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Abstract

I consider a dynamic principal-agent setting in which the agent repeatedly chooses
between hidden long-term and short-term actions. Relative to the long-term action,
the short-term action boosts output today but hurts output tomorrow. The optimal
contract inducing long-term actions is explicitly characterized. It features a cliff-like
arrangement that rewards high output today based on the streak of consecutive high
outputs the agent has generated leading up to today: The longer the streak, the larger
the reward. The optimal contract can be implemented as a bonus bank. Bonus banks
feature prominently in the recent debate on bonus reform. I shed light on the opposing
arguments driving this debate by formally comparing the myopic agency optimal con-
tract and optimal contracts that arise from traditional effort-shirking agency models.
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1 Introduction

How can a firm’s owners prevent a manager from taking hidden actions that look good
today but hurt long-run profitability? The large literature on moral hazard has surprisingly
little to say about this problem. I call this agency problem faced by the owners myopic
agency. In this paper, I investigate myopic agency in a dynamic principal-agent setting. At
each date, the agent takes a hidden action that has persistent effects on firm performance.
There are two actions: long-term and short-term, with the agent suffering an effort cost if
he chooses the long-term action. The long-term action maintains a certain benchmark level
of expected output. The short-term action causes current expected output to rise above the
benchmark and future expected output to drop below. The drop is assumed to be sufficiently
large relative to the rise so that the principal prefers the long-term action. I then explicitly
characterize and study the optimal incentive contract that always induces the long-term
action from the agent.

The optimal contract’s key feature is a cliff-like arrangement tying the agent’s compen-
sation today to the streak of consecutive high outputs produced leading up to today. The
longer the streak, the larger the compensation with compensation size leveling off when the
streak becomes sufficiently long. Theorem 1 explicitly characterizes this contract. In Section
3.1, I implement this contract as a bonus bank contract: Each date, the agent receives a
bonus for producing high output. The bonus pays out a portion today with the rest deferred
and paid out over future dates. As the agent continues to produce high output date after
date, he receives more and more bonuses and consequently his total bonus pay each date
increases: Not only does he receive a portion of today’s bonus, but also portions of bonuses
he received on previous dates that have not yet fully vested. Eventually, the rate at which
old bonuses fully vest and new bonuses come in balance out. At this point, each date’s total
bonus pay levels off. Finally, if at any date the agent fails to produce high output, then his
high output streak is broken. Not only does the agent not receive a bonus this date, but also
all of the remaining unpaid portions of previously issued bonuses get wiped out.

Why does the bonus bank arrangement work? When the agent’s streak of consecutive
high output production is short, most of his compensation is backloaded because there are
not a lot of bonuses that can contribute to his pay today. Remember, at this point, even if
the agent has had a long history of producing high output, the many bonuses he received
for that performance have either fully vested or have been wiped out by a recent low output
that “cleaned the slate.” In order to accrue (or re-accrue) a healthy set of bonuses and attain
those large backloaded rewards, the agent needs to build up a streak of high outputs. This
requires taking the long-term action since the short-term action only helps produce high
output now, not over and over again. Thus, at least initially, the agent is motivated to take
the long-term action. As the agent continues to build his streak and receive new bonuses,
his compensation eventually reaches the large promised level. But this means high output
rewards are no longer backloaded. At this point, interestingly, the agent is still motivated to
take the long-term action. Why? Because now if the agent takes the short-term action, his
hard fought high output streak will likely be broken. If this happens, all remaining bonus
payments are wiped out and the agent has to start all over again.

The bonus bank concept was pioneered by the management consulting firm Stern Stew-



art & Co and first adopted by Coca-Cola in 1988 and Briggs and Stratton in 1989 (Boeri,
Lucifora, and Murphy, 2013). According to Stern Stewart & Co, the system is designed
specifically to combat managerial myopia. When will a principal face a repeated myopic
agency problem like in the model? A natural situation relates to R&D investment. Chan-
neling resources to R&D can help increase the long-term profitability of the firm provided
management exerts effort to determine the right projects to support. The short-term action
of not fostering R&D will both save the management effort costs and help boost profits and
dividends today, but may cause the firm to become obsolete in the future. More generally,
settings where the manager must make investment decisions are vulnerable to myopic agency
if effective investment requires that the manager exerts hidden effort to decide how best to
invest the funds.

Financial markets are also rife with myopic agency problems. Subprime lending is a
perfectly legitimate long-term action, but doing it prudently requires effort to carefully vet
the borrowers and assess the complex associated risks. Without the proper incentives, an
agent may engage in indiscriminate lending under terms overly favorable to the borrower.
While deviating to this short-term action is an easy way to inflate business today, the long-
term effects can be disastrous. Hedge funds are also susceptible to myopic agency. Here, the
desired long-term action involves the manager’s exerting effort to turn his innate skill into
generating alpha. The undesirable short-term action can be employing strategies that are
essentially equivalent to writing a bunch of puts, inflating net asset value today but exposing
the fund to significant future tail risk.

A common property in these examples is that the productivity ranking of the agent’s
hidden actions is reversed over time: In terms of output today, the short-term action is
the “good” action; in terms of output in the future, the long-term action is the “good”
action. This type of twisted moral hazard cannot be properly modeled when actions have
non-persistent effects or have persistent effects that are faded copies of today’s effect. As a
result, the design of the optimal contract is tricky.

To get a feel for the potential pitfalls of contracting under repeated myopic agency,
consider the problem of trying to induce a manager to take the long-term action today. The
usual view of moral hazard, familiar in an insurance setting, tells us to reward good outcomes
and punish bad outcomes. But rewarding high output today will only encourage the manager
to take the short-term action. A more sensible strategy is to wait until the next date (when
the long-term effects of today’s action have been realized) and reward the agent only if high
output is produced then. While this strategy works in a one-shot model of myopic agency,
in a dynamic setting, this arrangement only serves to pass today’s agency problem onto
tomorrow. Facing such a contract with delayed rewards and punishments, a sophisticated
manager will simply behave today and wait until tomorrow to take the short-term action.

When the moral hazard is not twisted, rewarding high output, as a general rule, helps
alleviate the agency problem. However, as I just argued in the previous paragraph, rewarding
high output in a myopic agency setting can exacerbate the agency problem just as much as
alleviate it. A high output can signal the agent took the long-term action the previous date
or it could mean the agent is taking the short-term action today. Divorced from the past
and the future, a stochastic output today communicates very little information about the
agent’s decisions. As a result, the principal must pay careful attention to the pattern of



output across time. The structure of the myopic agency optimal contract, with its emphasis
on high output streaks, reflects this requirement.

1.1 A Comparative Discussion

The optimal dynamic contract under myopic agency differs in significant ways from many
of those that arise under traditional effort-shirking moral hazard. Unlike the streaks-based
measure of good performance used by the myopic agency optimal contract, traditional opti-
mal dynamic contracts typically have a measure that resembles total or average output. The
aggregation is insensitive to the specific sequence of output. This type of order-independent
measure of performance and its close approximations have dominated dynamic contracting
theory since its inception. Seminal examples include the cumulated performance .S of Radner
(1981, 1985) and the linear aggregator of Holmstrom and Milgrom (1987).

In Section 3.2, I consider the traditional effort-shirking version of the myopic agency
model and solve for its optimal contract, which I call the traditional contract. 1 formally
compare the traditional and myopic agency optimal contracts. The traditional contract’s
incentive level A is constant at all times just like many optimal dynamic contracts that
sustain effort.? However, the myopic agency optimal contract’s incentive level A, rises and
falls with the length of the high output streak. In fact, A; is the key state variable of the
model. Despite its movement, A; is always strictly smaller than A, which implies that the
traditional contract always gives larger bonuses than the myopic agency optimal contract.
See Section 3.2, in particular, the remark and Lemma 3.

I leverage this comparative analysis to shed light on the recent debate on bonus pay
reform. The key starting point is to realize: 1. Many of the firms that are in the middle of the
debate face myopic agency problems. 2. Given the historical prominence of traditional effort-
shirking moral hazard, these firms may think in the traditional effort-shirking framework
when designing their incentive contracts. By examining what would happen if the principal
in the myopic agency model mistakenly uses the traditional contract on the agent, I can
reconcile a number of the opposing views that continue to drive the bonus pay debate. See
the second half of Section 3.2 for details.

This paper is most closely related to Holmstrom and Milgrom (1991). Recall, they observe
that if the agent has two tasks A and B, the incentives of A may exert a negative externality
on that of B. In my model, one can think of the task of managing the firm today as task
A and managing the firm tomorrow as task B. And just as in Holmstrom and Milgrom
(1991), if incentives today are too strong relative to those of tomorrow, the agent will take
the short-term action, which favors the firm today and neglects the firm tomorrow. Now,
Holmstrom and Milgrom use this to explain why contracts often have much lower-powered
incentives than what the standard single-task theory might predict. In my paper things are
further complicated by the dynamic nature of the model. Specifically, today’s task B will
become tomorrow’s task A. Fach date’s task is both task A and task B depending on the
frame of reference. Therefore, the conclusion in my model is not that incentives should be

2The incentive level is a standard quantity in the contracting literature. In general, it is the sensitivity
of promised value to fundamentals. Specifically, in my model, it is the difference between the agent’s total
payoff following high and low output. See Definition 1.



low-powered, but that incentives should start low and optimally escalate as the high output
streak increases.

Another related paper is Hoffmann and Pfeil (2013), which explores a multi-task extension
of the DeMarzo and Sannikov (2006) dynamic agency model where the agent can both
secretly steal cash and use cash for investment purposes. The principal does not want the
agent to steal but does want the agent to invest. Unfortunately for the principal, investment
is unobservable. This creates the main tension of the model: When the principal sees low
cash flow, he can’t tell if it’s because of stealing or because of investment. The paper solves
for the optimal contract and studies second-best investment distortions.

While my paper explores how to induce the long-term action through contracts, there
is a related literature that focuses on why managers oftentimes take a variety of short-term
actions in equilibrium. See, for example, Stein (1988, 1989). Another related literature
deals with innovation. The process generates a dynamic not unlike the one produced by
the long-term action. Manso (2011) embeds such a two-date innovation problem within a
principal-agent framework. Edmans, Gabaix, Sadzik and Sannikov (2012) considers a model
of dynamic manipulation that allows the agent to trade off, on a state-by-state basis, future
and present performance. Their optimal contract can be implemented using a “dynamic
incentive account” - a type of deferred reward system that does not wipe out old rewards if
the agent does not perform today. Varas (2013) considers a model of project creation where
the principal faces a compensation problem similar to the one in this paper. By rewarding
the agent for the timely completion of a good project whose quality is hard to verify, the
principal might inadvertently induce the agent to cheat and quickly produce a bad project.

My paper is also part of a small literature on persistent moral hazard. An early treat-
ment by Fernandes and Phelan (2000) provides a recursive approach to computing optimal
contracts in repeated moral hazard models with effort persistence. Jarque (2010) considers
a class of repeated persistent moral hazard problems that admit a particularly nice recur-
sive formulation: those with actions that have exponential lagged effects and linear cost.
She shows that under a change of variables, models in this class translate into traditional
non-persistent repeated moral hazard models. Her work can be interpreted as a justifica-
tion for the widely used modeling choice of ignoring effort persistence in dynamic agency
models when the moral hazard is not twisted. Sannikov (2014) considers a Brownian model
of persistent moral hazard that in some ways generalizes the setting of Jarque (2010). He
focuses on two cases: a large firm case in which noise goes to infinity and cost of effort goes
to zero at comparable rates, and the exponential lagged effects case. His paper derives a
clever representation of the incentive level and uses it to explicitly characterize the optimal
contract’s compensation in the large-firm case. In his analysis, the continuous-time analog
of A; plays an important role and is also a state variable.

