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I Introduction

Investments in U.S. Treasury bonds require an assessment of both risk and reward.

Existing term structure models are not flexible enough to capture the time series

variation of both conditional first and second moments of yields.1 Time variation in

bond volatility is often sacrificed and affine Gaussian models are used because of their

analytical tractability.2 We propose a new reduced form term structure model where

the short rate, market prices of risk, and bond volatilities are nonlinear functions of

Gaussian state variables. We provide closed-form solutions for bond prices and since

the factors are Gaussian our nonlinear model is as tractable as the standard Gaussian

model.

We use U.S. Treasury bond data from 1952 to 2011 to estimate a standard Gaus-

sian and a nonlinear Gaussian three-factor model. Our new model adds realistic

time variation to the quantity of risk while inheriting the flexibility of the standard

Gaussian model to explain the time-variation in the price of risk. Hence, the model

is able to jointly capture the time-variation in expected returns and volatilities of

bond returns. Moreover, our nonlinear model reveals a sharp increase of the mean

and volatility of expected excess returns during the early eighties, something that is

missed by affine models.

We explore the implications of the new model for investments in U.S. Treasury

bonds. The nonlinear model predicts higher Sharpe ratios than the standard model

in low-volatility periods. Intuitively, volatility is equal to the sample average in the

standard model and thus this model overshoots volatility and underpredicts Sharpe

ratios in low-volatility periods. In high-volatility periods, particularly during the early

80s, variations in expected excess returns in the nonlinear model are mostly driven by

1See Dai and Singleton (2003) and Duffee (2010b) and the references therein.
2Examples include Sangvinatsos and Wachter (2005), Cochrane and Piazzesi (2008), Duffee

(2010b), and Joslin, Priebsch, and Singleton (2012).
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variations in volatility. Thus, the high expected excess returns during these periods

are primarily driven by a higher quantity of risk rather than a higher compensation

for risk and Sharpe ratios in the two models are similar.

There is strong evidence that an economically significant part of excess returns

is not explained by linear combinations of yields.3 This finding motivates Gaussian

“hidden factor” models where one or more factors are orthogonal to yields but help

explain expected excess returns. Our paper highlights an alternative channel: a

nonlinear relation between expected excess returns and yields. Specifically, we regress

expected excess returns implied by the nonlinear model onto yields and show that

the error of this regression accounts for 14% to 29% of the total variance depending

on forecast horizon and bond maturity. Duffee (2011a) and Joslin, Priebsch, and

Singleton (2012) generate similar results using five factors whereas three factors are

sufficient in our nonlinear model.

The standard procedure in the term structure literature is to specify the short

rate and the market prices of risk as functions of the state variables. Instead, we

model the functional form of the stochastic discount factor directly by multiplying

the stochastic discount factor from a Gaussian term structure model with the term

1 + γe−βX where β and γ are parameters and X is the Gaussian state vector. This

functional form is a special case of the stochastic discount factor that arises in many

equilibrium models in the literature as we show in Appendix B. In such models the

stochastic discount factor can be decomposed into a weighted average of different

representative agent models. Importantly, the weights on the different models are

time-varying and this is a source of time-varying risk premia and volatility of bond

returns.

3Recent papers on this topic include Ludvigson and Ng (2009), Cooper and Priestley (2009),
Cieslak and Povala (2010), Duffee (2011a), Joslin, Priebsch, and Singleton (2012), and Chernov and
Mueller (2012).
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The nonlinear and standard Gaussian model lead to similar predictions for ex-

pected excess returns except for the early 80s where they are higher in the nonlinear

model. To distinguish between the two models’ return implications, we regress re-

alized excess returns on model-implied expected excess return. The slope coefficient

should be close to one. We find a slope coefficient between 0.95 and 1.15 for the

nonlinear model and higher than one for the Gaussian model (1.05 to 1.77) support-

ing the implications of the nonlinear model. Interestingly, our results on expected

excess returns are similar to the findings of Dai, Singleton, and Yang (2007) who use

a regime-switching Gaussian three-factor model. While the Gaussian model is a spe-

cial case of both models our nonlinear model only increases the number of parameters

from 23 to 27 whereas the regime-switching model in Dai, Singleton, and Yang (2007)

has 56 parameters.

To study the second moments of yields we look at the variation in the one-month

ahead conditional volatility of yields. Conditional volatilities in the nonlinear model

show high correlation with GARCH estimates. In contrast to affine models with

stochastic volatility, the nonlinear model captures the spike in volatilities during the

80s: the highest one-month conditional yield volatility for a 2-year bond during the

sample is 161 basis points according to GARCH, 133 basis points according to the

nonlinear model, while it is less than 70 basis points in affine models with stochastic

volatility (see Jacobs and Karoui (2009)). In the Gaussian model volatility is constant

at 41 basis points.

Our paper is not the first to propose a term structure model outside the class of

Gaussian models. General affine models (Duffie and Kan (1996) and Dai and Sin-

gleton (2000)) allow for stochastic volatility, but in contrast to our nonlinear model

cannot match both stochastic volatility and time-variation in expected excess returns

(see for example Duffee (2002) and Dai and Singleton (2002)). Quadratic term struc-

ture models have been proposed by among others Ahn, Dittmar, and Gallant (2002)
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and Leippold and Wu (2003). Cheng and Scaillet (2007) show that quadratic term

structure models can be embedded into the affine class using an augmented state

vector, suggesting that the non-linearity in this class of models is of restricted nature.

Consistent with this, Ahn, Dittmar, and Gallant (2002) find that quadratic term

structure models are not able to generate the level of conditional volatility observed

for short- and intermediate-term bond yields. We show that the nonlinear model can

match the time variation of conditional volatility for both short and long maturity

bonds. Ahn, Dittmar, Gallant, and Gao (2003) propose a class of nonlinear term

structure models based on the inverted square-root model of Ahn and Gao (1999),

but in contrast to our nonlinear model they do not provide closed-form solutions for

bond prices.

The rest of the paper is organized as follows. Section II describes the model.

Section III estimates the model and Section IV presents the empirical results. Section

V concludes.

II The Model

In this section we present a model of the term structure of interest rates.4 Uncertainty

is represented by a d-dimensional Brownian motion W (t) = (W1(t), ...,Wd(t))
′. There

is a d-dimensional Gaussian state vector X(t) that follows the dynamics

dX(t) = κ
(

X̄ −X(t)
)

dt+ Σ dW (t), (1)

where X̄ is d–dimensional and κ and Σ are d× d–dimensional.

4We introduce a more general class of nonlinear term structure models in Appendix A.
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II.A The Stochastic Discount Factor

We assume that there is no arbitrage and hence there exists a strictly positive state

price density or stochastic discount factor M(t). Let γ denote a nonnegative con-

stant, β a d-dimensional vector, and M0(t) a strictly positive stochastic process. The

stochastic discount factor is defined as

M(t) = M0(t)
(

1 + γe−β′X(t)
)

. (2)

Equation (2) is a key departure from standard term structure models (Vasicek

(1977), Cox, Ingersoll, and Ross (1985), Duffie and Kan (1996), and Dai and Singleton

(2000)). Rather than specifying the short rate and the market price of risk, which

in turn pins down the state price density, we specify the functional form of the state

price density directly.5

To keep the model comparable to the existing literature on Gaussian term struc-

ture models we introduce a base model for which M0(t) is the stochastic discount

factor. The dynamics of M0(t) are

dM0(t)

M0(t)
= −r0(t)dt− Λ0(t)

′dW (t), (3)

where r0(t) and Λ0(t) are affine functions of the state vector X(t). Specifically,

r0(X) = ρ0,0 + ρ′0,XX, (4)

Λ0(X) = λ0,0 + λ0,XX, (5)

where ρ0,0 is a scalar, ρ0,X and λ0,0 are d-dimensional vectors, and λ0,X is a d × d-

dimensional matrix. It is well known that bond prices in the base model belong to the

5Constantinides (1992) and Rogers (1997) also specify the functional form of the state price
density directly and provide closed form solutions for bond prices.
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class of essentially affine term structure models (Duffee (2002) and Dai and Singleton

(2002)). We now provide closed form solutions for bond prices in the general model.

