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Abstract

We model dividend and consumption growth rates as containing a small long-run

predictable component and economic uncertainty (i.e., growth rate volatility) as being

time-varying. The magnitudes of the predictable variation and changing volatility in

growth rates, as in the data, are quite small. These growth rate dynamics, for which

we provide empirical support, in conjunction with plausible parameter con�gurations

of the Epstein and Zin (1989) preferences can explain key observed asset markets

phenomena. In particular, we show that the model can justify the observed equity

premium, the low risk free rate, and the ex-post volatilities of the market return, real

risk free rate, and the price-dividend ratio. As in the data, the model also implies

that dividend yields predict returns and that market return volatility is stochastic.

The main economic insight we capture is that news about growth rates signi�cantly
alter agent's perceptions regarding long run expected growth rates and growth rate

uncertainty|in equilibrium, this leads to a large equity risk premium, low risk free

interest rate, and large market volatility.
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1 Introduction

An enduring theme in economics is that asset prices are determined as an appropriately

discounted value of the cashows. Further, in equilibrium the ex-ante rates of return are

determined by the preferences of the agents and the time-series properties of the cash-ows.

It is well recognized by now that a wide range of general equilibrium models �nd it diÆcult

to simultaneously justify key observed features of asset markets data. Shiller (1981) and

LeRoy and Porter (1981) argue that the observed dividend series is too smooth to justify the

observed volatility of the market return (approximately 19% standard deviation per-annum).

Mehra and Prescott (1985), Weil (1989), and Hansen and Jagannathan (1991), document

the serious diÆculties that standard economic models have in explaining the relatively large

equity premium, and the low real risk free rate (approximately 6.5% and 1% respectively).

These results suggest that from the perspective of a representative investor, with reasonably

calibrated CRRA preferences, the systematic risks embodied in aggregate dividends time

series are too small to justify the large equity premium. In addition, it is hard to justify

the relatively high volatility of the market return and the standard empirical �nding that

market risk premia seem to vary across the business cycle. In this paper we present a general

equilibrium model where the interaction between dividend growth rates and non-expected

utility preferences (as in Epstein and Zin (1989) and Weil (1989)) reproduces all these asset

markets phenomena.

It is quite standard in the asset pricing literature to model dividends (the fundamental

cashows in most asset pricing models) as a unit root process or some stationary stochastic

process around a deterministic trend. The resulting model for growth rates, typically, has

the feature that news regarding cashows alter investors perceptions regarding expected

growth rates only for very short horizons, if any at all. With standard preferences (as in

Mehra and Prescott (1985)), it is not too surprising that investors view such cash ows as

relatively riskless and, therefore, demand small risk-premia for holding it. In this paper we

propose to model uncertainty in cash ow dynamics by decomposing cash-ows into cyclical

and stochastic trend components. This characterization of the data, for which we provide

empirical support, implies that cash-ow news should signi�cantly alter the perceptions of

agents regarding expected growth rates for the long run. The typical size of cashow news

(i.e., its volatility) is quite small, and its impact on expected growth rates even smaller.

However, the fact that such news has a long lasting impact on expected growth rates makes

the capitalized value of the cash-ow quite risky, and one that warrants a large risk premium.

Along with our speci�cation for the dividend (consumption) dynamics we also need the

Epstein and Zin (1989) preferences to accommodate separation between risk aversion and
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the elasticity of substitution parameters. In the absence of separation between risk aversion

and the elasticity of intertemporal substitution, as is the case in time separable expected

utility, there is an important tension between matching the equity premium, the risk-free

rate, and the volatility of stock returns. In particular, with risk aversion greater than one, the

standard model implies the counter-intuitive feature that a positive innovation to expected

growth rate in cash ows implies a reduction in the price of the stock relative to current

dividend. If risk aversion is smaller than one, then the equity market volatility and the

risk premium may potentially be too low. Hence, the Epstein and Zin (1989)-Weil (1989)

speci�cation is important to our model just as our departure point for the cash-ow process.

In the simplest version of our model, the growth rate process for dividends is modeled and

estimated in the time-series as an ARMA(1,1) with homoskedastic Gaussian innovations.

This speci�cation for growth rates accommodates the possibility that there is a small

predictable component in growth rates. We show that the ARMA(1,1) speci�cation for

growth rates can be motivated as an outcome of a simple stochastic trend and cyclical

variation model for the level of the dividends. Note that the risk premia on all assets with

homoskedastic growth rate innovations are constant and do not vary. To allow for time-

varying risk premium, we augment the above model by incorporating conditional volatility

in the dividend-consumption growth rate process. This captures the economic idea that

uncertainty regarding growth rates varies across the business cycle. The conditional volatility

of the growth rate process is assumed to follow a simple GARCH(1,1) as in Bollerslev (1986).

We �nd considerable support for a GARCH(1,1) volatility process for dividend growth rates.

Given the augmented growth rate process, the Epstein and Zin (1989) preferences, and

the Campbell and Shiller (1988) log-linearization for continuous ex-post returns, we solve

(analytically) for equilibrium asset prices. These solutions make it possible to express the

model's implications for risk premia and volatility of asset returns explicitly in terms of the

preference and growth rate parameters. We use these implications for the risk premia and

asset return volatility to jointly estimate the preference and growth rate parameters. We

�nd that our estimates of the preference and growth rate parameters lie in a plausible range.

Based on the estimated parameter values for preferences and the growth rate process, we

�nd that the model can produce the observed level of the risk-free rate, the equity premium,

the volatilities of stock returns, dividend-yield, and the risk free rate. In addition, the model

also justi�es the common empirical �nding that a rise in the price-dividend ratio predicts a

fall in the market risk premium. The ex-post market return in our model is stochastic and

the market return volatility also follows a GARCH(1,1) process|this is consistent with the

evidence provided in a voluminous literature on market return volatility (see for example,

Bollerslev, Engle, and Wooldridge (1988)). We also show that the simpler version of the
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model where growth rate innovations are homoskedastic can also justify many of the above

mentioned asset pricing the anomalies.1 Incorporating the e�ects of changing uncertainty in

growth rates relative to the homoskedastic case increases the equity premium and the market

volatility by about 20%. Consequently, incorporating time varying volatility of growth rates

in an empirically plausible manner, helps the model justify the asset market phenomena at

lower levels of risk aversion and elasticity of substitution parameters. Our results suggest

that the market compensation for changing economic uncertainty risk is about 1.2% per

annum.

There is voluminous literature that addresses the aforementioned asset market anomalies.

Notable examples, Abel (1990), Abel (1999), Bansal and Coleman (1997), Campbell (1996),

Campbell and Cochrane (1999), Cecchetti, Lam, and Mark (1990), Constantinides (1990),

Constantinides and DuÆe (1996), Hansen, Sargent, and Tallarini (1999), Heaton (1995),

Heaton and Lucas (1996), Kandel and Stambaugh (1991), address various aspects of the

asset market anomalies discussed above. The approaches taken to address these asset

market phenomena include transaction costs, incomplete markets, and time-non-separable

preferences. Note that in the context of frictionless markets, variation in price-dividend ratios

can come about either due to variation in expected growth rates of dividends or variations

in ex-ante rates of return (discount rates). Indeed a recurring theme in this literature is to

ascribe much of the variation in price-dividend ratios to variation in discount rates, where

it is commonly assumed that dividend growth rates are i.i.d. However, in our model the

main source of the variability in the price-dividend ratios is variation in expected growth

rates. Indeed, we explain many of the aforementioned asset market puzzles with very little

variation in discount rates.

It is natural and perhaps important to ask, what additional evidence, particularly at

the micro level, supports our contention that dividend growth rates have components with

signi�cant long run implications. We feel there is considerable micro-level evidence to support

this view, for example, Easton and Zmijewski (1989) and Kormendi and Lipe (1987) show

that news about earnings have signi�cant impact on returns and valuation ratios. At an

aggregate level, Barsky and DeLong (1993) argue that the price elasticity of the market

index with respect to dividends is signi�cantly bigger than one | implying that the market

price of equity changes signi�cantly in response to changes in aggregate dividends. This

impact of fundamental news on asset prices is consistent with our model, where such news

signi�cantly alter perceptions about long-term growth rates and hence valuation ratios.

The paper is organized as follows. Section 2 presents our model. In section 3 we present a

closed form solution for asset prices. Section 4 presents our estimation results and discusses

1Also, see Bansal and Yaron (2000) for explicit empirical tests of this restricted version.
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the empirical evidence. Section 5 contains some concluding remarks.

2 An Economic Model for Asset Markets

Consider a representative agent with the following Epstein and Zin (1989) - Weil (1989)

recursive preferences:

Ut = f(1� Æ)C
1�
�

t + Æ(Et[U
1�
t+1 ])

1=�g �
1�

where 0 < Æ < 1 and Æ�1 � 1 is the rate of time preference. Let � � 1�

1� 1

 

, where  � 0

is the risk-aversion (sensitivity) parameter, and  � 0 is the intertemporal elasticity of

substitution. The sign of � is determined by the magnitudes of the risk-aversion and the

elasticity of substitution. In particular if  > 1 and  > 1 then � will be negative. Note

that when � = 1, that is  = (1= ), the above recursive preferences collapse to the standard

case of expected utility, with U1�
t = (1 � Æ)Et

P1
j=0 Æ

jC1�
t+j . Further, when � = 1 and in

addition  = 1, we get the standard case of log utility.

