 0.051 0.041 0.093 0.095 0.086 0.153
256 16 0.023 0.010 0.032 0.053 0.046 0.093 0.087 0.088 0.153
256 32 0.029 0.013 0.032 0.057 0.052 0.093 0.086 0.099 0.153
512 2 0.006 0.005 0.026 0.042 0.040 0.079 0.098 0.096 0.135
512 y 0.009 0.007 0.026 0.047 0.040 0.079 0.099 0.088 0.135
512 8 0.016 0.009 0.026 0.051" 0.043 0.079 0.093 0.088 0.135
512 16 0.020 0.010 0.026 0.052 0.047 0.079 0.092 0.094 0.135
512 32 0.024  0.010 0.026 0.055 0.052 0.079 0.090 0.101 0.135
512 64 0.031 0.0%4 0.026 0.061 0.059 0.079 0.090 0.111 0.135
1024 2 0.008 0.007 0.020 0.044 0.042 0.073 0.098 0.097 0.126
1024 4 0.009  0.007 0.020 0.049 0.041 0.073 0.098 0.091 0.126
1024 8 0.014 0.008 0.020 0.050 0.041 0.073 0.100 0.089 0.126
1024 16 0.016 0.009 0.020 0.051 0.044 0.073 0.097 0.095 0.126
1024 32 0.020 0.009 0.020 0.053 0.089  0.073 0.094 0.097 0.126
1024 64 0.023  0.011  0.020 0.053 0.051 0.073 0.091 0.098 0.126
1024 128 0.028 0.017 0.020 0.056 0.063 0.073 0.084 0.111  0.126
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Table 10a

Power of the specification test M (g} (using statistic z4), the Dickey-Fuller
t-test (D~F), and the Box-Pierce Q-test (BP-Q) against the price fads
alternative with parameters (a_,Y »a.) = (0,000, 0,041, 0,020) with h = 1 for
various sample sizes and aggrefatfon’values, ALl simulations are based upon
20,000 replications using empirical critical values obtained from simulations
under the homoscedastic null nypothesis,

ngsie q Power - 1% Teat Power - 5% Test Power - 10% Test
32 2 0.009 0.009 0.044 0,046 0,092 0,099
32 4 0.010 0,009 0.045 0,046 0.090 0.097
32 D-F 0.011 0.050 0,094

0010 0.010 0.0 0050 000 0.1

0,1
0.000 0009 0,049 W0 0,100
0008008 g 0050 0.0

o
P —y
o = >

bl p-F 0.008 0.041 0.086
128 2 0.010 0.010 0.049  0.052 0.097 0.102
128 4 0.010 0.011 0.054  0.054 0.108 0.108
128 8 0.011 0.012 0.052  0.058 0.106 0.110
128 16 0.0%1 0.011 0.054  0.059 0.101 0.113
128 D-F 0.009 0.0u2 0.090
256 2 0.012 0.013 0.056 0.060 0,108 0.114
256 4 0.018 0.012 0.062  0.067 0.119 0,121
256 8 0.020 0.014 0.083  0.067 0.151 0.12k
256 16 0.029 0.013 0.105  0.062 0.187 0.123
256 32 0,032 0.013 0.128 0.061 0.222 D.121
256 D-F 0.030 0.123 0.215
512 2 0.015 0.017 0.066  0.068 0.123 0.127
512 ] 0.024 0.019 0.089 0.084 0,156 0.152
512 8 0.040 0.021 .14 D.086 0.227 0.163
512 16 0.080 0.022 0.227  0.093 0.343 0.167
512 32 0,142 0.020 0.34% 0,087 0,490 0.162
512 64 0.199 0.018 0.365  0.084 5,636 0.151
512 D-F 0.186 0.477 0.650
1024 2 0.026 ¢.024 0.093 0,093 0.161 0.165
1024 4 0.056 0.033 0.166  0.118 0.258 0.207
1024 8 0.122 0.035 0.298  0.137 0. 407 0.236
1024 16 0.269 0.035 0.489  0.148 0.627 0.252
1024 32 0.510 0.03k 0.751  0.134 0,847 0.232
1024 64 0764 0.026 0.925  0.197 0.968 0.196
1024 128 0.854 0.022 0.979 0,092 0.994 9.170