II.B Closed-Form Bond Prices

Let P (τ)(t) denote the price at time t of a zero-coupon bond that matures in τ years.

Specifically,

P (τ)(t) = Et

[

M(t + τ)

M(t)

]

. (6)

We show in the next theorem that the price of a bond is a weighted average of bond

prices in artificial economies that belong to the class of essentially affine Gaussian

term structure models.

Theorem 1. The price of a zero-coupon bond that matures in τ years is

P (τ)(t) = s(t)P
(τ)
0 (t) + (1− s(t))P

(τ)
1 (t), (7)

where

s(t) =
1

1 + γe−β′X(t)
(8)

P (τ)
n (t) = eA

∗

n(τ)−B∗

n(τ)
′X(t). (9)

The coefficient A∗
n(τ) and the d-dimensional vector B∗

n(τ) solve the ordinary differ-

ential equations

dA∗
n(τ)

dτ
=

1

2
B∗

n(τ)
′ΣΣ′B∗

n(τ)−B∗
n(τ)

′
(

κX̄ − Σλn,0

)

− ρn,0, A∗
n(0) = 0, (10)

dB∗
n(τ)

dτ
= − (κ + Σλn,X)

′ B∗
n(τ) + ρn,X , B∗

n(0) = 0d, (11)
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where

ρn,0 = ρ0,0 + nβ ′κX̄ − nβ ′Σλ0,0 −
1

2
n2β ′ΣΣ′β, (12)

ρn,X = ρ0,X − nκ′β − nλ′
0,XΣ

′β, (13)

λn,0 = λ0,0 + nΣ′β, (14)

λn,X = λ0,X . (15)

The proof of this theorem is given in Appendix A. To provide some intuition we

rewrite the bond pricing equation (6) and use the fact that s(t) = M0(t)/M(t):

P (τ)(t) = s(t)Et

[

M0(T )

M0(t)

]

+ (1− s(t))Et

[

γe−β′X(T )M0(T )

γe−β′X(t)M0(t)

]

(16)

Both expectations are equal to bond prices in artificial economies with discount factors

M0(t) andM1(t) = γe−β′X(t)M0(t), respectively. These bond prices belong to the class

of essentially affine term structure models and hence P (τ)(t) can be computed in closed

form.

II.C The Short Rate and the Price of Risk

Applying Ito’s lemma to equation (2) leads to the dynamics of the stochastic discount

factor:

dM(t)

M(t)
= −r(t) dt− Λ(t)′dW (t), (17)

where both the short rate r(t) and the market price of risk Λ(t) are nonlinear functions

of the state vector X(t) given in equations (18) and (19), respectively. The short rate

is given by

r(t) = r0(t) + (1− s(t))

(

β ′κ
(

X̄ −X(t)
)

− β ′ΣΛ0(t)−
1

2
β ′ΣΣ′β

)

. (18)
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Our model allows the short rate to be nonlinear in the state variables without losing

the tractability of closed form solutions of bond prices and a Gaussian state space.6

The d-dimensional market price of risk is given by

Λ(t) = Λ0(t) + (1− s(t)) Σ′β. (19)

From equation (19) we can see that even if the market prices of risk in the base model

are constant, the market prices of risks in the general model are stochastic due to

variations in the weight s(t). When s(t) approaches zero or one, then Λ(t) approaches

the market price of risk of an essentially affine Gaussian model.

II.D Expected Return, Volatility, and Sharpe Ratio

We know that the bond price is a weighted average of exponential affine bond prices

(see equation (7)). Hence, variations of instantaneous bond returns are due to varia-

tions in the two artificial bond prices P
(τ)
0 (t) and P

(τ)
1 (t) and due to variations in the

weight s(t). Specifically, the dynamics of the bond price P (τ)(t) are

dP (τ)(t)

P (τ)(t)
=
(

r(t) + e(τ)(t))
)

dt+ v(τ)(t)′ dW (t), (20)

where e(τ)(t) denotes the instantaneous expected excess return and v(τ)(t) denotes

the local volatility vector of a zero-coupon bond that matures in τ years.

The local volatility of the bond is given by

v(τ)(t) = −Σ′
(

ω(τ)(t)B∗
0(τ) +

(

1− ω(τ)(t)
)

B∗
1(τ) + β

(

s(t)− ω(τ)(t)
))

, (21)

6Chan, Karolyi, Longstaff, and Sanders (1992), Ait-Sahalia (1996a), Ait-Sahalia (1996b), Stanton
(1997), Pritsker (1998), Chapman and Pearson (2000), Ang and Bekaert (2002), and Jones (2003)
study the nonlinearity of the short rate. Jermann (2013) and Richard (2013) study nonlinear term
structure models but they do not get closed form solutions for bond prices.
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where ω(τ)(t) denotes the contribution of P
(τ)
0 (t) to the bond price P (τ)(t):

ω(τ)(t) =
P

(τ)
0 (t)s(t)

P (τ)(t)
. (22)

When s(t) approaches zero or one, then v(τ)(t) approaches the constant local volatility

of a Gaussian model. However, in contrast to the market price of risk, the local

volatility is not bounded by the local volatilities of the two Gaussian models.

The instantaneous expected excess return of the bond is

e(τ)(t) = Λ(t)′v(τ)(t). (23)

We can see from equations (17)-(23) that our nonlinear term structure model

differs from the essentially affine Gaussian base model in two important aspects.

First, the volatilities of bond returns and yields are time-varying and hence expected

excess returns are moving with the price and the quantity of risk.7 Second, the short

rate r(t), the instantaneous volatility v(τ)(t), and the instantaneous expected excess

return e(τ)(t) are nonlinear functions of X(t).

III Estimation

In this section, we estimate a standard and a nonlinear three-factor essentially affine

Gaussian model. The nonlinear model has the same number of factors and the number

of parameter increases from 23 to 27.

7The instantaneous volatility of the bond yield is − 1
τ
v(τ)(t).
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III.A Data

The models are estimated using a monthly panel of zero-coupon Treasury bond yields.

We use month-end (continuously compounded) 1-, 2-, 3-, 4-, and 5-years zero-coupon

yields extracted from U.S. Treasury security prices by the method of Fama and Bliss

(1987). The data is from the Center for Research in Security Prices and covers the

period 1952:6 to 2011:12.

III.B Estimation Methodology

We use the Kalman filter to estimate the standard Gaussian model and the unscented

Kalman filter to estimate the nonlinear Gaussian model. Christoffersen, Dorion, Ja-

cobs, and Karoui (2012) find that the unscented Kalman filter works well in estimat-

ing affine term structure models when highly nonlinear instruments are observed. We

briefly discuss the setup but refer to Carr and Wu (2009) and Schwartz and Trolle

(2012) for a detailed description of this filter.

We stack the N observed yields in month t in the vector y(t), and set the model

up in state-space form. The measurement equation is

y(t) = f(X(t)) + ǫ(t), ǫ(t) ∼ N(0, σIN ), (24)

where f(·) is the function determining the relation between the latent variables and

yields.8 We use the Kalman filter if f(·) is linear and the unscented Kalman filter if

f(·) is nonlinear. The transition equation for the latent variables is

X(t+ 1) = C +DX(t) + η(t+ 1), η(t) ∼ N(0, Q), (25)

8f = (f1, ..., f5)
′ where fi(X(t)) = − 1

τi
ln
(

P (τi)(X(t))
)

with P (τ)(X(t)) given in equation (6)
and τi = i.
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where C is a vector and D is a matrix that enters the one-month ahead expectation

of X(t); i.e. Et(X(t+1)) = C+DX(t). Q is the covariance matrix of X(t+1) given

X(t) which is constant since X(t) is Gaussian.

