
Coordinating Business Cycles∗

Edouard Schaal

New York University

Mathieu Taschereau-Dumouchel

The Wharton School of the University of Pennsylvania

October 12, 2015

Abstract

We develop a quantitative theory of business cycles with coordination failures. Because of

demand complementarities, firms seek to coordinate production and multiple equilibria arise.

We use a global game approach to discipline equilibrium selection and show that the unique

equilibrium exhibits two steady states. Coordination on high production may fail after a large

transitory shock, pushing the economy in a quasi-permanent recession. Our calibrated model

rationalizes various features of the Great Recession. Government spending, while generally

harmful, can increase welfare when the economy is transitioning between steady states. Simple

subsidies implement the efficient allocation.
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1 Introduction

During the post-war period, the United States economy has always overcome recessions by

quickly reverting back to its long-run trend. In contrast, its evolution in the aftermath of the

2007-2009 recession has been startling. After the trough of the recession was reached in the second

quarter of 2009, most major economic aggregates returned to growth but have not yet caught up

with their previous trends. As Figure 1 shows below, real GDP seems to have settled on a parallel

but lower growth path.1
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Figure 1: Evolution of US real GDP over 1985-2015

We propose a quantitative theory of coordination failures that can account for this pattern. At

the heart of the mechanism are demand complementarities that link firms’ production decisions:

the choice by one firm to scale up production generates additional income that raises the demand

for other firms’ products, thereby increasing their incentives to produce. The presence of this

complementarity opens up the possibility of miscoordination and multiple equilibria. We use a

global game approach to discipline equilibrium selection and embed this coordination problem into

an otherwise standard business cycle model. Two main insights emerge from the theory. First,

as the coordination problem becomes more severe, strong self-reinforcing forces that can maintain

the economy in a depressed state appear. More specifically, two steady states may arise: one with

high output and high demand, the other one with low output and low demand. Sufficiently large

1Figure 14 in the Appendix shows that the conclusion that the economy has been performing below trend since
2007Q4 is robust to various definitions of the trend.
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transitory shocks can hinder coordination on high production and trigger a transition from the

high to the low steady state: the economy then becomes stuck in a quasi-permanent recession in

line with the recovery from the 2007-2009 recession. Second, as our explanation for the recession

relies on coordination failures, our theory suggests a role for government intervention. We study

various policies and find, in particular, that government spending, while generally detrimental to

coordination, may sometimes raise welfare by successfully preventing the economy from falling to

the low steady state.

The theory builds on the standard neoclassical growth model with monopolistic competition.

In this environment, firms are subject to a complementarity as they take into account the level of

aggregate demand when making individual production and pricing decisions. This complementarity

provides firms with a motive to coordinate their actions and is, as such, the first key ingredient

for coordination failures to arise. The second key ingredient is the presence of a strong feedback

from aggregate demand to production decisions. Following a tradition in the sunspot literature

(Wen, 1998; Benhabib and Wen, 2004), we rely on variable capacity utilization to generate this

feedback. This modeling choice is motivated by the data. Our theory predicts that a passage from

the high to the low steady state, such as the one observed during the 2007-2009 recession, should be

accompanied by a decline in capacity utilization. In line with this prediction, panel (a) of Figure 2

shows that aggregate capacity utilization fell in the course of the 2007-2009 recession and stabilized

below trend. The theory also predicts that this drop in capacity utilization should be reflected in

measured Total Factor Productivity (TFP). Indeed, the weak recovery has been associated with a

protracted decline in TFP (Hall, 2014), as panel (b) illustrates.2
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Figure 2: Capacity Utilization and TFP during the Great Recession

2Figures 14 and 15, both in the Appendix, show that this finding is robust to various definitions of TFP and
various detrending procedures.
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Together, the two main ingredients of the model — the complementarity and the strong feedback

created by variable capacity utilization — generate multiple rational expectation equilibria. In each

period, the economy may admit a high-output and a low-output equilibrium. In the high-output

equilibrium, firms operate at high capacity and aggregate employment and investment are high.

On the opposite, in the low-output equilibrium, firms produce at low capacity, employment and

investment are low and the economy is depressed. Bringing a model with multiple equilibria to the

data requires a selection device. We choose to rely on techniques from the global game literature to

obtain uniqueness. For that purpose, we introduce a small amount of incomplete information and

endow firms with private signals about the state of the world. We show that a unique recursive

equilibrium exists in this economy when these private signals are sufficiently informative or the

fundamental sufficiently volatile.

Productivity and capital play important roles in determining how firms coordinate. An abun-

dance of cheap capital or a high productivity fuel the growth of firms and therefore facilitate

coordination on high output. Inversely, if capital is scarce and expensive or productivity is low,

firms are more likely to coordinate on low output. As a result, capital accumulation interacts with

the coordination problem to generate rich dynamics. By encouraging coordination on high output,

an abundance of capital leads to an increase in income and investment, thereby facilitating coordi-

nation on high output in the future. Capital accumulation therefore makes coordination persistent.

In particular, the dynamics of the capital stock may feature two stable steady states, a situation

that can be described as a coordination trap. The high steady state exhibits high levels of output,

aggregate demand and capacity utilization, while the low steady state features the opposite. After

a bad shock of sufficient size and duration, the economy runs the risk of falling into the low steady

state. It then enters a chronic state of depression as it sinks into a vicious cycle of declining capital

stock and miscoordination. Only large positive shocks to productivity or policy interventions can

bring the economy back to the high steady state. The theory therefore provides a foundation for

long-lasting demand-deficient downturns.