2 Repeated Myopic Agency

A principal contracts an agent to manage a firm at dates t = 0,1,2... At each date t, the
firm can be in one of two states: g, = good or bad. If o, = good, then the agent can apply
one of two hidden actions: a long-term action a; = [ or a short-term action a; = s. The



Figure 1: Transition function between the good and bad states.

long-term action requires an extra effort cost ¢ > 0 compared to the short-term action. I
normalize the effort cost of the long-term action to zero and assume that the short-term
action provides “private benefit” worth c¢. This is without loss of generality and is done
purely because certain expressions are simpler under the private benefit model. Everything
goes through if I instead assume that the agent suffers —c taking the long-term action. If the
agent applies the long-term action, then the firm remains in the good state: oy, = good. If
the agent applies the short-term action, then the firm moves to the bad state: 0.1 = bad.
Finally, if o; = bad, then there is no action choice and the state reverts back to good at the
next date. See Figure 1.

Actions and states are hidden from the principal, who can only observe output. At each
date t, the firm produces either high output X; = X or low output X; = 0. If 0, = good
and a; = [ then the probability that the firm produces high output at date ¢ is p € (0,1). If
o, = good and a; = s then the firm produces high output for sure at date t. If o, = bad then
the firm produces low output for sure at date ¢. I assume that oy = good.

Notice, if the agent always takes the long-term action, then the firm is always in the good
state and there is always a probability p of high output. A deviation today to the short-term
action boosts expected output today by (1 — p)X and lowers expected output tomorrow by
pX. I assume that

(1-p)X +c<fBpX (1)

where 3 € (0, 1) is the discount factor. This assumption says that the gain today from taking
the short-term action is outweighed by the present discounted loss tomorrow factoring in
private benefits. It is the condition for the long-term action to be first-best optimal.

What is Myopic Agency?

Consider an agent who is supposed to invest in quality projects to help the firm innovate. If
taking this long-term action only required cash then the principal could simply command the
agent to throw money at R&D and there would be no agency problem. However, investing
in projects alone is not enough to generate innovation. The agent needs to find quality
projects and if this requires hidden effort then the principal faces a nontrivial agency problem.
Without proper incentives, the agent will not exert the necessary effort to find a quality
project and may instead deviate to the short-term action of financing safe projects that he
knows can produce some quick returns without generating real innovation.

But this is not yet myopic agency. If each project’s cash flow is distinguishable, then



inducing effort is fairly straightforward because the agent’s compensation can be tied to
individual project performance: The principal simply needs to avoid prematurely rewarding
a high project output early in the project’s life since this suggests the short-term deviation.
Unfortunately, in practice, a firm’s investments may not be so neatly separated into individ-
ual projects and it’s revenue into individual project output streams. It may be that all the
principal has to contract on is some aggregation of the firm’s various sources of output. In
this case, high output today can either signal the long-term action yesterday or the short-
term action today. Rewarding high output today can either encourage the long-term action
yesterday or the short-term action today.

This is myopic agency. And trying to induce the long-term action both yesterday and
today is the challenge of contracting under myopic agency.

Assumption (A). The principal always wants to induce the agent to take the long-term
action.

The action sequence taken by the agent should, in principle, be determined as part of the
optimal contracting problem. However, if the value of the firm is sufficiently large compared
to the cost of the optimal contract without imposing Assumption A, then Assumption A
will be automatically satisfied. In particular, by making X sufficiently large or ¢ sufficiently
small, assuming the principal always wants to induce the agent to take the long-term action
is without loss of generality. I will revisit this assumption in Section 3.2 where I discuss the
practical importance of the optimal contract under Assumption A when Assumption A is
without loss of generality. See Lemma 3 and the surrounding discussion. More generally,
the solution to the sustained long-term action case will serve as an important benchmark for
future analyses of the unconstrained optimal contracting problem.

Definition of a Contract

At each date t, the principal makes a monetary transfer w; to the agent. The agent is
protected by limited liability, so w; > 0. Each w; can depend on the history of outputs up
through date t. However, w; cannot depend on the unobservable action nor the state. At
each date ¢, the principal may also recommend an action a; to be taken provided o, = good.
A contract is a complete transfer and action plan w = {w;},a = {a;}. The principal’s utility
is Eo[ >or00 BY(X: — wy)] and the agent’s utility is E, [ Yooy B (we + cla,—s)].

My definition of a contract implicitly assumes that the agent cannot report his hidden
information o; to the principal. This is without loss of generality but is special to my setup.
It is due to the fact that the firm is always in the good state on the equilibrium path. For the
same reason a contract doesn’t need to ask the agent to report what hidden action he has
taken. Later, in Section 4.3, I will consider more general settings in which many different
states can occur on the equilibrium path and where restricting communication is with loss
of generality. However, I will show how the results I'm about to derive can be adapted to
those more general settings as a form of robust contracting.

Assumption (B). The agent can freely dispose of output before the principal observes the
net output.



This is a standard assumption (see for example Debreu, 1986, and Innes, 1990). It means
that if the output is high, the agent has the ability to secretly throw it away and make the
principal think that output is low. The agent will dispose of output whenever the contract he
is facing promises more total expected utility after low output. By the revelation principle,
it suffices to add a no output disposal incentive-constraint to the contracting problem and
assume the agent does not dispose of output. The optimal contracting problem is:

> B(X - wt>]

s.t. agent does not want to dispose output nor take the short-term action.

{wg%ioio E{at:l}?io

I now derive the mathematical conditions that capture these incentive constraints.

Incentive-Compatibility

Let h; denote the history of firm outputs up through date . It is a binary sequence of length
t + 1. Define h_; := (). In general, the agent’s promised value W; depends on the history of
outputs up through yesterday as well as today’s state. So for each h;_; and state oy, define
Wilhiv,00) i=Ba 3072, 87 (wi + cla=s) | Ty, 04

In general, the promised value is unknown to the principal since states are hidden. How-
ever, the paper restricts attention to only those contracts where the agent takes the long-term
action all the time and the state is always good. Therefore, on the equilibrium path, it is
well-defined to speak of

Wt<ht—1) = E{at:l}iﬁo [Zﬁi_twi ht_l}

i=t
which only depends on the publicly observable h;_; and is known to the principal.

Definition 1. For each history hy, define the date t ex-post promised value to be wy(hy) +
BWis1(he). For each hy_y, define the agent’s date t incentive level to be the difference between
the two date t ex-post promised values that can follow from hy_q:

Ay(hi—1) := [wi(hi—1 X) 4 W1 (hi—1.X)] — [wy(hy—10) + BWiy1(he—10)]

A is the key state variable of the model and the IC-constraints for inducing the long-
term action all involve A. I split the derivation of the IC-constraints into three cases: when
deviation is in action only; when deviation is in output disposal only; when deviation is in
both action and output disposal.

Lemma 1. Taking the long-term action s better than taking the short-term action if and
only if at each date t and after each history h,_q,

Buale-iX) 2 e(Bu(hy)) o= EEDRA) 20 @)




Proof. See appendix. m

The IC-constraint is a lower bound for the incentive level tomorrow as a function of the
incentive level today. Or equivalently, it is an upper bound on the incentive level today
as a function of the incentive level tomorrow. Either way, the absolute levels of incentives
do not matter so much; what matter are the relative levels of incentives over time. The
greater the incentive level is today, the more tempting it is to take the short-term action
today. Therefore, the incentive level tomorrow must also keep pace to ensure that the agent
properly internalizes the future downside of taking the short-term action today.

This myopic agency IC-constraint differs from the traditional moral hazard 1C-constraint
which is typically an absolute lower bound on incentives. The difference affects how one
thinks about what makes a contract good or bad. The basic idea of traditional contract
theory is if you want the agent to do the right thing, you have to provide him with enough
incentives. The key word being enough - this is where the absolute lower bound comes in.
The implication is that bad contracts are those with incentives that are too small. With
myopic agency, balancing incentives takes precedence. A bad contract under myopic agency
isn’t necessarily one with small incentives - in fact, the optimal contract starts with incentive
level zero - but rather one with temporally unbalanced incentives.

On the technical side, notice that (2) only involves on-equilibrium promised values. In
principle, incentive-compatibility involves comparing on- and off-equilibrium promised val-
ues. In the appendix, I explain how this is possible by first showing that the agent’s off-
equilibrium promised value following a one-shot deviation can be expressed as a function of
on-equilibrium promised values. (2) is precisely the condition that prevents such one-shot
deviations. I then show that checking for one-shot deviations is sufficient.

The IC-constraint when deviation is in output disposal only is A; > 0. Mirroring Lemma
1, the IC-constraint when deviation is in both action and output disposal is

At (her0) = A(Aylhe ) = _pAt(Z;” e 3)

(2) and (3) along with the nonnegativity constraint on A; completely characterize incentive-
compatibility. From now on, the term contract means incentive-compatible contract.

The Optimal Contracting Problem

max  Egg,—p=, [Z 5t(Xt - wt)]
t=0

{wt 20}?10

s.t. for all ¢

> €
A¢(hi—1) >0
Avy1(he—10) > v

I now recursively characterize the optimal contract. Due to equal discounting, the timing



of pay is largely irrelevant and there are many contracts that achieve the optimum. I focus
on the optimal contract with the fastest payment path. This contract is robust to small
perturbations to the players’ discount factors that make the agent less patient than the
principal.

Fix a A > 0 and call any contract with initial incentive level equal to A a “A-contract.”
Consider the optimal A-contract with fastest payment path and let C'(A) denote its cost to
the principal. (2) implies that tomorrow’s incentive level following high output today must
be at least (A). Intuitively, C(-) should be weakly increasing - providing more incentives
to the agent should be costly. This conjecture will be proved in the appendix. Given that
it is true, tomorrow’s incentive level following high output today should be exactly €(A)
and the continuation contract should be the optimal (A)-contract with fastest payment
path. Similarly, tomorrow’s continuation contract following low output today should be the
optimal y(A) V 0-contract with fastest payment path.

I have now shown that optimal A-contracts with fastest payment paths are recursive over
themselves with state variable A. To complete the recursive characterization, I deduce the
Bellman equation for C(A).

In the optimal A-contract, either the initial high output payment or the initial low
output payment is 0. Otherwise, one can subtract out the common portion to get a cheaper
A-contract which is a contradiction. If the initial high output payment is zero, then the
contract’s cost given an initial high output is SC(¢(A)). This then implies that the contract’s
cost given an initial low output payment must be SC(e(A)) — A. Since the probability of
high output is p, the total expected cost is C(A) = pC(e(A)) + (1 — p)(C(e(A)) — A) =
BC(e(A)) — (1 — p)A. Using a similar argument, it is easy to show that if the initial low
output payment is zero, then C'(A) = SC(y(A) V 0) + pA. Finally, limited liability requires
that C(A) equals the larger of the two expressions.

I can now write down the Bellman equation characterizing C'(A). Solving the equation
formally solves the optimal contracting problem.

Theorem 1. The optimal cost function C(A) satisfies the following Bellman equation:
C(A) =max {fC(e(A)) = (1 = p)A, BC(v(A)V0) +pA} (4)

The solution is a weakly increasing two-piece piecewise linear function:

C(A) = % = BC(e(A)) — (1 - p)A FOSA<
s+ pA = BO(Y(A)VO) +pA  if A > oo

The corresponding Markov law for the incentive level takes A to (A) following high output
and to y(A) V 0 following low output.

The optimal contract’s incentive level starts at 0 and stays in the set {0} U {€™(0)}n>1
where €"(0) := e(e"1(0)). Specifically,

e"(0)  following high output

0 — e(0) =~(0) following high or low output e"(0) — ,
0 following low output
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Figure 2: The optimal cost function C(A).

As a function of n, €*(0) is increasing and converges to £*(0) = W
The agent is not paid following low output or if the incentive level is 0. If today the
incentive level is €™(0) and high output is produced, then the agent is rewarded with payment:

) : ()
) =p [0~ o] = | iy s ®)

As a function over n, the agent’s high output payment is increasing, concave and convergent.