The above representative agent maximizes life-time utility subject to the period budget

constraint

Ct + P 0
t#t+1 = d0t#t + P 0

t#t � Wt

P 0
t refers to the vector of asset price per share at date t that o�ers a real dividend stream of

d0t+j; j = 1; � � �1. #t is vector of asset holdings at the end of time-period t � 1 (note that

this vector also includes the payo� 1 from the risk-free asset). Given the above information

note that at date t the wealth of the agent is Wt. The above budget constraint can also be

written as

(Wt � Ct) � (1 +Ra;t+1) =Wt+1

where Wt � Ct = P 0
t#t+1, equals the amount of capital invested in the asset markets, and

Ra;t+1 =
P 0

t+1#t+1+d
0

t+1#t+1
P 0

t#t+1
= Wt+1

(Wt�Ct)
is the return on portfolio held by the agent. As in Lucas

(1978), we normalize the supply of all equity claims to be one and the risk-free asset to

be in zero net supply. In equilibrium, aggregate dividends in the economy, de�ned as Dt,

equal aggregate consumption of the representative agent. That is d0t#
� = Dt = Ct, where

the vector, #�, the aggregate supply of assets, has ones everywhere except for the entry

corresponding to the risk free rate which is zero.

For this economy, Epstein and Zin (1989) show, that the asset pricing restrictions for

asset return Ri;t+1 satisfy,

Et[Æ
�G

� �
 

t+1(1 +Ra;t+1)
�(1��)(1 +Ri;t+1)] = 1 (1)
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where Gt+1 is the aggregate gross growth rate of consumption. It follows that for the return

on the aggregate consumption portfolio, Ra;t+1,

Et[Æ
�G

� �
 

t+1(1 +Ra;t+1)
�] = 1 (2)

From the de�nition of a return, it follows that

1 +Ra;t+1 =
(1 + Pa;t+1=Ct+1)

Pa;t=Ct
(Ct+1=Ct) (3)

where we refer to (Pa;t=Ct) as Zt. An equilibrium for this economy is a solution for Zt

that solves the functional equation (2). Further note that as consumption equals dividends,

Ra;t+1, the return on the aggregate consumption process, also coincides with the return on

aggregate dividends | that is, the market portfolio. In section 3.2 we make an explicit

distinction between the consumption and dividend processes.

Continuous versions of variables needed to characterize the solution for the model are

written in lower case letters; hence, ln(1+Ra;t+1) � ra;t+1, ln(Gt+1) � gt+1, and ln(Zt) = zt.

Note that (2) can be written in terms of the continuous variables as,

Et[exp
f�ln(Æ)� �

 
gt+1+�ra;t+1g] = 1 (4)

The continuous return can be written as ra;t+1 = ln(1+ (Pa;t+1=Ct+1))� zt+ gt+1. To derive

analytical solution to the model we use the standard approximation derived in Campbell

and Shiller (1988), and Campbell (1993),

ra;t+1 = �0 + �1zt+1 � zt + gt+1 (5)

where �0 and �1 are approximating constants and both depend only on the average level of

z.2

Note that the inter-temporal marginal rate of substitution, or the \pricing kernel" in this

model is Mt+1 = Æ�G
� �
 

t+1(1 +Ra;t+1)
�(1��). The one step ahead innovation, in log(Mt+1), is

�M;t+1 = � �

 
�t+1 � (1� �)�a;t+1; (6)

where �t+1 is the innovation in continuous growth rate of consumption and �a;t+1 is the

2Note that �1 = exp(�z)=(1+exp(�z)). In our empirical work �1 = 0:9969, which is based on the magnitude
of �z in our sample. This is consistent with magnitudes used in Campbell and Shiller (1988). Further note that
Campbell and Koo (1997) show that the solution to their model is not very sensitive to this approximation.
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innovation in the continuous market return.

2.1 Growth Rate Process

To solve the model we �rst need to characterize the growth rate process. The growth rate

process can potentially have large e�ects on the implied volatility of the equity return and

the size of the equity premium. For convenience, it will be easier for us, at this stage, to

capture the idea of stochastic trends and cyclical variation in dividends by characterizing

the growth rate process as an ARMA(1,1) process. As shown later, this process for growth

rates can be motivated by assuming that the stochastic trend for the level of dividends

follows an exponential smoothing process and the cyclical component is a standard �rst

order auto-regressive process. We subsequently show empirically that the ARMA(1,1) is

a good description of the dividend growth rate. For simplicity, for now, we equate the

dividends and consumption processes and subsequently provide a model that treats them as

separate processes.

gt = �+ �gt�1 + �t � !�t�1 (7)

Note that this process can be more conveniently written as

gt =
�

(1� !)
+ (�� !)

gt�1
1� !L

+ �t (8)

where L is the lag operator. It is assumed that g is stationary, and hence � and ! are

less than one in absolute value. While this standard ARMA(1,1) process characterizes the

dynamics for the growth rate, the relevant state variable that a�ects the present values of

cash ows is the conditional mean of this process. The conditional mean of gt at date t� 1

is determined by the state variable xt�1, where

xt�1 =
�

(1� !)
+ (�� !)

gt�1
1� !L

(9)

Using (8) and (9), it follows that xt is an AR(1) process,

xt = �+ �xt�1 + (�� !)�t (10)

The parameter � determines the persistence of the process, and ! is the smoothing

parameter that a�ects the construction of xt. There are two cases of particular interest that

the ARMA(1,1) representation accommodates. If � = !, then the conditional mean of g is
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a constant, and g is an i.i.d process. Second, if ! = 0, then g is a standard AR(1) process.

Consider the revision in expected growth rates for horizon n � 1

Et[gt+n]� Et�1[Et(gt+n)] = �n�1(�� !)�t (11)

Equation (11) shows that if ��! 6= 0, then rational agents will revise their long-run expected

growth rates in the amount stated in (11). If ��! is positive and small then the revision in

long-run expected growth rates is quite small; in the extreme case when � = ! there is no

revision in the expected growth rate at all. The \permanence" of the expectation revision is

determined by � | if it happens to equal one, then the revision in expectation is identical

across all horizons. When � is less than one, the revision is larger for shorter horizons and

almost zero for very long horizons. An interesting case is where the di�erence between � and

! is small and positive, and � is large | in this case growth rate news leads to very small

revisions to the long-run expected growth rate.

It is important to note that when � is even slightly bigger than ! the growth rate

process will look very close to an i.i.d process | the asset pricing implications, however,

can dramatically di�er from the case in which the growth rate is assumed to be i.i.d (that

is, � exactly equals !). It is quite likely, that in �nite samples, the data on dividend (or

consumption) growth rate by itself may not sharply be able to distinguish across these

di�erent cases.3 It would then seem that the di�erent asset pricing implications of these

alternative growth rate speci�cations may prove to be valuable in sharper identi�cation of

the growth rate process itself. In a similar vein Cochrane and Hansen (1992) argue that

asset markets data provide important information regarding preference parameters.

Barsky and DeLong (1993) use the classic Gordon Growth Formula and an expected

growth rate process with a unit root (equation (10) with � = 1) to document that such

a speci�cation can explain uctuations in the market index. Bansal and Lundblad (1999)

consider the ARMA(1,1) speci�cation for dividend growth rates (see equation (7)) in an

international context and explore its implications for asset return cross-correlations across

economies utilizing the market return based static-CAPM model.

To allow for time variation in risk premia, we further assume that there is stochastic

volatility in the growth rate dynamics|where, �2g;t is the stochastic volatility of the growth

rate. Following Bollerslev (1986) we model the stochastic volatility process as a GARCH(1,1).

3Shephard and Harvey (1990) provide small sample evidence which shows that with population values of
� = 1, and 1� ! small (! around .9), standard estimation procedures, in �nite samples, are biased toward
estimating values of ! equal to one. This suggests that it is diÆcult, in �nite samples, to detect permanent
components. We suspect that the same problems are endemic to our case when � is moderately less than
one, and �� ! is small.
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That is, the squared innovations in the growth rate, �2t+1 follows an ARMA(1,1) process,

�2t+1 = �0 + �1�
2
t + et+1 � !vet;

�2g;t+1 = �0 + �1�
2
g;t + wt+1 (12)

where �2g;t � Et[�
2
t+1], and wt+1 � (�1�!v)(�2t+1��2g;t) = (�1�!v)et+1.4 Further, we assume

that wt is normally distributed and is independent of the innovation in consumption growth

rate �t.
5

3 Solving for Asset Prices

3.1 Solution

As stated earlier to solve the model we need to derive the process for zt � log(Pa;t=Dt). The

relevant state variables for deriving the solution, in the absence of asset bubbles, are xt and

�2g;t. To derive a solution for the endogenous variable zt, we substitute (5) for ra;t+1 in (4).

To do so we conjecture that zt = A0 + A1xt + A2�
2
g;t. This conjecture, along with Euler

equation associated with the market return, (4), are used to solve for the unknown vector of

coeÆcients A = [A0; A1; A2], using the procedure discussed in McCallum (1983). The details

for the solution for these coeÆcients are provided in Appendix A { section 6.1.

The solution coeÆcient for A1 is,

A1 =
1� 1

 

1� �1�
(13)

Note that an a-priori belief that higher expected growth in dividends raises the price-dividend

ratio, would imply that A1 is positive. With j�j < 1 one would require  to be bigger than

one to ensure that A1 is positive. The positivity of A1 captures the usual intuition of

the textbook Gordon Growth formula that higher expected growth, all else equal, should

increase the valuation. Note that if j�j < 1 then the standard expected utility model, with

risk aversion bigger than one (i.e.,  < 1), would imply that A1 is negative | a rise in

expected growth rates leads to a fall in the price-dividend ratio.

4Equation (12) can be derived as follows, �2t+1 = �0+�1�
2
t +et+1�!vet or �2t+1 = �0

1�!v
+(�1�!v) �2t

1�!vL
+

et+1. Note that �
2
g;t � Et[�

2
t+1] =

�0
1�!v

+ (�1 � !v)
�2t

1�!vL
, which in turn implies �2g;t = �0 + �1�

2
g;t�1 + wt.