Since not all of the parameters are identified, we apply the normalizations pro-

posed in Dai and Singleton (2000).9 Specifically, for the dynamics of X given in equa-

tion (1) we assume that the mean reversion matrix, κ, is lower triangular, the mean of

the state variables, X, is the zero vector, and that the local volatility, σX , is the iden-

tity matrix. Recent literature (Collin-Dufresne, Goldstein, and Jones (2008), Joslin,

Singleton, and Zhu (2011), Christensen, Diebold, and Rudebusch (2011), Hamilton

and Wu (2012), and Joslin, Le, and Singleton (2013)) propose other parameteri-

zations to ease the estimation of affine term structure models. Since these results

cannot be applied to the nonlinear model, we choose the Dai and Singleton (2000)

normalizations.

III.C Estimation Results

Parameter estimates and log-likelihood values are reported in Table 1. The nonlinear

model has four additional parameters (the scalar γ and the three-dimensional vector

β) and a log-likelihood value that is 258.3 higher than the Gaussian model. The

statistical significance of the nonlinear Gaussian model cannot be tested using a

standard Likelihood Ratio (LR) test because the parameter vector β is not identified

under the null hypothesis of having a Gaussian model (γ = 0) and hence the LR is

not asymptotically χ2-distributed. Garcia (1998) derives the distribution of the LR

statistic for a two-state Markov model and finds the 5% critical value to be 14.11

while the critical value in the χ2-distribution is 9.5. In our case the LR statistic

of 258.3 is well in excess of the 5% critical value of 9.5 in the χ2-distribution with

9As is often the case in multi-factor term structure models, individual parameters are not easily
interpretable and in the following we focus on economic implications of the model.
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four degrees of freedom, suggesting that the nonlinear extension is statistically highly

significant. The standard deviation of pricing errors, σ, is almost the same in the two

models. This implies that the significance of the nonlinear model does not come from

an improved cross-sectional fit of yields.

The bond price is a weighted average of two Gaussian bond prices (see Theorem

1). If the weight s(t) is 1 the bond price in the nonlinear model collapses to the bond

price in the Gaussian base model.10 Figure 1 shows the weight on the base model.

We see that in the 70’s and 80’s the weight is significantly below one, so nonlinearity

becomes particularly important during these periods. The shaded areas in the figure

are the NBER recessions and we see that the weight moves away from one during

recessions.

IV Empirical Results

We focus in this section on the empirical properties of the nonlinear Gaussian term

structure model and compare it to the standard Gaussian model.

IV.A Expected Excess Returns

Expected excess returns of U.S. Treasury bonds vary over time as documented in Fama

(1984), Fama and Bliss (1987) and Campbell and Shiller (1991) (CS). CS document

this by regressing future yield changes on the scaled slope of the yield curve. The

slope regression coefficient is one if excess holding period returns are constant, but

10The representation of the bond price as weighted average of two different bond prices is similar
to a regime switching model with unobservable regimes. In this case s(X(t)) would denote the
probability of being in regime 0 conditional on the state of the economy X(t). However, it is not
clear that there exist Markov-transition probabilities such that the conditional distribution of yields
can be written as a weighted average of the conditional distribution of yields in regime 0 and 1 and
thus be consistent with Bayes rule.
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CS find negative regression coefficients. It is well documented that Gaussian models

can capture the predictability of excess bond returns as measured through the CS

regression coefficients while affine models with stochastic volatility cannot.11 Panel

A in Table 2 shows that both the Gaussian and nonlinear Gaussian model match the

CS regression coefficients quite well; i.e. the coefficients are negative and decreasing

in the maturity of the bond consistent with the evidence in the data.

Figure 2 shows expected one-year log excess returns implied by the Gaussian

and nonlinear Gaussian model.12 The models have similar predictions for excess

returns apart from the time of the monetary experiment in the early eighties. In

this period the nonlinear model predicts higher excess returns than in any other time

in the sample period. Moreover, they are twice as high as in the Gaussian model.

Consistent with the predictions of the nonlinear model the early eighties had two

instances where realized excess returns were higher than in any other time in the

sample period. For instance, the excess return of the five year bond exceeded 16%

twice during that period.

To formally test the ability of the models to capture expected excess returns, we

run a regression of realized excess returns on expected excess returns. The results are

reported in Panel B of Table 2. If the model captures expected excess returns well,

then the slope coefficient should be one and the constant zero in all regressions. We

see that the slope coefficients are close to one in the nonlinear model while they are

too high for the Gaussian model. This holds true for all bond maturities and holding

horizons. For example, the average slope coefficient for a holding period of one year

is 1.05 in the nonlinear model while it is 1.65 in the Gaussian model. Furthermore

11See Dai and Singleton (2002), Tang and Xia (2007), and Feldhütter (2008). Almeida, Graveline,
and Joslin (2011) show that if options are included in the estimation, affine models with stochastic
volatility can match the CS regression coefficients.

12Moments of yields and returns are easily calculated using Termite-Gauss quadrature, see Ap-
pendix C for details. In the rest of the paper we use Hermite-Gauss quadrature when we do not
have closed-form solutions for expectations or variances.
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the constant α is closer to zero in the nonlinear model than in the Gaussian model.

To check the ability of a model’s expected excess return to explain realized excess

returns relative to the expectation hypothesis with constant expected excess returns

we define the measure “fraction of variance explained” as:

FVE = 1−
1
T

∑T
t=1(rx

τ
t,t+n −Et(rx

τ
t,t+n))

2

1
T

∑T

t=1(rx
τ
t,t+n − rxτ )2

, (26)

where rxτ
t,t+n is the n-year return on a bond with maturity τ in excess of the n-year

return on a bond with maturity n (τ > n). The R2 of the regression of realized

on expected excess returns is equal to FVE if the slope is one and the constant is

zero, otherwise the R2 is an upper bound for FVE. Panel B of Table 2 shows the

coefficients of this regression, the R2, and the FVE for different bond maturities and

holding periods.13 For one-year horizons FVE’s in both the nonlinear and Gaussian

model are similar. The reason is that although the nonlinear model captures high

excess returns in the early eighties, volatility is also high leading to occasional high

negative excess returns and noise. This noise created by volatility is attenuated when

looking at longer holding horizons in which case the FVE’s in the nonlinear model

increases to more than double of those in the Gaussian model.

Taken together, the nonlinear model captures a rise in expected excess returns in

the early eighties missed by the Gaussian model. This finding is important not only

for term structure modeling but also for the common approach of predicting excess

returns with vector-autoregressive (VAR) models (classic examples are Campbell and

Ammer (1993) and Ang and Piazzesi (2003)). Joslin, Singleton, and Zhu (2011) show

that conditional expected excess returns in a Gaussian model without parameter

restrictions are identical to those from an unrestricted VAR model. Thus, any three-

13Because we look at returns over several years in Panel B, the difference between log excess
returns and raw excess returns increases and we therefore report the regression for raw returns. The
table for log excess returns shows similar results for the regression coefficients, but the average FVE
is 7.6% instead of 12.5% for the nonlinear model and 5.5% instead of 9.0% for the Gaussian model.
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factor VAR with yields as factors would miss the rise in expected excess returns.

IV.B Stochastic Volatilities

In this section we study how well volatilities of yields (and thus volatilities of excess

returns) in the data are matched by the nonlinear model. Yield volatilities in the

Gaussian model are constant over time and this is a major shortcoming when studying

investment opportunities in the bond market (see Section IV.C) or when studying

pricing and risk management of fixed income securities.