It is straightforward to check that the solution to (4) is indeed the proposed piecewise
linear function. The corresponding Markov law for A was derived in the discussion leading
up to Theorem 1. The characterization of the optimal contract’s Markov law follows from
the general Markov law and the following two facts: £(0) = v(0) and v(¢"(0)) < 0 for all n.
It is straightforward to verify that the agent’s high output payment is r(n) given the explicit
formula for C'(A).

3 The Optimal Contract as a “Cliff”

Formally, the state variable of the optimal contract is the incentive level A. In practice
it is useful to think of the contract as tracking the number N of consecutive high outputs
produced leading up to today. As the agent continues to produce high output date after date,
the performance indicator N increases one by one. When a low output is finally produced,
N drops to zero. The agent is paid today if and only if N is positive and high output is
produced. Thus, the agent must have at least a modest history of producing high output
before he can be rewarded for producing high output today. The size of the payment is
r(N) of (5). Thus, the agent’s high output payment today is an increasing, concave, and
convergent function of the streak of consecutive high outputs produced leading up to today.

10



For example, consider the following sequence of output realizations: 1110001. By inspec-
tion, the evolution of N is 0,1,2,3,0,0,0 and the payment sequence is:

im0

The optimal contract cares about the pattern of output, valuing streaks of high output
over dispersed high output. To see this point starkly, consider another sequence of output
realizations: 1010101. It represents the same aggregate output as the previous sequence.
However, the payment sequence stays at 0.

The reader may instinctively feel that order dependence is unnatural. After all, the utility
function is, up to discounting, order independent. So why should the optimal contract care
about order? The reason is because the optimal contract, while maximizing utility, must do
so subject to incentive-constraints. And for these incentive-constraints, output pattern does
matter. 1010101 looks very much like the agent is taking the short-term action whenever he
can. On the other hand 1110001 means the agent must have taken the long-term action on
multiple dates and therefore should be rewarded more than 1010101. This order sensitivity
of the incentive-constraints is novel. In a traditional effort-shirking world, is 1010101 any
more or less incriminating than 11100017

The next issue to settle is the importance of streaks relative to other potential patterns
the optimal contract could care about. To understand why streaks should matter, it helps to
re-imagine the optimal contract as a path up a cliff where N measures how high up the agent
is on the cliff. Initially, the agent is at the bottom (NN starts at 0) and all the big rewards
are backloaded toward the top of the cliff (r(N) is large only when N is high). This induces
the agent to repeatedly take the long-term action. The reason is that while the short-term
action helps the agent produce high output today, it does not help produce high output over
and over again, which is what’s needed to reach those backloaded rewards.

Eventually, as the agent continues to produce high output and N continues to increase,
the agent reaches the top. The rewards stop getting much larger as r(N) levels off and
backloading ceases. At this point, without a significantly larger reward on the horizon,
what’s to prevent the agent from taking the short-term action?

The answer is the cliff itself. When the agent reaches the top, the fear of falling off
becomes an effective substitute to backloading for inducing the long-term action.

As the cliff analogy demonstrates, the optimal contract motivates the agent in two mutu-
ally reinforcing ways. Initially, the backloaded nature of the high output payment schedule
induces the agent to the take the long-term action. This, in and of itself, is unremarkable.
Many optimal dynamic contracts have some form of backloading of rents. The novelty comes
when the backloaded payment schedule is mapped against the optimal contract’s novel per-
formance indicator N. Because N measures streaks, when it drops, it drops precipitously.
This creates the “contractual cliff” that provides the second way to motivate the agent when
performance has already reached a high level and the previously backloaded payments have
come to the fore. At this point, the fear of falling off the cliff and starting all over again
serves as an effective deterrent to short-termism.

The cliff-contract differs from optimal-contracts seen in traditional effort-shirking set-

0,p {5(0) } ,0,0,0,0
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tings. In those settings, optimal dynamic contracts typically care about something that
roughly approximates aggregate output. This inattention to the pattern of high output ef-
fectively means there’s no cliff. I will revisit this point in Section 3.2 where I conduct a
formal comparison between the cliff-contract and the optimal contract emerging from the
traditional effort-shirking version of my model.

Even if always inducing the long-term action is not optimal, the cliff-contract provides
insight regarding what a reasonable course of action might be. The cliff-contract reveals
that optimally inducing the long-term action becomes expensive only when the high output
streak gets large - that is, when the agent is high up on the cliff. If the agent is unlucky
and keeps producing low output, the principal is happy to keep using the cliff-contract: he is
getting the long-term action from the agent, and he is paying the agent very little. However,
if always inducing the long-term action is not optimal, then at some point, the high output
streak gets large enough that continuing to induce the long-term action becomes too costly.
At this point, if the principal knows he has to let the agent take the short-term action, then
(2) no longer needs to be respected and there is no longer a lower bound constraining the
incentive level tomorrow following high output today. The principal might as well reset both
the performance indicator N and the corresponding incentive level %V (0) back to zero. This
reset figuratively kicks the agent back down to the bottom of the cliff. The agent will of
course best-respond by taking the short term action, but the principal expects this anyways
and the upside is that the reset makes it cheap again to induce the long-term action.

3.1 Bonus Bank Contracts

The cliff-contract can be implemented as a type of bonus bank contract. Bonus bank ar-
rangements are used in practice to lengthen managerial horizons and better align them with
those of the shareholders. The basic idea of a bonus bank arrangement is to “bank” a por-
tion of the bonus received today and pay it out at some future date T" conditional on certain
benchmarks being reached between now and 7. Bonus banks feature prominently in many
major companies, notable longstanding examples include Coca-Cola and Temasek - the $215
billion sovereign investment arm of the government of Singapore. Recently, a number of ma-
jor banks have also adopted various bonus bank arrangements, including Morgan Stanley,
Credit Suisse, Barclay’s, and UBS. In the case of UBS, a sweeping overhaul of is pay system
was enacted in 2013. Central to this overhaul was a new bonus structure for 6500 of its
highest earners. Under the new structure, bonuses are issued as “callable” amortizing bonds
that mature anywhere between 3 and 5 years. These bonds held by the employees can be
wiped out (i.e. called back at zero call price) if, in the interim, certain benchmarks are not
reached (Schéfer and Shotter, 2013).

In practice, since many of the bonus bank arrangements have only been implemented
since the financial crisis, wipeouts have been rare. One notable wipeout occurred at Temasek,
one of the few companies that had been using bonus bonds since before the crisis. After
portfolio returns missed risk-adjusted hurdles in 2008 /2009, bonus bank accounts were wiped
out. This is noted in the Remuneration Philosophy page of the Temasek website.

I now show how the cliff-contract can be implemented as a bonus bond arrangement.
Under the implementation, whenever N > 0 and high output is produced, the agent receives

12



a new bonus bond with face value:

F=r(1)+) B"[r(n+1)—r(n)

_pre
B(2p—1)

Notice the more severe the myopic agency problem - as measured by lower p, or lower 3, or
higher ¢ - the higher the face value F.

The bond’s yield y matches the discount factor: 1/(1 + y) = 8. The amortization table
is summarized in the figure below:

Date Since Issue Payment Remaining Principal
0 r(1) Doy B r(n +1) —r(n)]
1 r(2) —r(1) Yo M r(n+2) —r(n+1)]
2 r(3) —r(2) D oney B [r(n+3) —r(n+2)]
k r(k+1)—rk) | Y2, 8" r(n+k+1) —r(n+k))

Notice as k — oo the bond’s principal amortizes completely.

Whenever low output is produced, all existing bonus bonds are called back at zero price
and the unpaid portions of the bond principals are wiped out. The agent does not need to
give back any payments already received.

Under this bonus bank arrangement, the agent receives zero payment whenever low out-
put is produced - just like the cliff-contract. Thus, to verify that it implements the cliff-
contract it suffices to show that following high output, the agent’s total payment equals
r(N). If N =0, the agent is not issued a bond and has no pre-existing bonds that haven’t
already been wiped out. So his payment is 0 = r(0). If N > 1 then the agent is issued
a new bonus bond. In addition, the agent has N — 1 existing bonus bonds issued over
the previous N — 1 dates. The bond he just received pays him r(1) today. The bond
he received the previous date pays him r(2) — r(1) today. In general, the bond he re-
ceived k dates ago pays him r(k + 1) — r(k) for £ < N. Thus, today’s total payment is
r(1)+ (r(2) = (1)) + (r(3) = r(2)) + ...+ (r(N) —r(N — 1)) = r(N). This completes the
verification.

One notable difference between the cliff-contract’s implementation and a real-life bonus
bond contract is that unlike real-life bonus bonds, a myopic agency bonus bond does not
mature in finite time. However, since r(IV) levels off, the later payments of the amortization
schedule are vanishingly small. Figure 3 shows an example amortization schedule. This bond
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Figure 3: Evolution of the payments and remaining principal of a bonus bond. Parameterization:
(p=.28,6=.9,c=.1).

can be reasonably approximated using one that matures after three or four payments.

Another notable difference is that in most real-life bonus bond contracts, missing the
benchmark does not automatically trigger a full-blown wipeout. That the cliff-contract with
its complete wipeouts is optimal is due to the special nature of the model. In Section 4.3,
I will show how a damped version of the cliff-contract can be robustly adapted to settings
that are much more general than the model considered here as a type of restricted optimal
contract.

3.2 Incentive Escalation

What if there is no cliff?

The cliff mechanism of the optimal contract works by tying the size of the high output reward
today to the size of the high output streak: When the high output streak is long and a low
output is produced, it will be a while before the agent is again rewarded generously for high
output. Now suppose for the sake of contrast the cliff is eliminated by fixing the high output
reward at r(IN = oo). In this case, the high output payment is

B c _ £%(0)
p(1+8)] 1+8

This cliff-less contract always treats the agent as if he has produced an infinite streak of
high output leading up to today. Not surprisingly, it rewards the agent generously: The
contract pays the agent whenever the cliff-contract pays the agent, but the payment amount
is greater than any payment the agent would ever receive under the cliff-contract. This
cliff-less contract has a pay-to-performance sensitivity that is always larger than that of the
cliff-contract and a reasonable first-pass assessment of this contract is that it induces the
long-term action but at too high a cost. But this is actually giving the cliff-less contract too
much credit.

r(00) :=p [£(0)
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The Markov law for the incentive level of the cliff-less contract is trivial: It stays at r(co).
A look back at Theorem 1 reveals that increasing all the high output rewards to r(co) does
not universally increase the incentive level even though it does universally increase pay-to-
performance sensitivity. The incentive level is increased after some histories and decreased
after others. Unfortunately, since r(c0) < £>°(0), (2) reveals that the incentive structure is
distorted in the worst possible way. After every history the incentive level today is too large
compared to tomorrow’s and too small compared to yesterday’s. As a result, not only does
the contract pay the agent too much, the agent always takes the short-term action.

Fixing the high output payment at any level below r(co) will result in the same short-
termist outcome. Thus, consistently inducing the long-term action without the cliff requires
a constant high output reward larger than r(co). How much larger must it be? The answer
follows from looking at the following issue:

What if the principal models myopic agency as traditional effort-shirking agency?

The primary motivation of this paper is to study the types of hidden actions - both good and
bad - that a manager can take beyond well-studied hidden actions of the standard effort-
shirking framework. I now show what happens if a principal facing a myopic agency problem
replaces the true model with its traditional effort-shirking approximation.

In the traditional version of the model, no action taken today has any effect on output in
the future. The long-term action is relabeled as effort. Effort today is assumed to generate
a probability p of producing high output today. The short-term action is relabeled shirking.
Shirking today is assumed to generate a probability 1 — fp of producing high output today.
Notice, the principal replaces the short-term action’s true multi-period effect on output with
its present value. The cost of effort/private benefit of shirking is still c.