1024 bD-F 0.913 0.993 0.998




Table 10b

Power of the specification test M_(q) (using statistic z ) and the Dickey-
Fuller t-test (D-F) against the price fads alternative o} Table 10a with h = 4
for various sample sizes and aggregation values. All simulations are based
upon 20,000 replications using empirical critical values obtained from
simulations under the homoscedastic null hypothesis,

Sngie q Power (14) Power (5%) Power (10%)
32 2 0.010 0.051 10,102
32 4 0.011 0,053 0,103

? D¢ 0,010 0.047 0.002

64 2 0.017 0.072 0.134
6U 4 0.026 0.094 0.175
64 8 0.030 0.120 0.213
6U D-F 0.028 0.109 0.183
128 2 0.027 0.104 0.180
128 y 0.066 0.204 0.307
128 8 0.120 0.313 0.452
128 16 0.182 0.446 0.600
128 D-F 0.153 0.427 0.616
256 2 0.067 0.198 0.306
256 4 0.210 0.399 0.542
256 8 0.424 0.694 0.807
256 16 0.698 0.900 0.958
256 32 0.823 0.973 0.992
256 DF 0.877 0.988 0.998




Table 113

Power of the specification test M (q) (using z,) against the price fads
alternative with parameters (a_,y ,0 ) = (0.000, 0.041, 0.020) with h = 1 for
various sample sizes and aggregat?onpvalues using asymptotic critieal

values. All simulations are based upon 20,000 replications.

Sample
g?ge q Power (1%) Power (5%) Power (10%)
32 2 0.009 0.050 0.107
32 4 0.014 0.045 0.092
b4
: 0o 0091 0104
ol “ 0.0t 0 00
b4 8 0,014 0.035 0.075
128 2 0.011 0.053 0.102
128 4 0.007 0.0u4 0.103
128 8 0.005 0.032 0.086
128 16 0.005 0.016 0.054
256 2 0.012 0.057 0.110
256 4 0.010 0.056 0.113
256 8 0.005 0.052 0.124
256 16 0.001 0.038 0.119
256 32 0.000 0.004 0.077
512 2 0.015 0.066 0.123
512 4 0.019 0.081 0.151
512 8 0.019 0.109 0.204
512 16 0.015 0.143 0.280
512 32 0.002 0.147 0.358
512 64 0.000 0.029 0.318
1024 2 0.023 0.090 0.158
1024 Y 0.042 0.145 0.243
1024 8 0.074 0.243 0.368
1024 16 0.123 0.401 0.572
1024 32 0.175 0.611 0.791
1024 64 0.074 0.750 0.928
1024 128 0.000 0.428 0.943




Table 11b

Power of the specification test M (q) (using 22) against the price fads
alternative of Table 11a for varibus sample sizes and aggregation values using

asymptotic critical values. All simulations are based upon 20,000
replications.

Sg?gée q Power (1%) Power (5%) Power (10%)
32 2 0.010 0.063 0.126
32 4 0.018 0.058 0.115
o4 2 0,010 0,096 0.112
! u 000 i LI
04 8 0.015 0.041 0.087
128 2 0.010 0.055 0.109
128 4 0.007 0.047 0.107
128 8 0.006 0.036 0.092
128 - 16 0.005 0.018 0.064

256 2 0.012 0.057 0.112
256 4 0.010 0.058 0.117
256 8 0.005 0.056 0.127
256 16 0.001 0.044 0.128
256 32 0.000 0.008 0.092
512 2 0.014 0.067 0.124
512 4 0.019 0.082 0.150
512 8 0.020 0.111 0.206
512 16 0.016 0.148 0.286
512 32 0.003 0.159 0.372
512 64 0.000 0.045 0.353

1024 2 0.023 0.090 0.158

1024 L 0.041 0.145 0.243

1024 8 0.075 0.246 0.370

1024 16 0.125 0. 404 0.575

1024 32 0.183 0.616 0.794

1024 64 0.089 0.764 0.932

1024 128 0.000 0.519 0.954




Table 12a

Power of the specification test M (q) (using Statistic z,), the Dickey-Puller
test (D-F), and the Box-Pierce Q-test (BP-Q) against the returns fads
alternative with parameters (ar,Y ,ur) = (0.004, 6.0, 0.069) with h = 1 for
various sample slzes and aggr‘egatfon values. All simulations are based upon
20,000 replications using empirical critical values obtained from simulations
under the homoscedastic null hypothesis.