Volatility of yields varies over time and is persistent (Singleton (2006) and the

references therein). To show that our nonlinear model is able to capture the time

variation in yield volatilities we follow the literature and compare model-implied con-

ditional volatility of monthly changes in yields for all five bonds with estimates of an

EGARCH(1,1) model (see for example Jacobs and Karoui (2009), Almeida, Grave-

line, and Joslin (2011), and Kim and Singleton (2011)). Panel A of Table 3 shows

that the correlations between model-implied (calculated using Gaussian quadrature)

and actual (measured with the EGARCH model) volatilities are quite high, between

71% and 75%. These correlations are similar in magnitude to the correlations found

in affine models with one or more CIR processes (Feldhütter (2008) and Jacobs and

Karoui (2009)).

We follow the approach of Jacobs and Karoui (2009) and Kim and Singleton

(2011) and regress EGARCH volatility on model-implied volatility. Panel A shows

the coefficients. Although widely used, EGARCH volatility is a model-dependent

estimate of volatility and it is not clear that the slope coefficients should be one.

We therefore simulate 100,000 months of yields from the nonlinear model, use the

simulated yields to estimate EGARCH volatility, and regress estimated EGARCH

volatility on model-implied volatility in the 100,000 months. The resulting regression
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coefficients are α and β in Panel A. We see that the true simulated slope coefficients

are 0.65-0.71 and that the actual slope coefficients are in the range 0.71-0.87 and

statistically insignificant from the simulated regression coefficients. This shows that

the nonlinear model captures well the dynamics of volatility as measured through

EGARCH. In contrast the slope coefficients of the essentially affine three-factor model

with one stochastic volatility factor reported in Table 5 of Jacobs and Karoui (2009)

are 1.92, 1.49, and 1.13 for the 1-, 2-, and 5-year yields.14 This illustrates the difficulty

affine models with stochastic volatility have in matching volatility; i.e. they tend to

have too little variation in volatility and this is more pronounced for short maturities.

We can also see how the nonlinear model better than affine models captures spikes

in volatility by looking at the right tail of the distribution of conditional volatilities

in Panel B of Table 3. The most volatile period in the sample is the early 80s and the

95th and 99th quantiles reflect the high volatility during this period. The quantiles

for the conditional yield of the 1-year bond in the data according to the EGARCH

model are 96bps and 164bps and they are fairly well matched by 100bps and 138bps

in the nonlinear model. For standard affine models with one stochastic volatility

factor the maximal conditional volatility is around 70bps in the early 80s (Jacobs and

Karoui (2009) Fig. 1-3 Panel A). In the regime-switching model of Dai, Singleton,

and Yang (2007) actual volatility is between two and three times higher than model-

implied volatility in the early 80s.15 Overall, the evidence suggests that the nonlinear

model captures the high volatility in the early 80s better than existing term structure

models.

Figure 3 shows the volatility of excess returns for a two, three, four, and five

year bond. The graphs show that the volatility implied by the nonlinear model is

14To check what the regression coefficients in the essentially affine model should be we simulated
yields from the model using the parameter estimates in Jacobs and Karoui (2009) and found for the
1-, 2-, and 5-year yield α to be 0.00036, 0.00036, and 0.00031 and β to be 0.78, 0.77, and 0.77.

15This is for the conditional volatility of the 10-year yield in their Figure 8. They do not report
results for bonds with shorter maturity.
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lower in the first and last third of the sample than predicted by the Gaussian model.

Moreover, the nonlinear model captures the volatility increases during recessions and

the volatility spike during the early eighties.

IV.C Sharpe Ratios

We measure the investment opportunity of a bond at time t with its Sharpe ratio

St =
Et(rx

(τ)
t,t+12)

√

V art(rx
(τ)
t,t+12)

, (27)

where rx
(τ)
t,t+12 is the one-year log return on a bond with maturity τ in excess of the

one-year log return of a one-year bond. Gaussian models are benchmark models when

examining the time-varying investment opportunities in the bond market. Viewing

the risk-return tradeoff in the bond market through the lens of a Gaussian model can

lead to inaccurate conclusions because bond return volatilities in Gaussian models are

constant and hence all the variation in Sharpe ratios must come from the variation

in expected excess returns. As Duffee (2010a) points out: “existing dynamic term

structure models are insufficiently flexible to capture the empirical dynamics of both

conditional means and conditional volatilities. Thus either the numerator or denomi-

nator of the conditional Sharpe ratio is likely misspecified.” Since the nonlinear model

captures the time variation in both moments well, the model provides more realistic

estimates of conditional Sharpe ratios than the Gaussian benchmark model.

Figure 4 shows conditional Sharpe ratios in the Gaussian and the nonlinear model.

There is a substantial difference between the Sharpe ratios of the Gaussian and non-

linear model in the calm periods of the data sample. In these periods the two models

agree on expected excess returns as shown in Section IV.A, but volatility in the Gaus-

sian model is too high because the volatility has to match average sample volatility.
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As a consequence, the Gaussian model predicts Sharpe ratios that are too low. For the

nonlinear model most of the variation in expected excess returns in the calm periods

comes from variation in the Sharpe ratio. Why are Sharpe ratios similar in the 80s?

In the 80s the weight s in equation (7) is dropping far below one and the nonlinear

relation between yields and the Gaussian state variables becomes stronger. Market

prices of risk do not change significantly, but yield volatilities spike up. Variations

in expected excess returns in this period are mostly driven by variations in volatility.

Thus, the high expected returns during the eighties are primarily a result of a higher

quantity of risk and not a higher compensation for risk.

IV.D Hidden Information

Standard affine term structure models imply that expected excess returns are fully

explained by a linear combination of yields. However, there is strong evidence that an

economically significant part of expected excess returns are not explained by linear

combinations of yields.16

This finding motivates Gaussian “hidden factor” models where one or more factors

determine excess returns but are partially unrelated to linear combinations of yields.

Hidden factors show up either through explicit parameter restrictions as in Joslin,

Priebsch, and Singleton (2012) or through filtering in a term structure model with at

least five factors as in Duffee (2011a).

Our nonlinear model highlights an alternative channel through which excess re-

turns are imperfectly correlated with yields. In the model expected excess returns

are nonlinearly related to yields and therefore a part of expected excess returns is

”hidden” from a linear combination of yields. Is the nonlinearity strong enough to be

16Recent papers in this topic include Ludvigson and Ng (2009), Cooper and Priestley (2009),
Cieslak and Povala (2010), Duffee (2011a), Joslin, Priebsch, and Singleton (2012), and Chernov and
Mueller (2012).
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empirically relevant? To answer this question we follow Duffee (2011a) and calculate

the ratio of the variance of expected log excess returns projected onto model-implied

yields divided by the variance of the true expected log excess returns.17 In the Gaus-

sian model this ratio is 1. Table 4 shows that in the nonlinear model this ratio is

between 0.71 and 0.86 depending on the forecast horizon and the bond maturity.

Compared with the range 0.53 to 0.70 reported in Duffee (2011a)’s five-factor model,

this suggests that nonlinearities are important in understanding the unspanned part

of excess returns.

Is the linearly hidden part of excess returns related to macro variables? To answer

this we regress expected excess returns on yields and call the residual the linearly

hidden part of expected excess returns. Then, we regress this hidden part on inflation

and industrial production growth. Table 5 shows that there is a significant negative

relation between the linearly hidden part and inflation. This relation occurs because

inflation is correlated with the amount of nonlinearity in the nonlinear model, not

because inflation has predictive power above what is contained in the yield curve.

The amount that inflation and industrial production growth explain of the linearly

hidden part (R2 of 6%) is similar to the amount these macro variables explain of

Duffee (2011a)’s hidden factor (R2 of 8%).18 The conclusion is that in order to better

understand how much predictive power - beyond what is contained in the yield curve

- macro variables have in explaining expected excess, it is important to control for

nonlinearity.