5For simplicity we will let wt be a mean zero normal, however, one can assume some other distribution
such a chi-square with one degree of freedom, this will not change the main results. The main assumption
required is that the innovation in stochastic volatility process is homoskedastic, without this simplifying
assumption, the solution to the model losses it simplicity, and may not be solvable analytically.
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The solution coeÆcient for for A2 is

A2 =
0:5[� � �

 
+ �A1�1(�� !)]2

�(1� �1�1)
(14)

Note that if � is negative, then the e�ect of a rise in volatility is to lower the price to dividend

ratio. Note that if  > 1, then � < 0 for risk aversions that are bigger than one. Hence, in

the case when risk aversion is bigger than one, a rise in uncertainty would lead to a drop

in the price-dividend ratios. An a priori belief that increased economic uncertainty should

lead to a drop in asset prices suggest that if  > 1, then  > 1 as well.

3.1.1 The Equity Premium

Given the solutions forA, it is straightforward to derive (shown in section 6.1) the expression

for the return on the aggregate consumption portfolio (recall that for now it coincides with

the market return) from which it follows that the innovation in this return is,

�a;t+1 = [1 + �1A1(�� !)]�t+1 + �1A2wt+1 (15)

Further note that the conditional variance of the market return can be expressed as,

vart[�a;t+1] � �2a;t = [1 + �1A1(�� !)]2�2g;t + [�1A2]
2�2w (16)

Also, the conditional covariance between the consumption innovation and the market return

innovation is,

covt(�t+1; �a;t+1) = [1 + �1A1(�� !)]�2g;t

If asset returns and the pricing kernel are conditionally log-normal, as is the case here,

then the continuous risk premium is,

Et[ri;t+1 � rf;t] = �0:5�2ri;t � covt(ln(Mt+1); ri;t+1)

The arithmetic risk premium, E[Ri;t+1 � Rf;t] can be derived by adding the Jensen's e�ect

piece, 0:5�2ri;t, to both sides of the above expression. The risk premium on the market

portfolio, the derivation of which is provided in equation (6.1) in Appendix A, is,

Et[Ra;t+1 �Rf;t] = B[
�

 
+ (1� �)B]�2g;t + �1A2[(1� �)�1A2�

2
w] (17)

where B = [1 + �1A1(� � !)]. Note that B plays a critical role in the determination of
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the risk premium in equation (17). B, as shown later, is bigger than one, and captures the

impact on long-term expected growth rates in response to innovations in dividend growth

rates. The impact of this persistent component on the equity premium via B can be very

large|implying a large equity premium. Further note that volatility risk is priced and a�ects

the risk premium when � 6= 1.

To provide intuition regarding the various e�ects on the market risk premium, consider

some special cases. First, consider the case of standard time-separable preferences where

� = 1, or equivalently  = 1= . From (17) it is evident that the equity premium is

Et[Ra;t+1 �Rf;t] = B�2g;t (18)

Note that with expected utility volatility risk is not priced. With � = 1, the innovation in

the market return does not explicitly a�ect the innovation in the IMRS { see (6). This is

an outcome of the fact that innovations to stochastic volatility do not a�ect the marginal

utility of wealth with expected utility preferences. When � = ! and volatility is constant,

that is, the dividend process is i.i.d and consequently B = 1. In this case the risk premium

of the market portfolio is product of the variance of growth rates and risk aversion. Further,

 = (1= ) = 1 (hence log utility) ensures that B = 1 even if � 6= !, and the resulting market

return is exactly equal to the growth rate process.6

Next, consider the more general case where the risk aversion parameter need not equal

the reciprocal of the elasticity of substitution parameter (i.e., � need not equal 1). In

this case with � = ! (hence B = 1) the equity premium simpli�es to Et[Ra;t+1 � Rf;t] =

�2g;t + (1� �)[�1A2]
2�2w.

7 The e�ect of � 6= 1 is that volatility risk is priced. An interesting

case is one where � < 0 and B > 1, in which case the magni�cation a�orded by the term

pre-multiplying �2g;t can be big enough to generate a large equity premium. This captures

the intuition that small innovations in the growth rate lead to large changes in the market

return, which in turn is positively correlated with the representative agent's consumption.

To hold the market portfolio the agent needs to be compensated for bearing this risk by

being o�ered a large equity premium.

Given the expression for the volatility of Ra in (16), note that the geometric equity

premium, the focus of our empirical analysis, is straightforward to derive,

Et[ra;t+1 � rf;t] = B[
�

 
+ (1� �)B]�2g;t + (1� �)[�1A2]

2�2w � 0:5�2a;t (19)

6Note that in the case of log-utility A1 and A2 are equal to zero and price dividend ratio is constant.
7This follows from recognizing that the term pre-multiplying �2g;t in (17) collapses to . To see this recall

that � is equal to 1�
1� 1

 

, and with B = 1 it follows that [ �
 
B + (1� �)B2] is equal to ( �

 
+ 1� �) = .
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3.1.2 The Risk Free Rate and Volatility

To derive the risk free rate we exploit the Euler condition in (4) and the fact that the pricing

kernel is log-normally distributed. This allows us to derive the following expression for the

risk free rate (details are given in section 6.2 of Appendix A).

rf;t = � log(Æ) +
1

 
Et[gt+1] +

(1� �)

�
Et[ra;t+1 � rt]� 1

2�
V art[

�

 
gt+1 + (1� �)ra;t+1] (20)

As is standard in most models, a rise in expected growth rates increases the risk free rate

here as well. The volatility of the pricing kernel (the last term in the expression for rf;t) can

be fairly large if the return to the market volatility is large, which can signi�cantly alter the

implications for the level of the risk free rate. Further, if � < 0 a rise in the equity premium

lowers the risk free rate.

The volatility of the risk free rate is determined by the volatility of the expected growth

rate process and the volatility of the conditional variance of dividend growth rate. In

particular, we show that,

V ar(rf;t) = (
1

 
)2V ar(xt) +

�
1� �

�
K2 �B2

pk

1

2�

�2

V ar(�2g;t) (21)

where the details of derivation and the constants Bpk and K2 are given in section 6.2 of

Appendix A. Note that in the absence of stochastic volatility in the model, the volatility of

the risk free rate is determined by the volatility of x and the elasticity of substitution,  |

larger values of  lower the volatility of the risk free rate.

Finally, the volatility of the market portfolio return ra is,

V ar(ra;t) = B2V ar(�t+1) + (
1

 
)2V ar(xt) + [A2(�1�1 � 1)]2V ar(�2g;t) + [A2�1]

2�2w (22)

where again, B � [1 + A1�1(� � !)]. The �rst order e�ect on the volatility of the market

return is B2. As discussed earlier, B captures the impact of dividend innovations on long-

term expected growth rates. As long as A1 > 0 an increase in �, with � � ! > 0, increases

B implying growth innovations have bigger impact on market volatility.

3.2 Separating Consumption and Dividends

In this section we model consumption and dividends as separate processes. Note that in what

follows our consumption growth rate process will be identical to that in (7). We augment

this consumption growth rate process with one for dividends. This parsimonious bivariate
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process allows for imperfect correlation between consumption and dividend growth rates and

captures the fact that dividends are more volatile than consumption.

gt+1 = xt + �t+1

gd;t+1 = �d + �xt + �d;t+1

�t+1 = �g;t�c;t+1

�d;t+1 = ���g;t�c;t+1 +
p
1� � 2��g;ted;t+1

�c;t+1; ed;t+1 � N(0; 1) and corrt(�t+1; �d;t+1) = � (23)

where �c;t+1 and ed;t+1 are uncorrelated. Note that this framework ensures that the gt+1

process is identical to that discussed earlier in (7), and (9). Moreover, this structure implies

that the conditional variance of �t+1 and �d;t+1 are �
2
g;t and �

2�2g;t respectively. The parameter

� is the leverage ratio as in Abel (1999). A meaningful interpretation of � is that it equals

the ratio of the unconditional standard deviation of the dividends and consumption growth

rates. The above structure implies that the R2 from predicting gt+1 and gd;t+1 given xt

are equal.8 Further, note that var(�d) = �2var(�c). Since, dividends are more volatile

than consumption � will be bigger than 1. Note that when � = 1 and � = 1, the above

speci�cation collapses to the model speci�cation discussed earlier in the paper and dividend

growth rates are perfectly correlated with consumption growth rates. Finally, note that the

relevant state variables for deriving asset prices are still xt and �g;t

To solve the model, as in the previous discussion, we �rst need to compute the solution to

the endogenous variable, zt = log(Pa;t=Ct). The solution to this variable is entirely unchanged

as the consumption process and consequently the IMRS for our model are unaltered by the

introduction of the auxiliary dividend process. However, to compute the market return which

is a claim to the dividend process, we need to solve for zm;t = log(Pm;t=Dt). The solution

for zm;t (details of which are given in section 6.3.1 in Appendix A) is,

zm;t = A0;m + A1;mxt + A2;m�
2
g;t where (24)

A1;m =
�� 1

 

1� �1;m�
= �

1� 1
� 

1� �1;m�

The � appearing in A1;m captures the idea that dividends are levered relative to aggregate

consumption. Note, that the market price to dividend ratio is likely to be more volatile than

the market price for a claim on consumption, since A1;m is likely to be bigger than A1. The

8Note that the R2 for gt+1 is simply [var(xt)=var(gt+1)] = var(xt)=(var(xt) +E(�
2
g;t)). Similarly the R

2

for dividend growth rate is �2var(xt)=(�
2var(xt) + �2E(�2g;t)), which is equal to the R2 for gt+1.
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solution for A2;m can be derived (see section 6.3.1 of Appendix A) in an analogous manner

to that discussed in the context of A2. Moreover, exploiting the same solution procedures

as in the previous sections one can derive analytical solutions for the equity premium, risk

free rate, market return volatility, and the risk free rate volatility. The derivation for all

these quantities for the above speci�cation of the consumption-dividend model is provided

in the Appendix B. The economic intuition in the context of this model is identical to that

discussed in the consumption equal dividend model (� = 1, � = 1) in the earlier sections.

