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Abstract

We solve for asset prices in a general affine representative-agent economy with isoe-

lastic recursive utility and rare events. Our novel solution method is exact in two

special cases: no preference for early resolution of uncertainty and elasticity of in-

tertemporal substitution equal to one. Our results clarify model properties governed

by the elasticity of intertemporal substitution, by risk aversion, and by the preference

for early resolution of uncertainty. Our results also highlight that a covariance-based

factor structure arises as a very special case, rather than as a general property, of

equilibrium models.
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1 Introduction

The framework of representative-agent asset pricing, in which complete markets allows for

the diversification of idiosyncratic risks, has for many years delivered benchmark models

of the cross-section and time-series of stock prices and returns.1 These models are at the

same time simple and rich in the types of economic intuition they capture. In this paper,

we focus on two nested sub-classes of the dynamic representative-agent framework with the

goal of clarifying important implications for risk premia and asset prices.

In the first part of the paper, we extend classic cross-sectional results of Merton (1973)

and Breeden (1979) to a dynamic setting with recursive utility (Epstein and Zin, 1989)

and rare events. This section assumes only isoelastic recursive utility and a Markov struc-

ture. Widening the class of models beyond the traditional diffusion framework of Merton

(1973) has dramatic implications for the cross-section. The intertemporal capital asset

pricing model (ICAPM) of Merton is a standard justifications for the near-universal use

of covariance-based factor models in finance. However, the ICAPM relies on conditional

log-normality. Without the assumption of conditional log-normality, a factor structure may

not hold.

In this section, we also show that the dynamics of the wealth-consumption ratio are prin-

cipally governed by the elasticity of intertemporal substitution (EIS) and the risk premia

in the cross-section relative to a consumption-based model are governed by the preference

for early resolution of uncertainty. However, relative to a wealth-based model, risk premia

in the cross-section are governed by risk aversion. When risk aversion is equal to one, a

rare-event wealth CAPM holds regardless of the EIS. In contrast, a rare-event consumption

CAPM holds if there is no preference for early resolution of uncertainty, regardless of risk

aversion. Some of these comparative statics have appeared elsewhere in the literature, but

the advantage of our frameowrk is that we can show them in a more general setting.

In the second part of the paper, we derive approximate analytical solutions for the

1Textbook treatments include Campbell, Lo, and MacKinlay (1997) and Cochrane (2001).
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pricing of long-lived assets. Our solution method takes as its starting point the widely-

used method of Campbell and Shiller (1988) which involves a first-order approximation

of the price-dividend ratio by a log-linear function. Previous studies use this method

to compute the wealth-consumption ratio (which is necessary for computing other asset

prices under recursive utility), and then to compute prices on other assets. While we use

the method to compute the wealth-consumption ratio, we then, given the approximation,

compute prices on other assets exactly. As a consequence, our method, unlike others, is

exact both when the elasticity of intertemporal substitution is equal to one, and when

utility is time-additive. The reason is that the approximation for the wealth-consumption

ratio is exact when the EIS is equal to one, and a log-linear wealth-consumption ratio is

not necessary for closed-form solutions for asset prices under time-additive utility.

In an example, we extend the model of Wachter (2013) to a case of non-unitary EIS. We

show that our technique is notably closer to the solution when the exact problem is solved

numerically, than the standard approximation. Moreover, because our solution is closer to

the true solution in a formal sense, it delivers insight into the economics of the problem.

The remainder of the paper proceeds as follows. Section 2 describes our general set-up

and derives results for the cross-section. Section 3 describes the affine set-up with analyt-

ical solutions. Section 4 quantitatively evaluates the solution method under an example

economy.

2 General Model

2.1 Assumptions

Let Bct be a unidimensional Brownian motion and BXt an n-dimensional Brownian motion,

such that Bct and BXt are independent. For j = 1, . . . ,m, let Njt be independent Poisson

processes. Consider functions µc : Rn → R, σc : Rn → R, µX : Rn → Rn, σX : Rn → Rn,
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and λ : Rn → Rm. Assume the endowment follows the process

dCt
Ct−

= µc(Xt−) dt+ σc(Xt−)dBct +
m∑
j=1

(eZcjt − 1)dNjt, (1)

where Xt is a vector of state variables following the process

dXt = µX(Xt−) dt+ σX(Xt−)dBXt +
m∑
j=1

ZXjtdNjt, (2)

and where, for all j = 1, . . . ,m and t, Zcjt are scalar random variables and ZXjt an n × 1

vector of random variables. We assume the joint distribution of Zcjt and ZXjt is time-

invariant, and thus suppress the t subscript when not essential for clarity. The intensity

for Poisson process Njt is time-varying and given by λj(x), the j-th element of λ(x). We

adopt the convention that BXt, and therefore Xt, are column vectors and that σc is a row

vector.

Consider an asset that pays cash flows determined by the outcome of a dividend process

dDt

Dt−
= µd(Xt) + σd(Xt)dBct +

m∑
j=1

(
eZdjt − 1

)
dNjt. (3)

There may be many such assets, but because we will assume complete markets, it will suffice

to consider each asset in isolation, and therefore it is not necessary to add a subscript to

Dt. Similarly to the rare-event outcomes for consumption and for Xt, Zdjt is a random

variable with time-invariant distribution for all j.2 In what follows, let Bt = [Bct, B
>
Xt]
>.

For a generic function h(Ct, Dt, Xt), define

Jj(h(Ct, Dt, Xt)) = h(Ct, Dt, Xt)− h(Ct− , Dt− , Xt−) if dNjt = 1

2Dividends are assumed to be perfectly correlated with consumption during normal times. Normal-
times dividend risk that is uncorrelated with consumption and the state variables will have no impact on
risk premia or on asset prices themselves. Our analysis can easily be extended to allow for dividend risk
that is correlated with the state variables.
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and we will use

J̄ (h(Ct, Dt, Xt)) = [Eν1 [J1(h(Ct, Dt, Xt))] , · · · , Eνm [Jm(h(Ct, Dt, Xt))]]
>

where Eνj denotes expectations taken with respect to the joint distribution of Zcj, Zdj, ZXj,

and conditional on information just prior to t.

Assume a representative agent with recursively-defined utility

Vt = Et

[∫ ∞
t

f(Cs, Vs)ds

]
, (4)

with

f(C, V ) =
β

1− 1
ψ

((1− γ)V )

((
C ((1− γ)V )−

1
1−γ

)1− 1
ψ − 1

)
. (5)

where ψ is the elasticity of intertemporal substitution and γ is risk aversion (Duffie and

Epstein, 1992b). When γ = 1/ψ, the recursion in (5) is linear, and (4) reduces to the

time-additive case.

We are interested in two limiting cases of (5). When ψ = 1, (5) reduces to

f(C, V ) = β ((1− γ)V )

(
logC − 1

1− γ
log ((1− γ)V )

)
. (6)

(Duffie and Epstein, 1992a). When γ = 1, (5) reduces to

f(C, V ) =
β

1− 1
ψ

(
e(1−

1
ψ )(logC−V ) − 1

)
. (7)

When γ = ψ = 1, Vt equivalent to time-additive log utility. In what follows, let θ =

(1 − γ)/(1 − 1
ψ

). Then θ = 1 corresponds to time-additive utility, and 1
θ

= 0 will, in a

formal sense, correspond to ψ = 1.
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2.2 General characterization of the solution

We first characterize the value function, the wealth-consumption ratio, and the state-price

density in terms of the state variables. Here and in the remainder of the paper, we follow the

convention that partial derivatives with respect to a vector are row vectors; for example,

∂I/∂X = [∂I/∂X1, · · · , ∂I/∂Xn]. Proofs not given in the main text are contained in

Appendix A.