Linearly hidden factors and “truly” hidden factors in the spirit of Duffee (2011a)

and Joslin, Priebsch, and Singleton (2012) are likely to both play an important rule in

understanding expected excess returns. Consistent with this view, Table 5 shows that

Duffee’s hidden factor is uncorrelated with the linearly hidden part of excess returns

17We regress expected log excess returns on model-implied yields instead of actual yields to high-
light the contribution of the nonlinearity.

18See Table 6 in Duffee (2011a)
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in the nonlinear model. However, from a modelling perspective the linearly hidden

part appears more naturally than the “truly” hidden part. As just shown a significant

linearly hidden factor appears in a nonlinear three-factor model. In contrast, Duffee

(2011a) shows that at least five latent factors along with yield measurement errors

are needed to generate a partially hidden factor. Unless economically motivated

restrictions are imposed on parameters, a five-factor model leads to huge Sharpe

ratios due to overfitting (Duffee (2010a)) .

IV.E Cross-sectional fit of three-factor models

The nonlinear description of yield dynamics in the nonlinear model allows us to cap-

ture the time variation in the mean and volatility of excess bond returns. Empirically,

Balduzzi and Chiang (2012) show that in the cross-section there is an almost linear

relation between yields. To see if the nonlinear model captures the cross-sectional

linearity we follow Duffee (2011b) and determine the principal components of zero-

coupon bond yields with maturities ranging from one to five years and regress the

yield of each bond on all five principal components. The results for the data (715

monthly observations) and the two models are shown in Table 6. The results for the

models are based on one million simulated observations.

As is well known we see that the first three principal components describe almost

all the variation of bond yields in the data. Panel A of Table 6 shows that they

also describe almost all the variation of bond yields in the nonlinear Gaussian model.

Moreover, Panel B of Table 6 shows that the loading for each yield on the level, slope,

and curvature factor are very similar to the data (and the Gaussian model). Interest-

ingly, although the explanatory power of the fourth and fifth principal component are

low, the loadings on these factors in the nonlinear model are similar to the loadings in

the data. In contrast, the first three principal components describe by construction
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all the variation of bond yields in the Gaussian model and hence the loadings for all

yields on the fourth and fifth principal component are zero.

To conclude, the cross-sectional variation of bond yields implied by the nonlinear

model is well explained by the first three principal components and no yield breaks

this linear relation.

V Conclusion

We introduce a new reduced form term structure model where the short rate and

market prices of risk are nonlinear functions of Gaussian state variables but yields

are nevertheless given in closed form. We estimate the model on a long time-series of

U.S. Treasury yields that includes the monetary experiment of the early eighties and

show that the model captures the time variation in expected returns and volatilities

of Treasury bonds well. We also show that during low volatility regimes Treasury

bonds are more attractive investment than standard Gaussian models predict and

that nonlinearities can help explain why expected excess returns are not explained

by a linear combination of yields.

Our nonlinear model successfully captures the spike of expected excess returns

and volatilities during the extreme period of the early eighties while preserving the

linear relation in the cross section of yields.19 This period is particularly challenging

for affine term structure models to explain. We are currently working on including

options in the estimation to study asset pricing implications during the post Volcker-

period.

Although our empirical analysis has focused on a nonlinear generalization of an

affine Gaussian model, it is possible to generalize a wide range of term structure mod-

19This suggests that our model can be used to measure and price disaster risk (e.g. Barro (2006)).
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els such as affine models with stochastic volatility, quadratic models, and nonlinear

models. Our generalization introduces new dynamics for bond returns while keeping

the new model as tractable as the standard model. Furthermore, the method extends

to processes such as jump-diffusions and continuous time Markov chains. We explore

this in Feldhütter, Heyerdahl-Larsen, and Illeditsch (2013).
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A General Model

Let γ denote a nonnegative constant and M0(t) a strictly positive stochastic process

with dynamics given in equation (3). The stochastic discount factor is defined as

M(t) = M0(t)
(

1 + γe−β′X(t)
)α

, (28)

where β ∈ Rd and α ∈ N .

We show in the next theorem that the price of a bond is a weighted average

of bond prices in artificial economies that belong to the class of essentially affine

Gaussian term structure models.

Theorem 2. The price of a zero-coupon bond that matures in τ years is

P (τ)(t) =

α
∑

n=0

wn(t)P
(τ)
n (t), (29)

where

P (τ)
n (t) = eA

∗

n(τ)−B∗

n(τ)
′X(t), (30)

wn(t) =

(

α

n

)

γne−nβ′X(t)

(1 + γe−β′X(t))
α . (31)

The coefficient A∗
n(τ) and the d-dimensional vector B∗

n(τ) solve the ordinary differ-

ential equations given in equation (10) and (11).

Proof. Using the binomial expansion theorem, the stochastic discount factor in Equa-
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tion (28) can be expanded as

M(t) =

α
∑

n=0

Mn(t), (32)

where

Mn(t) =

(

α

n

)

γne−nβ′X(t)M0(t). (33)

Each summand can be interpreted as a stochastic discount factor in an artificial

economy.20 The dynamics of the strictly positive stochastic process Mn(t) are

dMn(t)

Mn(t)
= −rn(t) dt− Λn(t)

′dW (t), (34)

where

Λn(t) = Λ0(t) + nΣ′β (35)

rn(t) = r0(t) + nβ ′κ
(

X̄ −X(t)
)

− n2

2
β ′ΣΣ′β − nβ ′ΣΛ0(t). (36)

Plugging in for r0(t) and Λ0(t), it is straightforward to show that Λn(t) and rn(t)

are affine functions of X(t) with coefficients given in Equations (12)-(15). If Mn(t)

is interpreted as a stochastic discount factor of an artificial economy indexed by n

then we know that bond prices in this economy belong to the class of essentially

(exponential) affine Gaussian term structure models and hence

P (τ)
n (t) = eA

∗

n(τ)−B∗

n(τ)
′X(t), (37)

where coefficient A∗
n(τ) and the d-dimensional vector B∗

n(τ) solve the ordinary differ-

20Similar expansions of the stochastic discount factor appear in Yan (2008), Dumas, Kurshev, and
Uppal (2009), Bhamra and Uppal (2010), and Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch
(2013).
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ential equations (10) and (11). Hence, the bond price is

P (τ)(t) =

α
∑

n=0

wn(t)P
(τ)
n (t), (38)

where wn(t) is given in equation (31).

Proof of Theorem 1. Set α = 1 in Theorem 2.

Applying Ito’s lemma to equation (28) leads to the dynamics of the stochastic

discount factor:

dM(t)

M(t)
= −r(t) dt− Λ(t)′dW (t), (39)

where

r(t) = r0(t) + α (1− s(t)) β ′κ
(

X̄ −X(t)
)

− α(1− s(t))β ′ΣΛ0(t)

− α

2
(1− s(t)) (α (1− s(t)) + s(t))β ′ΣΣ′β.

(40)

and

Λ(t) = Λ0(t) + α (1− s(t))Σ′β. (41)

Let ω
(τ)
n (t) denote the contribution of each artificial exponential affine bond price

to the total bond price. Specifically,

ω(τ)
n (t) =

P
(τ)
n (t)wn(t)

P (τ)(t)
. (42)

The dynamics of the bond price P (τ)(t) are

dP (τ)(t)

P (τ)(t)
=
(

r(t) + Λ(t)′v(τ)(t)
)

dt+ v(τ)(t)′ dW (t), (43)
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where

v(τ)(t) = −Σ′

(

α
∑

n=0

ω(τ)
n (t)B∗

n(τ) + β

(

α
∑

n=0

n ω(τ)
n (t)− α(1− s(t))

))

. (44)

B Equilibrium Models

In this section we show that the functional form of the state price density in equation

(2) and (28) naturally comes out of several equilibrium models.21 We need to allow

for state variables that follow arithmetic Brownian motions and hence we rewrite the

dynamics of the state vector in equation (1) in the slightly more general form

dX(t) = (θ − κX(t)) dt+ Σ dW (t), (45)

where θ is d–dimensional and κ and Σ are d× d–dimensional.