We calibrate the model on the United States economy and show that it performs similarly to a

real business cycle model in terms of standard deviation of major aggregates and their correlation

with output. It, however, outperforms the standard model in explaining business cycles asymmetries

as it generates a substantial amount of negative skewness as in the data. In addition, the simulated

ergodic distributions of various aggregates are bimodal, a feature that is also roughly visible in the

data. The multiplicity of steady states also generates strong non-linearities in how the economy

responds to shocks. We find that for small shocks the economy reacts essentially as a standard real

business cycle (RBC) model: after a brief downturn, the economy grows back to its original state.

For a medium shock, however, firms may fail to coordinate on high output, leading to a decline in

investment that perpetuates the downturn, but the economy eventually recovers to its initial state.

Shocks are therefore amplified and propagated through the coordination mechanism even without

a change in steady state. For a large shock, the coordination problem becomes sufficiently severe

that the economy transitions to the low steady state, never returning to its original state.
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To evaluate to what degree the theory can account for the events surrounding the Great Re-

cession, we calibrate a sequence of productivity shocks to replicate the observed TFP series over

2007-2009 and then let productivity recover. We find that these shocks are sufficiently large to

push the economy from the high to the low steady state. In addition, the time series generated

by the model broadly replicate the behavior of their empirical counterparts in the aftermath of

the recession with consumption, employment, observed TFP, investment, capacity utilization and

output stabilizing to a lower steady state after a period of transition. Our coordination theory can

therefore quantitatively explain some of the unusual features of this recession.

Coordination failures are often used to motivate government intervention, including government

spending policies. In our model, the competitive equilibrium is inefficient because of monopolis-

tic distortions and the associated aggregate demand externality, and government intervention is

potentially useful. Our findings suggest that government spending, in the form of government

consumption, is detrimental to welfare in most of the state space, as the coordination problem

magnifies the dynamic welfare losses due to the crowding out of private investment. However,

perhaps surprisingly, government spending may sometimes increase welfare. The intuition can be

stated as follows. When preferences allow for a wealth effect on the labor supply, an increase in

government spending puts downward pressure on wages. As a result, the cost of production declines

and firms can coordinate more easily on high output. Through this channel, government spending

helps coordination. To illustrate this mechanism, we proceed to a series of numerical simulations

and find that government spending can increase welfare, with output multipliers as high as 3, when

the economy is on the verge of transitioning into the low steady state.

Even though government spending can be welfare improving, it is always suboptimal. We

thus consider the problem of a social planner in this economy and find that simple subsidies are

enough to implement the efficient allocation. First, an input subsidy corrects the inefficient firm

size that results from the monopoly distortions. Second, a profit subsidy makes firms internalize

the aggregate demand externality on their capacity decision.

Related Literature

We rely on capacity utilization as the source of the feedback necessary to generate multiplicity.

For that purpose, capacity utilization must create a sufficiently strong feedback from aggregate

demand to output. While various modeling assumptions can generate this feedback, as for instance

increasing returns, we opt for simplicity and assume that firms have access to a simple binary

capacity choice that makes the capacity decision non-convex. Indeed, data show support for non-

convexities in production processes. Micro-level data finds indeed that firms use various margins

to adjust production over the business cycle, many of which involve non-convexities. In particular,

a large empirical literature has documented the presence of large fixed costs in adjusting factors of

production. For instance, Doms and Dunne (1998) and Cooper and Haltiwanger (2006) focus on

capital adjustment while Caballero et al. (1997) consider costs to adjusting labor. Ramey (1991)

estimates cost functions for six manufacturing industries and finds support for non-convexities.
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Bresnahan and Ramey (1994) document important lumpiness in hours, overtime hours and plant

shutdowns using weekly production data from the automobile industry. Also using data from the

automobile industry, Hall (2000) provides evidence of non-convexities in capital utilization as firms

adjust discretely the number of production shifts and operating plants over the cycle. We capture

these various margins of adjustment in the simplest possible way through a discrete choice over

capacity utilization.3

Our paper belongs to a long tradition in macroeconomics that views recessions as episodes of

coordination failures. In a seminal paper, Diamond (1982) proposes a search model of the goods

market subject to a thick market externality. The model features multiple rational expectation

equilibria that can be viewed as a source of coordination failures. Kiyotaki (1988) builds a 2-

period monopolistic competition model with increasing returns to generate equilibrium multiplicity.

Cooper and John (1988) offer a unifying game-theoretic approach to show how complementarities

in payoffs can give rise to multiple equilibria in static models. Jones and Manuelli (1992) propose a

static framework to examine the key modeling features required to generate coordination failures.

In contrast to these papers, we propose a full dynamic theory of coordination failures in an other-

wise standard business cycle model. More closely related to our approach, Benhabib and Farmer

(1994) and Farmer and Guo (1994) introduce increasing returns in a real business cycle model.

Their economy admits a unique steady state but a continuum of possible equilibrium paths. Our

contribution emphasizes the steady-state multiplicity that coordination problems can give rise to

and their non-linear impact on the dynamics of the economy.

Importantly, a distinguishing feature of our paper is the use of a global game approach to

discipline the equilibrium selection. Previous literature relied instead on sunspots. Even though

they can produce rich dynamic patterns, sunspots can raise a number of methodological issues. A

first problem is the the absence of a general consensus on the way to discipline equilibrium selection

and evaluate these models quantitatively. Second, the impact of various policies on the economy

depends crucially on how the equilibrium in selected. As sunspots usually select equilibria in an

exogenous way, they are subject to the Lucas critique: ignoring the impact of policies on equilibrium

selection may lead to incorrect policy recommendations. In response to these challenges, we rely on

global game techniques. We choose this approach for two reasons. First, the assumption of common

knowledge is arguably extreme and introducing a small amount of dispersed information is in fact

consistent with the data. Second, because equilibrium selection is the outcome of agents’ rational

choices under incomplete information, our global game approach effectively lets the model “pick”

the equilibrium. As a result, equilibrium selection is endogenous, and the model is not subject to

the Lucas critique.