Proposition 1 (Value function). Suppose the representative agent’s preference is defined

by (4)–(6), where the consumption growth process follows (1) and the state variable process

follows (2). In equilibrium, J(Ct, Xt) = Vt, where

J(Ct, Xt) =
C1−γ
t I(Xt)

1−γ

1− γ
, (8)

for γ 6= 1 and

J(Ct, Xt) = logCt + log I(Xt)

for γ = 1, where I(·) satisfies the partial differential equation

β

1− 1
ψ

[
I(x)

1
ψ
−1 − 1

]
+ µc(x) +

1

2
tr

[(
1

I

∂2I

∂x2
− γ

I2

(
∂I

∂x

)>(
∂I

∂x

))
σ(x)σ(x)>

]

+
1

I

∂I

∂x
µX(x)− 1

2
γσc(x)2 +

1

1− γ

m∑
j=1

λj(x)Eνj

[
e(1−γ)Zcj

(
I(x+ ZXj)

I(x)

)1−γ

− 1

]
= 0.

(9)

for ψ 6= 1 and

− β log I + µc(x) +
1

2
tr

[(
1

I

∂2I

∂x2
− γ

I2

(
∂I

∂x

)>(
∂I

∂x

))
σ(x)σ(x)>

]

+
1

I

∂I

∂x
µX(x)− 1

2
γσc(x)2 +

1

1− γ

m∑
j=1

λj(x)Eνj

[
e(1−γ)Zcj

(
I(x+ ZXj)

I(x)

)1−γ

− 1

]
= 0.

(10)
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for ψ = 1.

Equation 10 is a special case of (9) as can be seen by taking the limit as ψ → 1.

Given the value function (8), we can now express the wealth-consumption ratio and the

state price density in terms of I(Xt). The consumption-wealth ratio will play an important

role in our solution method for the affine case.

Corollary 2 (Wealth-consumption ratio). Let Wt denote the wealth of the representa-

tive agent at time t. Then the wealth-to-consumption ratio Gc(Xt) ≡ Wt/Ct is a function

of Xt and is given by

Gc(Xt) =

 β−1I(Xt)
1− 1

ψ ψ 6= 1

β−1 ψ = 1.
(11)

Proof of Corollary 2 Conjecture that the equilibrium wealth-consumption ratio is a

function of Xt, namely Gc(Xt) ≡ Wt/Ct. Optimality requires that the derivative of f

with respect to Ct equals the derivative of J with respect to Wt (Duffie, 1996, Chapter 9).

By the chain rule, ∂J/∂W = (∂J/∂C)Gc(Xt)
−1, so that

∂f

∂C
=
∂J

∂C

1

Gc(Xt)
. (12)

Furthermore, Vt = J(Ct, Xt). Taking the derivative of (5) with respect to C, and substi-

tuting (8) in for V implies

∂f

∂C
= βC−γI(Xt)

1
ψ
−γ. (13)

Combining (13) with (12), and applying (8) to calculate the right hand side of (12), verifies

the conjecture and implies (11).

Corollary 3 (State-price density). The state-price density is given by:

πt =


exp

{
−β
∫ t

0

(
(1− θ)I(Xs)

1
ψ
−1 + θ

)
ds

}
βC−γt I(Xt)

1
ψ
−γ ψ 6= 1 (14)

exp

{
−β
∫ t

0

((1− γ) log I(Xs) + 1) ds

}
βC−γt I(Xt)

1−γ ψ = 1 (15)
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Proof of Corollary 3 Duffie and Skiadas (1994) characterize the state-price density as

πt = exp

{∫ t

0

∂f

∂V
(Cs, Vs)ds

}
∂f

∂C

∣∣∣∣
Ct,Vt

The results follow from substituting Vt = J(Ct, Xt) using (8) into (5) and (6) and taking

partial derivatives.

2.3 Risk premia

From Corollary 3, we can write the SDE for πt in terms of the underlying shocks:

dπt
πt−

= µπt dt+ σπtdBt +
m∑
j=1

Jj(πt)
πt−

dNjt, (16)

where expressions for µπt , σπt and Jj(πt)/πt− follow from Ito’s Lemma.3 Let St be an asset

paying Dt, such that St = S(Dt, Xt). Ito’s Lemma implies an SDE for St:

dSt
St−

= µSt dt+ σStdBt +
m∑
j=1

Jj(St)
St−

dNjt, (17)

for a scalar process µSt and (row) vector process σSt.

Given the state-price density, risk premia and prices follow from no-arbitrage pricing.

This is equivalent to solving for an equilibrium with a representative agent, provided the

state prices are as in Corollary 3. For convenience, let λjt = λj(Xt), and λt = λ(Xt).

Lemma 4 (No arbitrage). Assume there is no arbitrage with state prices given by (16).

Suppose an asset has price process given by (17). Then

µπt + µSt +
Dt

St
+ σπtσ

>
St + λ>t

J̄ (πtSt)

πt−St−
= 0. (18)

3The state-price density πt is not a function of Ct and Xt, and thus Jj(πt) is not strictly speaking

defined. To be precise, define π̂t = C−γt I(Xt)
1
ψ−γ , and replace Jj(πt) in (16) with Jj(π̂t)πtπ̂t .
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With the no arbitrage condition given in Lemma 4, we can calculate the risk premium

of the asset St. Note that the expected return on this asset is given by:

rSt = µSt +
Dt

St
+ λ>t

J̄ (St)

St−
. (19)

We now state a result that holds under the general form for the state-price density (16)

and for an asset price (17).

Theorem 5 (Risk premia). Let rt denote the continuously compounded risk-free rate.

The continuous-time limit of the risk premium for the asset with price process (17) is

rSt − rt = −σπtσ>St −
m∑
j=1

λjtEνj

[
Jj(πt)
πt−

Jj(St)
St−

]
. (20)

When there are no Poisson shocks, (20) is a standard pricing result that inspires tests

of factor models of the cross-section. Elements of −σπt are often called risk prices, while

elements of σSt are referred to as risk quantities.4 As will be shown below, the elements

of σπt are determined based on consumption growth, the state-variables and the primitive

parameters of the utility function. The elements of σπt can then be uncovered, up to

scaling factors, through OLS regression of stock returns on consumption growth and on

the state variables. A large empirical literature in asset pricing tests (20), under various

specifications for the underlying processes, without the Poisson terms, sometimes with the

model restrictions discussed below and sometimes without. Theorem 5 suggests that such

tests are mis-specified. If risk is not purely Brownian, risk premia need not be linear

functions of normal-times covariances. In a recent paper (Tsai and Wachter, 2016), we

calibrate a model of rare events to show that this result can account for the value premium.

Note also that the convenient separation between prices and quantities of risk, which holds

for diffusion processes, fails in the case Poisson risk.5

4Below, we will argue that it may make sense to refer to (σπt)k rather than −(σπt)k as the risk price
for for Brownian k depending on whether or not an increase in Bkt improves utility.

5The above discussion associates risk prices with Brownian shocks. Alternatively, one may associate risk
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We now specialize Theorem 5 to the model in Section 2.1. For the remaining results in

this section, we assume the endowment process given in (1) and (2) with utility given by

(4–7).6

Corollary 6 (Rare-event Consumption CAPM). Risk premia are given by (20) with

σπt =

[
−γσct,

(
1

ψ
− γ
)

1

I(Xt)

∂I

∂X
σXt

]
(21)

and

Jj(πt)
πt−

=

(
I(Xt− + ZXj)

I(Xt−)

) 1
ψ
−γ

e−γZcj − 1.