Recall in the true model, I assume that the parameters are such that (1—p)X +c¢ < GpX.
That is, the present gain associated with taking the short-term action today is outweighed by
the loss tomorrow factoring benefits. In the traditional version of the model, this inequality
is precisely the condition that ensures effort is first-best optimal. Therefore, Assumption
(A) can still be sensibly applied.

Lemma 2. In the traditional model, the optimal contract subject to always inducing effort is
a stationary contract that pays the agent €°(0) whenever output is high and nothing whenever
output is low. Both the pay-to-performance sensitivity and the incentive level of the contract
are always €(0).

Proof. The two date 1 continuation contracts can both be assumed to be the optimal con-
tract. If they weren’t, then they would be more expensive, in which case, they could each
be replaced with the optimal contract and the surplus payment can be move to date 0. This
would not affect incentives nor the cost of the contract (and would make the payment path
faster). Finally, given that the two date 1 continuation contracts are the same contract, the
optimal thing to do at date 0 is to pay the agent nothing following low output and e*(0)
following high output. The rest follows by recursion. O]

I call this optimal contract of the traditional model the traditional contract to distinguish
it from the cliff-contract - the optimal contract of the true (myopic agency) model. Just like
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in the myopic agency setting, always inducing effort in the traditional setting is optimal if the
value of the firm is sufficiently large compared to the cost of the traditional contract. Again,
this condition can be ensured by assuming X is sufficiently large or ¢ is sufficiently small. (2)
implies that the traditional contract is incentive-compatible in the true model. That is, even
though the principal sweeps the myopic component of the moral hazard problem under the
rug and uses the traditional contract, he still induces the long-term action from the agent.
Obviously, the traditional contract is inefficient since it is not isomorphic to the cliff-contract.
The degree of inefficiency can be usefully quantified. Theorem 1 implies: Relative to the
cliff-contract, the traditional contract always over-incentivizes the agent. The traditional
contract’s over-incentivizing is financed by an inflation in pay corr(logared to the cliff-contract.
oo

In the cliff-contract, payments are bounded above by r(co) = 573* < >(0).

Remark. The traditional contract is the cheapest contract that induces the long-term action
without a cliff. The pay the agent receives after each high output under the traditional contract
is strictly higher than the pay he receives, no matter how good his performance, under the
cliff-contract.

This remark also answers the question posed at the end of the previous subsection. To
induce the long-term action without a cliff, the best one can do is to import the optimal
effort-inducing contract from the effort-shirking version of the model. And this traditional
contract pays the agent more, sometimes, a lot more:

The difference in cost to the principal between the cliff and traditional contracts can be
substantial. By Theorem 1, the cost of the optimal contract is ¢/(1 — 3?), whereas the cost
of the traditional contract is pc/[(1 — 8)(Bp — (1 — p))]. Thus, the traditional contract is
p(1+ 5)/(Bp — (1 — p)) times as costly as the optimal contract. Since the only restriction
the model imposes on the parameters is that (1 — p)X + ¢ < BpX, this cost ratio can be
arbitrarily high.

Moreover, the contract costs, and therefore the cost ratio, are independent of the high
output level X. This has implications for the practical importance of the cliff-contract.
Recall, always inducing the long-term action is optimal if the firm value is sufficiently large
compared to the cost of the cliff-contract. At first, this seems like a weak motivation for using
the cliff-contract: When firm value is large relative to contract cost, is it really necessary
to employ the absolute optimal contract? Wouldn't something simpler like a traditional
cliff-less contract do approximately just as well? The answer is, in general, no. Just because
the cliff-contract is relatively cheap does not mean the traditional contract must be as well.

Lemma 3. Fiz any constants r1,79 € (0,1). There exist parameters of the model such that
it is optimal to always induce the long-term action, the optimal contract’s cost is less than
r1 times the total value of the firm but the traditional contract’s cost is more than ro times
the total value of the firm.

Proof. See appendix. m

In particular, by setting r; sufficiently low and ry sufficiently high, I can simultaneously
ensure that always inducing the long-term action is optimal and the cliff-contract is signif-
icantly cheaper than the traditional contract. By extension, the cliff-contract will also be
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significantly cheaper than any other “intuitive” effort-inducing contract imported from the
traditional setting, such as periodic review contracts where the agent is rewarded at the end
of a review period if and only if the proportion of high output dates matches or exceeds some
threshold that approximates p.

The Bonus Reform Debate

The comparative analysis of this section helps put into context some aspects of the recent
debate on bonus pay reform. Murphy (2013) discusses the EU proposed cap on bonuses and
has a good discussion of and numerous references relating to the bonus reform debate. See
also chapter 6 of French et al (2010). In recent years, banks have faced increasing government
and popular pressure to change the way they award bonuses. Two of the basic complaints
are

1. Bonuses are too large.

2. Bonuses partially contributed to the short-termist behavior that led to the current bad
state of the market.

On the other side, the banks counter

3. Bonuses, including potentially large bonuses, are needed to incentivize agents.

4. Capping bonuses can have potentially disastrous consequences due to incentive mis-
alignment.

These contradicting points can be reconciled when understood through the comparative
discussion of myopic versus traditional effort-shirking agency.

Given that much of the theory and practice of incentive contract design has been de-
veloped within the traditional effort-shirking framework, it is not a stretch to imagine that
banks may still think in this way even if the agency problem they face is myopic in nature.
If this is true, then the conflicts listed above can be rationalized. For example, the optimal
bonus a bank will pay thinking in the traditional framework is £€>°(0). The remark from the
previous subsection says that this bonus is much too high, but from the bank’s perspective
it is perfect and lowering the bonus any more will have disastrous consequences, leading to
short-termism all the time.

This idea of thinking in the wrong framework can be pushed further. Suppose the bank
does not perfectly calculate the severity of the agency problem. It the bank overestimates,
then pay is too high and the previous discussion still applies. More interestingly, suppose
the bank slightly underestimates the severity of the agency problem and initially sets the
bonus to be a little less than £>°(0), in the range [r(c0),e>(0)). Given the discussion in
“What if there is no cliff ?” 1 know that such a bonus is still too high all the time. Moreover,
incentives are distorted in the worst possible way so that the agent ends up always taking
the short-term action. But when the bank finally realizes that its current bonus system is
inducing rampant short-termism, it will not lower bonus payments. Instead, because it is
thinking in the wrong framework, the bank will “rationally” conclude that bonus payments
must get larger.
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This example shows how the banks and their critics can both be right. If the banks could
just realize that they’re facing a myopic agency problem, then they would lower payments,
implement bonus bank systems, and the problem would be solved. On the other hand, if the
way bonuses are paid out isn’t structurally changed, then the banks are right that further
lowering bonuses will just make things worse. Thus, the four points of the aforementioned
debate on bonus pay reform are reconciled.

In contrast, suppose the principal overestimates the agency problem but understands
that the agency problem is myopic in nature. Then the long-term action is still induced but
overpayment is not as severe as it would be if the principal had the wrong model in mind. A
unit increase in the estimate of ¢ leads to a 1/(1— 3?) increase in cost under the cliff-contract
but a larger p/[(1 — B)(Bp — (1 — p))] increase in cost under the traditional contract. The
contrast is even greater if the overestimation involves the principal getting p wrong. If the
principal thinks p is smaller than it actually is, the traditional contract’s cost goes up but the
cost of the cliff-contract is independent of p. Finally, if the principal initially underestimates
the agency problem and then realizes his mistake, then any increase in pay is in line with
optimality unlike the thinking-in-the-wrong-framework case.

4 Robustness

4.1 Non-Deterministic Short-Term Actions

In the main model, the short-term action deterministically leads to the bad state tomorrow. I
now relax this assumption and show that the main features of the optimal contract, including
incentive escalation and the embedded cliff are robust to this extension model. So, suppose
the short-term action now causes the bad state to occur tomorrow with probability 7 < 1.
Let () := mp. Condition (1) for the first-best optimality of the long-term action now becomes
(1—-p)X +c<pRX.

The IC-constraints (2) and (3) corresponding to deviation in action only and deviation
in action and output disposal become

(1 =p)As(h—r) + ¢

App1(he1X) > e(Ai(hi-1)) = 50 (6)

and
At—l—l(ht—lO) > Q(At(ht—l)) = _pAt%Lgl) re (7)

Here, e(A) and g(A) are the €(A) and y(A) of the extension model. The IC-constraint
corresponding to deviation in output disposal only is still a nonnegativity constraint on the
incentive level. Following the same arguments leading up to Theorem 1, I can now state the
optimality result for the extension model:

Proposition 1. The optimal cost function C(A) satisfies the Bellman equation

C(A) = max{5C(e(A)) — (1 —p)A, BC(g(A) V 0) + pA}.
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It is an m + 1-piece piecewise linear function for some m > 1 and it is strictly increasing
except for the knife-edge case m = 1 considered in Theorem 1. There exists a threshold A*
such that

o(A) = BC(e(A)) — (1 —p)A ifO<A<A*
BC(0) + pA =pBC(g(A) V0) +pA if A>A”

The corresponding Markov law for the incentive level is isomorphic to Theorem 1’s. In
particular, the optimal contract’s incentive level starts at zero and remains in the set {0} U
{€™(0)}n>1. When A = e™(0), it is located in the domain of the n+ 1-th linear piece of C'(A)
forn e {1,2,...m —1}. For alln > m, e*(0) is located on the m + 1-th linear piece.

Proof. See appendix. m

Corollary. The optimal contract is still a cliff-contract: The agent is paid for high output if
and only if A is in the domain of the m—+1-th linear piece. Quer this domain, the agent’s high
output reward is linear in A and therefore, is an increasing, concave and convergent function
of the number of consecutive high outputs. This generalizes Theorem 1 where m = 1.

The corollary to Proposition 1 demonstrates that the optimal contract of the extension
model is very similar to the special case optimal contract of Theorem 1. The main difference
is that, in general, the agent may need to establish a high output streak longer than one
before being rewarded for producing high output.

The explicit characterization of the optimal cost function can be more involved than in
Theorem 1 because there may be more than two linear pieces. This can make writing down
the piecewise linear function notationally cumbersome. Step 1d in the proof of Proposition
1 provides the precise algorithm for how to write down the function.

One notable difference moving from the special case to the general case is that when
C(A) involves more than two pieces, the agent receives low output payment when N €
{1,2,...m—1}. This corresponds to when the incentive level is in the domain of the middle
pieces of C(A); it is empty whenever C(A) has only two pieces. However, it would be
incorrect to think of this payment as a reward for low output. When the contract is in this
region, the incentive level is strictly positive. This means that the agent’s ex-post promised
value (recall Definition 1) is strictly smaller following low output even though he receives a
payment following low output and nothing following high output.

The low output payment is an artifact of the limited liability assumption interacting with
the IC-constraint (2). This IC-constraint puts a cap on today’s incentive level relative to
tomorrow’s. When the limited liability constraint is slack for the high output payment, the
principal can always temper today’s incentive level by decreasing the high output payment.
However, once limited liability binds for the high output payment (which is precisely what
happens when N € {1,2,...m — 1}) then the only way to temper today’s incentive level is
to increase the low output payment from zero. Limited liability also binds when N = 0, but
that is when A = 0 and the optimal thing to do is to pay the agent nothing regardless of
output and enact the optimal e(A) contract the next date.

Does the existence of payment for low output corrupt the cliff-based intuition for the
optimal contract? No. Ultimately, what the agent cares about is his ex-post promised value
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not spot payments. The reason why I first introduced the intuition for the cliff-mechanism
through spot payments is because they comprise a good shadow variable for ex-post promised
value - particularly in the special case considered in Theorem 1 - and because spot payments
are more concrete objects that reflect our practical conception of incentive pay.