Our paper relates to the general global game literature from which it borrows a number of in-

sights and techniques. The key result that departing from common knowledge may restore unique-

ness in coordination games stems from the seminal articles of Carlsson and Van Damme (1993)

3Hansen and Prescott (2005) consider a real business cycle model with occasionally binding capacity constraint
and find that it generates business cycles asymmetries.
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and Morris and Shin (1998). Our paper further relates to the dynamic global game literature as in

Morris and Shin (1999) and Angeletos et al. (2007). In comparison to these papers, we consider a

macroeconomic application to business cycles in general equilibrium. The welfare criterion that we

use to evaluate policies originates from Angeletos and Pavan (2007). Closer to our business cycle

application, Chamley (1999) studies a stylized model of regime switches with complementarities

in payoffs, and obtains equilibrium uniqueness through an imperfect information technique similar

to a global game approach. Regime switches are infrequent because of slow learning about the

fundamental. In contrast, our paper studies regime switches in an almost standard real business

cycle model and obtains infrequent regime switches through the interaction of capital accumulation

with coordination.4

Related to the dynamic global game literature are the works of Burdzy et al. (2001) and

Frankel and Pauzner (2000) who resolve the equilibrium indeterminacy in dynamic coordination

games by introducing time-varying payoffs and a sufficient amount of frictions to prevent agents

to take action in every period. More closely related to our paper in this tradition is the work of

Guimaraes and Machado (2014) who examine the impact of investment subsidies in an extension

of the Frankel and Pauzner (2000) model to monopolistic competition and staggered technology

choice. In their model, firms receive exogenous opportunities to change their technology according

to a Calvo-type Poisson process. The persistence of regime changes in their model is governed by

the slow arrival of these opportunities. In contrast, we rely on a global game approach to discipline

equilibrium selection in a standard business cycle model with capital. The dynamics of regime

switches in our model is driven by the interaction of capital accumulation and coordination.

Our approach is also reminiscent of the sentiment-driven business cycle literature as in the

recent contributions of Angeletos and La’O (2013) and Benhabib et al. (2015). In these papers,

in contrast to ours, the introduction of incomplete information leads to multiplicity of equilibria

by allowing for correlation between information sets. As a result, the economy is subject to non-

fundamental fluctuations. In our paper, we begin with a multiple equilibrium model and use a

global game refinement to suppress all non-fundamentalness in the equilibrium. Hence, changes

in fundamentals may trigger changes in coordination, but the economy is exempt from “animal

spirits” or sentiment-driven fluctuations.

Finally, our paper touches upon various themes familiar to the poverty trap literature in growth

theory. Murphy et al. (1989) propose a formal model of the Big Push idea that an economy can

escape a no-industrialization trap if various sectors are simultaneously industrialized. In terms of the

dynamics generated by the model, our paper is more closely related to Azariadis and Drazen (1990)

who introduce threshold externalities in the neoclassical growth model to allow for multiplicity of

locally stable steady states. Our paper relies on a demand-driven coordination problem to achieve

similar transition stages in the dynamics of the economy and studies their implications for business

cycles.

4Our work is also related to applications of global games such as Goldstein and Pauzner (2005) and others
surveyed in Morris and Shin (2003).

7



The paper is structured as follows. Section 2 introduces the environment and presents our

baseline model under complete information. Section 3 describes the incomplete information version

of the model and establishes our main uniqueness result. In section 4, we calibrate the model and

show that it replicates salient features of the recovery from the 2007-2009 recession. Section 5

analyzes the policy implications of the model and describes our findings on government spending.

The full statements of propositions and the proofs can be found in the appendix.

2 Complete Information

We introduce the physical environment of our model, which remains the same throughout the

paper. We begin under the assumption of complete information as it allows us to build intuition

about the source of equilibrium multiplicity and the role of coordination in this economy.

2.1 Environment

Time is discrete and goes on forever. The economy consists of a representative household, a

final good sector and an intermediate good sector. The final good is used for both consumption

and investment. The intermediate goods consist of a continuum of varieties solely used for the

production of the final good.

Households and preferences

The preferences of the representative household are given by

E

∞
∑

t=0

βtU (Ct, Lt) , (1)

where 0 < β < 1 is the discount factor, Ct > 0 is consumption of the final good and Lt > 0 is labor.

We adopt the period utility function of Greenwood et al. (1988) (GHH hereafter):5

U (Ct, Lt) =
1

1− γ

(

Ct −
L1+ν
t

1 + ν

)1−γ

, γ > 0, ν > 0.

The representative household takes prices as given. It supplies capital Kt and labor Lt in

perfectly competitive markets and owns the firms. It faces the sequence of budget constraints

Pt (Ct +Kt+1 − (1− δ)Kt) 6 WtLt +RtKt +Πt, (2)

where Pt is the price of the final good, Wt the wage rate, Rt the rental rate of capital and Πt the

profits it receives from firms. Capital depreciates at rate 0 < δ < 1.