Consider the case of no preference for early resolution of uncertainty 1
ψ

= γ and no rare

events λj = 0. The model reduces to that of Breeden (1979). If we allow for rare events

but continue to assume no preference for early resolution of uncertainty, the model reduces

to a “rare-event” consumption CAPM, in which what matters is not only covariance with

consumption, but covariance with the marginal utility which itself is driven exclusively by

consumption. Because these shocks need not be small, however, they will not be captured

by normal-times covariances.

We now specify an intuitive definition of whether a shock increases or decreases invest-

ment opportunities, based on whether it makes the agent beter off. In what follows, we

refer to a shock to the kth component of the vector Brownian motion BXt as Brownian

shock k.

Definition 1. Brownian shock k constitutes an improvement of the investment opportunity

set if it leads to an increase in the value function. It constitutes a deterioration of the

investment opportunity set if it leads to a decrease in the value function. That is, (dBXt)k >

prices with state variables and with consumption. Going between the two is straightforward. To find the
prices of risk associated with the state variables and consumption, project σS and σπ on the (n+1)×(n+1)
matrix σ = [σce1, σ

>
X ]>, where e1 is the (n+ 1)× 1 vector with 1 as the first element and zero elsewhere.

Thus the (n + 1) × 1 vector of risk prices is σπσ
>(σσ>)−1 and the 1 × (n + 1) vector of risk quantities

is σSσ
>(σσ>)−1. While we continue to use risk prices associated with shocks for convenience, are results

hold for this alternative definition.
6We assume that I(Xt) > 0 for all realizations of Xt. This is a natural assumption given the form of

the value function in (8), and it is true in the affine jump-diffusion case explored in the following section.
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0 is an improvement if and only if
(
∂J
∂X
σX
)
k
> 0, where

(
∂J
∂X
σX
)
k

is the kth component of

the row vector ∂J
∂X
σX .

Definition 1 allows for a shock to affect multiple state variables through the matrix of load-

ings σX . In the special case where state variables are uniquely identified with a Brownian

motion, then σX is diagonal, and a shock to a variable is an improvement if and only if it

increases the value function.

Definition 2. If (dBt)k > 0 constitutes an improvement of the investment opportunity

set, then −(σπt)k is the price of risk for Brownian shock k. If (dBt)k > 0 constitues a

deterioration, then, (σπt)k is the price of risk.

While the definition doesn’t formally cover the case of shocks to Bct, clearly positive Brow-

nian shocks to consumption increase utility, and hence have a positive price of risk.

Given these definitions, there is a general result linking the utility function parameters

to the risk prices.

Corollary 7. Brownian shock j has a positive price of risk in the consumption-based model

if and only if γ > 1/ψ.

Proof. The result follows from the prices of risk (21), and from the fact that, given (8), the

sign of ( ∂J
∂X
σX)k is equal to the sign of 1

It
( ∂I
∂X
σX)k.

Namely, if the agent has a preference for an early resolution of uncertainty, then shocks to

the distribution of consumption are associated with a positive risk premium. If there is no

preference for the timing of the resolution of uncertainty then these shocks do not have a

risk premium.

The above theorems show additional terms relative to the consumption CAPM. These

additional terms depend on the preference for the early resolution of uncertainty. However,

many studies use asset returns rather than consumption in cross-sectional regressions be-

cause asset returns are less noisy. Indeed, the original ICAPM of Merton (1973) is written

purely in terms of asset returns. Campbell (1993) derives an ICAPM in a discrete-time
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homoskedastic setting with recursive utility. An ICAPM also holds in our general setting.

The sign of prices of risk on the state variables no longer depends on a preference for an

early resolution of uncertainty, but rather on whether risk aversion exceeds one.

Using (8) and (11) we rewrite the value function as a function of wealth and of Xt:

J(Ct, Xt) = J

(
Wt

1

Gc(Xt)
, Xt

)
= β1−γW

1−γ
t

1− γ
I(Xt)

1
ψ
(1−γ). (22)

Likewise, from (14) it follows that

πt = exp

{
−β
∫ t

0

(
(1− θ)I(Xs)

1
ψ
−1 + θ

)
ds

}
β1−γW−γ

t Gc(Xt)
γI(Xt)

1
ψ
−γ

= exp

{
−β
∫ t

0

(
(1− θ)I(Xs)

1
ψ
−1 + θ

)
ds

}
β1−γW−γ

t I(Xt)
1
ψ
(1−γ) (23)

Moreover, from Wt = CtG
c(Xt), it follows that wealth evolves according to

dWt

Wt−
= µwt dt+ σwtdBwt +

m∑
j=1

(eZwjt − 1)dNjt,

where

σwtdBwt = σctdBct +

(
1− 1

ψ

)
1

I(Xt)

∂I

∂X
σXtdBXt

and

Zwjt = Zcjt +
(

1− 1

ψ

)
log(J (I(Xt)) + 1).

While Zwjt need not have a time-invariant distribution in general, it will have a time-

invariant distribution in the affine model of the next section. A rare-event ICAPM then

follows from Theorem 5:

Corollary 8 (Rare-event ICAPM). Define Bt = [Bwt, B
>
Xt]
> but assume the conditions

of Corollary 6 hold otherwise. Then risk premia are given as in (20), with

σπt =

[
−γσwt,

1

ψ
(1− γ)

1

I(Xt)

∂I

∂X
σXt

]
(24)
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and

Jj(πt)
πt−

=

(
I(Xt− + ZXj)

I(Xt−)

) 1
ψ
(1−γ)

e−γZwjt − 1. (25)

Consider first the case with no Poisson shocks. Then Corollary 8 is precisely the ICAPM

of Merton (1973), derived under the more general condition of recursive utility. If we allow

for Poisson shocks, the ICAPM no longer holds, but note that the preference for early

resolution of uncertainty plays no special role. Finally, when γ = 1, a rare-event CAPM

holds. That is, risk premia depend only on the covariance with wealth during normal times

and during rare events. This holds regardless of the value of the EIS.

We derive a wealth-based analogue of Corollary 7:

Corollary 9. Brownian shock j has a positive price of risk in the wealth-based model if

and only if risk aversion is greater than 1.

Why the difference between the comparative statics in Corollary 7 and Corollary 9?

It is because wealth, or, depending on one’s point of view, consumption, already contains

an endogenous response of the agent to changes in investment opportunities. This change

is mediated through the elasticity of intertemporal substitution. The following corollary

follows directly from (11) and from (8).

Corollary 10. When ψ > 1, a shock representing an improvement in investment oppor-

tunities decreases the wealth-consumption ratio and a shock representing a deterioration

increases the ratio. The opposite holds when ψ < 1

3 Affine Model

Further assume the drift and volatility in the Ct and Xt processes, as well as the jump

probability, are affine functions of the state variables Xt. That is, for a column vector x of
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length n, define

µc(x) = k0 + k1x (26a)

σ2
c (x) = u0 + u1x (26b)

µX(x) = K0 +K1x (26c)

(σX(x)σX(x)>)ij = (U0)ij + (U1)ijx (26d)

λ(x) = l0 + l1x, (26e)

where k0 and u0 are scalars, k1 and u1 are 1× n, l0 is m× 1, l1 is m× n, K0 is n× 1, K1

and U0 are n×n matrices, and U1 can be thought of as an n×n×n matrix in a sense that

will be made more precise below.