However, the fundamental reason the agent is driven to take the long-term action is
because the incentive-structure and not just the spot-pay-structure of the cliff-contract is
well-designed. The optimal contract is a cliff-contract not just because the high output
payment is a function of the high output streak but also because the incentive level is a
function of the high output streak:

Initially, when the high output streak N is low, the incentive level is small and therefore so
is the high output ex-post promised value. Most of the large high output ex-post promised
values are backloaded and therefore, initially, the agent is induced to take the long-term
action to build up NV and access those larger high output ex-post promised values. Eventually,
as the agent continues to produce high output and N continues to increase, the high output
ex-post promised values stop getting much larger and backloading ceases. But this entire
time, the increase in the high output ex-post promised value is being driven by the escalation
of the incentive level. Thus, by the time the high output ex-post promised values have leveled
off and the agent starts to think about taking the short-term action again, the difference
between the high output ex-post promised value and the low output ex-post promised value
has become very large. Thus, the agent now finds himself on top of an incentive-cliff, and
the fear of falling off this cliff becomes the substitute to backloading that continues to induce
the long-term action.

4.2 Participation Constraints

Suppose the agent has an outside option worth K that imposes an ex-ante participation
constraint. This means the contract must deliver at least promised value K to the agent,
but the agent cannot walk away once the contract is signed. If the optimal contract without
the participation constraint promises less than K to the agent then simply add a signing
bonus to cover the difference. The resulting contract does not affect the incentive structure
and so remains incentive-compatible. It is the optimal contract satisfying the participation
constraint.

Now suppose K represents an interim-participation constraint: The agent can walk away
from the contract any time and exercise his outside option worth K. In this case, the optimal
contract will change in a more persistent way and the corresponding Bellman equation
will be different. The principal must guard against three different participation constraint
driven deviations: 1. The agent can simply walk away. 2. The agent can take the short-
term action and then walk away the next date. 3. The agent can take the short-term
action, dispose output, and then walk away the next date. The type 1 deviation guarantees
the agent K. Optimally choosing between type 2 and 3 deviations guarantees the agent
wy(hi—1X) V wy(hy—10) + ¢+ 6K > ¢+ K. Let CP°(A) denote the cost of the optimal
A-contract in this world with interim participation constraints.
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Proposition 2. The optimal cost function CP°(A) satisfies the following Bellman equation:
C7(A) = max{ BCP(=(A)) — (1 — p)A, BC™(4(A) V 0) + pA, c+ BK, K} (8)
The solution is a weakly increasing two-piece piecewise linear function:

or(A) = C7(0) if 0 <A < EEC0P(0)
(8)= BCT(0) +pA if A > ECr(0)

where CP(0) = =5 V (¢ + BK) V K. The Markov law for the incentive level is identical to
that of Theorem 1 and so the optimal contract is still a cliff-contract.

Proof. See main text. O]

Consider the relaxed problem where if the agent chooses to take the short-term action
today and then walks away tomorrow, he cannot take any of today’s cash compensation
with him. In the relaxed problem, the type 2 and 3 deviations guarantee the agent precisely
¢+ BK. Its Bellman equation is naturally (8) and it is straightforward to check that the
piecewise linear formula for C?¢ solves (8).

What Proposition 2 says is that by backloading some of the relaxed optimal contract’s
compensation in a payoff neutral way, the principal can turn the contract into the optimal
contract of the full problem. This payoff-neutral backloading does not change the incentive
structure of the contract, and so the optimal contract of the full problem is also a cliff-
contract. The precise algorithm for how this shuffling is done is simple. Consider an arbitrary
contract of the following form: Today, it delivers value W to the agent; after high output it
pays the agent some wy, and after low output it pays the agent some w;. This contract will
induce the agent to not commit the type 2 nor the type 3 deviation if and only if

wp,w, <WW) =W — (c+ BK)

Thus the algorithm for turning the relaxed optimal contract into the optimal contract is
as follows: start at date 0 and if a payment exceeds wW(C(0)), take the excess amount and
backload it by one date, being sure to scale up the quantity by a factor of 1/5. This keeps the
contract’s payoff unchanged and ensures that it respects the participation constraint at date
0. Then move to date 1, and for each date 1 continuation contract, compute how much it is
worth keeping in mind that some payments may have been backloaded to date 1, and repeat
the process etc. Of course, backloading more than the excess over w is incentive-compatible
as well. But the proposed algorithm preserves the fastest payment path property.

4.3 Taking the Cliff-Contract Beyond the Core Model

In this subsection, I take a more substantial step away from the core model considered in
Theorem 1 and Proposition 1, which focused on how the principal can induce the agent to
take the long-term action when the state is always good on the equilibrium path. I now
introduce multiple states, some better than others, all of which can occur on the equilibrium
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path, and allow the agent the opportunity to take any one of a number of different short-term
actions in each of these states. This allows me to look at what happens when the agent is
taking the long-term action and through no fault of his own, ends up in a bad state. The
fear is if the agent is facing a cliff-contract, he may be tempted to take a short-term action
in a desperate attempt to keep the streak going.

I then further extend the model and introduce short-term actions whose effects play out
over more than two dates. I show as an example how a three-date short-term action can
be decomposed into two two-date short-term actions taken in succession. Any contract that
induces the long-term action in the presence of these two two-date short-term actions will
also induce the long-term action in the presence of the single three-date short-term action.
In general, I show how the techniques and mechanisms coming from the core model can be
effectively utilized to induce the long-term action in a rich environment with many states
and short-term deviations.

I stress I do not find the true optimal contract in these more general settings where the
optimal contracting problem may be intractable. Rather, I highlight how the cliff-contract
is naturally adapted to these richer models of myopic agency by showing how it arises
as the optimal arrangement under a restricted, robust version of the optimal contracting
problem where the state-dependent incentive constraints are replaced with state-independent
constraints.

4.3.1 Multiple States

In the first extension, I introduce multiple states, all of which can occur on the equilibrium
path, and allow the agent to take the short-term action in any state. I make two restrictions
on the contract space and solve for the resulting restricted optimal contract. The first
restriction is that the contract does not ask for agent reports. The second restriction imposes
some structure on the incentive escalation implied by the short-term deviation IC-constraint.
Later on, I also make a third restriction that imposes an upper bound on the promised
value. However, this restriction is mostly done for quantitative reasons and does not affect
the robustness of the cliff-contract. 1 will elaborate when I get to Restriction 3.

There is a finite set of states {o;}. If today the state is o, then the probabilities of high
output today given the agent’s action choice today are 0 < p,; < p,s < 1. Taking the
short-term action in state o provides benefit ¢,. Given the previous date’s action choice a,
the probability that today’s state is o is 4. Condition (1) for the first-best optimality of
the long-term action now becomes:

(pas - pal)X + Cs < 5 Z(,ulcri - ,Usai)poilX Vo (9)

Restriction 1. Contracts do not ask the agent to send reports.

This was without loss of generality in the core model but is not without loss of generality
here since different states can occur on the equilibrium path. The upside of not asking for
reports is that the “restricted” optimal contract I will derive has some attractive robustness
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properties which I detail later. Moreover, I emphasize that this restriction does not some-
how allow me to avoid the motivating cheating-in-a-bad-state problem mentioned earlier.
Without the ability to tell the principal that a bad state has unfortunately occurred, the
temptation to cheat is even greater. Thus, if anything, it will be more difficult to show that
the cliff-contract is an useful contract under Restriction 1.

The IC-constraint (2) for deviation in action only now becomes

(pas - pol)At(ht—l) + Co
B Zo’i (,ulai — Hsoy )pail

and the IC-constraint (3) for deviation in action and output disposal now becomes

PosAty1(hi-1X) + (1 = pos) Ap1(he—10) > Vo (10)

—PotAe(hi—1) + ¢5
Ayi1(hi—10) >
t+1( t—1 ) - 6201 (/’l’lai - :U’sai)ptfil

The IC-constraint for deviation in output disposal only is still A;(hy—1) > 0.

The core model is the special case where p,s = 1 for ¢ = good, p,s = 0 for ¢ = bad, and
Chaqa = 0. In the core model, (10) reduces to a lower bound on Ayyq(h;—1X), and it’s optimal
to set Ayr1(hi—10) to be as close to zero as (11) will allow. In general, though, there can be
equilibrium path o where p,, is significantly less than one, in which case, it is not optimal
to have the incentive escalation from A; to A, be entirely borne by A, ;(h;—1.X). Instead,
it will be optimal for Ay, q1(h;—1X) and Ay 1(h;—10) to share the escalation.

The extent of optimal incentive escalation sharing may fluctuate in complex, history
dependent ways that are sensitive to the particular details of the model. To make progress,
I make a second restriction that imposes some structure on the sharing:

Vo (11)

Restriction 2. Replace (10) with sufficient constraints of the form:

At+1(ht_1X) Z EX(At(ht—l)) = MAt(ht_l) + B (12)
At+1(ht_10) Z E()(At(ht_1>> = QMAt(ht_1> + B (13)

for some nonnegative constants 6, M, and B.

This restriction replaces the state-dependent, non-fixed-share IC-constraint (10) with a
pair of state-independent, fixed-share IC-constraints. It does not restrict the overall degree
of escalation sharing in the resulting contract. By shifting 6, the contract designer can set the
degree of sharing to be whatever he wants. Rather, the restriction simply asks the designer
to pick a sharing rule and stick to it.

An immediate benefit of imposing Restriction 2 is that (11) is now redundant. To see
the redundancy, fix a A;1(h—10). (13) implies that Ayyq(h;—10) > B. Thus, it suffices
to show that B > ¢, /(8)_, (ts; — fso;)Po,t) for all o. By setting Ay(h;—1) = 0, and
Apy1(hi-10) = Ayp1(hi—1X) = B, the inequality follows from Restriction 2 requiring that
(12) and (13) imply (10).

By eliminating (11), the optimal contracting problem which originally was a constrained
maximization problem subject to (10), (11), and A;(h;—1) > 0, now simplifies to:
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The Restricted Optimal Contracting Problem

{wg%i)(oo E{at 132, [Zﬁ Xt wt]
s.t. for all ¢, (12), (13), Ai(hi—1) >0

Because this maximization problem is constructed in a state-independent way, the re-
stricted optimal contract ignores the private information of the agent. However, due to
the ignorance, the contract does have some appealing robustness properties. Because the
[C-constraints are state-independent, the contract induces the long-term action under all
states and all histories including off-equilibrium histories. Moreover, the contract induces
the long-term action no matter the degree of common knowledge of the underlying state. In
the core model I've assumed that it is common knowledge that only the agent knows the
state. But the restricted optimal contract will also induce the long-term action, for example,
if the agent is sometimes not sure what the state is and the principal is not sure if the agent
knows the state.

Implicit in the restricted optimal contracting problem is the problem of optimally choos-
ing #, M, and B. I will solve the problem in two steps. First, I deduce and solve the Bellman
equation for the cost function taking #, M, and B as given. Then I find the optimal 6, M,
and B and discuss the restricted optimal contract.

Lemma 4. Given 0, M, and B, the cost function C(A) satisfies the following Bellman
equation:

C(A) = max{fC(Ex(A)) — (1 =P)A, BC(Eo(A)) +PA}

wherep = Zoi Wio;Dosi- When BOM < 1 and ’Bi‘{; < 1_?1‘4, the solution is a linear function:

C(A) = BC(Eo(A)) +PA

D 5 P
S TT) Vil g R gy

B (14)

Otherwise, the cost is infinite.
The corresponding Markov law for the incentive level takes A to Ex(A) following high
output and to Eo(A) following low output.