In what follows the standard consumption based asset pricing model with a rep-

resentative agent power utility and log-normally distributed consumption will serve

as our benchmark model. Specifically, the state price density takes the following form

M0(t) = e−ρtC(t)−R, (46)

where R is the coefficient of RRA and C is aggregate consumption with dynamics

dC(t)

C(t)
= µCdt+ σ′

CdW (t). (47)

21Chen and Joslin (2012) provide an alternative way to solve many of these equilibrium models
that is based on a nonlinear transform of processes with tractable characteristic functions.
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The short rate and the market price of risk are both constant and given by

Λ0 = RσC (48)

r0 = ρ+RµC − 1

2
R (R + 1)σ′

CσC . (49)

Table 7 summarizes the relation between the nonlinear term structure models and

the equilibrium models discussed in this section.

B.A Two Trees

Cochrane, Longstaff, and Santa-Clara (2008) study an economy in which aggregate

consumption is the sum of two Lucas trees. In particular they assume that the

dividends of each tree follow a geometric Brownian motion

dDi(t) = Di(t) (µidt+ σ′
idW (t)) . (50)

Aggregate consumption is C(t) = D1(t)+D2(t). There is a representative agent with

power utility and risk aversion R. Hence, the stochastic discount factor is

M(t) = e−ρtC(t)−R

= e−ρt (D1(t) +D2(t))
−R

= e−ρtD1(t)
−R

(

1 +
D2(t)

D1(t)

)−R

= M0(t)
(

1 + elog(D2(t))−log(D1(t))
)−R

, (51)

where M0(t) = e−ρtD−R
1 and X(t) = log (D1(t)/D2(t)). Equation (51) has the same

form as the SDF in equation (28) with α /∈ N . Specifically, γ = 1, β = 1, and

α = −R. Note that in this case the state variable is the log-ratio of two geometric

Brownian motions and thus κ = 0. The share s(X(t)) and hence yields are not
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stationary.

B.B Multiple Consumption Goods

Models with multiple consumption goods and CES consumption aggregator naturally

falls within the functional form of the SDF in equation (28). Consider a setting with

two consumption goods. The aggregate output of the two goods are given by

dDi(t) = Di(t) (µidt+ σ′
idW (t)) . (52)

Assume that the representative agent has the following utility over aggregate con-

sumption C,

u(C, t) = e−ρt 1

1−R
C1−R, (53)

where

C(C1, C2) =
(

φ1−bCb
1 + (1− φ)1−b Cb

2

)
1
b

. (54)

We use the aggregate consumption bundle as numeraire, and consequently the state

price density is

M(t) = e−ρtC(t)−R

= (φ)
bR
1−b e−ρtD1(t)

−R

(

1 +

(

1− φ

φ

)1−b(
D2(t)

D1(t)

)b
)−R

b

.

(55)

After normalizing equation (55) has the same form as the SDF in equation (28) with

α /∈ N . Specifically, X(t) = log(D1(t)/D2(t)), γ =
(

1−φ

φ

)1−b

, β = b, and α = −R
b
.

As in the case with Two Trees, the share s(X(t)) and hence yields are not stationary.
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B.C External Habit Formation

The utility function in Campbell and Cochrane (1999) is

U(C,H) = e−ρt 1

1− R
(C −H)1−R , (56)

where H is the habit level. Rather than working directly with the habit level, Camp-

bell and Cochrane (1999) define the surplus consumption ratio s = C−H
C

. The stochas-

tic discount factor is

M(t) = e−ρtC(t)−Rs(t)−R (57)

= M0(t)s(t)
−R. (58)

Define the state variable

dX(t) = κ
(

X̄ −X(t)
)

dt+ bdW (t), (59)

where κ > 0,σc > 0 and b > 0. Now let s(t) = 1
1+e−βX(t) . Note that s(t) is between 0

and 1. In particular, s(t) follows

ds(t) = s(t) (µs(t)dt+ σs(t)dW (t)) , (60)

where

µs(t) = (1− s(t))

(

βκ
(

X̄ −X(t)
)

+
1

2
(1− 2s(t))β2b2

)

(61)

σs(t) = (1− s(t))βb. (62)

The functional form of the surplus consumption ratio differs from Campbell and

Cochrane (1999). However, note that the surplus consumption ratio is locally per-
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fectly correlated with consumption shocks, mean-reverting and bounded between 0

and 1 just as in Campbell and Cochrane (1999). The state price density can be

written as

M(t) = M0(t)
(

1 + e−βX(t)
)R

. (63)

The above state price density has the same form as equation (28) with parameters

γ = 1, β = β, and α = R. Note that the state variable X in this case is mean-

reverting and therefore the share s(X(t)) and hence yields are stationary.

B.D Heterogeneous Beliefs

Consider an economy with two agents that have different beliefs. Let both agents have

power utility with the same coefficient of relative risk aversion, R. Moreover, assume

that aggregate consumption follows the dynamics in equation (47). The agents do

not observe the expected growth rate and agree to disagree.22 The equilibrium can be

solved by forming the central planner problem with stochastic weight λ that captures

the agents’ initial relative wealth and their differences in beliefs (see Cuoco and He

(1994), Basak and Cuoco (1998) and Basak (2000), for example),

U(C, λ) = max
{C1+C2=C}

(

1

1− R
C1−R

1 + λ
1

1− R
C1−R

2

)

. (64)

Solving the above problem leads to the optimal consumption of the agents

C1(t) = s(t)C(t), (65)

C2(t) = (1− s(t))C(t), (66)

22The model can easily be generalised to a setting with disagreement about multiple stochastic
processes and learning. For instance, Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2013)
show that in a model with disagreement about inflation, the bond prices are weighted averages of
quadratic Gaussian term structure models.
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where s(t) = 1

1+λ(t)
1
R

is the consumption share of the first agent and C is the aggregate

consumption. The state price density as perceived by the first agent is

M(t) = e−ρtC1(t)
−R

= e−ρtC(t)−Rs(t)−R

= M0(t)
(

1 + e
1
R
log(λ(t))

)R

. (67)

This has the same form as equation (28) with X(t) = log(λ(t)), γ = 1, β = − 1
R
, and

α = R. The dynamics of the state variable is driven by the log-likelihood ratio of the

two agents and consequently the share s(X(t)) and hence yields are not stationary.

B.E HARA Utility

Consider a pure exchange economy with a representative agent with utility u(t, c) =

e−ρt

1−R
(C + b)1−R, where R > 0 and b > 0. We can write the SDF as

M(t) = e−ρtC(t)−R

= e−ρt (C(t) + b)−R

= e−ρtC(t)−R

(

1 +
b

C(t)

)−R

= M0(t)
(

1 + elog(b)−log(C(t))
)−R

(68)

After normalizing equation (68) has the same form as the SDF in equation (28) with

α /∈ N . Specifically, X(t) = log(b/C(t)), γ = 1, β = 1, and α = −R. Similarly to

the model with Two Trees and multiple consumption goods, the share s(X(t)) and

hence yields are nonstationary as the ratio b/C(t) will eventually converge to zero or

infinity depending on the expected growth in the economy.
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C Gauss-Hermite Quadrature