5GHH preferences allow us to derive analytical expressions for many equilibrium quantities, but are not essential
for our mechanism to operate. We relax this assumption in our policy exercises as the preference specification matters
for the effect of fiscal policy.
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Final good producers

The final good is produced by a perfectly competitive, representative firm that combines a

continuum of differentiated intermediate goods, indexed by j ∈ [0, 1], using the CES production

function

Yt =

(
ˆ 1

0
Y

σ−1
σ

jt dj

)

σ
σ−1

, (3)

where σ > 1 is the elasticity of substitution between varieties, Yt is the total output of the final

good and Yjt denotes the input of intermediate good j. Profit maximization, taking output price

Pt and input prices Pjt as given, yields the usual demand curve and the price of the final good,

Yjt =

(

Pjt

Pt

)−σ

Yt and Pt =

(
ˆ 1

0
P 1−σ
jt dj

)

1
1−σ

. (4)

Intermediate good producers

Intermediate good j is produced by a monopolist that uses a constant returns to scale production

function with capital Kjt and labor Ljt,

Yjt = AeθtujtK
α
jtL

1−α
jt , (5)

where 0 < α < 1 is the capital intensity and ujt is capacity utilization. The productivity term Aeθt

depends on a constant scaling factor A > 0 and on a fundamental θt that follows an AR(1) process,

θt = ρθt−1 + ǫθt , (6)

where ǫθt ∼ iid N
(

0, γ−1
θ

)

.

Capacity ujt can either take a low value, normalized to ul = 1, or a high value uh = ω > 1.

Producing at high capacity incurs a fixed cost f > 0 in terms of the final good. We denote by

Ah (θt) ≡ ωAeθt and Al (θt) ≡ Aeθt the effective TFP of firms with high and low capacity.

This capacity decision captures in a simple and tractable way different margins of adjustment,

such as plants shutdowns and restarts or changes in the number of shifts and production lines,

that firms use to adjust production over the cycle.6 Importantly, this binary decision breaks the

convexity of the cost function of the firms.7 As a result, firms are able to expand their production

swiftly in response to changes in aggregate conditions, which is crucial to sustain multiple equilibria

in this economy.

Intermediate producers take the rental rate of capital Rt and the wage Wt as given. For each

6Because it acts as a TFP shifter, a broader interpretation of our capacity decision could include R&D, trade,
etc. We focus on capacity utilization for its static nature and its relevance in our quantitative exercise.

7We restrict capacity to take only two values in order to apply the global game techniques. It is straightforward
to include additional capacity levels or to model capacity choice as a continuous decision in the model with complete
information.
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capacity utilization ui, i ∈ {h, l}, they solve the following static problem:

Πit = max
Yit,Pit,Kit,Lit

PitYit −RtKit −WtLit, (7)

subject to their demand curve (4) and production technology (5). Intermediate producer j then

picks the capacity ujt that maximizes its profits

ujt = argmax
ui∈{uh,ul}

{Πht − Ptf,Πlt} .

2.2 Equilibrium Definition

We are now ready to define an equilibrium for this economy. Denote the complete history of

aggregate productivity shocks by θt = (θt, θt−1, . . .).

Definition 1. An equilibrium is a sequence of household policies
{

Ct

(

θt
)

,Kt+1

(

θt
)

, Lt

(

θt
)}∞

t=0
,

policies for firms
{

Yit

(

θt
)

,Kit

(

θt
)

, Lit

(

θt
)}∞

t=0
, i ∈ {h, l}, a measure mt

(

θt
)

∈ [0, 1] of firms

operating at high capacity and prices
{

Pt

(

θt
)

, Rt

(

θt
)

,Wt

(

θt
)}∞

t=0
such that i) the household max-

imizes utility (1) subject to (2); ii) intermediate producers solve their problem (7); iii) prices clear

all markets; and iv) the measure of firms mt

(

θt
)

satisfies

mt

(

θt
)

=



















1 if Πht − Ptf > Πlt,

∈ (0, 1) if Πht − Ptf = Πlt,

0 if Πht − Ptf < Πlt.

(8)

Our equilibrium concept is standard. Notice that the definition introduces the equilibrium

measure mt

(

θt
)

of firms with high capacity, which must be consistent with individual capacity

decisions (8).

2.3 Characterization

Two features of our environment simplify the characterization of the equilibria: i) under GHH

preferences, the amount of labor supplied by the household is independent of its consumption-

savings decision, ii) the problems of the final and intermediate good producers are static. We can

therefore characterize the equilibrium in two stages: we first solve for the static equilibrium in every

period, which determines production and capacity, and we then turn to the dynamic equilibrium,

which uses the first stage as an input, to characterize the optimal consumption-savings decision

and the dynamics of the economy.

Partial equilibrium

We first characterize the decision of intermediate producers in partial equilibrium to highlight

the role of aggregate demand and factor prices in their capacity choice. Substituting the demand
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curve (4) in the expression for profits (7), the first-order conditions with respect to capital and

labor yield

RtKit = α
σ − 1

σ
PitYit and WtLit = (1− α)

σ − 1

σ
PitYit. (9)

Total factor expenses is therefore equal to a fraction σ−1
σ of total sales, so that

Πit =
1

σ
PitYit =

1

σ

(

Pt

Pit

)σ−1

PtYt,

where we have substituted the demand curve (4). In this monopolistic setup, production decisions

are linked across firms as the total income generated by the private sector affects the level of

demand faced by each individual producers. As a result, profits, gross of the fixed cost, depend

on the firm’s relative price and on aggregate demand Yt. In particular, when aggregate demand is

high, firms have stronger incentives to expand. This demand linkage is the main source of strategic

complementarity in our model.