Proof. See appendix. m

This lemma is the key result of the restricted optimal contracting problem. Even though
I haven’t yet computed the optimal 6, M, and B, nor have I described the restricted optimal
contract, Lemma 4 already settles all the key structural questions. Indeed, qualitatively
speaking, Lemma 4 reveals that the solution to the Bellman equation and the contract’s
basic incentive structure are both largely independent of the choice of 6, M, and B. Thus
the remaining problem of computing the optimal 6, M, and B and figuring out exactly how
large contract payments is essentially a quantitative issue.
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Before addressing the quantitative side and describing the optimal contract, I impose one
last restriction:

Restriction 3. The promised value is bounded above by some W > pV/(1 — ) where

Co

V = max
o0’ 5251-(!”@ - :uSUi)pUil - (pa’s - pa’l)

Obviously W cannot be too small, or else no incentive-compatible contract exists. Once
W exceeds the given lower bound, the restricted optimal contract exists and its structure is
qualitatively invariant over the choice of W. Notice, if the private benefit is constant over
all states or, more generally, if the private benefit is weakly positively correlated with the
output boost of the short-term action, then (9) implies that V' < X. This means that a
sufficiently large W is simply the value of the firm pX/(1 — 3).

Capping the promised value in this way is often unnecessary. For example, in the core
model, the promised value of the cliff-contract is always strictly below the promised value
of the traditional contract which is strictly smaller than the total value of the firm. In
general, Restriction 3 is not crucial for the qualitative results of this section - again, as a
reminder, Lemma 4 was proved before I imposed Restriction 3. Later when I explain how
the restricted optimal contract is a “damped” version of the cliff-contract, I can easily adapt
the explanation to the setting without Restriction 3. Thus, Restriction 3 does not affect the
main qualitative features of the restricted optimal contract and therefore does not affect the
robustness of the cliff-contract.

However, from a quantitative standpoint, something like Restriction 3 that caps the
promised value (or ex-post promised value) can potentially have an impact. As we shall
see shortly, Lemma 4 implies that the restricted optimal contract tries to be as close to
a cliff-contract as possible: It tries to load as much of the incentive escalation to be after
high output, or equivalently, it tries to pick as low a 6 as possible without causing the
cost function to explode to infinity. This means that, without Restriction 3, sometimes
the optimal thing to do is to set 6 so low that M > 1. In these cases, the escalation
following high output is unbounded. The agent’s payoff still increases as a function of the
high output streak - preserving the cliff-mechanism - but it no longer converges as the high
output streak becomes long.? Restriction 3 rules out unbounded escalation by capping the
promised value. I emphasize that, even without Restriction 3, the restricted optimal contract
does not always feature M > 1. It will become apparent that, for a generic set of model
parameters, Restriction 3 is automatically satisfied and the optimal contract is simply a
cliff-contract with bounded incentive escalation.

I now turn my attention to finding the optimal 6, M, and B. It is clear that B should
be set to be the maximum y-intercept of the family of linear constraints that comprise (10):
CO’

B := max
g 6 Zo'i (,ulai — Hso; )poil

(15)

30ne might wonder how such an unboundedly escalating contract can have finite cost much less op-
timal/minimal cost. The reason is that the unbounded escalation is occurring only along the high output
history and the probability of a high output streak of length N occurring converges to 0 as N goes to infinity.
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Given 6, Restriction 2 implies that it is optimal to set M to be

M = max 1 . Pos — Dol
7 Pos + 0(1 - p05> B Zo'i (,ulai — MUso; )pail

(16)

Lastly, notice by (14), 6 factors into the cost function through 6 M while the cost function is
finite. Given (16), §M is proportional to 0/(pys + 0(1 — pys)) for some state o. This fraction
is increasing in 6, and therefore 6 should be as small as Restriction 3 allows. The smallest
amount of maximal incentive-escalation occurs when § = 1 and Restriction 3 is lax enough
that # = 1 is strictly feasible. Thus, the optimal @ is strictly smaller than 1.

More generally, once M given # is optimally chosen, Lemma 4 implies that the range
of 6 for which the cost function is finite is a closed interval and so the optimal # without
Restriction 3 would be the lower bound of this interval. Restriction 3 imposes a strictly
stronger upper bound and a weakly stronger lower bound on 6 - the lower bound could be
zero in both cases. As a result, the set of # that respects Restriction 3 given that M is
optimally chosen is a closed subinterval and the optimal 6 given Restriction 3 is the lower
bound of this subinterval. In particular, since the optimal 6 given Restriction 3 is smaller
than 1, so would the optimal # without Restriction 3.

I now state the restricted optimality theorem:

Theorem 2. The optimal B is given by (15) and the optimal M given 0 is given by (16).
Given (16), the set of 0 that respects Restriction 3 is an interval [0, 0] where 0 < 0 <1 < 6.
The optimal 0 is the smallest possible 0 subject to Restriction 3 and so is equal to 0. (14)
implies all three quantities can be explicitly computed.

The optimal contract pays the agent only when high output is produced. The high output

reward 18

1—10(1—p) +p| BM
1— BOM

A (17)

When the optimal 6 = 0, the restricted optimal contract is a cliff-contract: After the first date,
the incentive level stays in the set { E'%(0) },,>1 which is bounded above by E¥(0) = B/(1—M).
Thus, to pay the agent it suffices to keep track of the number N of consecutive high outputs
produced leading up to today. As a function of N, the agent’s high output reward is increasing,
concave and convergent.

When the optimal 6 € (0,1), the restricted optimal contract is a “damped” cliff-contract
because the agent does not start over when a high output streak is broken. The damped cliff-
contract can be naturally implemented as a bonus bank where low output does not completely
wipe out all of the existing bonus bonds.

By (17), the high output reward dynamic mirrors the incentive level dynamic. So I will
just discuss the incentive level dynamic in detail. The discussion is derived from Lemma 4
assuming Restriction 3. Without Restriction 3, the only aspect of the discussion that would
change is that under some model parameterizations, the incentive level would never converge
as the high output streak gets longer and longer.
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C(A) = BC(En(A)) +pA

_B _B_

1-0M 1-M
Figure 4: Pictured is the restricted optimal cost function C'(A) along with some sample paths
of the restricted optimal contract’s incentive level. The increasing linear function is C(A). The
solid squiggly path represents the location of the restricted optimal contract on the optimal cost
function when high output is produced date after date. The path is converging to the point
(B/(1—=M),C(B/(1 —M))). The first diverging dotted path shows that alternate history where
after the first high output, a low output is produced followed by high output again. The second
diverging dotted path shows the alternate history where after the fifth high output, a low output
is produced followed by high output again. Notice the damped drop off the cliff captured by the
second dotted path.

The optimal contract’s incentive level starts at 0. In the initial phase, the incentive level
escalates no matter the output, but high output leads to greater escalation. This does not
mean the agent is paid no matter the output. It means that, in the initial phase, if the agent
produced high output at date ¢, then low output at date ¢ 4+ 1, then high output again at
date t + 2, his date t + 2 reward is still higher than his date t reward - although not as high
as it would have been had he produced high output at date ¢t + 1 as well. When 8 = 0 so
that the restricted optimal contract is a cliff-contract, the initial phase is trivial, lasting only
the first date.

Once the incentive level reaches or exceeds the fixed point B/(1—60M) of Ey, the contract
transitions to its steady state dynamic. Now the incentive level forever stays in [B/(1 —
M), B/(1 — M)) and moves around in a damped-cliff fashion. High output continues to
escalate the incentive level. As the high output streak tends to infinity, the incentive level
increases in a concave, convergent way, converging to B/(1 — M). Any break in the high
output streak causes the incentive level to drop. The higher the incentive level, the bigger
the drop. However, as long as 6 > 0, the drop is damped - following a low output, the
incentive level decreases but doesn’t decrease all the way to B/(1—60M). Of course, a couple
of successive low outputs will drop the incentive level to approximately B/(1 — 0M). See
Figure 4 for some sample paths.

Theorem 2 implies that when 6 = 0 doesn’t violate Restriction 3 then it is optimal to
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set § = 0 and the optimal contract is a cliff-contract. It # = 0 does violate Restriction 3,
then it is optimal to get as close to 0 and to load as much of the incentive-escalation on
Ayi1(hi—1X) as possible. The restricted optimal contract strives to be a cliff-contract, but
some damping is necessary.

The reason for the damping is driven by the motivating problem mentioned at the be-
ginning of this subsection: When an agent winds up in a “bad” state - perhaps through no
fault of his own - and he is facing a cliff-contract, there may be a strong temptation to cheat
and take the short-term action. To see the connection between the temptation to cheat in a
“bad” state and the need to damp, I will compare two versions of the multi-state model. The
two models are identical except that in some state(s) o, p,s is higher in the second model.
Such a state o is relatively worse in the second model compared to the first model. Thus, if
there were a positive link between cheating in a bad state and damping, one would expect
that the restricted optimal contract of the second model would be more damped.

Indeed this is exactly what happens. For any given 6, the optimal M given 6 is weakly
larger in the second model. Thus, Restriction 3 imposes a weakly higher lower bound on 6
in the second model. As a result, the optimal # is weakly larger in the second model which
proves the claim.

4.3.2 Multiple Short-Term Actions

The restricted optimal contracting approach can be easily extended to include multiple
short-term deviations s € {s;}. Each short-term deviation s produces high output today
with probability p,s and has private benefit ¢,s in state o and produces a measure {fisy, }
over the set of states {0;}. The restricted optimal contracting problem is the same except
that in (9), (10), and (11), a Vs needs to be added. Also, in (15) and (16), the maximizations
are now over s and o.

Lemma 4 and Theorem 2 clearly still hold and the restricted optimal contract is still a
(possibly damped) cliff-contract.

4.3.3 Longer Short-Term Actions

The above result for inducing the long-term action in the presence of multiple short-term
actions is useful because it allows me to further extend the restricted optimal contracting
approach and the damped cliff-contract to models with short-term deviations whose effects
play out over more than two dates. Here, a K-date short-term action is one that boosts
output for the first m dates for some m < K and then lowers output for the last K —m
dates. The basic idea is that a K-date short-term action can be be decomposed into a
sequence of K — 1 two-date short-term actions taken in succession. The restricted optimal
damped cliff-contract that induces the long-term action in the presence of the K —1 two-date
short-term actions also induces the long-term action in the presence of the K-date short-term
action.

I will demonstrate how the decomposition works in two examples of a model with a single
three-date short-term action. In the first example, this short-term action boosts output for
two dates and then lowers output on the third date. In the second example, the short-
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term action boosts output today and then lowers output on the second and third dates. By
working through these two representative examples, I demonstrate the two broadly applicable
techniques needed to carry out the decomposition strategy: homogenization and shrinking.
Longer short-term actions can be dealt with similarly.

For simplicity, I will only check for the two deviations of first-order importance: one-shot
deviation in action only and deviation in output disposal only. In general, if there are multi-
shot deviations or deviations involving some combination of output disposal and action that
need to be checked, then for each such deviation, decompose the deviation into a sequence of
two-date short-term deviations combined with some output disposal. Take the union of all
these short-term actions and find a restricted-optimal contract that induces the long-term
action in the presence of this union.

Ezxample 1.

Consider a short-term action that boosts output today and tomorrow and hurts output the
day after tomorrow. The expected present discounted production of the firm over today, to-
morrow and the day after tomorrow following a one-shot deviation to the short-term action
today in state o is:

Dos + ﬁ Z ﬂlaipo'isl + BZ Z ,uso'ipail : X

where p,s > py and pyo > por for all 0. For simplicity, assume that the benefit of s is the
same over all states: ¢, = ¢ for all o.
(9) now becomes

(pas - pal)X + ﬂ Z Hio; (paisl - pail)X +c< ﬁz Z(Mla’i — Hso; )pailX Vo (18)

i 04

Let go ‘= MaXs Pos — Pol;, 41 = Zai Hio; (paisl - pail) and QQ = Zai (,ulai - Msai)poib The
incentive-constraint for deviation in action only, (10), now becomes

62622 lpas (Z ,ulaipaislAt—l-Q(ht—lXX) + (1 - Z Mlaipaisl)At—l—Q(ht—lXO)) +

g4 (ex3

(1 - pas) (Z Mla,-paislAt+2(ht—10X) + (]- - Z ,uloipoisoAt—i—Q(ht—lOO))

g4 (o4

Z c+ (pas - pal)At(ht—l) + 6(]1 (pasAt+1(ht—1X) + (1 - pJS)At—I—l(ht—lO)) (19)

I now construct a new model with two two-date short-term actions such that a restricted
optimal contract of the new model will also induce the long-term action if used in the original
model.