Finally, l0 is a column vector of length m. This is similar to the affine structure de-

fined by Duffie, Pan, and Singleton (2000), except in that case it is a specification of the

endowment process rather than the discount rate. This structure can accomodate time-

varying rare disasters as in Wachter (2013), as well as time-variation in the mean and

standard deviation of consumption growth, as in Bansal and Yaron (2004). The model can

accomodate rare events that affect the moments of the consumption growth process (Ben-

zoni, Collin-Dufresne, and Goldstein, 2011; Drechsler and Yaron, 2011; Tsai and Wachter,

2016), and self-exciting jumps (Nowotny, 2011). The model can also accomodate a station-

ary dividend-consumption ratio, while still allowing dividends to temporary respond more

to disasters (Longstaff and Piazzesi, 2004).

Assumption (26) describe conditions on conditional means, variances, and covariances

for the processes Ct and Xt. Specifically, consider (26d). From (2), it follows that

σX(x)σX(x)> is the normal-times conditional variance of Xt. That is, it is the instanta-

neous variance over an interval without rare events. Given two linear combinations of Xt,

a>Xt and b>Xt, for column vectors a, b, the normal-times conditional covariance of a>Xt

with b>Xt is a>σX(x)σX(x)>b. Assumption (26d) implies that this conditional covariance
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is linear in x. To see this, note that from (26d) it follows that

a>σ(x)σ(x)>b =
∑
i,j

ai(σ(x)σ(x)>)i.jbj (27)

=
∑
i,j

ai(U0)ijbj +
∑
i,j

ai ((U1)ijx) bj. (28)

For a fixed i, j = 1, . . . , N , (U1)ij is a row vector. Let (U1)ij,k be the kth element of this

row vector so that

ai ((U1)ijx) bj =
∑
k

ai(U1)ij,kxkbj =
∑
k

ai(U1)ij,kbjxk

From (28), it then follows that

a>σ(x)σ(x)>b = a>U0b+ a>U1bx,

where a>U1b is formally defined to be the column vector with kth element ai(U1)ij,kbj.

In what follows, define a m × 1 vector Zc = [Zc1, · · · , Zcm]> and an m × n matrix

ZX = [ZX1, · · · ZXm]>. Given a vector x, we use ex to denote the exponential of each

element in x. To evaluate expressions at γ = 1, apply limγ→1
1

1−γ e
(1−γ)y − 1 = y.

3.1 Value function

We first characterize the value function.

Theorem 11. The value function takes the form (8), with

I(x) ' exp{a+ b>x}, (29)
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where a is a scalar and b is n× 1. When ψ 6= 1,

a =
1

i1

(
1

1− 1/ψ
(i1 log β + i0 − β) + k0 −

1

2
γu0 + b>K0 +

1

2
(1− γ) b>U0b

+
1

1− γ

(
Eν
[
e(1−γ)(Zc+ZXb) − 1

])>
l0

)
, (30)

and

1

2
(1− γ) b>U1b− i1b>+ b>K1 + k1−

1

2
γu1 +

1

1− γ
(
Eν
[
e(1−γ)(Zc+ZXb) − 1

])>
l1 = 0, (31)

with i1 = e
E

[
log

(
βI(Xt)

1
ψ
−1
)]

and i0 = i1(1− log i1). For ψ = 1, (29) is exact, and (30) and

(31) hold with limψ→1 i1 = β and limψ→1
1

1− 1
ψ

(i1 log β + i0 − β) = 0.

It follows immediately from (31) that the vector b is nonzero if and only if at least one

state variable affects the consumption distribution directly, either through the mean (k1),

the variance u1, or the jump probability l1. Given one such state variable, however, other

state variables could enter into the value function even if they don’t affect consumption

directly; they just need to affect the distribution of the state variable that does affect

consumption.7

3.2 State price density

We next characterize the state-price density and the riskfree rate.

Theorem 12. The state-price density is given by

dπt
πt

= µπtdt+ σπtdBt +
m∑
j=1

(eZπj − 1)dNjt, (32)

7For example, in Seo and Wachter (2016), the state variable ξt does not affect consumption directly,
but it affects the time-varying mean of the disaster probability λt.
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where

σπt '
[
−γσc(Xt),

(
1

ψ
− γ
)
b>σX(Xt)

]>
(33)

and

Zπj ' −γZcj +

(
1

ψ
− γ
)
b>ZXj. (34)

where b is given in Theorem 11. Furthermore,

µπt = −rt −
m∑
j=1

λj(Xt)Eν [e
Zπj − 1]

where rt, the riskfree rate, is given by

rt ' β+
1

ψ
(k0+k1Xt)−

1

2
γ

(
1 +

1

ψ

)
(u0+u1Xt)−

1

2

(
γ − 1

ψ

)(
1− 1

ψ

)(
b>U0b+

(
b>U1b

)
Xt

)
+

(
Eν

[(
1− 1

θ

)(
e(1−γ)(Zc+ZXb) − 1

)
−
(
e−γZc+

(
1
ψ
−γ
)
ZXb − 1

)])>
(l0 + l1Xt). (35)

The approximations are exact in the case of ψ = 1 and γ = 1
ψ

.

This theorem shows that derivatives with respect to the value function in Corollaries 6

and 8 can be replaced with the simpler constant vector b. Moreover, the rare events’ impact

on marginal utility πt can be replaced by the simpler expression (34).

3.3 Equity prices in the affine model

Given (3) and equilibrium, equity prices are functions of Xt and Dt. We further specify

µd(x) = kd0 + kd1x, (36)

σc(x)σd(x) = ucd0 + ucd1 x, (37)

where kd0 and ucd0 are scalars, and kd1 and ucd1 are 1 × n. We simplify the problem by con-

sidering equity strips, namely equity that pays a dividend at a single point in time (Lettau
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and Wachter, 2007). From this point in the argument forward, no further approximations

are necessary.

Theorem 13. Let H(D, x, τ) denote the price of an asset that pays dividend D, τ years

in the future. Then

H(D, x, τ) ' D exp
{
aφ(τ) + bφ(τ)>x

}
, (38)

where functions aφ(τ) : [0,∞)→ R and bφ(τ) : [0,∞)→ Rn solve

∂aφ(τ)

∂τ
= kd0 −

1

ψ
k0 − β +

1

2
γ

(
1 +

1

ψ

)
u0 − γucd0 + bφ(τ)>K0

+
1

2

(
1− 1

ψ

)(
γ − 1

ψ

)
b>U0b+

1

2
bφ(τ)>U0bφ(τ) +

(
1

ψ
− γ
)
bφ(τ)>U0b

+

(
Eν

[(
1

θ
− 1

)(
e(1−γ)(Zc+ZXb) − 1

)
+
(
e−γZc+Zd+ZX(bφ(τ)+(1/ψ−γ)b) − 1

)])>
l0, (39)

and

(
∂bφ(τ)

∂τ

)>
= kd1 −

1

ψ
k1 +

1

2
γ

(
1 +

1

ψ

)
u1 − γucd1 + bφ(τ)>K1

+
1

2

(
1− 1

ψ

)(
γ − 1

ψ

)
b>U1b+

1

2
bφ(τ)>U1bφ(τ) +

(
1

ψ
− γ
)
bφ(τ)>U1b

+

(
Eν

[(
1

θ
− 1

)(
e(1−γ)(Zc+ZXb) − 1

)
+
(
e−γZc+Zd+ZX(bφ(τ)+(1/ψ−γ)b) − 1

)])>
l1. (40)

The approximations are exact if utility is time-additive or if ψ = 1.

Given the above result, the price of the claim to all future dividends follows immediately.