While bond prices and bond yields are given in closed form conditional moments of

yields and bond returns are not. However, it is straightforward to calculate condi-

tional expectations using Gauss-Hermite polynomials because the state vector X(t)

is Gaussian.23

In this section we illustrate how to calculate the expectation of a function of

Gaussian state variables. Let µX and ΣX denote the conditional mean and variance

of X(s) at time t. Let f(X(t)) be a function of the state vector at time t. For instance

if you want to calculate at time t the n-th uncentered moment of the bond yield

with maturity τ at time u, then f(X(u)) =
(

y(τ)(X(u))
)n
. Hence, the conditional

expectation of y(τ)(X(u)) at time t is

Et [f (X(u))] =

∫

Rd

f(x)
1

(

(2π)d |ΣX |
)0.5 e

− 1
2
(x−µX)′Σ−1

X (x−µX)dx. (69)

Define y =
√
2σ−1

X (x− µX) where σX is determined by the Cholesky decomposition

ΣX = σXσ
′
X . Hence, we can write Equation (69) as

π− d
2

∫

Rd

f(
√
2σXy + µX)e

−y′ydy. (70)

Let g(y) = f(
√
2σXy + µX). We set d = 3 in the empirical section of the paper and

thus the integral in Equation (70) can be approximated by the n point Gauss-Hermite

quadrature

∫

Rd

f(
√
2σXy + µX)e

−y′ydy ≈
n
∑

i=1

n
∑

j=1

n
∑

k=1

wiwjwkg(y1(i), y2(j), y3(k)), (71)

where wi are the weighs and yl(i) are the nodes for the n point Gauss-Hermite quadra-

23For more details see Judd (1998).
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ture for i = 1, .., n and l = 1, .., 3. We use n = 4 in equation (71).
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Three-factor Gaussian model Three-factor nonlinear model
0.645
(0.341)

0 0 0.772
(0.326)

0 0

κ 0.305
(0.207)

0.0376
(0.0456)

0 0.466
(0.369)

0.0272
(0.0366)

0

0.448
(0.197)

0.344
(0.149)

0.704
(0.296)

1.02
(0.305)

0.253
(0.117)

0.362
(0.246)

ρ0 0.00577
(0.0873)

−0.00139
(0.0522)

ρX 0.0019
(0.00873)

0.0163
(0.00247)

0.0114
(0.00448)

0.0038
(0.00176)

0.00987
(0.00111)

0.0036
(0.00364)

λ0 0.86
(0.757)

0.159
(0.515)

0.177
(0.856)

0.356
(0.166)

−0.309
(0.307)

0.234
(0.874)

−0.333
(0.277)

−0.0886
(0.064)

0.00254
(0.236)

−0.622
(0.222)

0.00548
(0.016)

−0.0235
(0.0447)

λX −0.000635
(0.275)

0.098
(0.109)

0.396
(0.102)

0.000636
(0.329)

0.155
(0.0883)

0.259
(0.0617)

0.34
(0.201)

−0.136
(0.1)

−0.106
(0.234)

0.512
(0.271)

−0.142
(0.113)

−0.0621
(0.122)

γ 0 0.000295
(0.00123)

β 0 0 0 −0.866
(0.0684)

−0.449
(0.129)

0.207
(0.24)

σ 4.63e− 007
(9.51e−009)

4.57e− 007
(8.24e−009)

logL 19578.6 19836.9

Table 1: Parameter estimates. A standard three-factor Gaussian and a nonlinear
three-factor Gaussian term structure model are estimated using the Kalman and
unscented Kalman filter, respectively. This table contains the filter estimates and
asymptotic standard errors (in parenthesis). The models are fitted to monthly Fama-
Bliss data of one through five-year zero coupon bond yields from 1952:6 to 2011:12.
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Panel A: Campbell-Shiller regression coefficients

Bond maturity 2-year 3-year 4-year 5-year

Data −0.509
(0.532)

−0.849
(0.62)

−1.26
(0.659)

−1.3
(0.704)

Gaussian model -0.104 -0.23 -0.408 -0.609
Nonlinear model -0.259 -0.53 -0.745 -0.917

Panel B: Regressing realized excess returns on expected excess retuns

Nonlinear model Gaussian model
α× 103 β R2 FVE α× 103 β R2 FVE

One-year holding horizon
2-year bond −2.81

(3.38)
1.01
(0.36)

0.14 0.12 −6.64
(3.96)

1.77
(0.55)

0.16 0.12

3-year bond −5.00
(6.41)

1.00
(0.39)

0.12 0.10 −11.41
(7.33)

1.66
(0.54)

0.14 0.10

4-year bond −8.63
(8.63)

1.10
(0.39)

0.13 0.11 −15.72
(9.34)

1.66
(0.51)

0.15 0.12

5-year bond −10.66
(9.97)

1.09
(0.39)

0.13 0.11 −16.54
(10.28)

1.52
(0.46)

0.15 0.12

Two-year holding horizon
3-year bond −5.42

(7.15)
1.04
(0.47)

0.17 0.14 −8.85
(9.18)

1.42
(0.72)

0.12 0.09

4-year bond −11.60
(12.86)

1.10
(0.48)

0.18 0.14 −15.26
(15.65)

1.36
(0.68)

0.11 0.09

5-year bond −18.05
(16.38)

1.15
(0.46)

0.20 0.16 −20.32
(18.88)

1.32
(0.60)

0.13 0.09

Three-year holding horizon
4-year bond −6.44

(10.42)
0.98
(0.56)

0.17 0.13 −8.91
(14.02)

1.18
(0.85)

0.10 0.07

5-year bond −11.37
(18.26)

0.95
(0.56)

0.16 0.11 −13.16
(23.17)

1.05
(0.78)

0.09 0.05

Four-year holding horizon
5-year bond −8.66

(12.76)
1.00
(0.63)

0.19 0.14 −10.35
(17.55)

1.09
(0.93)

0.10 0.05

Table 2: Excess return regressions. Panel A shows the coefficients φτ from the regres-
sions y(t+ 1, τ − 1)− y(t, τ) = const+ φτ [y(t,τ)−y(t,1)

τ−1
] + residual, where y(t, τ) is the

zero-coupon yield at time t of a bond maturing at time t+ τ (τ and t are measured in
years). The actual coefficients are calculated using monthly Fama-Bliss data of one
through five-year zero coupon bond yields from 1952:6 to 2011:12. For each model
the coefficient is based on one simulated sample path of 1,000,000 months. Panel B
shows regression coefficients from a regression of realized excess returns on expected

excess returns in sample. FVA is 1−
1
T

∑T
t=1(RXτ

t,t+n−Et(RXτ
t,t+n))

2

1
T

∑T
t=1(RXτ

t,t+n−RXτ )2
, where RXτ

t,t+n is the

n-year excess return on a bond with maturity τ . For both panels standard errors in
parentheses are Hansen and Hodrick (1980) with number of lags equal to the number
of overlapping months. In Panel A standard errors for both models are small and
thus omitted.
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Panel A: EGARCH yield vol. regressed on model-implied yield vol.