To provide some sense for what drives premiums in this setting, consider the expression

for the equity premium. The return on the market portfolio is rm;t+1,

Et(rm;t+1 � rf;t) = Bm[(�Bpk)�
2
g;t] + A2;m�1;m[(1� �)A2�1�

2
w]� 0:5V art(rm;t+1) (25)

where Bpk = [� �
 
+ (� � 1)B] and Bm|the beta of the asset with respect to consumption

innovation risk, is (��+ �1;mA1;m(�� !)). Note that with � = 1, and � = 1 this expression

is identical to equation (17) discussed above. There are two sources of systematic risk|the

consumption innovation risk, and the innovation in consumption volatility. Further note

that the systematic risk compensation for these two sources of risk are the expressions in

the squared brackets in equation (25). The endogenously determined beta's of a given asset

to these risks are the analogue of Bm and A2;m respectively. In the context of the market

claim, it is clear that a rise in � or � raises Bm and hence the equity premium.

4 Empirical evidence

4.1 Data

We construct a monthly series of real dividend growth rates using the CRSP data set.

Speci�cally, dividends are imputed from the Value Weighted return on the NYSE including

and excluding dividends. Using the market capitalization rate and the CPI index we

construct a real valued dividend index for monthly observations from January 1927 to

December 1998. The de-seasonalized level of dividend is a trailing 12 month average | this

procedure is similar to that in Bollerslev and Hodrick (1995), Heaton (1995), and Hodrick

(1992). For each date the monthly dividend growth rate is de�ned as the continuous growth

rate of this de-seasonalized level of dividends.

The top panel in Table 1 provides summary statistics of the �rst 2 moments and �rst 2

autocorrelations of the data used in the paper. The table provides information on dividend

growth rate, the Value Weighted return on NYSE, real return on the one-month Treasury
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Bill, and ination. Note that the measured real risk free rate is constructed by subtracting

a trailing 12-month moving average of ination from the nominal one month T-bill rate |

that is subtracting an empirical proxy for expected ination. All the return series including

ination are taken from the CRSP data set. The stylized facts discussed in the introduction

are evident in Table 1. That is the continuous mean equity premium and real risk free

rate are 6.5% and .56% respectively, per-annum. The annualized standard deviation of the

market return and the real risk free rate are about 19% and 1% respectively. In our sample

the volatility of the market return is particularly large.

4.2 Cash Flow Dynamics

In Panel A of Table 2 we provide the ARMA(1,1) estimates for the dividend growth rate

process. The AR(1) coeÆcient, �, is .965 and the MA(1) coeÆcient, !, is .85. These

correspond quite closely to the type of estimates discussed earlier in motivating the model.

In particular, the null hypothesis of an i.i.d. growth rate process (i.e., � = !) can be rejected

at conventional signi�cance levels using the Andrews and Ploberger (1996) test.9 We also

report the estimates for the ARMA(1,1) model with GARCH(1,1) stochastic volatility in

the innovations of the dividend growth rate process. Note that the volatility process is

quite persistent with �1 = 0:983. The innovation in stochastic volatility, determined by the

di�erence �1 � !v = 0:032, is quite small. The economic implications of these estimates

for the conditional mean of the growth rate process are: �rst, that it is quite persistent,

and second, that the optimal forecast of the conditional mean is revised in the amount of

0:965� 0:85 = 0:114 in the direction of the innovation in the growth rate. Analogously, the

volatility forecasts are revised approximately in the amount of �1 � !v. Further, note that

the estimates above imply that the predictable variation (adjusted R2) in the ARMA(1,1)

and its stochastic volatility process are about 14% and 2% respectively | indicating these

processes contain a small predictable component.

An often held view is that the log-levels of consumption and dividends are a random

walk with a drift. Another commonly held view, seen extensively in the RBC literature

(e.g., Kydland and Prescott (1982)), is that aggregate time-series can be meaningfully

decomposed into a trend and business-cyclical components by a �lter such as the HP-�lter.

Not surprisingly, the asset pricing implications will be signi�cantly di�erent across these

two alternative characterization of the data. It is not clear, however, that the time series

9Andrews and Ploberger (1996) provide a formal test for the hypothesis that � = !. The test of this
hypothesis is non-standard since under the null that � = ! the AR and MA parameters of the ARMA(1,1)
are separately identi�ed only under the alternative. They construct a likelihood ratio test (based on the
quantity sup!LRT (!)) and provide the non-standard asymptotic distribution for this test statistic.

15



dynamics of consumption and dividends, in themselves, can speak to which of these two

views is the correct one.

For example, in Panel B of Table 2 we decompose, using the HP-�lter, the monthly

dividend growth rate series into cyclical and stochastic trend components. In utilizing the

HP �lter we used the 'standard' RBC "smoothing" parameter of � = 14400 (see Hodrick

and Prescott (1997) for details). The �rst two columns in Panel B provide the �rst two

autocorrelations of the growth rate of the trend and cyclical components. The results

indicate that the trend growth rate component is very persistent while the growth in the

cyclical component is not very persistent. The last column, denoted Var-Ratio reports the

relative variance of each component to the overall growth rate variance. The results in

that panel suggest that the growth rate in the "Trend" component is small in size but

very persistent, whereas the growth rate of the cyclical component is quite volatile but not

persistent. Viewed from the perspective of the HP �lter, it seems that shocks to the trend

component will signi�cantly alter the implications for long run expected growth rates, and

consequently have serious implications for the equity premium and market volatility.

The ARMA(1,1) speci�cation used in this paper can also be derived from a speci�c trend-

cycle model for the level of dividends. For example, let logDt � Yt = Tt + St where Tt is

the trend component and St is the cyclical component. If one assumes that the trend for Y

follows a exponential smoothing process, where Tt = !Tt�1+(1�!)Yt, and the cyclical part

follows an AR(1) process, with AR(1) parameter of �. Then the growth rate gt+1 = Yt+1�Yt
follows an ARMA(1,1) process as discussed in section 2.1. Note that this is one of the many

ways to characterize the trend and cyclical components so that the implied growth rate

process is an ARMA(1,1). This description of the trend and cycle is analogous to the HP

�lter which, as opposed to this, is a two-sided �lter.

Finally, in Figure 1 we plot the predicted trend growth rate component of the HP �ltered

series against the expected growth rate process implied by the estimated ARMA(1,1) process.

The two track each other very well although the ARMA(1,1) is clearly not as smooth as the

HP-�ltered trend growth rate, which as stated earlier is a two-sided �lter. Overall, the HP

�lter implications for the expected growth rate process and the ARMA(1,1) process, despite

some di�erences, provides the same broad message|the expected growth rate process is very

persistent.

4.3 Estimation and Asset Pricing Implications

We now turn to the empirical asset pricing implications of the model. We provide estimation

results for the model. Subsequent to that we provide a few calibration experiments designed
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to highlight the economics of the model.

4.3.1 Estimation Results and Asset Market Implications

Table 3 provides the core estimation results of our models. Panel A in the table depicts the

relevant data statistics. Panels B and C provide the parameter estimates of the exogenous

processes (i.e., the ARMA(1,1)-GARCH(1,1) speci�cation), preferences, and asset return

moments of interest. The asset markets data, in addition to the growth rate process, contain

valuable information regarding the growth dynamics itself. Consequently, the preference

parameters (Æ,  and  ) are estimated in conjunction with the growth rate parameters (�,

!, �1, and !v). These parameters are estimated by exploiting theoretical restrictions derived

earlier on the equity premium, the level of the risk-free rate, the volatility of the market

return and the risk free rate as well as the moment conditions for estimating the growth

rate process as discussed above.10 Further note that in our estimations the mean per-capita

consumption growth rate is set at 2.4% per annum.

Panel B provides the results for the dividend model for which � = 1 and � = 1, that

is when consumption and dividends are the same. As reported in the �rst four columns of

Panel B of Table 3 the estimated � and !, at 0.977 and 0.864 are marginally higher than

their point estimates in Table 2 (where � = 0:965 and ! = 0:851). The estimated preference

parameters imply a risk aversion of 1.88 and an elasticity of intertemporal substitution of

2.87. In terms of the asset pricing implications, the resulting level of the equity premium

and risk free rate are identical to those observed in the data. The standard deviation of the

market return is 19.20%, which is also identical to that observed in the data. The standard

deviation of the ex-ante risk-free rate is 1.3% in the model, which is only slightly higher than

the volatility of the measured real risk-free rate.

In Panel C we estimate the consumption-dividend model detailed in section 3.2. We

choose � equal to 3 and set the conditional correlation between consumption and dividends

to zero (i.e., � = 0). This choice for the leverage parameter � ensures that we match the

respective volatilities of consumption and dividend growth rates. As stated under Monthly

Statistics of Table 3, the annualized monthly volatility of consumption is 1.8% comparable to

that in post-war data. Further, the dividend volatility, which is 5.5%, is identical to that in

our entire sample.11 Note, that the unconditional correlation of consumption and dividend

10As in Campbell and Koo (1997) we have also solved the model using numerical techniques and �nd that
the Campbell-Shiller approximation used to derive the approximate analytical solutions provide very good
solutions. All the quantitative results reported for our estimated parameters are very close to that found in
the numerical solutions, as long as we con�ne attention to IES parameters less than 3.0 and risk aversion
of less than 10, and choose � which is less than 0.995. Note that the estimated models satisfy all these
restrictions.

11Note that monthly consumption (non-durables and services) data is available only from 1959. In addition,

17



growth rate is only 0.17.

The estimated parameters for growth rate dynamics, given in Panel C of Table 3 are quite

similar to those of Panel B and hence only marginally di�erent than those given in Table

2. In this case, the estimated risk aversion at 5.55 is higher, and elasticity of substitution

parameter at 1.94 is lower than that in Panel B. The e�ect of increasing � is to lower the

volatility of consumption, consequently to match the observed equity premium a higher risk

aversion is warranted. In terms of asset pricing moments, this model matches entirely the

levels of the risk free rate, the equity premium and the volatility of the market return. The

risk free rate volatility is now 0.51% | somewhat lower than the volatility of our measured

real risk free-rate.