Corollary 14. Let S(Dt, Xt) denote the time t price of an asset that pays the stream of

dividends given by (3), then

S(Dt, Xt) =

∫ ∞
0

H(Dt, Xt, τ)dτ = DtG(Xt), (41)

where H is the function defined in (38) and G(Xt) is the price-dividend ratio which can be
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expressed as:

G(Xt) '
∫ ∞
0

ea(τ)+b(τ)
>Xtdτ. (42)

The approximation is exact if utility is time-additive or if ψ = 1.

While we have written Theorems 12 and 13, as well as Corollary 14 in terms of approx-

imations, both results are exact given the (approximate) value function in Theorem 11.

Furthermore, these results are all exact in the case of ψ = 1 and time-additive utility.8

Corollary 14 applies to the asset that pays aggregate consumption as dividend, that is,

µd = µc, σd = σc and Zdj = Zcj for all j = 1, · · · ,m. It follows that this theorem provides

an alternative way to solve for the consumption-wealth ratio Gc(Xt). Indeed, when we set

ψ = 1 in the equations in this theorem, we find aφ(τ) = −βτ and bφ(τ) = 0, verifying

that Gc(Xt) = β−1. However, when ψ 6= 1, the wealth consumption ratio calculated using

(42), is not the same as (11). Which one is a better approximation? Because (42) does not

require an additional approximation, it is probably no worse than the approximation in (11).

Moreover, the wealth-consumption ratio is exact in the case of Corollary 14 under time-

additive utility, which is a reason to think it might be better. While precise statements are

not available, in our experience, approximating the level of the wealth-consumption ratio

is especially tricky. Corollary 14 does not obtain information on the level from (11), but

rather only uses the slopes b, and the equilibrium conditions to determine the level. In

practice, this appears to be more robust.

We now turn to risk premia. Despite the potential complexity of this model, risk premia

for equity strips always take a strikingly simple form. First note that the expected return

on zero-coupon equity is

rH,τt = µHt + λ>t
J̄ (Ht)

Ht−
.

Corollary 15. Consider the claim to the dividend τ years in the future. The risk premium

8Note, however, that Theorem 11 is approximate in the case of time-additive utility. The distinction is
that it is not necessary to obtain the value function to price securities when utility is time-additive. The
value function does have an exact solution in this case, but we do not give it here.
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on this claim equals

rH,τt − rt = γσctσdt −
( 1

ψ
− γ
)
b>σXtσ

>
Xtbφ(τ)

−
∑
j

λjtEνj

[(
e−γZcj+

(
1
ψ
−γ
)
b>Zπj − 1

)(
eZdj+bφ(τ)

>ZXj − 1
)]

(43)

Proof The result follows from the general expression for risk premia in Theorem 5, and the

expression for the state-price density (Theorem 12) and the price of the asset (Theorem 13)

in the affine case.

Risk premia for complex long-lived assets are simply a weighted sum of the risk premia on

zero-coupon equity.

4 Example

We apply the findings in the previous section to generalize the Wachter (2013) disaster risk

model to the case of non-unitary ψ. This model is a special case of that in Section 3 with

n = m = 1, Xt = λt, the disaster probability. Because the Poisson shocks are disasters,

Zct < 0. µX(x) = κλ(λ̄ − x), while σX(x) = σλ
√
x. The functions µc(x), σc(x), µd(x) and

σd(x) are constants, ZXt = 0, and Zdt = φZct . Equations 30 and 31 have closed-form

solutions with

a =
1

i1

((
1− 1

ψ

)−1
(i1 log β + i0 − β) + µ− 1

2
γσ2 + bκλ̄

)
, (44)

b =
(κ+ i1)−

√
(κ+ i1)2 − 2σ2

λEν [e(1−γ)Zc − 1]

(1− γ)σ2
λ

. (45)

When ψ = 1, these equations reduce to those in Wachter (2013), as described in Theo-

rem 11.9

9The notation is slightly different from that of Wachter (2013). In order to accomodate the γ = 1 case,
a and b in this paper are equal to a and b in the previous paper divided by 1− γ.
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It follows from (45) that b < 0 regardless of the preference parameters. Therefore, an

increase in the probability of a rare disaster always decreases the investor’s utility. Applying

the definitions from Section 2.3, the price of risk for λt (relative to the CCAPM) is equal

to (σπt)2 =
(

1
ψ
− γ
)
bσλ
√
λt, and thus is positive if and only if γ > 1

ψ
.

The wealth-consumption ratio, by Corollary 2, can be approximated by

Gc(λt) ' β−1 exp

{(
1− 1

ψ

)
(a+ bλt)

}

which is decreasing in λt if and only if ψ > 1. It follows from Theorem 5 that the premium

for bearing λt-risk is positive if ψ > 1 and γ > 1/ψ or if ψ < 1 and γ < 1/ψ. In the

former case, the wealth-consumption ratio decreases in λt, and the agent prefers an early

resolution of uncertainty (so the price of λt-risk is positive). In the latter case, the wealth-

consumption ratio increases in λt and the agent prefers a late resolution of uncertainty (so

the price of λt-risk is negative).

To evaluate the numerical properties of the solution, we choose a calibration fit to the

first two moments of equity and Treasury bill returns.10 The appealing aspect of this rare

disaster model is its ability to explain high equity return volatility with a low volatility

of consumption growth, without counterfactually generating predictive relations between

consumption growth and stock prices. Raising the elasticity of intertemporal substitution

above 1 helps the model explain stock market volatility relative to the model of Wachter

(2013).

To gauge the accuracy of the solution, we first compare the wealth-consumption ratio

under our log-linearization method, to one calculated using Chebyshev inequalities. Panel A

of Figure 1 shows the solution as a function of the disaster probability, under two different

assumptions for the disaster size. Panel A shows that the exact and approximate wealth-

consumption ratios are nearly indistinguishable, indicating that our approximation is highly

10See Tsai and Wachter (2015): discount rate β = 0.01, risk aversion γ = 3, normal-times consumption
growth µ = 0.0195, consumption growth volatility σ = 0.0125, dividend growth µD = 0.04, leverage φ = 3,
and mean-reversion κλ = 0.12, volatility σλ = 0.081 average disaster probability λ̄ = 0.0286.
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accurate, even when rare disasters are large. In Panel B we examine the price-dividend

ratio for the asset with leverage φ = 3 (the wealth-consumption ratio is, by definition, the

price-dividend ratio with φ = 1). Here, we compare three solution methods: (1) An exact

numerical calculation, (2) our method, which we call “integration,” and which is exact

given the approximation for the value function, and (3) log-linearizing the price-dividend

ratio as described in Appendix B and which is frequently done in the literature. While

both approximations seem adequate, approximation (3) is noticeably coarser than (2), at

all levels of the disaster probability.

Figure 2 shows the price-dividend ratio (Panel A), and the component of the risk pre-

mium that compensates for the risk of variation in the disaster probability (Panel B). We

show this for unitary EIS and for our benchmark calibration of EIS equal to 2. The reason

to focus on a specific component of the risk premium is that, in the special case described

in this section, it is this component alone that differs between the log-linearization and the

integration approach.11 This component is economically sizable, and represents about half

of the total risk premium.

Specifically, corollary 15 shows that, in the case of equity strips, risk premia have

three terms: a consumption CAPM term from the correlation between consumption and

dividends in normal times, a term that arises from the correlation between the price of the

asset and the state variables in normal times, and finally a term that arises directly from

rare events. The same is true for the market as a whole, or any asset with a price S(Dt, λt).

For the special case of the model in this section, the second term, which is the one we are

interested in, equals
(

1
ψ
− γ
)
bσλ(

1
St
∂S
∂λ

)λt, which follows from Theorem 5, where we apply

the expression for the state-price density in Theorem 12.