We can now simplify the capacity decision to

uit = argmax
ui∈{uh,ul}

{

1

σ

(

Pt

Pht

)σ−1

Yt − f,
1

σ

(

Pt

Plt

)σ−1

Yt

}

, (10)

where the individual prices are optimally set at a constant markup over marginal cost, Pit =
σ

σ−1MCit and MCit =
1

Ai(θt)

(

Rt

α

)α
(

Wt

1−α

)1−α
for i ∈ {h, l}.8

Expression (10) highlights the key forces that determine the choice of capacity in our environ-

ment. Firms with high capacity enjoy lower marginal costs of production and therefore sell their

products at lower prices. Equation (10) tells us that, when choosing between the two capacity

levels, firms compare two affine functions of aggregate demand — the one associated with high

capacity having a higher slope but a lower intercept than the one associated with the low capacity.

As a result, firms pick the high capacity when aggregate demand is high. Intuitively, when demand

is high, firms face high variable costs in capital and labor and have strong incentives to pay the

fixed amount f in order to exploit economies of scale and save on these costs. On the other hand,

firms have no reason to pay the fixed cost when demand is low and total variable costs are relatively

small.

General equilibrium

Under GHH preferences, we can derive analytical expressions for aggregate quantities as a

function of the measure mt of firms with high capacity.

Proposition 1. For a given measure mt of firms with high capacity the equilibrium output of the

final good is given by

Yt = A (θt,mt)K
α
t L

1−α
t , (11)

8See Appendix E.1 for the full derivation.
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where A (θt,mt) =
(

mtAh (θt)
σ−1 + (1−mt)Al (θt)

σ−1
)

1
σ−1

and aggregate labor is

Lt =

[

(1− α)
σ − 1

σ
A (θt,mt)K

α
t

]
1

α+ν

. (12)

The corresponding production and profit levels of intermediate firms are, for i ∈ {h, l},

Yit =

(

Ai (θt)

A (θt,mt)

)σ

Yt and Πit =
1

σ

(

Ai (θt)

A (θt,mt)

)σ−1

PtYt. (13)

Proposition 1 establishes a number of important results. We see from equation (11) that the

economy aggregates into a Cobb-Douglas production function with TFP A (θt,mt). Importantly,

this aggregate TFP is an endogenous object that corresponds to an average of intermediate firms’

effective productivities. As a result, aggregate output increases with the measure of firms mt, as

high capacity firms operate a more productive technology.

This relationship between output and capacity is important as it completes our exposition about

the nature of the complementarities in our environment: higher aggregate demand encourages firms

to choose the high capacity; more firms choosing the high capacity, in turn, implies higher output

and aggregate demand. Multiple equilibria arise in our environment when this two-way feedback

between demand and capacity is sufficiently strong. This picture remains incomplete, however, if

one ignores the role of general equilibrium effects in capacity decisions. These relative prices depend

on factor prices, which are affected by the measure of high capacity firms mt in equilibrium, since

firms compete on factor markets. Whether there is strategic complementarity in capacity decisions

in our setup ultimately depends on which of these two forces dominate: complementarity through

aggregate demand linkages or substitutability through competition on factor markets.

Equilibrium multiplicity

Using our analytical results on equilibrium production and profits, we now characterize the

static equilibrium capacity decision for some given stock of capital Kt and productivity θt.

Proposition 2. Consider the following condition on parameters:

1 + ν

α+ ν
> σ − 1. (14)

Under condition (14), there exist thresholds BH < BL such that:

i) if AeθtKα
t < BH , the static equilibrium is unique and all firms choose low capacity, mt = 0;

ii) if AeθtKα
t > BL, the static equilibrium is unique and all firms choose high capacity, mt = 1;

iii) if BH 6 AeθtKα
t 6 BL, there are three static equilibria: two in pure strategies, mt = 1 and

mt = 0, and one in mixed strategies, mt ∈ (0, 1).

If condition (14) is not satisfied, the static equilibrium is always unique.
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Multiple equilibria arise under condition (14).9 In regions of the state space where capital

is abundant and productivity θt is high, such that AeθtKα
t > BH , a high equilibrium exists in

which all firms choose the high capacity, mt = 1. In these regions, renting capital is inexpensive

and technology is productive, so firms operate at a large scale. As a result, total output and

aggregate demand are high, which further encourages firms to expand and adopt the high capacity.

On the opposite, in regions of the state space where capital is scarce and productivity low, such

that AeθtKα
t 6 BL, a low equilibrium exists with mt = 0: firms operate at a small scale and do

not find it worthwhile to pay the fixed cost f to expand their production. For the intermediate

region BH 6 AeθtKα
t 6 BL, the two equilibria coexist in addition to a third mixed equilibrium.

The economy is then subject to self-fulfilling prophecies: depending on firms’ expectations, it may

end up in either the high or the low equilibrium. Figure 3 depicts the situation described in the

proposition.

The condition for multiplicity (14) characterizes the conflict between the strategic substitutabil-

ity from competition in the factor markets, on the left-hand side, and the demand-side complemen-

tarity, captured by σ. This condition is satisfied when the intermediate good varieties are strong

complements, if σ is low, or when the left-hand side is large. The latter term, 1+ν
α+ν , is the elastic-

ity of aggregate production with respect to changes in TFP and it captures the scalability of the

economy to changes in average capacity. Multiple equilibria are thus more likely to arise when the

scalability is high, which happens when the labor supply is elastic (ν small) and when production

is intensive in the flexible factor, labor (α small). This scalability term captures, in particular, the

idea that multiple equilibria can only be sustained if factor prices react moderately to changes in

mt. We assume that condition (14) is satisfied from now on.

Efficiency

At this stage, it is natural to wonder whether a planner should intervene to improve the outcome

of the coordination game. We consider the following planning problem

max
Kt+1,Lt,mt

E

∞
∑

t=0

βtU

(

(

mtY
σ−1
σ

ht + (1−mt)Y
σ−1
σ

lt

)
σ

σ−1

+ (1− δ)Kt −mtf −Kt+1, Lt

)

,

subject to the production function (5) and the resource constraint. Proposition (3) describes the

efficient allocation.