It is worth noting that the di�erences between the preference parameter estimates in

Panel B and Panel C are primarily due to di�erences in the volatility of consumption growth

rates, as captured by di�erent choices of �.12 Lowering the value of � while �xing the

volatility of dividend growth rate increases the consumption growth rate volatility. At the

same time the magnitude of A1;m is increasing in � and  . Both of these parameters have

�rst order e�ects on the volatility of the market return. To capture market volatility, a

rise in � accommodates a lower value of  to capture market volatility, at the same time

as consumption volatility is lowered, to capture the equity premium a larger risk-aversion

parameter is needed. This explains the di�erences in Panel B and C.

4.3.2 Additional Asset Market Implications

Table 4 provides some additional implications for the two estimated models in Table 3. First,

it is well known that price-dividend ratios are quite volatile and are very persistent. The �rst

three columns demonstrate that the models' predictions regarding the volatility and �rst two

autocorrelation of the price dividend ratios are comparable to that in the data. The volatility

of log price-dividend ratios in the data is about 0.32 and 0.26 in the consumption-dividend

model 13. Further, the �rst two autocorrelations of the models' log price-dividend ratios are

essentially identical to those observed in the data.

A well recognized important dimension is that dividend yields predict multi-horizon

returns, where a rise in current dividend yield predicts a rise in future expected returns. Our

model performs quite well in reproducing this important feature of the data. In columns 4-9

this choice of � and � also allows us to match the annual volatility of consumption and dividend growth rates
observed for the entire sample 1927-1998. The volatility of the annual dividend and consumption growth
rate, in the data, is 11.49 and 2.92, respectively. Temporally aggregating the monthly growth rate dynamics
based on Panel C in Table 3 the comparable volatilities of annual growth rates (based on Monte-Carlo
simulations) are 9.04 and 3.4 respectively.

12Our results are not particularly sensitive to the choice of � for values less than 0.3.
13It is worth noting that excluding the last 5 years in our sample, results in �(p� d) being only 0.28.
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in Table 4 we report these predictability regressions for horizons of 1, 36, and 120 months.

As is evident, the model captures the positive relationship between expected returns and

dividend yields. The slope coeÆcients and the corresponding R2's rise with the return

horizon, as in the data. Further, note that the model based slope coeÆcients are within one

standard error of the estimated coeÆcients in the data. Finally, the unconditional variance

of the equity premium relative to the ex-post return variance in the model is less than 2%.

This is important as it highlights the fact that cost of capital variation in our model is quite

small|variation in price-dividend ratios is primarily due to the small predictable variation

in growth rates.

In the context of this real economy, we can also explore the implications for the term

premia on real bonds | the average one period excess return on an n period discount bond.

The explicit formulas for the real term structure and the term premia are presented in section

6.4 in Appendix A. At our point estimates real bonds have small negative risk premia (about

-0.4% and -1.2% for a 12 and 36 month real bond respectively)| that is, real bonds provide

consumption insurance to agents. This implication of our model for real bonds is consistent

with the evidence provided in Evans (1998) who documents that for ination indexed bonds

in the U.K. (1983-1995) the term premia is signi�cantly negative (less than -2% at 1 year

horizon) while the term premia for nominal bonds is slightly positive. This evidence of

negative term premia on real bonds is consistent with the implications of the model. It is

worth noting that the negative term premia in our model also imply that the large equity

premium in the model is not a by product of a large positive term premia.

There is a large literature which documents that market return volatility displays a

GARCH(1,1) pattern with fairly persistent volatility shocks (see Bollerslev (1986)). Note

that this feature of the data is easily reproduced in our model. Equation (16) implies that

�2m;t, the market volatility process is

�2m;t = B2 wt
1� �1L

+ �1A
2
2�

2
w;

that is the market volatility is also a GARCH(1,1) process the persistence of which is �1.

This is displayed in the last column of the table as �1;�(rm) | in the data this persistence

parameter is 0.984 and in the model it is equal to �1, 0.983. The magnitude of �1 at 0.984

in the data is consistent with the evidence provided in Bollerslev, Engle, and Wooldridge

(1988). Further note that innovations to market volatility relative to dividend growth rate

volatility are magni�ed by the amount B2, which is bigger than 1. Finally, the implications

of the consumption-dividend model for the time-series of the conditional equity premium

are shown Figure 2. As growth rate volatility is high during recessions it follows, from the
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perspective of our model, that the equity premium also rises during these time periods.

4.3.3 Magnitudes of Preference Parameters

The above results make it clear that the consumption-dividend model with risk aversion

parameter of about 5 and an intertemporal elasticity of substitution parameter (henceforth

IES) of around 1.95, can indeed justify a wide range of regularities observed in asset market

data. Campbell (1999) in the context of asset pricing implications with Epstein and Zin

(1991) preferences and homoskedastic consumption growth rate process argues that IES is

quite small in the data. Hall (1978), also reports low magnitudes for the IES. On the other

hand, estimates of the IES by Attanasio and Webber (1989), who also exploit the Epstein

and Zin (1991) framework, are in excess of 2. The IES estimates in Hansen and Singleton

(1984), using market and T-bill returns, are also well in excess of 2. Our estimates of the

IES are close to those in Attanasio and Webber (1989) and are somewhat smaller than in

Hansen and Singleton (1984).

It is perhaps useful to also relate our estimation to that pursued in Epstein and Zin

(1991). Our estimation approach di�ers from that in Epstein and Zin (1991) (and the

papers cited in above) in two important ways. First, unlike the approach in these papers we

estimate the preference parameters by imposing theoretical restrictions on the volatility of

asset returns in conjunction with the commonly exploited restrictions on the mean risk-free

rate and equity risk premium. As discussed below, the volatility of asset returns provide

valuable independent information regarding the preference parameters. Second, the Epstein

and Zin (1991) paper provides preference parameter estimates exploiting observed aggregate

consumption growth, but assume that the return on the aggregate consumption portfolio

coincides with the observed value weighted return on the market portfolio. Recall, that in

equation (25) Ra;t+1, the return on the consumption portfolio, is a critical input into the

IMRS. Given that the time series behavior of Ra;t+1 and Rm;t+1 can be very di�erent|

using Rm;t+1 in place of Ra;t+1 will considerably a�ect the parameter estimates. In contrast,

this paper estimates preference parameters without making this additional assumption and

imposes the internally consistent theoretical restrictions needed to derive the return on the

aggregate consumption portfolio.

It is also important to note that the standard way to measure IES can lead to considerable

downward bias in estimation. As in Hall (1978), the IES is typically measured by the slope

coeÆcient from projecting date t + 1 consumption growth rate on the date t risk-free rate.
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This slope coeÆcient in the context of our model is;

cov(gt+1; rf;t)

var(rf;t)
=

 

1 +  2�
V ar(�2g;t)

V ar(xt)

where � � �
1��
�
[B(�Bpk)� 0:5B2]� B2

pk
1
2�

	2
.14 If growth rate innovations are

homoskedastic, that is V ar(�2g;t) = 0, then the slope coeÆcient is equal to  , the population

value of the IES. However, with stochastic volatility the measured slope coeÆcient is

downward biased relative to the true value of the IES parameter. For example with

population IES of  = 3 and  = 2 and all other parameters (�; !; �1; !v) set at their

point estimates of Panel B in Table 3 the measured slope coeÆcient would be 0.6. Hence,

the downward bias can be sizable. Further, this is suggestive of the reasons for the di�erences

in point estimates across di�erent economic environments and data sets. Given the evidence

in Attanasio and Webber (1989) and Hansen and Singleton (1984), and the possibility of

downward bias in standard estimation of IES, it seems that our IES estimates are well within

the realm of plausibility.

Using non-parametric bounds on asset prices, Hansen and Jagannathan (1991), and

Cochrane and Hansen (1992) document that large risk aversion helps in justifying observed

risk premia. Mehra and Prescott (1985) argue that a reasonable upper bound for risk aversion

is around 10. In this sense, our estimates for risk-aversion of about 5.5 are quite low and

reasonable.

4.3.4 Calibration

To generate intuition for the way various parameters a�ect the asset prices in our model

we provide some additional sensitivity analysis which are reported in Tables 5-7. In these

exercises we highlight the importance of the small persistent component in conjunction with

the non-expected utility preferences in explaining the asset market puzzles. In addition we

quantify the contribution of stochastic volatility risk in consumption growth rate dynamics

in explaining risk premiums and asset return volatility.

Table 5 provides calibration results for the case in which preferences exhibit non-expected

utility. The results in Panel A are based on growth rate dynamics reported in Panel C of

Table 3 (that is, consumption-dividend model with � = 3 and � = 0) for various values

of  and  . For a given risk aversion, a rise in the elasticity of substitution increases the

equity premium and market volatility, and at the same time lowers the risk-free rate and its

14The expression for the slope coeÆcient follows from recognizing that cov(gt+1; rf;t) =
1
 
var(xt) and the

expression for var(rf;t) given in equation (30) in Appendix A.
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volatility. Evidently, higher levels of  , for a given level of risk aversion, help the model in

justifying the asset market facts.

Next we explore the importance of stochastic volatility in consumption-dividend growth

rates. Panel B in Table 5 provides results when growth rate dynamics do not exhibit

stochastic volatility (that is, we set �1 = !v = 0)|the rest of the parameters are held

as in Panel A. A comparison across Panels A and B, with  = 5:50 and  = 2 shows,

that the equity premium and market volatility without stochastic volatility are about 5.3%

and 16.98% as opposed to 6.4% and 19.20% with volatility risk. Hence, stochastic volatility

risk contributes about 18% to both, equity risk premium and market volatility. Stated

di�erently, in the absence of volatility risk our model would require higher risk aversion and

higher elasticity of substitution to justify the observed equity premium and market volatility.

Panel C in Table 5 replicates the analysis above except that � = :965 and ! = :85 |

the univariate point estimates for dividend growth rate dynamics given in Table 2. It can

be easily seen that a higher � for a given  and  increases the equity premium, lowers the

risk free rate and increases the market return volatility. A comparison of Panel C to Panel

A makes it clear that higher magnitudes of � obviate the need to choose a larger  and 

to match the asset returns moments of interest. Economically, this is an outcome of the

fact that larger values of � magnify the e�ects of small current growth rate news on current

market valuations, as discussed above in section 2.1.