The goal is to find two two-date short-term actions of the same “level of myopia,” such
that when taken in succession, the net effect is the three-date short-term action. Here, the
level of myopia of a short-term action is defined to be the ratio of the present benefit over
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the present value of the future loss associated with the action. This strategy of decomposing
a longer short-term action into two-date short-term actions that are of the same level of
myopia is what I call homogenization:

Let @)1 be the unique positive solution to:

Qo _ Q1+ ¢
B BQ2

(20)

Solving for Q);:

Q1

_n + V@ + 490Q-
2

Roughly speaking, the new model will have two two-date short-term actions where the boost
and drop in the high output probability for the first (second) short-term action are go and
Q1 (Q1+q and @Q)2). By taking these two short-term actions in succession, the net expected
change in the high output probability over the next three dates is then (qo, —@Q1 + Q1+ ¢1 =
¢1, —Q2) which basically matches that of the three-date short-term action.

Here is an exact construction: The new model has the same states and same long-term
action as the original model. There are two two-date short-term actions: s, and s, with
state independent benefits:

c :Lc c :Lc
Q1+ Qo * Q1+ BQ

For every state o define p,s, = pys. Define {i;,,} be a measure over the states so that
> o, (Mo, = Hs,0,)Poq = Q1. That this is possible is implied by Q1 < Q,. Let o™" be the
state with the smallest py;. Define poming, = pymin; + Q1 + ¢1. This is possible because
Q1+ q < Q2 and 1 — poming > >, (Mo, — Hso;)Pot = Qo. For all other states assume that
Pos, — Pol < Ql +qi. FinaHYa define Hspo = Hso-

In order to apply restricted optimal contracting approach to the new model, I must now
verify that (9) holds for both short-term actions. (20) and (21) imply that s, and s, have,
loosely speaking, the same level of myopia. Formally, for both short-term actions s,

(21)

os — VMo X S X s X s
max (p Po1) X +c < +Ca:(Q1+Q1) + Cs, (22)

7 5zoi(ﬂlai - ILLSO'i)pUilX T B X BQ2X

Thus, it suffices to show that the common ratio of the RHS of (22) is less than 1. Suppose
not. Then

(g0 + B — BQ2)X +¢ = qoX +¢5, — BQIX + B(Q1 + ¢1)X + ¢, — BQ2X]
>0

This contradicts (18). I can now use the techniques of the previous sections to find the

restricted optimal contract of the new model which is a (possibly damped) cliff-contract.
Reviewing the previous steps, it is apparent that the key task is to find the right future
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downside for s, and present upside for s, so that (9) holds for both short-term actions and
the net effect of taking the two actions in succession matches that of the longer short-term
action. Homogenization systematically accomplishes this.*

I now show that the restricted optimal contract of the new model, which is a possi-
bly damped cliff-contract, induces the long-term action in the original model. Since the
IC-constraint corresponding to deviation in output disposal only is still a nonnegativity con-
straint on the incentive level, it suffices to verify that the restricted optimal contract of the
new model satisfies (19):

LHS of (19)

BZQQ Pos MAH—I ht lX Z Hio;Po;sl + 9 1-— Z ,U/lolpolsl + B +

(1 - pas) MAH—I ht 10 Z/fdalpcrl l + 0 1-— Z ,ulcnpalsl + B

(24)
“More generally, if the short-term action produces a sequence of boosts qg, g1, ... ¢ followed by a se-
quence of drops Qum+1; @m+2, - - - Qmin, then homogenization uniquely determines quantities Q1,...Qm,
Gm+1s - - - @m+n—1 Via the equations:
q0 _ Q1+aq _ _ Qm + qm _ dm+1 _ _ dm+n—1
ﬁQl BQQ 5 (Qm+1 + Qm+1) B (Qerl + Qm+2) BQm«HL

For simplicity, assume X = 1. Following the example analysis, there are m 4+ n two-date short-term actions
{sj}j=1,2...m+n. Roughly speaking, the j-th short-term action has a boost today equal to the numerator of
the j-th fraction and a drop tomorrow whose present value is equal to the denominator of the j-th fraction.

The short-term action benefits ¢,, are uniquely determined by the equations Zm+” ! fles,,, = cand
Go + Cs; _ Q1 +q + Csy _ _ Qm + qm + Cspmt1 _ Am+1 + Csppyn _ _ Gm+n—1 T Cspyn (23)
BQ1 BQ2 B(Qm+1+ dmt1) B (Qmt1 + dmt2) BQum+n

Finally, to prove that the common ratio of (23) is smaller than 1 it suffices to use proof by contradiction.
Suppose not. Then

m m—+n
S Bla— > BQite
t=0 t=m+1
m—1
= (qO - BQl + Csl) + Z ﬂt(Qt +q — ﬂQt—i—l + CSt+1) + ﬁm(Qm + qm — B(an—!—l + Qm+1) + Csm+1)+
t=1
m+n—2
> B = BQe+ 1) + o) + BT (Gman—1 — BQmin + Capy) =0
t=m+1

Contradiction. The only concern is that homogenization may produce some short-term actions with infeasible
drops. This is not an issue in Example 1 but in the general case, some of the later short-term actions with
drops of the form Q; + ¢;41 may violate feasibility: Q;+¢;4+1 > 1. This issue is also encountered in Example
2 and is resolved by the second technique: shrinking.
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By setting s = s, and o = o™, it is evident

M = max Pos — Dol
8,0 (pas + 9(1 - pas))ﬁ Zo'i (,ulai - ,usgi)pail

> Q1+ q
- (pami“sb + 9(1 - pominsb))/ﬁQ2

and

Cp

S %
~ BQ

NeXt) Zo'i Hio;Po;sl = Zo’i Hio; Po;i + Ql and Zo’i Hig;Po;l = Zo’i Hso;Po;l + QQ Z Poming + q1
together imply > fi15,Po;s1 = Poming,. Since 6 < 1,

B

Q1+ q1
M >
(X, MioPosst T O(1 = 32, o Do,st)) BQa2

This inequality and the previous inequality for B imply

RHS of (24) > Bep + B(Q1 + ¢1) (PosAts1(hi—1X) + (1 — pos) A1 (he—10))

To complete the verification of (19), it suffices to show that

ﬂQl (pasAt+1(ht71X) + (1 - pgs)AtJrl(ht,lO))
= ﬂ Z(ﬂlai - ,usao'i)pail (posaAFH(htle) + (1 - pasa)AtJrl(htflO))

[oF

Z Cc— 5Cb + (pas - pUl)At(ht71> = Cq + (po'sa - pal)At(htfl)

But this is just the incentive-constraint for s, which is assumed to be satisfied by the re-
stricted optimal contract.

Example 2.

Consider a short-term action that boosts output today and hurts output tomorrow and the
day after tomorrow. The expected present discounted production of the firm over today, to-
morrow and the day after tomorrow following a one-shot deviation to the short-term action
today in state o is:

Dos + ﬁ Z /Jlsoipail + ﬁ2 Z ,U/sloipoil * X

where Pos Z Dot and Zo-i<,ulai - ﬂsai)pail > O, Zgi(ﬂloi - /leai)pail > 0. For SlmphCItYa
assume that the benefit of s is the same over all states: ¢, = ¢ for all .
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(9) now becomes

(pas - pal)X +c< 5 Z(:u'lo‘i - ,usai)pailX + BQ Z(ﬂlai - ,usloi)pailX Vo

o4 [oF)

Let qo ‘= MaXy Pos — Pols Ql = Za’i (,U/lai - ﬂsoi)poil and Q? = Zo’i (Mloi - Mslai)pail- Let a1
be the unique positive solution to:

qo q1

B(Q1+ q1)  BQs

Solving for ¢;:

-+ VA 0@
2

qi1

Before I construct the new model with two two-date short-term actions, I first construct
an intermediate model with a single three-date short-term action which is basically a scaled
down version of the original short-term action. I call this shrinking. The reason I need to
perform shrinking is because )1 + ¢; may be larger 1, in which case it is impossible to create
a short-term action whose drop in output tomorrow is (@1 + ¢;)X. Shrinking overcomes
this problem. Then I decompose the shrunk model’s short-term action into two two-date
short-term actions and show that the resulting restricted optimal contract still induces the
long-term action in the original model.

Fix a sufficiently small A € (0,1). In this model, there is a new set of states {6} such
that pss — psi = MPos — Dot), for every p,s there exists a state ¢ such that pss = pos,
2[72. (s, = Mss;)Psu = AQ1, Zo Hs; Dol < ZOZ. Pso:Poyt; and Zg (s, — Msis; )Poit = AQa.
Also assume that ) 5, M6, Dot — Ming pg > A@Q1 + ¢1). Such a model is possible for any A
chosen to be sufficiently small. Finally, ¢ = Ac.

Now I construct the new model with two two-date short-term actions: §, and S, with
state independent benefits

& — 1+ q P o — Q2 P
a — b —
Q1+ ¢+ BQs Q1+ q + BQs
For every state & define pss, = pss. Let {us,6} be a measure over the states so that

Z&Z_ (tus, — Ms,s:)Ps, = MQ1 + q1). Let 6™ be the state with the smallest ps. Define
Poming, = Pgmin; + Aqi. For all other states assume that pss, — psy < Aqi. Finally, define
MHsp6 = Hsis-

Verifying the restricted optimal contract of the new model induces the long-term action
in the intermediate model is similar to Example 1. So I will just verify that this contract
also induces the long-term action in the original model.
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The incentive constraint for deviation in action only is

ﬂ2Q2 lpas (Z ,usaipo'ilAt+2(ht71XX) + (1 - Zﬂsaipail>At+2(hthO)> +

04 [oF

(1 - pas) (Z ,UsoipailAtJJ(htflOX) + (1 - Z ,usoipa,'l>At+2<ht100)>

o4 (o4

6@1 (posAtJrl(htle) + (1 — pgS)AtJrl(ht,lO))
2 C + (pas - pal)At(h’t—l)‘l' (25)

It suffices to verify (25),

A - (LHS) of (25) =

/\ﬁQQQ [pas (MAt—‘rl ht 1X (Z Hso; Po;l +9 1— Zﬂ'salpal ) ) +

(]- _pas) (MAt—‘rl ht 10 (Z,usazpazl +0 1 - ZNSJ yZu ) >

ABQ1 (PosApy1(hi—1X) + ( — Dos) Apg1(hi—10

Bey + AB(Q1 + ¢1) (PosDtg1(he—1X) + (1 = pos) Ary1(he—10
Ca + BCy + MPos — Pot) Ay (he—
A - (RHS) of (2

(AVARAVARLV]

5 Conclusion

Short-termism is a major component of many managerial agency problems. This paper
investigates optimal contracting when a manager can take hidden short-term actions that
hurt the future health of the firm. The twist is that the short-term action boosts performance
today. This temporarily masks the inferiority of the short-term action and creates a tricky
contracting setting where simply rewarding high output is no longer guaranteed to eliminate
the agency problem. In this setting, I derive the optimal contract that always induces the
long-term action and show that it exhibits a cliff-arrangement that can be implemented using
bonus banks. This cliff-contract draws clear parallels with the new bonus-pay arrangements
introduced at a number of large financial institutions to combat short-termism in the wake
of the financial crisis. The cliff-contract differs in significant ways from traditional dynamic
optimal contracts. The cliff-contract values sustained high output instead of aggregate or
average output. Its incentive level is non-stationary, escalating over time and after high
output while remaining strictly below the incentive level of the traditional contract. More
generally, the paper establishes a framework that can be used to model a variety of myopia-
related agency problems and presents a robust contract to induce the long-term action in
settings with such agency problems.
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6 Appendix

Proof of Lemma 1. Let W™ (hy) := wy(h¢) + BWis1(h¢) denote the agent’s date ¢ ex-post promised value
given history h;. Fix a contract that calls for the agent to always take the long-term action. Consider
the diagram below representing today’s pay and tomorrow’s ex-post promised values following a history h
leading up through yesterday. Promised values are calculated with respect to the measure generated by
always taking the long-term action.