Log-linearizing the price-dividend ratio, as described in Appendix B, implies that this

term is linear λt. This log-linearization is misleading however. When we calculate an exact

expression for this term by creating a weighted average of the terms in Corollary 15 (we

11The reason is that the disaster only affects consumption and the state variables, not the probability of
a rare disaster.
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refer to this as “integration” in the figure):

1

St

∂S

∂λ
=

∫ τ

0

eaφ(τ)+bφ(τ)λt∫ τ
0
eaφ(u)+bφ(u)λt du

b′φ(τ) dτ

we see that it is strikingly non-linear, and is in fact concave in the disaster probability. The

concavity is a reflection of an important economic effect that the log-linearization approach

leaves out. When the disaster probability increases, claims to dividends in the long-term fall

in price by more than claims to dividends in the short-term because of duration. However,

these long-term claims have greater risk premia, again, because of duration. As the disaster

probability increases, risk premia on all claims increase, but claims on the long-term assets

increase by more. At the same time, these assets have a lower weight in the overall market.

For this reason, the log-linearization approach over-predicts the risk premium, and under-

predicts the size of the price-dividend ratio itself, as shown in Panel A.

5 Conclusion

In this paper, we have extended classic results on the cross-section to the setting of rare

events. When there are no rare events, and utility is time-additive, our results reduce to the

consumption CAPM of Breeden (1979). When there are no rare events and risk aversion

is equal to one, our results reduce to the wealth CAPM of Sharpe (1964). In the rare-

event versions of these models, risk premia are not necessarily determined by covariances

with consumption in the first case, nor in the second case are risk premia necesssarily

determined by covariances with wealth. Moving beyond these knife-edge cases, the sign of

risk premia relative to the consumption CAPM is determined by the agent’s preference for

early resolution of uncertainty, while the sign of risk premia relative to the wealth CAPM is

determined by whether risk aversion is below or above one. While versions of these models

without rare events lead to the usual factor structure, when rare events can occur, there

is again no reason to assume the general factor structure holds. This is perhaps surprising
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given that that the factor structure has dominated empirical asset pricing for many years.

In the second part of the paper we specialized to an affine structure and solve explicitly

for the prices of long-lived assets. These assets are integrals of prices of equity strips:

claims to dividends at specific points in time. Our solution relies on an approximation for

the wealth-consumption ratio. It is fully exact in two special cases: EIS of one and time-

additive utility. In all other cases, asset prices are exact given the approximate solution of

the wealth-consumption ratio. Despite the richness of the problem, our formulas for prices

and risk premia are quite simple. Besides being highly accurate, our approach preserves

the important intuition that long-lived assets are sums (or integrals) of individual claims,

a fact that should not be forgotten in the focus on the overall market portfolio.
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Appendix

A Proof of Theorems

Proof of Proposition 1 For convenience, let Jt = J(Ct, Xt). The Hamilton-Jacobi-

Bellman (HJB) equation is given by:

DJt + f(Ct, Jt) = 0. (A.1)

Substituting (8) into (5)–(6) yields:

f(Ct, Jt) =

Jtβθ
[
I(Xt)

1
ψ
−1 − 1

]
ψ 6= 1, (A.2)

−Jtβ(1− γ) log I(Xt) ψ = 1. (A.3)

By Ito’s Lemma:

DJ
J

=
1

J

(
∂J

∂C
Cµc(x) +

∂J

∂X
µX(x) +

1

2

∂2J

∂C2
C2σ2

c (x) +
1

2
tr

[
∂2J

∂X2
σ(x)σ(x)>

]

+
m∑
j=1

λjEνj
[
J
(
c eZcj , x+ ZXj

)
− J (c, x)

])
, (A.4)

where ∂J
∂X

and ∂2J
∂X2 are the gradient and Hessian matrix of J . Equation (8) implies:

1

J

∂J

∂C
=

1− γ
C

,
1

J

∂2J

∂C2
=
−γ(1− γ)

C2
,

1

J

∂J

∂X
=

1− γ
I

∂I

∂X
, (A.5)

1

J

∂2J

∂X2
= (1− γ)

(
1

I

(
∂2I

∂X2

)2

− γ

I2

(
∂I

∂X

)>(
∂I

∂X

))
, (A.6)

and
J
(
c eZcj , x+ ZXj

)
J

= e(1−γ)Zcj
(
I(x+ ZXj)

I(x)

)1−γ

. (A.7)
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Substituting (A.5–A.7) into (A.4) yields:

DJ
J

= (1− γ)µc(x) +
1− γ
I

∂I

∂X
µX(x)− 1

2
γ (1− γ)σc(x)2

+
1− γ

2
tr

[(
1

I

(
∂2I

∂X2

)2

− γ

I2

(
∂I

∂X

)>(
∂I

∂X

))
σ(x)σ(x)>

]

+
m∑
j=1

λjEνj

[
e(1−γ)Zcj

(
I(x+ ZXj)

I(x)

)1−γ

− 1

]
. (A.8)

Finally, substituting (A.2) and (A.8) into (A.1) yields (9) and verifies the form (8) for

ψ 6= 1. Analogously, substituting (A.3) and (A.8) into (A.1) yields (10), and verifies (8)

for ψ = 1.

Proof of Lemma 4 Let St be the price of the asset that pays a continuous dividend

stream Dt . Then by no arbitrage,

St = Et

[∫ ∞
t

πs
πt
Dsds

]
. (A.9)

Multiplying each side of (A.9) by πt implies

πtSt = Et

[∫ ∞
t

πuDudu

]
. (A.10)

The same equation must hold at any time s > t:

πsSs = Et

[∫ ∞
s

πuDudu

]
. (A.11)

Combining (A.10) and (A.11) implies

πtSt = Et

[
πsSs +

∫ s

t

πuDudu

]
. (A.12)
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Adding
∫ t
0
πuDudu to both sides of (A.12) implies

πtSt +

∫ t

0

πuDudu = Et

[
πsSs +

∫ s

0

πuDudu

]
. (A.13)

Therefore, πtSt +
∫ t
0
πuDudu is a martingale. By Ito’s Lemma:

πtSt +

∫ t

0

πuDudu = π0S0 +

∫ t

0

πsSs

(
µπ,u + µS,u +

Du

Su
+ σπ,uσ

>
S,u

)
du

+

∫ t

0

πuSu(σS,u + σπ,u)dBu +
∑
j

∑
0<uij≤t

(
πuijSuij − πu−ijSu−ij

)
, (A.14)

where uij = inf{u : Nju = i} (namely, the time that the ith type j jump occurs). Adding

and subtracting the jump compensation term from (A.14) yields:

πtSt +

∫ t

0

πuDudu = π0S0 +

∫ t

0

πuSu

(
µπ,u + µS,u +

Du

Su
+ σπ,uσ

>
S,u + λ>u

J̄ (πuSu)

πuSu

)
du

+

∫ t

0

πuSu(σS,u + σπ,u)dBu

+
∑
j

∑
0<uij≤t

(
πuijSuij − πu−ijSu−ij

)
−
∫ t

0

λ>u J̄ (πuSu) du. (A.15)

The second and third terms on the right-hand side of (A.15) have zero expectation. There-

fore the first term in (A.15) must also have zero expectation, and it follows that the inte-

grand of this term must equal zero.