Proposition 3. If 1+ν
ν+α > σ−1, there exists a threshold BSP , with BSP 6 BL, such that the planner

makes all firms use the high capacity, mt = 1, if AeθtKα
t > BSP or the low capacity, mt = 0, if

AeθtKα
t 6 BSP . The threshold BSP is lower than BH for σ small.

Interestingly, there is an equivalence between condition (14), the multiplicity of equilibria and

9The multiplicity condition can be weakened by allowing for decreasing returns. For aggregate returns to scale
0 < η < σ

σ−1
, the condition for multiplicity becomes 1

η
1+ν
α+ν

> σ − 1.
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Figure 3: Multiplicity in the static game as a function of the state space

the convexity of the planner’s problem in mt. Therefore, when (14) is satisfied, the planner always

chooses a corner solution, either mt = 0 or 1. Since coordinating on the high capacity is costly,

the planning solution is non-trivial and there exists a threshold BSP such that all firms adopt the

high capacity if and only if AeθtKα
t > BSP . When the productivity level and the capital stock

are low, using the high capacity is too expensive and it is efficient to coordinate firms on the low

equilibrium.

Because of the demand externality, the efficient allocation differs in important ways from the

competitive outcome. Figure 4 shows the social planner’s (SP) threshold, BSP , together with the

thresholds of the competitive economy (CE), BL and BH . Proposition 3 shows that BSP always

lies below BL which indicates that the planner is more prone to pick the high capacity. This result

is a direct consequence of the demand externality: firms do not internalize that by choosing the

high capacity, they would generate more income to be spent on other firms’ products, while the

planner does. The competitive equilibrium therefore suffers from coordination failures: in the area

surrounded by the dashed curves, between BL and BSP , the planner always picks the high capacity

while firms in the competitive economy may coordinate differently.

Figure 4 depicts a situation in which BSP lies below BH , which happens when the degree of

complementarity is strong (σ low). When σ is large, the planner’s threshold BSP lies between BH

and BL and, in part of the state space, the planner may sometimes prefer the low capacity when

the competitive economy could coordinate on the high equilibrium.
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3 Incomplete Information

The forces that lead to multiplicity in the model with complete information may have interest-

ing dynamic implications, but the presence of multiple equilibria raises important methodological

issues for policy and quantitative analysis. This multiplicity is, however, fragile and hinges on the

assumption of common knowledge. In this section, we adopt a global game approach. By intro-

ducing incomplete information in the model, we show that uniqueness of the full dynamic general

equilibrium obtains for a small departure from common knowledge.

3.1 Environment

To cast the model into a global game framework, we slightly modify the timing of events and the

information available to firms when they choose their capacity utilization. The physical structure

of the environment remains the same as in the previous section.

Information and timing

Each period t is now split into two stages: i) intermediate producers first choose their capacity

under incomplete information about current productivity θt, ii) the true state of θt is then revealed,

production decisions take place and all markets clear.

In the first stage, all agents know the past realizations of θ, which are included in their informa-

tion set It = (θt−1, θt−2, . . .). At the beginning of the period, nature draws the new productivity

level θt from the stochastic process (6) but it remains unobservable to agents. The ex-ante be-
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liefs of agents about current productivity are therefore θt | It ∼ N
(

ρθt−1, γ
−1
θ

)

. In contrast to

the model with complete information in which agents observed the fundamental θt perfectly, we

assume that each intermediate producer j only receives a noisy signal vjt = θt+ εvjt where the noise

εvjt ∼ N
(

0, γ−1
v

)

is iid across agents and time. After observing their private signal, firms use Bayes’

rule to update their beliefs to

θt|It, vjt ∼ N
(

γθρθt−1 + γvvjt
γθ + γv

,
1

γθ + γv

)

. (15)

Intermediate producers then use these individual beliefs to make their capacity decisions in the

first stage of the period.

In the second stage, consumption-savings decisions are made, production takes place and all

markets clear. The observation of production and aggregate prices reveals the aggregate produc-

tivity θt, which becomes common knowledge. Since the input choices and production take place

simultaneously, these decisions are made under complete information. As a result, the equilibrium

expressions derived in proposition 1 are still valid, with the exception that mt is now the solution

to the coordination game under incomplete information that we describe below. After observing

the true value of θt, the private signals are no longer useful and are discarded. Firms therefore

share the same information at the beginning of every period.

Capacity decision

Under the new information structure, the surplus from using the high instead of the low capacity

is the difference between the expected profits from using both capacities:

∆Π (Kt, θt−1,mt, vjt) ≡ Eθ [Uc (Ct, Lt) (Πh (Kt, θt,mt)− f −Πl (Kt, θt,mt)) | θt−1, vjt] . (16)

An agent with private signal vj chooses high capacity if and only if ∆Π (Kt, θt−1,mt, vjt) > 0. Three

important features of expression (16) are worth emphasizing. First, in contrast to the complete

information case, agents compute the expectation of profits under their own individual beliefs,

given by (15). Second, in addition to the uncertainty about the fundamental θt, there is strategic

uncertainty in this environment: since other agents base their decisions on their own noisy private

signals, the measure of firms using the high capacity is itself uncertain and mt is a random variable.

Third, because of the uncertainty within the period, between stage 1 and 2, intermediate producers

take into account the fact that the household does not value consumption equally in all states of

the world. As a result, firms use the representative household’s stochastic discount factor Uc (C,L)

to evaluate profits.