Table 6 provides results for the case in which cash-ow dynamics are i.i.d (that is � = !

and �1 = !v = 0) and preferences still exhibit the non-expected utility. In this case the

price-dividend ratio is constant. Consequently, the market return volatility mirrors the

volatility of dividend growth rates. Further, the equity premium is small and unaltered by

changing  , and the level of the risk free rate is very high. This highlights the importance

of a persistent component in consumption-dividend growth rates which our ARMA(1,1)

speci�cation captures.

Table 7 provides results for the standard time-non-separable preferences. Panel A

assumes cash-ow dynamics are i.i.d and consumption and dividends are perfectly correlated,

as in Mehra and Prescott (1985). Not surprisingly the setup reproduces the well documented

inability of this model to explain asset market data. As the dividend yield is constant in this

speci�cation, the market volatility equals the volatility of the consumption-dividend process

for all values of risk aversion.

In Panel B dividend growth rates follow the consumption-dividend ARMA(1,1)-

GARCH(1,1) speci�cation. Note that now the equity risk premium is negative. In

interpreting this result it is useful to recall the expression for A1 in (13). For values of

 (which in this case equals the reciprocal of  ) bigger than 1, A1 is negative | a rise in
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expected growth rates lowers the price-dividend ratio. A result of this feature is that when

there is a positive shock to consumption (dividends) there is a negative shock to market

returns. Hence, the covariance between consumption and the market return is negative.

In this case the market insures the agent's consumption and therefore the required equity

premium is negative. This feature underscores the importance of separation between risk

aversion and elasticity of substitution in the context of our preferred model. Overall, the key

message of these tables is that neither non-expected utility nor the ARMA(1,1)-GARCH(1,1)

speci�cation for growth rates is suÆcient by itself to explain the asset market data. In our

model the two channels must co-exist if the model is to match the equity premium, the level

of the risk free rate, and the volatilities of the risk free rate and the market return.

Finally, note that our preferred model has quite reasonable magnitudes of risk aversion

(about 5.5) and IES. If one yields on market volatility by a small amount, it is possible to

drive the IES and risk aversion even lower.

5 Conclusions

In this paper we explore the idea that news about consumption and dividend growth rates

continuously alters perceptions regarding long-term expected growth rates, and that in

equilibrium this feature is important for explaining various asset market anomalies. If

news about dividends has non trivial impact on long-term expected growth rates, then

the capitalized value of this cash-ow would be fairly sensitive to small news. Further,

if dividends are positively correlated with consumption than the dividend cash-ow may

warrant a large equity premium.

We provide empirical support for the view that the observed aggregate consumption-

dividend growth process contains a persistent component that imposes long term risks. In

addition, we show that uncertainty of growth rates changes across time|that is, growth

rate volatility is stochastic. We document that the interaction between dividend growth

rate dynamics, which incorporate this idea of long term risks, in conjunction with the

preferences as developed in Epstein and Zin (1989)-Weil (1989) can indeed explain many

outstanding asset market puzzles. In particular, we show that such a model is capable of

justifying the observed magnitudes of the equity premium, the low risk free rate and the

volatility of market return, dividend-yield, and the risk free rate. In addition, the model

is capable of justifying the predictive relation between dividend yields and returns and the

well documented GARCH-type stochastic volatility in ex-post equity returns. In the model

much of the variability in equity prices is due to news about growth rates while variation in

the cost of capital is fairly small.
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It seems that the framework developed in this paper has sharp implications for costs of

business cycle uctuations and the cross-section of asset returns|we plan to explore these

issues in a separate paper.
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Table 1 : Data Description

� rf rm Div. Growth - g

Panel A: Monthly Frequency

� 3.642 0.557 6.997 3.519
(0.105) (0.140) (2.265) (0.654)

� 0.892 1.191 19.201 5.550
(0.026) (0.047) (0.969) (0.422)

�1 0.985 0.979 0.102 0.252
(0.011) (0.010) (0.056) (0.069)

�2 0.971 0.953 -0.016 0.227
(0.014) (0.015) (0.051) (0.029)

rf is the real risk free rate derived by subtracting a trailing 12-month average of ination (�) from the

one month T-Bill. rm is the continuous real return on the Value Weighted NYSE taken from CRSP. We

construct a monthly dividend series using the Value Weighted return on NYSE. The de-seasonalized level of

dividends are constructed using a trailing 12 month moving average of real dividends. The statistics reported

above are for continuous (i.e. log) growth rates constructed from this time series for the level of dividends.

The sample period is 1927:01-1998:12. All return data is from CRSP and ination is CPI based on BLS.

Standard errors are Newey and West (1987) corrected using 12 lags.
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Table 2 : Estimating Dividend Growth Rate Dynamics

� � ! �� �0 �1 !v

Panel A: Monthly Frequency

Estimates .000092 .965 .851 .0147
S.E. (.00011) (.016) (.0315)

Estimates .000092 .965 .851 .0147 .00000376 .983 .951
S.E. (.00012) (.016) (.0316) (.000005) (.025) (.055)

Panel B: HP-�ltered dynamics- Monthly data
�1 �2 Var-Ratio

Growth in HP-trend .998 .992 11.8%
Growth in HP-cyclical .04 .015 88.2%

The model for dividend growth rate is:

gt+1 = �+ �gt + �t+1 � !�t

The GARCH (1,1) model for � implies the stochastic volatility model (12) :

�2g;t+1 = �0 + �1�
2
g;t + (�1 � !v)(�

2
t+1 � �2g;t):

The moments used in estimation of the ARMA(1,1) model are: E[�tgt�1; �t�t�1; �t] = 0. The ARMA(1,1)

parameters underlying the GARCH(1,1) speci�cation are estimated in analogous manner. The parameters

�1, �2 are the �rst and second autocorrelations and Var-Ratio is the variance of the HP-�ltered component

growth rate relative to the observed growth rate. Standard Error are Newey and West (1987) corrected using

12 lags.
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Table 3 : Estimation Results and Asset Pricing Implications

Cash-ow Preference Monthly Statistics Asset Moments

� ! �1 !v Æ   �c �1;c �d �1;d �cd E[rm � rf ] E[rf ] �(rm) �(rf )

Panel A: Data
5.55 .26 { 6.44 0.56 19.20 1.19

Panel B: � = 1, � = 1
.977 .864 .983 .951 .997 1.88 2.78 5.43 .27 5.43 .27 1 6.44 0.55 19.20 1.31
(.006) (.032) (.005) (.029) (.001) (.47) (.26) (.28) (.07) (.28) (.07) {

Panel C: � = 3, � = 0
.974 .860 .983 .950 .998 5.55 1.94 1.81 .25 5.47 .17 .17 6.44 0.55 19.20 0.51
(.007) (.033) (.006) (.031) (.001) (1.65) (.64) (.15) (.07) (.36) (.06) (.06)

In Panel A we provide the data counterpart to the asset moments of interest. Note that rm and rf are the

continuous (i.e., logged) return on the market and the risk-free rate respectively. The equity premium, is

denoted as E[rm� rf ]. All standard deviations are annualized monthly standard deviations, that is monthly
standard deviations are multiplied by

p
12� 100 and all monthly mean returns are annualized. In Panels B

and C the preference parameters (risk aversion , elasticity of substitution  , and discount factor Æ) and the

ARMA(1,1)-GARCH(1,1) time-series parameters are jointly estimated. The moment conditions used in the

estimation are based on minimizing the di�erence between those observed in the data and the corresponding

population moments implied by the model for [E[rm � rf ], E[rf ], �
2(rm), �

2(rf )] in conjunction with the

moments conditions for estimating the dividend growth rate parameters as discussed in Table 2. Panel

B describes the estimation results for a model in which consumption equals dividends. The dynamics for

dividend growth include the ARMA(1,1)-GARCH(1,1) speci�cation given in (7). In Panel C, we estimate

the ARMA(1,1)-GARCH(1,1) consumption- dividend model described in section 3.2. We set the leverage

factor of dividends, � = 3 and the conditional correlation between consumption and dividends, � = 0. All

estimations use a two-step GMM procedure with a Newey and West (1987) covariance matrix with 12 lags.

30



Table 4 : Additional Model Implications

�(p� d) �1;p�d �2;p�d �1 �36 �120 R2
1 R2

36 R2
120 �1;�(rm)

Panel A: Data
0.32 .979 .956 .007 .37 1.08 .002 .11 .38 .984

(.005) (.081) (.161)

Panel B: � = 1; � = 1
0.22 .970 .948 -.003 1.21 1.23 .004 .21 .24 .983

Panel C: � = 3; � = 0

0.26 .972 .948 .003 1.14 1.20 .001 .33 .36 .983

The �rst column, �(p � d), is the standard deviation of log price dividend ratio and the next two columns
are the �rst two autocorrelations of the p� d. The entries in next six column are the �'s and R2 from the
following regression:

rm;t+1 + :::+ rm;t+horizon = �+ �horizon log(Dt=Pt) + �t;t+horizon

applied to observed data and data generated by the GARCH(1,1) model estimated in Panel B and C in

Table 3. The panels correspond the the estimates of Panels B-C in Table 3. �1;�(rm) is the �rst order

autocorrelation coeÆcient of the conditional volatility of rm.