Proof of Theorem 5 Equation 19 implies

µSt +
Dt

St
= rSt − λ>t

J̄ (St)

St−
. (A.16)

While, in equilibrium, the drift in the state-price density and the riskfree rate are linked

through

µπt = −rt − λ>t
J̄ (πt)

πt−
. (A.17)
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Finally, note that

Eνj

[
Jj(πt)
πt

Jj(St)
St

]
= Eνj

[
Jj(πtSt)
πt−St−

− Jj(πt)
πt−

− Jj(St)
St−

]
, (A.18)

Substituting (A.16–A.18) into (18) and rearranging gives (20).

Proof of Theorem 11 We follow Chacko and Viceira (2005) and conjecture that I(x) is

(approximately) exponential affine. Then

1

I

∂I

∂x
' [b1, · · · , bn] = b>, (A.19)

1

I

∂2I

∂x2
'


b21 · · · b1bn
... · · · ...

bnb2 · · · b2n

 = b b>. (A.20)

For ψ 6= 1, substitute (26), (A.19), and (A.20) into (9) of Proposition 1 to find:

βI(x)
1
ψ
−1 = β−

(
1− 1

ψ

)
(k0+k1x)+

1

2
γ

(
1− 1

ψ

)
(u0+u1x)−

(
1− 1

ψ

)(
b>K0+b>K1x

)
− 1

2

(
1− 1

ψ

)
(1− γ)

(
b>U0b+

(
b>U1b

)
x

)
− 1

θ

(
Eν
[
e(1−γ)(Zc+ZX)b − 1

])>
(l0 + l1x).

(A.21)

Note that

βI(Xt)
1
ψ
−1 ' i0 − i1 log

(
β−1I(Xt)

1− 1
ψ

)
, (A.22)

where i1 = eE[log(βI(Xt)1/ψ−1)], and i0 = i1(1 − log i1). Substituting (A.22) into (A.21) and

matching coefficients yields (31) and (30), verifying the conjecture.

For ψ = 1 we follow a similar derivation and note that log I(x) = a + b>x. The HJB
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(10) can be rewritten as:

β
(
a+ b>x

)
= (k0 + k1x)− 1

2
γ(u0 + u1x) +

(
b>K0 + b>K1x

)
+

1

2
(1− γ)

(
b>U0b+

(
b>U1b

)
x
)

+
1

1− γ
(
Eν
[
e(1−γ)(Zc+ZXb) − 1

])>
(l0 + l1x). (A.23)

We then match coefficients as above. To show that the limits work out as stated, see the

Lemma below.

Lemma A.1. Let y = (k0, k1, u0, u1, K0, K1, U0, U1, l0, l1, ν, γ). Let I(X,ψ; y) = exp
{
a(ψ) + b(ψ)>X

}
denote the value function as a function of ψ with ψ 6= 1. Suppose I(X,ψ; y) is well-defined

at (y, ψ) for ψ ∈ (1−ε, 1+ε)\{1} with solutions b(ψ) and a(ψ) given by (31) and (30). Let

Ĩ(X; y) denote the value function with ψ = 1, Ĩ(X; y) is well defined at y, with solutions

b̃ and ã as described in Theorem 11. Furthermore, assume limψ→1
∂I(X,ψ;y)

∂ψ
< ∞ exists.

Then, limψ→1 a(ψ) = ã and limψ→1 b(ψ) = b̃.

Proof of Lemma A.1 Note that

i1 = exp
(
E
[
log
(
βI(Xt, ψ; y)

1
ψ
−1
)])

= β exp

((
1

ψ
− 1

)
E[log I(Xt, ψ; y)]

)
.

Since limψ→1 1/ψ − 1 = 0, the above expression converges to β. Next, we look at the limit

of (1− 1/ψ)−1(i1 log β + i0 − β). For convenience, we denote I(X,ψ; y) by Iy

1

1− 1/ψ
(i1 log β + i0 − β) = β

(
E[log Iy]e

( 1
ψ
−1)E[log Iy ] +

1

1− 1/ψ

(
e(

1
ψ
−1)E[log Iy ] − 1

))

When ψ → 1, 1/ψ − 1→ 0 and the first term in the bracket converges to E[log Iy]. Apply

l’Hopital’s rule to the second term:

lim
ψ→1

1

1− 1/ψ

(
e(

1
ψ
−1)E[log Iy ] − 1

)
= lim

ψ→1
−exp(E[log Iy])

1
ψ
−1 − 1

1
ψ
− 1

= −E[log Iy].
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Therefore, as ψ → 1, θ(i1 log β + i0 − β) = 0, that is, limψ→1 a(ψ) = ã.

Proof of Theorem 12 Equation 32 follows from Ito’s Lemma applied to Corollary 3.

Equations 33 and 34 follow from Corollary 6, substituting for I(x) from Theorem 11.

We directly calculate µπt and then back out the riskfree rate from the no-arbitrage

condition (A.17). First consider ψ 6= 1. We apply Ito’s lemma to (14) to find

µπt = −β
(

(1− θ)I(Xt)
1
ψ
−1 + θ

)
− γµc(Xt) +

1

2
γ(γ + 1)σ2

c (Xt)

+

(
1

ψ
− γ
)

1

I

∂I

∂X
µX(Xt) +

1

2

(
1

ψ
− γ
)2

tr

(
1

I

∂2I

∂X2
σX(Xt)σX(Xt)

>
)
.

Substituting in for I(Xt) and its derivatives using (A.20–A.21), together with (26), we find

µπt ' −β−
1

ψ
(k0+k1x)+

1

2
γ

(
1 +

1

ψ

)
(u0+u1x)+

1

2

(
1− 1

ψ

)(
γ − 1

ψ

)(
b>U0b+

(
b>U1b

)
x

)
−
(

1− 1

θ

)(
Eν
[
e(1−γ)(Zc+ZXb) − 1

])>
(l0 + l1x). (A.24)

For ψ = 1, apply the same argument using (15) to find:

µπt = −β ((1− γ) log I(Xt) + 1)− γµc(Xt) + (1− γ)
1

I

∂I

∂X
µX(Xt) +

1

2
γ(γ + 1)σ2

c (Xt)

+
1

2
(1− γ)2tr

(
1

I

∂2I

∂X2
σX(Xt)σX(Xt)

>
)

= −β − (k0 + k1x) + γ(u0 + u1x)−
(
Eν
[
e(1−γ)(Zc+ZXb) − 1

])>
(l0 + l1x). (A.25)

The risk-free rate then follows from the no-arbitrage condition (A.17). The exact result for

time-additive utility follows from the fact that (14) reduces to

πt = e−
∫ t
0 β dsβC−γt

when θ = 0. This is the standard form of the state-price density under time-additive utility

and constant relative risk aversion.

29



We prove a no-arbitrage theorem for zero-coupon assets, analogous to the result for

long-lived assets (Lemma 4).

Lemma A.2. Let H (Dt, Xt, T − t) denote the time-t price of a single future dividend

payment at time T > t. For fixed T , define Ht = H (Dt, Xt, T − t). Define µH,t and σH,t

such that

dHt

Ht−
= µH,tdt+ σH,tdBt +

m∑
j=1

J (Ht)

Ht

dNjt. (A.26)

Then no-arbitrage implies that

µπ,t + µHt + σπ,tσ
>
Ht +

∑
j

λjtEνj

[
Jj(πtHt)

πtHt

]
= 0. (A.27)

Proof No-arbitrage implies that H(D, x, 0) = D and that

πtH(Dt, Xt, T − t) = Et [πsH(Ds, Xs, T − s)]

for s > t. Ito’s Lemma applied to πtHt implies

πtHt = π0H0 +

∫ t

0

πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s

)
+

∫ t

0

πsHs(σH,s + σπ,s)dBs

+
∑
j

∑
0<sij≤t

(
πsijHsij − πs−ijHs−ij

)
, (A.28)

where sij = inf{s : Njs = i} (namely, the time that the ith type j jump occurs). Adding
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and subtracting the jump compensation term from (A.28) yields:

πtHt = π0H0 +

∫ t

0

πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s + λ>s

J̄ (πsHs)

πsHs

)
ds

+

∫ t

0

πsHs(σH,s + σπ,s)dBs

+
∑
j

∑
0<sij≤t

(
πsijHsij − πs−ijHs−ij

)
−
∫ t

0

λ>s J̄ (πsHs) ds. (A.29)

The second and third terms on the right-hand side of (A.29) have zero expectation. There-

fore the first term in (A.29) must also have zero expectation, and it follows that the inte-

grand of this term must equal zero.