Equilibrium definition

Because the global game selects equilibria as a function of (Kt, θt−1), the economy has a Marko-

vian structure. We thus define a recursive equilibrium for this economy. We use θ−1 to denote the
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productivity of the previous period and normalize the price index to Pt = 1 in each period.

Definition 2. A recursive equilibrium consists of i) a value function for the household V (k;K, θ,m)

and decision rules {c (k;K, θ,m) , l (k;K, θ,m) , k′ (k;K, θ,m)}; ii) decision rules for individual in-

termediate producers {Yi (K, θ,m) ,Ki (K, θ,m) , Li (K, θ,m) ,Πi (K, θ,m)} for i ∈ {h, l}; iii) ag-

gregates {Y (K, θ,m) , L (K, θ,m) ,Π(K, θ,m)}; iv) price schedules {R (K, θ,m) ,W (K, θ,m)}; v)
a law of motion for aggregate capital H (K, θ,m); and vi) a measure m (K, θ−1, θ) of firms with

high capacity such that:

1. The household solves the problem

V (k;K, θ,m) = max
c,l,k′

U (c, l) + βE
[

V
(

k′;H (K, θ,m) , θ′,m′) |θ
]

subject to c+ k′ − (1− δ) k 6 R (K, θ,m) k +W (K, θ,m) l +Π(K, θ,m);

2. Intermediate producers of type i ∈ {h, l} solve the problem

Πi (K, θ,m) = max
Pi,Yi,Ki,Li

PiYi −R (K, θ,m)Ki −W (K, θ,m)Li,

subject to Yi = P−σ
i Y (K, θ,m) and Yi = Ai (θ)K

α
i L

1−α
i ;

3. Aggregate output and profits are given by

Y (K, θ,m) =
(

mYh (K, θ,m)
σ−1
σ + (1−m)Yl (K, θ,m)

σ−1
σ

)
σ

σ−1
,

Π(K, θ,m) = m (Πh (K, θ,m)− f) + (1−m)Πl (K, θ,m) ;

4. Capital and labor markets clear

K = mKh (K, θ,m) + (1−m)Kl (K, θ,m) ,

l (K;K, θ,m) = mLh (K, θ,m) + (1−m)Ll (K, θ,m) ;

5. Consistency of individual and aggregate capital decisions: H (K, θ,m) = k′ (K;K, θ,m) ;

6. The aggregate resource constraint is satisfied

c (K;K, θ,m) +H (K, θ,m) = Y (K, θ,m) + (1− δ)K −mf ;

7. For all K, θ−1 and θ, the measure of firms with high capacity m (K, θ−1, θ) solves the fixed

point problem

m (K, θ−1, θ) =

ˆ

1I [∆Π (K, θ,m, vj) > 0]
√
γvφ (

√
γv (vj − θ)) dvj , (17)

where φ is the probability density function of a standard normal and ∆Π is defined by (16).
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Our definition of a recursive equilibrium is standard except for condition (17) which corresponds

to the equilibrium of the global game played by the firms: the measure m is the aggregation of

capacity decisions when individual firms have the correct beliefs about its equilibrium distribution.

3.2 Existence and Uniqueness

When choosing their capacity utilization, firms play a global game as in Carlsson and Van Damme

(1993) and Morris and Shin (1998). A key insight from this literature is that the existence of multi-

ple equilibria depends on the information structure. In particular, full knowledge about the strategy

of the other players allows agents to coordinate in a way that leads to multiplicity. The introduc-

tion of a small amount of strategic uncertainty, however, can eliminate this multiplicity. We extend

these results to our dynamic general equilibrium environment.10

Another contribution of this paper is to show how uniqueness of the static capacity-decision

game extends to the rest of the dynamic environment. This result is not a straightforward appli-

cation of standard global game techniques for several reasons. First, there is a complex two-way

feedback between the game and the dynamic consumption-savings choice. Second, firms’ capacity

decisions aggregate into a non-concave production function with endogenous TFP. Third, our econ-

omy is subject to distortions due to monopolistic competition. All these factors require specific

techniques to prove the uniqueness of the equilibrium.

We now state our main result.

Proposition 4. For γv large and ω sufficiently close to 1, such that, in particular,

√
γv

γθ
>

1√
2π

ωσ−1 − 1

σ − 1
, (18)

and additional assumptions stated in the Appendix, there exists a unique dynamic equilibrium. The

equilibrium capacity decision takes the form of a continuous cutoff v̂ (K, θ−1) such that firm j invests

if and only if vj > v̂ (K, θ−1). Furthermore, the cutoff is a decreasing function of its arguments.

The proof of proposition 4 is structured according to the natural separation that arises in our

model between the static capacity-production stage and the dynamic consumption-savings stage.

In the first part of the proof, we focus on the global game, taking some stochastic discount factor

as given, and provide sufficient conditions for the uniqueness of the static equilibrium of the game.

However, uniqueness of the static coordination game is not sufficient to guarantee uniqueness of a

dynamic equilibrium because there is complementarity across periods. In the second part of the

proof, we show that the economy under the endogenous TFP that arises from the global game

admits a unique dynamic equilibrium.

10Applications of global games to market economies are sometimes problematic as prices may reveal enough
information to restore common knowledge and multiplicity (Atkeson, 2000). In our setup, prices do reveal the true
value of the fundamental, but since they are only determined at the production stage, after the capacity decisions are
taken, we retain the uniqueness result. With simultaneous capacity and production decisions, uniqueness may still
obtain as long as prices and aggregates are not fully revealing, for instance because of noise traders, decentralized
trading, etc. See Angeletos and Werning (2006).
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Part 1 proceeds in two steps. First, we show that when private signals are sufficiently precise, i.e.,

γv large, consumption risk vanishes and we can ignore the stochastic discount factor in expression

(16). This step is particularly useful as it allows us to approximate arbitrarily well the solution to

the global game by solving a simplified game independently from the consumption-savings decision

of the household.