31



Table 5 : Calibration - Non Expected Utility: Consumption-
Dividend Model: � = 3

  E[rm � rf ] E[rf ] �(rm) �(rf )

Panel A: Using Estimates from Panel C in Table 3

2.50 0.50 0.15 5.38 8.34 1.67
2.50 2.00 1.36 1.32 17.09 0.43
2.50 3.00 1.56 0.81 18.14 0.31

3.50 0.50 0.70 5.46 8.48 1.67
3.50 2.00 2.80 1.07 17.50 0.45
3.50 3.00 3.09 0.52 18.58 0.34

5.50 0.50 2.11 5.75 9.29 1.67
5.50 2.00 6.34 0.50 19.20 0.50
5.50 3.00 6.88 -0.15 20.36 0.43

Panel B: As Panel A, without Volatility Risk, �1 = !v = 0

5.50 0.50 1.73 5.57 8.34 1.67
5.50 2.00 5.31 0.63 16.98 0.42
5.50 3.00 5.76 0.02 18.02 0.28

Panel C: As Panel A, with � = :965, ! = 0:851

2.50 0.50 0.08 5.34 7.22 1.42
2.50 2.00 0.85 1.46 13.29 0.36
2.50 3.00 0.97 1.00 14.05 0.25

5.50 0.50 1.16 5.38 7.48 1.42
5.50 2.00 3.62 0.92 14.14 0.40
5.50 3.00 3.93 0.39 14.96 0.32

7.50 0.50 2.14 5.52 7.91 1.42
7.50 2.00 6.09 0.50 15.25 0.44
7.50 3.00 6.57 -0.11 16.14 0.37

This table provides sensitivity analysis for the e�ects  and  have on asset prices. The calibration results

are based on the consumption-dividend model of equation (23). In Panel A the growth rate dynamics are

based on the parameter estimates in Panel C in Table 3. In Panel B the parameters are the same as in

Panel A except that there is no stochastic volatility in consumption and dividend growth rates | that is,

�1 = !v = 0. In Panel C of this table the parameters are the same as in Panel A above except that � = :965

and ! = 0:851 the point estimates of the univariate dividend growth rates described in Table 2.
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Table 6 : Calibration-Non Expected Utility, Dividend Growth is
i.i.d, � = !, �1 = !v = 0, � = 3

  E[rm � rf ] E[rf ] �(rm) �(rf )

Panel A: � = 1
2.50 0.50 0.10 5.91 5.55 0.00
2.50 4.00 0.10 1.75 5.55 0.00

3.50 0.50 0.21 5.86 5.55 0.00
3.50 2.50 0.21 2.08 5.55 0.00
3.50 4.00 0.21 1.73 5.55 0.00

4.00 0.50 0.26 5.83 5.55 0.00
4.00 2.50 0.26 2.07 5.55 0.00
4.00 4.00 0.26 1.72 5.55 0.00

Panel B: � = 0
2.50 0.50 -0.15 5.91 5.55 0.00
2.50 2.50 -0.15 2.11 5.55 0.00
2.50 4.00 -0.15 1.75 5.55 0.00

3.50 0.50 -0.15 5.86 5.55 0.00
3.50 2.50 -0.15 2.08 5.55 0.00
3.50 4.00 -0.15 1.73 5.55 0.00

4.00 0.50 -0.15 5.83 5.55 0.00
4.00 2.50 -0.15 2.07 5.55 0.00
4.00 4.00 -0.15 1.72 5.55 0.00

This tables provide sensitivity analysis for the e�ect i:i:d dividend growth rate has on asset prices when

preferences are Epstein and Zin (1989). The calibration is based on the consumption-dividend model. � is

set at :974 as estimated in Panel C of Table 3 and ! is set equal to � and �1 = !v = 0.
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Table 7 : Calibration - Expected Utility

  = 1


E[rm � rf ] E[rf ] �(rm) �(rf )

Panel A: Growth Rate are i.i.d, � = !, � = 1, �1 = !v = 0
2.00 0.50 0.05 6.41 5.55 0.00
5.00 0.20 0.35 13.25 5.55 0.00
10.00 0.10 0.87 23.97 5.55 0.00
15.00 0.07 1.38 33.83 5.55 0.00
40.00 0.03 3.95 70.30 5.55 0.00

Panel B: Growth Rate process is from Table 3 Panel C
2.00 0.50 -0.28 6.43 11.63 1.68
5.00 0.20 -1.04 13.34 9.61 4.20
10.00 0.10 -21.33 24.32 54.83 8.40
15.00 0.07 -99.33 34.62 128.52 12.61
40.00 0.03 -5326.66 75.94 1023.19 33.96

This table provides sensitivity analysis of the e�ect risk aversion has on asset prices under expected utility

preferences. In Panel A consumption and dividend growth rates are i.i.d and are perfectly correlated (i.e.,

! = �, and � = 1), there is no volatility risk (i.e., !v = �1 = 0) and � = 3. Panel B provides information

using parameters reported in Panel C of Table 3. In all experiments � = :999.
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Figure 1
HP �ltered trend and �tted ARMA(1,1)

1920 1930 1940 1950 1960 1970 1980 1990 2000
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05
HP filtered dividend growth

date

The �gure depicts the �tted process for dividend growth rates from the trend component of
the HP �lter and the ARMA(1,1) estimation (Table 2).
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Figure 2
The Conditional Equity Premium
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The �gure depicts the conditional equity premium based on the estimated ARMA(1,1)-
GARCH(1,1) model in Panel B of Table 3. The conditional equity premium is in terms of
percent per-annum.
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6 Appendix-A

6.1 C = D Model

Recall that based on section 2.1 the consumption process with stochastic volatility is,

gt+1 = xt + �g;t�c;t+1

xt+1 = �+ �xt + (�� !)�g;t�c;t+1

�2g;t+1 = �0 + �1�
2
g;t + wt+1 (26)

To map this into equations (7), (9), and (12), note that �g;t�c;t+1 � �t+1.
The IMRS (Intertemporal Marginal Rate of Substitution) for this economy.

lnMt+1 = � ln Æ � �

 
gt+1 + (� � 1)ra;t+1

Using this IMRS and the standard asset pricing condition that Et[Mt+1Ra;t+1] = Et[exp(� ln Æ � �
 
gt+1 +

�ra;t+1)] = 1, for Ra;t+1, where log(Ra;t+1) � ra;t+1. To derive the solution for the endogenous variable zt
we substitute the approximation ra;t+1 = �0 + �1zt+1 � zt + gt+1 into the standard Euler condition for Ra
(see (4), and conjecture that zt = A0 +A1xt +A2�

2
g;t).

Given the conditional normality of g, x and �2g;t, the conditional mean in (4) must equal exp(cy;t +

vary;t=2) = 1, where cy;t is the conditional mean of yt+1 � �ln(Æ)� �
 
gt+1 + �ra;t+1, and vary;t is its

conditional variance. Using the conjectured solution, the approximation for the return, the process for
the state variables, and (4), it follows that the conditional mean cy;t (suppressing all constants) is,

�[ �
 
xt] + �f[�1(A1�xt +A2�1�

2
g;t)]�A1xt �A2�

2
g;t + xtg

and the conditional variance vary;t

vart[� �

 
�t+1 + �(�z;t+1 + �t+1)] = vart[� �

 
�t+1 + �A1�1(�� !)�t+1 + �A2wt+1 + ��t+1]

where �z;t+1 is the innovation in zt+1, hence,

vary;t = [� � �

 
+ �A1�1(�� !)]2�2g;t + �2A2

2�
2
w

Since cy;t+vary;t=2 must equal zero for all realizations of the state variables, the coeÆcients A can be solved
for by matching the coeÆcients on the state variables. Collecting all terms in asset pricing condition that
involve xt, we can derive a solution for A1,

� �

 
xt + �[�1A1�xt � A1xt + xt] = 0:

It immediately follows that,

A1 =
1� 1

 

1� �1�
which is (13) in the main text.

Collecting all the �2g;t terms, the solution coeÆcient for for �2g;t, that is A2, satis�es

�[�1�1A2�
2
g;t �A2�

2
g;t] +

1

2
[� � �

 
+ �A1�1(�� !)]2�2g;t = 0
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which implies that

A2 =
0:5[�� �

 
+ �A1�1(�� !)]2

�(1� �1�1)
the solution given in (14).

Given the solution above for zt it is possible to derive the return ra as a function of the evolution of the
state variables and the parameters of the model. Suppressing all the constant terms,

ra;t+1 = gt+1 + �1A1xt+1 �A1xt + �1A2�
2
g;t+1 �A2�

2
g;t;

and the one step ahead conditional innovation in the return ra;t+1 is,

ra;t+1 �Et[ra;t+1] = B�t+1 +A2�1wt+1;

where B = (1 +A1�1(�� !)]).
Now substituting for ra;t+1 and the dynamics of gt+1 we can re-write the IMRS in terms of the state

variables | referring to this as the pricing kernel. Suppressing all the constants in the pricing kernel,

mt+1 � lnMt+1 = � ln Æ � �

 
gt+1 + (� � 1)ra;t+1

Et[mt+1] = �xt
 

+A2(�1�1 � 1)(� � 1)�2g;t

mt+1 �Et(mt+1) = f� �

 
+ (� � 1)(A1�1(�� !) + 1)g�t+1 + (� � 1)A2�1wt+1g

= Bpk�t+1 + (� � 1)A2�1wt+1 (27)

where Bpk � f� �
 
+(��1)(A1�1(��!)+1)g = [� �

 
+(��1)B], where recall that B = (1+A1�1(��!)]). The

innovation in a given return and the innovation in mt+1 are critical for determining the risk premium. The
risk premium for the aggregate consumption portfolio ra;t+1 is determined by computing Et(ra;t+1� rf;t) =
�covt[mt+1�Et(mt+1); ra;t+1�Et(ra;t+1)]�0:5vart(ra;t+1). Exploiting the innovations in the return ra;t+1
and mt+1, it follows that,

Et[ra;t+1 � rf;t] = B[(�Bpk)�2g;t] + �1A2[(1� �)�1A2�
2
w]� 0:5vart(ra;t+1)

where vart(ra;t+1) = B2�2g;t + (�1A2)
2�2w . Hence in this case B is the � of the asset with respect to the

growth innovation and (1� �)�1A2 is the � with respect to the volatility shock. The terms in the brackets
are the systematic risk-premia for the two common sources of risks in the economy.