Sngie Power ~ 1% Test Power - 5% Test  Power - 10% Test
Z1 BP-Q 21 BP-Q ZT BP'Q
32 2 0,017 0,024 0.075 0.064 0.136 0.165
32 ] 0.016 0.017 0.065 0.07% 0.120 0.132
32 D-F 0.005 0.031 0.070
Y 2

0.0 044
0.04 0,025

UI]]j Uu]jj
0,083 0,097

L% 0.2
L5

006 000 0 ok oy 0.149
W 0,009 |

. 0,045 i
128 Lo 000 00 0B a0 aam g
128 4 0.042 0.043 0.145 0.14% 0.226 0.233
128 8 0.027 0.030 0.094 0.110 0.167 0.186
128 16 0.019 0.023 0.075 0.091 0.130 0.162

128 D-F 0.010 0.054 0.113
256 2 0.155 0.174 0.346 0.374 0.475 0.497
256 '} 0.112 0.095 0.246 0,244 0.368 0.362
256 8 0.082 6,056 0.159 0.180 0,254 6.281
256 16 0.029 0.038 3.101 0.129 0.175 0.218
256 32 0.016 0.031 0.073 0.107 0.132 0,192

256 D-F 0.016 0.070 0.127
512 2 0.371 0,381 0.608 0.621 0,723 0.736
512 § 0.22% 0,233 0.u458 0.367 0.589 0,591
512 8 0.108 0.143 0.281 0.334 0.398 0.465
512 16 0.055 0.091 0,167 0.241 0.262 0.358
512 32 0.033 0.066 0,105 0.179 0.179 0.284
512 64 0.022 0.043 0.076 0.147 0.137 0,235

512 D-F 0.014 0.058 0.113
1024 2 0.741 0.73% 0.888 0.888 0.935 0.938
1024 4 0.546 0.559 0.776 0.774 0.853 0.859
1024 8 0.299 0,375 0.542 0.632 0.656 0.745
1024 16 0.143 0.243 0.311 G.482 0.433 0,612
1029 . 32 0.066 0.148 0.178 0,34% 0.272 0.478
1024 64 0,037 0.085 0,105 0.238 0.177 0.361
1024 128 0.019 6.057 0.075 0.176 0.133 0.286

1024 D-F 0.015 0.067 0.t22




Table 12b

Power of the specification test M (q) (using statistie z,) and the Dickey-
Fuller t-test (D-F) against the rBturns fads alternative of Table 12a with

h = 4§ for various sample sizes and aggregation values, All simulations are
based upon 20,000 replications using empirical eritical values obtained from
Simulations under the homoscedastic nuill hypothesis.

Salf’ple q Power (1%) Power (5%) Power (10%)
Size
32 2 0.010 0.052 0.102
32 4 0.010 0,051 0.102
1 D-F 0,010 0,051 0,04
il ) 0,012 0,054 0.107
6l 4 0.010 0.050 0.100
64 8 0.009 0.049 0.101
64 D-F 0.009 0.050 0.098
128 2 0.012 0.057 0.115
128 4 0.012 0.056 0.108
128 8 0.011 0.052 0.107
128 16 0.0M1 0.054 0.101
128 D-F 0.009 0.0U7 0.101
256 2 0.019 0.078 0.139
256 Yy 0.019 0.063 0.123
256 8 0.013 0.058 0.114
256 16 c.012 0.054 0.105
256 32 0.0NM 0.050 0.102
256 D-F 0.011 0.055 0.108




Table 13a

Power of the specification test M u31ng 2, ) against the returns fads
alternative with parameters (a_,y , o (0. OOJ 6.0, 0.069) with h = 1 for
various sample sizes and aggreﬁation values using asymptotlc eritieal
values. All simulations are based upon 20,000 replications.