WH(hX X)
w(hX)

WH(hXO0)
W) WH(h0X)

W+ (h00)

Suppose the agent decides to commit a one-shot deviation to the short-term action today. Then his
payoff is c+w(hX) + W T (hX0). Letting W (hX) and W (h0) denote the agent’s promised values tomorrow
following high and low output today (again, calculated under the measure generated by always taking the
long-term action), the payoff from deviation can be rewritten as ¢ + w(hX) + W (hX) — B(p(WT(hX X) —
W (hX0))) = ¢+ whX) + W (hX) — BpA(hX) = ¢ + WT(hX) — BpA(hX). Incentive compatibility
requires that

pWT(hX) + (1 —p)WH(h0) > c+ W (hX) — BpA(RX)

which, upon rearrangement, is equivalent to

(1 -p)A(h) +c
A(hX) 2 T

Thus the proposed IC-constraint is a necessary condition ensuring that one-shot deviations from always
taking the long-term action are suboptimal. I now show sufficiency by proving that if one-shot deviations
are suboptimal then all deviations are suboptimal.

First note, if after some history the agent is better off employing a deviation strategy, then he is better
employing a deviation strategy that only involves deviating in a finite number of dates. This is due to
discounting. This observation allows me to prove sufficiency using induction.

So fix a contract that always calls for the long-term action and satisfies the proposed IC-constraint.
Suppose there are no profitable T-length deviations. Now, suppose on the contrary, there exists a history
h such that following h there exists a profitable T+ 1-length deviation. If this deviation does not involve
deviating right away, then it is in fact, a T-length deviation. Contradiction. So suppose the deviation does
involve deviating right away. Then the agent’s payoff following h is w(hX) + S((w(hX0) + SU(D(hX0)))
where U(D(hX0)) is the payoffs from employing the continuation D(hX0) of the deviation strategy after
history hX0. By induction, this payoff is weakly less than w(hX) + B(w(hX0) + B(pW+(hX0X) + (1 —
p)WT(hX00))) =w(hX)+ BWT(hX0) < pWT(hX) + (1 — p)WT(h0).

The key step in the proof is to realize that the payoffs from employing the continuations of the deviation
strategy are the same regardless of the initial deviation at history h. This is what allows the inductive step
to go through. O

Proof of Lemma 3. The ratio of the optimal contract’s and traditional contract’s costs to the total value of
the firm are

_oyX and __gX
p(1+B) Bp—(1—p)
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respectively. A sufficient condition for the optimality of always inducing the long-term action is to assume
that the total cost of the optimal contract is less expensive than the loss in production coming from even a
single deviation to the short-term action:

?cwg[ﬂp—(l—p)]X

So to prove them lemma, set ¢ = (1 — 32)(8p — (1 — p)) X so that it is optimal to always induce the action.
Then the aforementioned ratios simply to

(1-8)Bp—(1-p)
P

and (1-p8)?

It is clear that one can make the first ratio sufficiently small and while the second ratio sufficiently close to 1
by setting 5 to be sufficiently low and p to be sufficiently high while keeping Sp — (1 —p) sufficiently low. O

Proof of Proposition 1.
Step 1. Solving the relazed problem.

Consider the relaxed optimal contracting problem without constraint (7). Let C"(A) denote the cost of
the optimal relaxed A-contract.

Step 1a. C™(A) is weakly convex.

Fix A € (0,1) and optimal relaxed A;- and As-contracts with payments wa, (h) and wa, (k) after each
history h. Then the contract that pays Adwa, () + (1 — Nwa, (h) is a relaxed AA; 4 (1 — A)Ag-contract with
cost AC" (A1) + (1 — A\)C"(Az) which by definition must be > C"(AA; + (1 — A\)Ay).

Step 1b. If A > e(0) then C"(A) > C"(e(0)).

Suppose not. Pick a A* > e(0) satisfying C"(A*) < C"(e(0)). Then consider the following contract:
at date 0, pay the agent nothing; at date 1 give the agent the optimal A*-contract. Since D* > e(0), this
contract is incentive-compatible. It is a 0-contract by construction and its cost is SC'(A*). So I have shown
that C™(0) < BCT(A*) < C"(e(0)) > C™(A*). This contradicts the weak convexity of C”.

Step 1c. C"(A) = max{8C"(e(A)) — (1 — p)A, mina, SC"(As) + pAs}.

Following the arguments leading up to Theorem 1, I can claim that for an optimal A-contract the
continuation contract following high output must be the cheapest A(h)-contract subject to A(h) > e(A).
Step 1b. implies that this must the optimal e(A)-contract. Similarly, the continuation contract following
low output must be the cheapest A(l)-contract where A(l) is unconstrained since by assumption the relaxed
problem disregards constraint (7). This implies that C" satisfies the following Bellman equation (again using
the arguments leading up to Theorem 1)

C7(A) = max{BC"(e(A)) — (1 - p)A, min SC7(Ag) + pAz} (26)

If C™ is weakly increasing, then (26) becomes
C"(A) = max{fC"(e(A)) — (1 = p)A, BC(0) + pA}. (27)

To give an explicit characterization of the optimal relaxed contract, it suffices to explicitly characterize the
solution to (26). To explicitly characterize the solution to (26) it suffices to explicitly characterize the solu-
tion to (27) and then verify that it is weakly increasing. This is what I will do. From now on, C" is defined
to be the solution to (27).

Step 1d. C"(A) is a piecewise linear function that can be explicitly characterized.

Fix a A € (0,e>(0) = ¢/(BQ — (1 — p))). Define N > 1 to be the unique integer satisfying e=V(A) <
0 < e N*1(A). Notice as A 1 ¢/(8Q — (1 —p)), N 1 co. Define m(x) := (1 — p)z/Q — (1 — p). Construct
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the following piecewise linear function f2 piece by piece starting from the left:

F2(0) + mN (p)x z € (0,e NT(A))

N A NTHA) +mN T p)(x = fleNTHA)) x e (e VT(A), e N2 (A)]
A (A) + m(p)(z — fle™(A))) z € (e7'(A), A
fA(A) +plx — f2(A)) z>A

where f2(0) is defined so that f2(A) = Bf2(0) + pA.

Step 1d.1 f2(0) is unique and nonnegative.

Since fA(A) is a linear function of f2(0) with slope 1 and Bf*(0) 4+ pA is a linear function of f2(0)
with slope 3, they must intersect at a unique f2(0). To prove nonnegativity, first set f(0) = 0. By the
definition of f2, it follows that f2(A) < pA = 04 pA = Bf2(0) + pA. Therefore, one must weakly increase
f2(0) for the equality to hold.

Next, define d(A) = f2(0) — Bf2(e(0)).

Step 1d.2 d(A) is strictly increasing in A when A € (0,e*(0) = ¢/(BQ — (1 —p))).

First consider the case when e~ (A) < 0. Increase A by a small amount dz. Then the change in f(A)
is df*(0) + m™ (p)dz; and the change in Bf2(0) + pA is Bdf*(0) + pdz. Since fA(A) = Bf2(0) + pA,
therefore df®(0) + m™ (p)dx = ﬁde(O) —I—pdx = (1 - B)df*(0) = (p — m~(p))dxr > 0. Thus, the change in
d(A) is df*(0) — B(df*(0) +m™N (p)dz — m ( )dz) = (1= B)df(0) + B(m™ " (p) — m" (p))dz > 0.

Next consider the knife- edge case when eV (A) = 0. Then f2(A) = Bf2(0) + pA implies df*(0) +
mNt(p)de = Bdf>(0) + pdz = (1 — B)df*(0) = (p — mN¥*'(p))de > 0. Then change in d(A) is
45(0) = BAFA(0) +mN (p)dz — m (p)dz) = (1— B)dfS(0) + A(m (p) — mN 1 (p))dz > 0.

When A = 0, d(A) = 0 — Spe(A) < 0. For A sufficiently large, d(A) > 0. A sufficient condition is
for A to be large enough so that m~~!(p) < 0. Let A* be the unique value satisfying d(A*) = 0. Then the
corresponding function f2", solves (27). So C" = fA&".

Step 1e. C" is weakly increasing.

In the explicit construction of C", one cannot definitively conclude that it must be weakly increasing
since for N large enough, m”" is negative. However, when 7 = 1, the explicit construction of C™ matches the
solution C to (27) in Theorem 1 which is weakly increasing. When 7 < 1, I will prove the following stronger
result about C":

Step 1e.1 C" is strictly increasing if m < 1.
(27) implies C(0) = BC(e(0)) and C(e(0)) > BC(0) + pe(0) = B2C(e(0)) + pe(0). So

ceo)) = 249 (28)

—p2
Next, let C’ ;= d~C"(e(0)). Since C" is weakly convex, it must be that C'(e(0)) —C’e(0) < C(0) = 8C(e(0)).

So
C’e(0)
1-p

Cle(0) < (29)
Equations (28) and (29) together imply

C>

+@

To prove C" is strictly increasing it suffices to prove m(C”) is positive which is equivalent to proving C’ > Q.
The proof is by contradiction. So suppose instead, C’ < @. This means @ satisfies the following conditions
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45 < @ <pand BQ > 1—p. Iclaim that these conditions imply % — (1 =p) < 3. To prove
my claim, I prove the following stronger result: if £ < @ < p and @ > 1 — p then % —(1-p <L
First suppose p € [4,2]. The conditions on @ imply that @ > 1 — p. Therefore % —(1-p <

p—(1—-p)=2p—1< % Second suppose p € [%, 1]. The conditions on @ imply that @ > £. Therefore
%—(1—;}) <2(1-p)—(1—-p)=1-p<E. Ihave now shown m(p) = %—(1—1}) <thp <0 <p.

But the characterization of C" shows that its slope is always of the form m*(p) for some k. Contradiction.
C" is strictly increasing.

Step 2. Solving the full problem.

The same arguments showing C"(A) is weakly convex also show that C(A) is weakly convex. Since C”
is the solution to the relaxed problem, it must be that C' > C”. Suppose it is true that C(0) = C"(0). Then
C must also be strictly increasing if 7 > 1 and weakly increasing if # = 1. I now prove that C(0) = C"(0)
by explicitly showing how to transform the optimal relaxed contract into the optimal contract. The rest of
Proposition 1 follows immediately.

Take the optimal relaxed contract and at every date when the incentive level is 0, replace the payment
and continuation contract following low output with the payment and continuation contract following high
output. Notice this does not change the value of the contract: since the incentive level is 0, by definition the
payment and continuation contract following low output has the same value as the payment and continuation
contract following high output. The incentive level of the contract still stays in the set {0,e(0),e?(0),...}.
The Markov law for the incentive level is unchanged except when the incentive level is 0. Before, 0 would go
to e(0) or 0 depending on the output. Now it deterministically goes to e(0) just like in the optimal contract
in Theorem 1. This ensures that constraint (7), which was ignored in the relaxed problem, is now respected.
As a result the modified optimal relaxed contract becomes fully incentive-compatible and is therefore the
optimal contract. O
Proof of Lemma 4. The derivation of the Bellman equation is the same as before. When S0M < %,
the operator SC(Ex(A)) — (1 —P)A takes (14) to a function with the same y-intercept but weakly smaller
slope. When SOM > m, then starting with (14), repeated iterations of the operator SC(Ex(A)) —
(1 —DP)A takes the function to infinity. O
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