The unconditional variance of ra equals:

V ar(ra;t+1) = V ar[
xt
 

+B�t+1 +A2(�1�1 � 1)�2g;t + �1A2wt+1]

which implies that

V ar(ra;t+1) =
var(xt)

 2
+B2V ar(�t+1) + (A2(�1�1 � 1))2V ar(�2g;t) + (�1A2)

2V ar(wt+1)

We can now derive the expression for the risk-free rate and its volatility, as it only depends on the moments
of the consumption process and that of ra;t+1.

6.2 The Risk Free Rate and its Volatility

To derive the risk free rate start with (4) and plug the risk-free rate for ri.
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rf;t = �� log(Æ) + �

 
Et[gt+1] + (1� �)Etra;t+1 � 1

2
V art[

�

 
gt+1 + (1� �)ra;t+1] (28)

subtract (1��)rf;t from both sides and divide by �, where it is assumed that � 6= 0. It then follows that,

rf;t = � log(Æ) +
1

 
Et[gt+1] +

(1� �)

�
Et[ra;t+1 � rt]� 1

2�
V art[

�

 
gt+1 + (1� �)ra;t+1]

To solve the above expression we need an expression for V art[
�
 
gt+1 + (1� �)ra;t+1] � V art(mt+1).

V art(mt+1) = B2
pk�

2
g;t + (1� �)2(�1A2)

2�2w (29)

Further, if the innovation in growth rate process is homoskedastic, the above expression simpli�es as �2w = 0.
The unconditional mean of rf;t is derived by substituting the expression for the ra;t+1 risk-premium, and
(29) into (28). This substitution yields,

E(rf;t) = � log(Æ) +
1

 
E(g) +

(1� �)

�
E[ra;t+1 � rt]� 1

2�
[B2
pkE(�

2
g;t) + (1� �)2(�1A2)

2�2w]

where Bpk is de�ned earlier. Note that E[�2g;t] = V ar(�)

The unconditional variance of rf;t is,

V ar(rf;t) = (
1

 
)2V ar(xt) +

�
1� �

�
K2 �B2

pk

1

2�

�2

V ar(�2g;t) (30)

where K2 � [ �
 
B + (1 � �)B2] � 0:5B2 = B(�Bpk) � 0:5B2. Note that K2 determines the time varying

portion of the risk-premium on ra;t+1. The portion B(�Bpk) is due to the leading term in the risk-premium
and the term �0:5B2 is due to the Jensen's inequality e�ect in the continuous risk premium.

6.3 Separating Consumption and Dividends

In this section we augment the above consumption dynamics by a separate dividend process. As the
consumption process will be identical to the one presented above, it follows that the solution for zt and
therefore ra;t+1 and rf;t are completely unaltered. Consequently are focus in this section is solely on the
return on the aggregate dividend process which we interpret to the return on the value weighted market
portfolio.

The speci�cs of the consumption-dividend model are as follows:

gt+1 = xt + �t+1

gd;t+1 = �d + �xt + �d;t+1

�t+1 = �g;t�c;t+1

�d;t+1 = ���g;t�c;t+1 +
p
1� �2��g;ted;t+1

�c;t+1; ed;t+1 � N(0; 1) and corrt(�t+1; �d;t+1) = � (31)

where �c;t+1 and ed;t+1 are uncorrelated. Note that this framework ensures that the gt+1 process is identical
to that discussed earlier in (7), and (9). Moreover, this structure implies that the conditional variance of
�t+1 and �d;t+1 is �

2
g;t and �

2�2g;t respectively. The relevant state variables for deriving asset prices are xt
and �g;t.
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6.3.1 Market Return and its Volatility

Let the return on the aggregate dividend process be the market return. Then the zi;t = A0;m + A1;mxt +
A2;m�

2
t , and the innovation in the market return is

rm;t+1 = gd;t+1 + �1;mA1;mxt+1 �A1;mxt + �1;mA2;m�
2
t+1 �A2;m�

2
t

The solution for A1;m =
�� 1

 

1��1;m�
. Further the solution for A2;m can be derived by using the pricing kernel

to price rm;t+1, that is Et[exp(mt+1 + rm;t+1)] = 1. Collecting all the x terms we �nd that

�x
 
+ x�1;mA1;m��A1;mx+ �x = 0;

which implies that

A1;m =
�� 1

 

1� �1;m�

It follows that

rm;t+1 = gd;t+1 + �1A1;mxt+1 �A1;mxt + �1;mA2;m�
2
g;t+1 �A2;m�

2
g;t

rm;t+1 �Et(rm;t+1) = ���t+1 + et+1 + �1A1;m(�� !)�t+1 + �1A2;mwt+1

= Bm�t+1 + et+1 + �1;mA2;mwt+1

where Bm = (�� + �1;mA1;m(�� !)).

We use the following pricing kernel approach to solve for A2;m,

expfEt(mt+1) +Et(rm;t+1) + 0:5V art(mt+1 + rm;t+1)g = 1 (32)

Now note that

V art(mt+1 + rm;t+1) = V art[Bpk�t+1 + (� � 1)A2�1wt+1 +Bm�t+1 + et+1 + �1A2;mwt+1]

= [Bpk +Bm]
2�2g;t + (1� �2)�2�2g;t + [(� � 1)�1A2 + �1A2;m]

2V ar(wt+1)

= f[Bpk +Bm]
2 + (1� �2)�2g�2g;t + [(� � 1)�1A2 + �1A2;m]

2�2w (33)

where Bm;d � [Bpk +Bm], will as we will see the � of the asset.

Collect now all the �2g;t terms,

(� � 1)A2(�1�1 � 1) +A2;m(�1;m�1 � 1) +
B2
m;d + (1� �2)�2

2
= 0 (34)

A2;m =
(1� �)A2(1� �1�1) + 0:5(B2

m;d + (1� �2)�2)

(1� �1;m�1)
(35)

Deriving the Equity Premium on rm;t+1,

rm;t+1 �E(rm;t+1) = �xt
 

+Bm�t+1 + et+1 + �1A1;m(�� !)�t+1 +A2;m(�1�1;m � 1)�2g;t +A2;m�1;mwt+1

= �xt
 

+ (�1A1;m(�� !) + �)�t+1 + et+1 +A2;m(�1�1 � 1)�2g;t +A2;m�1wt+1
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Hence,

V ar(rm) =
�2x
 2

+B2
m�

2
� + (1� �2)�2V ar(�) + [A2;m(�1�1 � 1)]2V ar(�2gt ) + (A2;m�1)

2�2w

Recall, that the V ar(et+1) = (1 � �2)�2V ar(�t+1). The equity premium is derived based on Et(rm;t+1 �
rf;t+1) = �covt(mt+1 �Et(mt+1); rm;t+1 �Etrm;t+1)� 0:5V art(rm;t+1). Thus,

Et(rm;t+1 � rf;t) = Bm[(�Bpk)�2g;t] +A2;m�1;m[(1� �)A2�1�
2
w]� 0:5V art(rm;t+1) (36)

where, 0:5V art(rm;t+1) = 0:5fB2
m�

2
g;t+(1��2)�2�2g;t+(A2;m�1;m)

2�2wg: Note that in the premium formulas
�1 will always show up from the pricing kernel and the second �� is coming from the asset under consideration.
The unconditional variance of the zd;t|the market price-dividend ratio is

V ar(zd;t) = A2
1;mV ar(xt) +A2

2;mV ar(�
2
g;t)

6.4 Term Structure

Let the time t price of an n period maturity discount bond be Qt;n. Consequently, the holding period return

on this bond is Hn;t+1 =
Qt+1;n�1
Qt;n

, so let the time t price of an n period maturity discount bond be Qt;n.

Consequently, that the corresponding continuous return is ht;n = qt+1;n�1 � qt;n, where lower case refers
to logs. As before, let qt;n = D0;n +D1;nxt +D2;n�

2
g;t. The solution for D1;n follows from exploiting (32)

replacing rm with hn. The di�erence equation that arise is,

�xt
 

+D1;n�1�xt �D1;nxt = 0 (37)

which implies that D1;n�1� � 1
 

= Dn. With the initial conditions that D1;0 = 0, the solution for

D1;n = � 1
 

Pn�1
j=0 �

j for all n � 1 that is D1;n = � 1
 
[ 1
1�� (1 � �n)]. Note that D1;n is the bond analog

of A1;m.

In a similar fashion the solution for D2;n, follows from

(� � 1)A2(�1�1 � 1) + [D2;n�1�1 �D2;n] + 0:5B2
m;b(n) = 0

Thus
D2;n = (� � 1)A2(�1�1 � 1) +D2;n�1�1 + 0:5B2

m;b(n)

where D2;0 = 0, and Bm;b(n) = [Bpk +D1;n�1(� � !)], where this is the analogous term to Bm;d above for
equity. Also, note that D2;n is the bond analog of A2;m for equities. Further, note that �1;b = 1 for all
discount bonds of all maturities (for example this is not true for a console).
The term premia on the bond follows

Et[ht+1;n � rf;t] = Bb(n)[�Bpk�2g;t] +D2;n[(1� �)�1A2�
2
w]� 0:5V art(ht+1;n); (38)

where Bb(n) = D1;n�1(�� !). Note that Bb(n) is the bond analog of Bm, that is, it is the � of the asset.
To derive the conditional volatility, we �rst de�ne explicitly the continuous bond return;

ht+1;n = [D0;n�1 �D0;n] + [D1;n�1��D1;n]xt + [D1;n�1(�� !)]�t+1

+ [D2;n�1�1 �D2;n]�
2
g;t +D2;n�1wt+1
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and the conditional variance is,

V art(ht+1;n) = [D1;n�1(�� !)]2�2g;t +D2
2;n�1�

2
w

and the unconditional variance, V ar(ht+1;n) is

V ar(hn;t+1) = [D1;n�1��D1;n]
2V ar(xt) + [D1;n�1(�� !)]2V ar(�t+1)

+ [D2;n�1�1 �D2;n]
2V ar(�2g;t) + (D2;n�1)

2�2w

42