Sample

Size q Power (1%) Power (5%) Power (10%)
32 2 0.017 0.081 0.150
32 4 0.006 0.032 0.093
o 2 0.3 0,119 0,15

o .0 i i
Bl 3 0,006 0.0 0.073

128

2 0.068 0.196 0.293

128 4 0.017 0.107 0.203

128 8 0.002 0.046 0.123

128 16 0.006 0.020 0.067

256 2 0.158 0.350 0.U475
256 4y 0.063 0.224 0.347

256 8 0.012 0.104 0.211

256 16 0.002 0.040 0.119
256 32 0.006 0.019 0.064
512 2 0.367 0.606 0.724

512 il 0.187 0.434 0.575
512 8 0.058 0.231 0.366

512 16 0.010 0.103 0.211

512 32 0.002 0.040 0.120

512 64 0.006 0.016 0.061
1024 2 0.725 0.885 0.933
1024 y 0.492 0.749 0.842
1024 8 0.207 0.475 0.620
1024 16 0.058 0.241 0.383
1024. 32 0.011 0.104 0.215
1024 64 0.002 0.040 0.116
1024 128 0.005 0.015 0.060




Table 13h

Power of the specification test M (q) (using 22) against the returns fads
alternative of Table 13a for various sample sizes and aggregation values using
asymptotic critical values, All simulations are based upon 20,000
replications.

Sample
5129 q Power (1%) Power (5%) Power (101)
32 2 0.017 0.090 0.169
32 4 0.009 0.045 0.114
64 a
: ) )] 00
ol | 0,006 0,060 0,139
bl 8 0,008 0,029 0,088
128 2 0.065 0.196 0.297
128 4 0.017 0.108 0.206
128 8 0.003 0.050 0.130
128 16 0.007 0.023 0.078
256 2 0.151 0.349 0.474
256 y 0.060 0,222 0.348
256 8 0.013 0.106 0.214
256 16 0.002 0.04Y4 0.125
256 32 0.006 0.021 0.073
512 2 0,357 0.606 0.722
512 4 0,182 0.429 0.573
512 8 0,057 0.232 0.367
512 16 .01 0.106 0.213
512 32 0.002 0.043 0.125
512 64 0.006 0.018 0.069
1024 2 0.721 0.884 0.933
1024 4 0.488 0.748 0,841
1024 3 0.205 0,475 0.618
1024 16 0.059 0.242 0.384
1024 32 0.012 0,105 0.218
1024 64 0.002 0.0U42 0.121
1024 128 0.005 .07 0.068




TABLE 14a

Variance ratio test M _(q) of the rancoem walk hypothesis for CRSP equal and
value weighted {ndexes using a one-week base observation interval (n = 1 week)
for the sample period September 6, 1962 to December 26, 1985 and sub-periods.
The actual variance ratlos are reported in the main rows, with the z and z¥
statistics given in parentheses in rows immedlately below each main row.

*Indicates significance at the S percent level

Nuaber nq Number q of base observations.aggregated
Time A to form variance ratio
period b y aqe
observations 2 4 8 16 32 64
A. Equal-Weighted CRSP NYSE-AMEX Index
620906-851226 1216 1.30 1.64 1.9 .05 22 2.23
(10.29)*% (11,96)% (11,08)* J30)%  (6.66)% (4,.71)%

“=F» D NS

ailt ()

———

(1500 (081% (8,19

WM T

ol

.