Proof of Theorem 13 Conjecture (38). As in the proof of Lemma A.2, fix T and define

Ht = H (Dt, Xt, T − t), which follows (A.26). Let τ = T − t. It follows from Ito’s Lemma

that

σHt(τ) '
[
σd, bφ(τ)>σX(x)

]>
, (A.30)

and

µHt(τ) ' (kd0 + kd1x) + bφ(τ)>(K0 +K1x)−
(
a′φ(τ) + b′φ(τ)>x

)
+

1

2

(
bφ(τ)>U0bφ(τ) +

(
bφ(τ)>U1bφ(τ)

)
x

)
, (A.31)

where b′φ(τ) = [b′φ1(τ), · · · , b′φn(τ)]> denotes the vector of derivatives with respect to τ .

Also, by Ito’s Lemma,

Jj(Ht)

Ht

' eZHj − 1,

with

ZHj = Zdj + bφ(τ)>ZXj. (A.32)
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Substituting (33–35) and (A.30–A.32) into the no-arbitrage condition (A.27) implies:

0 = −β − 1

ψ
(k0 + k1x) +

1

2
γ

(
1 +

1

ψ

)
(u0 + u1x) + (kd0 + kd1x) + bφ(τ)>(K0 +K1x)

−

(
∂aφ(τ)

∂τ
+

(
∂bφ(τ)

∂τ

)>
x

)
+

1

2

(
1− 1

ψ

)(
γ − 1

ψ

)(
b>U0b+

(
b>U1b

)
x

)
−γ(ucd0 +ucd1 x)

+
1

2

(
bφ(τ)>U0bφ(τ) +

(
bφ(τ)>U1bφ(τ)

)
x

)
+

(
1

ψ
− γ
)(

bφ(τ)>U0b+
(
bφ(τ)>U1b

)
x

)
+

((
1

θ
− 1

)
Eν
[
e(1−γ)(Zc+ZXb) − 1

]
+ Eν

[
e−γZc+Zd+ZX(bφ(τ)+(1/ψ−γ)b) − 1

])>
(l0 + l1x).

Matching the constant terms implies (39) and matching the terms multiplying x implies

(40), satisfying the conjecture.

For ψ = 1 and ψ = 1/γ, (33–35) hold with equality. The conjecture that (38) holds

with equality is therefore satisfied.

B Approximating the price-dividend ratio by a log-linear func-

tion

An alternative approximation approach involves log-linearizing the price-dividend ratio.

Let G(Xt) = St/Dt and conjecture

St
Dt

= G(Xt) ' eâφ+b̂
>
φXt ,

where âφ is a scalar b̂φ =
[
b̂φ1, · · · , b̂φn

]
is a column vector. Ito’s Lemma then implies that

σSt =
[
σd, b̂φ σX(x)

]>
, (B.1)

and

µSt = (kd0 + kd1x) + b̂>φ (K0 +K1x) +
1

2

((
b̂>φU0b̂φ

)
+
(
b̂>φU1b̂φ

)
x

)
, (B.2)
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If ψ 6= 1,

J̄ (πtSt)

πtSt
= e−γZc+Zd+ZX(( 1

ψ
−γ)b+b̂φ). (B.3)

Substituting (A.24), (33) along with (B.1), (B.2) and (B.3) into the no-arbitrage condition

(18) implies:

0 = −β − 1

ψ
(k0 + k1x) +

1

2
γ

(
1 +

1

ψ

)
(u0 + u1x) + (kd0 + kd1x) + b̂>φ (K0 +K1x)

+
1

2

(
1− 1

ψ

)(
γ − 1

ψ

)(
b>U0b+

(
b>U1b

)
x
)

+
1

2

(
b̂>φU0b̂φ +

(
b̂>φU1b̂

>
φ

)
x
)

+
1

Gt

− γ(ucd0 + ucd1 x) +

(
1

ψ
− γ
)(

b̂>φU0b+
(
b̂>φU1b

)
x
)

+ Eν

[(
1

θ
− 1

)(
e(1−γ)(Zc+ZXb) − 1

)
+
(
e−γZc+Zd+ZX(b̂φ+( 1

ψ
−γ)b) − 1

)]>
(l0 + l1x).

And we log-linearize

1

Gt

= g0 − g1 log(G(xt)), (B.4)

where g1 = eEν [− logG] and g0 = g1(1− log g1). We can now match coefficient and find that

b̂φ solves

0 = −g1b̂>φ−
1

ψ
k1+

1

2
γ

(
1 +

1

ψ

)
u1+k

d
1+b̂>φK1−γucd1 +

1

2

(
1− 1

ψ

)(
γ − 1

ψ

)
b>U1b+

(
1

ψ
− γ
)
b̂>φU1b

+
1

2
b̂>φU1b̂

>
φ +

(
Eν

[(
1

θ
− 1

)(
e(1−γ)(Zc+ZXb) − 1

)
+ e−γZc+Zd+ZX(b̂φ+( 1

ψ
−γ)b) − 1

)]>
l1,

and âφ is given by

âφ =
1

g1

(
g0−β−

1

ψ
k0+

1

2
γ

(
1 +

1

ψ

)
u0+k

d
0+b̂>φK0−γucd0 +

1

2

(
1− 1

ψ

)(
γ − 1

ψ

)
b>U0b+

1

2
b̂>φU0b̂φ

+

(
1

ψ
− γ
)
b̂>φU0b+Eν

[(
1

θ
− 1

)(
e(1−γ)(Zc+ZXb) − 1

)
+
(
e−γZc+Zd+ZX(b̂φ+( 1

ψ
−γ)b) − 1

)]>
l0

)
.
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Figure 1: Log-linear Approximation vs Exact Solutions
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Panel B: Price-dividend ratio
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This figure plots the wealth-consumption ratio (Panel A) and the price-dividend ratio

(Panel B) under the time-varying disaster risk model. We calculate the value function

by log-linearization or by Chebyshev polynomials. Given the solutions using the log-

linearization method, the price-dividend ratio is calculated using either the integration or

log-linearization method. We use the Barro and Ursúa (2008) data to for the distribution for

Zc and evaluate the model at different cutoffs. The price-dividend and wealth-consumption

ratios are expressed in annual terms.
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Figure 2: Integration vs Log-linearization Method
EIS= 1 EIS= 2

Panel A: Price-dividend ratio
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Panel B: Compensation for variation in the disaster probability
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This figure plots the price-dividend ratio (Panel A) and a component of the equity

premium (Panel B) under the time-varying disaster risk model. The price dividend

ratio is calculated either by integrating over future dividend claims (Integration), or by

log-linearization (Log-linearize PD). We focus on the component of the equity premium

that compensates for the risk of time-varying λt. The price-dividend ratio is in annual

terms. The λ-premium is in annual percentage terms. We use the Barro and Ursúa (2008)

data to for the distribution for Zc with 15% cutoffs.
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