α× 103 β corr. α× 103 β FVE

1-year bond 0.54
(0.44)

0.87
(0.10)

72.7 0.88 0.71 50.4

2-year bond 0.91
(0.35)

0.77
(0.08)

74.6 0.88 0.68 52.1

3-year bond 0.92
(0.34)

0.76
(0.09)

74.5 0.91 0.67 51.2

4-year bond 1.01
(0.34)

0.77
(0.09)

70.7 0.91 0.65 41.5

5-year bond 1.10
(0.29)

0.71
(0.08)

74.7 0.88 0.65 46.8

Panel B: Distribution of one-month ahead conditional yield volatility (bps/month)

mean 0.01 0.05 0.25 median 0.75 0.95 0.99

GARCH(1,1)
1-year bond 39 13 15 21 31 45 96 164
2-year bond 37 16 18 24 33 42 80 130
3-year bond 36 14 16 25 33 41 72 111
4-year bond 36 14 15 24 33 42 72 111
5-year bond 33 13 16 24 30 38 65 89
Gaussian

1-year bond 46 46 46 46 46 46 46 46
2-year bond 41 41 41 41 41 41 41 41
3-year bond 38 38 38 38 38 38 38 38
4-year bond 36 36 36 36 36 36 36 36
5-year bond 34 34 34 34 34 34 34 34
Nonlinear

1-year bond 39 26 26 27 28 36 100 138
2-year bond 36 25 25 26 28 36 88 117
3-year bond 35 24 24 25 27 36 80 106
4-year bond 33 23 23 24 26 35 74 98
5-year bond 31 21 22 23 25 32 70 93

Table 3: Volatility regressions. Panel A shows regression coefficients α and β from
regressing an EGARCH(1,1) estimate of monthly conditional volatility on model-
implied conditional one-month ahead volatility in sample. Panel A also shows the
regression coefficients α and β resulting from simulating 100,000 months from the
nonlinear model, estimating an EGARCH(1,1) volatility from the simulated yields,
and regressing the estimated EGARCH volatility on model-implied volatility. FVE

is 1 −
1
T

∑T
t=1(V arEGARCH

t (yτ (t+1)−yτ (t))−[α+βV arnonlinear
t (yτ (t+1)−yτ (t))])2

1
T

∑T
t=1(V arEGARCH

t (yτ (t+1)−yτ (t))−V arEGARCH
t (yτ (t+1)−yτ (t)))2

, where V arit(y
τ(t +

1)− yτ(t)) is conditional volatility at time t for a bond with maturity τ in model i.
Standard errors in parentheses are Hansen and Hodrick (1980) with 12 lags. Panel B
shows mean and quantiles of the distribution of conditional volatility in basis points
per month.
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Variance of conditional expectation
Bond maturity Expectation Expectation projected on yields Ratio
Panel A: Instantaneous excess returns
Gaussian three-factor model

2 0.99 0.99 1
3 1.95 1.95 1
4 3.27 3.27 1
5 5.01 5.01 1

Nonlinear three-factor model
2 2.14 1.70 0.79
3 3.74 2.88 0.77
4 5.40 4.02 0.74
5 7.04 5.04 0.71

Panel B: Yearly excess returns
Gaussian three-factor model

2 0.14 0.14 1
3 0.47 0.47 1
4 1.02 1.02 1
5 1.83 1.83 1

Nonlinear three-factor model
2 0.36 0.31 0.86
3 1.03 0.86 0.84
4 1.80 1.48 0.82
5 2.68 2.14 0.80

Table 4: Model-implied population properties of excess returns. This table reports
population properties of instantaneous and annual log excess returns of a n-year
bond. Excess returns are calculated by subtracting the short rate and the one-year
return on a one-year bond, respectively. Conditional expectations are calculated in
the model and compared to the conditional expectations derived by linearly projecting
the model-implied expectations onto the five model-implied yields. In the Gaussian
model the former and the latter are the same. Variances are in percent squared.
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Inflation
Industrial

production growth
Duffee(2011)
hidden factor

R2

−0.04
(−2.26)

0.06

−0.00
(−0.07)

0.00

0.34
(0.55)

0.00

−0.04
(−2.26)

0.00
(0.10)

0.06

−0.03
(−1.63)

−0.00
(−0.12)

0.47
(0.79)

0.05

Table 5: Projections of the linearly hidden risk premium component in the three-factor
nonlinear model. There is a nonlinear relation between expected excess returns and
yields in the nonlinear model. We regress model-implied one-year expected excess
returns averaged across the 2-, 3-, 4-, and 5-year bond on model-implied yields. The
residual from the regression is the linearly hidden part of the average expected excess
returns. We then regress the hidden part on CPI inflation and industrial production
growth over the next 12 months (log changes over the next 12 months). The Duffee
(2011) hidden factor is calculated by downloading the smoothed risk premium factor
from Greg Duffee’s webpage and taking the residual from the projection onto yields
with maturities ranging from one to five years. The data sample when the hidden
factor is included is 1964:1-2007:12. The t-statistics in parentheses are based on
Hansen and Hodrick (1980) standard errors with 12 lags.
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Panel A: Principal components of yields

1st PC 1st & 2nd PC 1st, 2nd, & 3rd PC

Data 0.9906 0.9995 0.9998
Gaussian model 0.9967 0.9999 1.0000
Nonlinear model 0.9959 0.9998 1.0000

Panel B: Regressing yields on principal components

Maturity 1st PC 2nd PC 3rd PC 4th PC 5th PC

Data 1 0.46 -0.73 -0.46 0.19 0.06
2 0.46 -0.22 0.50 -0.61 -0.35
3 0.45 0.12 0.48 0.29 0.68
4 0.44 0.36 0.02 0.56 -0.60
5 0.43 0.53 -0.55 -0.44 0.21

Gaussian 1 0.45 -0.74 -0.45 0 0
model 2 0.45 -0.22 0.48 0 0

3 0.45 0.12 0.48 0 0
4 0.44 0.35 0.04 0 0
5 0.44 0.52 -0.58 0 0

Nonlinear 1 0.46 -0.70 -0.48 0.24 0.08
model 2 0.46 -0.25 0.42 -0.63 -0.40

3 0.45 0.09 0.51 0.18 0.71
4 0.44 0.36 0.11 0.60 -0.56
5 0.43 0.56 -0.57 -0.39 0.16

Table 6: Cross-sectional fit of three-factor models. Panel A shows the contribution
of the first three principal components to the total variation in bond yields. Princi-
pal components are constructed from a panel of constant-maturity zero-coupon bond
yields with maturities ranging from one to five years. Panel B shows the slope co-
efficients from the regressions of each yield on all five principal components and a
constant. The actual coefficients are computed using monthly Fama-Bliss data of one
through five-year zero coupon bond yields from 1952:6 to 2011:12. For each model
the coefficient is based on one simulated sample path of 1,000,000 months.

Model N d X α γ β Stationary
Two trees 1 2 log (D1(t)/D2(t)) −R 1 1 No

Multiple consumption goods 1 2 log (D1(t)/D2(t)) −R
b

(

1−φ

φ

)1−b

b No

External habit formation 1 1 X R 1 β Yes
Heterogeneous beliefs 1 1 log (λ(t)) R 1 − 1

R
No

HARA utility 1 1 log (b/C(t)) −R 1 1 No

Table 7: Equilibrium models. The table shows various equilibrium models and how
they map into the nonlinear term structure models.
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Figure 1: The weight on the base model. The bond price in the nonlinear model is
P (τ)(t) = s(t)P

(τ)
0 (t)+(1−s(t))P

(τ)
1 (t), where P

(τ)
0 (t) is the bond price in the standard

Gaussian model. s(t) is a weight between 0 and 1 and the figure plots this weight.
The shaded areas show NBER recessions.
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Figure 2: Expected excess returns. The graphs show the expected one year log excess
returns of zero-coupon Treasury bonds with maturities of 2, 3, 4, and 5 years. The
thin blue lines show expected excess returns in the three-factor Gaussian model and
the thick red lines show expected excess returns in the three-factor nonlinear model.
The shaded areas show NBER recessions.
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Figure 3: Volatility of excess returns. The graphs show the conditional volatility of
one year log excess returns for zero-coupon Treasury bonds with maturities of 2, 3, 4,
and 5 years. The thin blue lines show volatilities in the three-factor Gaussian model
and the thick red lines show volatilities in the three-factor nonlinear model. The
shaded areas show NBER recessions.
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Figure 4: Sharpe ratio. The conditional Sharpe ratio for a bond is defined as

Et

[

rx
(τ)
t,t+12

]

/

√

V art

[

rx
(τ)
t,t+12

]

where rx
(τ)
t,t+12 is the one-year log excess return on a

bond with maturity τ . The graphs shows the conditional Sharpe ratio for the 2-, 3-,
4- and 5-year bonds. The shaded areas show NBER recessions.
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