j

R,

0

L 1|02 2-09 2037
(T (8.0 (1604 (fa0)% (5,008
(5.38)*  (6.03)*  (5.76)%  (4,77)% (4,32)%
T40502-851226 608 1.28 1.65 1.93 1.3 1.74
(T.02)% (8.51)+ {7.75)% (5.07)% (2.84)»
{5.32)%  (6.52)*% (B.13)* (U 1T)* (2.45)%
620%06-680703 300 1.32 1.68 1.92 2.07
(5.66)%  (6.29)%  (5.44)%  (y 26)%
(4.12)* (L, 773 % (4.23)* (3.45)%
680704-T40501 304 1.29 1.58 1.83 1.87
(4,99)* {(5.36)*% (4.60) % (3.46)%
(H.03)%  (hyy)*  (U18)%  (3.04)%
T40502-791219 304 1.29 1.71 2.01 1.91
(5.12)%  (6.58)% (5.93)% (3.60)%
(3.80)* (5.02)% (4.66)% {2.93)%
791220-851226 304 1.26 1,49 1.66 2.00
(4,61)*%  (u.55)*  (3,91)%  (3.94)%
(3.99)*%  (3.83)* (3,46)% (3.63)%
B. Value-Weighted CRSP NYSE-AMEX Index
620906-851226 1216 1.08 .16 t.22 1.22 1.15 1.31
(2.96)%  (2.94)*  (2,59)*  (1,71) (1.94} {(1.17)
(2.33)*  (2.31)*  (2.0T)*  (1.18) (1.60} {1.00)
620906 -T40501 608 1.15 1.22 1,27 1.32 1.42
(3.66)* (2.87)* (2.22)* (1.78) (1.61)
(2.89)* (2.28)* (1.79) (1.46) (1.37M
T40502-851226 608 1.05 1.12 1,18 1.10 1.01
{1.13) (1.57) (1.50) (0.56) (0.06)
(0.92) (1.28) (1.24) (0.46) {0.05)
620906-680703 304 1,20 1.29 1.32 1.29
(3.55)*  (2.71)%  (1.90) (1.15)
(2.87)*  (2,19)*% (1.55) (0.96)
68CTOU-THO50% 304 1.12 1.18 1.22 1.30
(2.12)* (1,69 {1.32) (1.18)
(1.86) (1.49) (1.18) {1.08)
740502-791219 304 1.00 1.1 1.2% 1.14
{-0.01) (1.07) (1.21) {0.57)
{-0.01) (0.99) {0.47)

OO REC1 ™AL

VN1

(0.87)



TABLE 14p

Variance ratio test M (a) of the random walx hypothesis for CRSP
equal and value weighteq Indexes using a four-week base observation
interval (h = 4 weeks) for the sample period September €, 1962 to
December 26, 1985 and sub-periods. The actual variance ratios are
reported in the main rows, with the z and z* statistics given in
parentheses in rows immediately below each main row.

*Indicates significance at the 5 percent ievel,

Number q of base Qbservations aggregated
Time Number ng to form varlance ratio
of base
period observations
2 ] 8 16
A, Equal-weighted CRSP NYSE-AMEX Index
620906851226 304 1.15 1.19 1.30 1.30
(2,63)* (1.80) (1.74) {1.20)
(2.26)* (1.51) (1.52) (1.0m
620906 -740501 152 1.13 1,23 1.40

(1.65) (1.54) (1,67)
(1.19) {1.32) (1.,46)

740502-851226 152 1,15 1.1 1.02
{1.86) (0.73) (0.10)
(1.68) (0.64) {0.09)
620906 -680703 76 1.11 1.20
. (0.92) (0.95)
(0.80) (0.87)
680704 -740501 76 1.12 1,15
(1.01) (0.71)
(0.90) {0.64)
T40502-791219 76 1.16 1.07
(1.43) (0.30)
(1.23) (0.27)
791220~851226 76 7,02 1.21
(0.21) (1,00}
(0.29) (1.10)

B. Value-Weighted CRSP NYSE-AMEX Index

620906-851226 304 1.05 1.00 1.1 1.07
(0.79) (0.00) (0.64) (0.28)
(0.75) (0.00) {0.57) (0.26)
620906-~740501 152 1.02 1.04 1.12
(0.27) (C.29) (0.50)
(0.26) (0.26) (0.46)
T40502-851226 152 1.05 0.95 0.89
(0,64) (-0,34) {-0,46)
(.63) (-0.31) (-0.42)
620906-680703 76 1.00 1.02
(0.02) (0.08)
(0.02) {0,08)
680704 -T40501 76 1.02 1.05
(0.18) (0.22)
(0.18) (0.21)
T40502-791219 76 1.12 0.98
(t.07) {-0.11)
(1.01) (~0.10)
791220-857226 76 0.90 0.95
(-0.89) {-0.24)
{(-0.95) (-0.23)