As is common in the global game literature, this game is solved by iterated deletion of domi-

nated strategies as in Morris and Shin (1998). Strategic uncertainty is essential for this procedure.

In particular, higher strategic uncertainty leads to more substantial deletion of strategies at each

iteration, which promotes uniqueness. Condition (18) is sufficient to guarantee that the deletion

process converges to a unique equilibrium, which takes the form of a cutoff strategy. It states in

particular that the fundamental θ must be sufficiently uncertain (γθ small) and, perhaps surpris-

ingly, that private signals must be sufficiently precise (γv large). This last condition is required to

generate enough strategic uncertainty: since firms put more weight on their heterogenous signals

when they are precise, γv must be sufficiently large to generate enough dispersion in beliefs and,

therefore, in strategies.

Part 2 of the proof deals with the consumption-savings problem of the household. Once the

capacity decisions have been made, the model reduces to a neoclassical growth model with monopoly

distortions and endogenous TFP. Because of these two features, specific techniques are required

to show existence and uniqueness of the equilibrium. We show that the Euler equation admits a

unique positive fixed point by exploiting its monotonicity. Our proof builds on the lattice-theoretic

work of Coleman and John (2000) and Datta et al. (2002), and uses a version of Tarski’s fixed-point

theorem on lattices, which states that monotone operators on lattices have a non-empty set of fixed

points. The proof proceeds by showing that the Euler equation is a well-defined monotone operator.

Monotonicity requires ω to be sufficiently small so that aggregate production, net of fixed costs, is

increasing in capital and the equilibrium interest rate decreases with K.11 The pseudo-concavity

of the Euler equation then leads to uniqueness. Our proof extends earlier work to our setup and,

in particular, to endogenous TFP and GHH preferences.

According to proposition 4, the optimal capacity decision takes the form of a cutoff v̂ (K, θ−1)

such that only firms with private signals vj > v̂ (K, θ−1) produce at high capacity. Hence, the

measure of firms operating at high capacity is m (K, θ−1, θ) = 1−Φ
(√

γv (v̂ − θ)
)

. Since the cutoff

is decreasing in K, the equilibrium measure of firms with high capacity increases with K.

Figure 5 compares the equilibrium aggregate output Y (K, θ,m) under incomplete information

to the three possible equilibria of the complete information model (m = 1, m = 0 and the mixed

equilibrium). As the figure illustrates, the global game tends to “select” the low equilibrium when

the stock of capital is small and the high equilibrium when it is large with a gradual transition in

the shaded region where multiplicity prevailed under complete information. This gradual transition

is due to the progressive adoption of high capacity by firms with dispersed beliefs. While the

11These properties are always satisfied in a neoclassical model, but may fail in our model if the adoption of high
capacity is too abrupt in K. The condition that ω is close to 1 is sufficient to ensure that the transition is smooth
enough. See Appendix F for details.
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outcomes are similar in the non-multiplicity regions, the equilibrium selected by the global game

in the shaded region differs quite substantially from its complete information counterparts. In

particular, the global game leads to a capacity level that increases in the economy’s fundamentals,

in contrast to the mixed strategy equilibrium.12

3.3 Dynamics

We now explore the dynamic properties of the economy under incomplete information. As was

mentioned before, the model aggregates into a neoclassical growth model with an endogenous TFP

that breaks the convexity of the production set. Because of this non-convexity, aggregate output Y

is an S -shaped function of capital K, as shown in Figure 5. Intuitively, when capital is scarce firms

prefer to operate at a low scale and, therefore, to produce at low capacity. As capital becomes more

abundant, the lower rental rate increases the incentives to use the high capacity, which are further

magnified by the adoption of the high capacity by other firms through the demand externality.

The steep part of the S -shaped curve corresponds to the transition between the low and the high

capacity.

Aggregate quantities such as consumption, employment and, importantly for the dynamics,

investment inherit this S -shaped relationship to capital. Figure 6 displays the laws of motion

of capital for various values of productivity θ. As the figure illustrates, for a high θ, the law of

12In the mixed-strategy equilibrium firms must be indifferent between using the high and the low capacity. When
the capital stock is low, a large fraction of firms must therefore use the high capacity for indifference to hold. Output
is consequently decreasing in capital in this equilibrium.
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motion of K intersects the 45◦-line once at a high capital level to the right of the transition region.

Similarly, when productivity is low, the only intersection occurs at a low level of capital to the

left of the transition region. However, for intermediate values of productivity, the law of motion

features three intersections: a high and a low stationary point, both stable, and an unstable one in

the middle region. We denote by Kh (θ) the set of stationary points at the right of the transition

region, where most firms operate at high capacity and production is high, and refer to their basin

of attraction as the high regime. Similarly, K l (θ) designates the set of stationary points at the left

of the transition region, where firms mostly produce at low capacity and production is low, and

refer to their basin of attraction as the low regime. As we will see, this multiplicity of stationary

points generates non-linear dynamics.13

The phase diagram in Figure 7 summarizes the dynamics of the economy over the whole state

space.14 The two black lines represent the high and low stationary points in the dynamics of capital:

Kh (θ) and K l (θ). The basin of attraction of the high stationary points in the upper right region

— the high regime — is indicated by the white area, while that corresponding to the low stationary

points in the lower left region — the low regime — is represented by the shaded area. Notice that

the low regime does not exist for high values of θ while the high regime disappears for low values

of θ.

In the absence of productivity shocks, the economy converges towards the steady state which

corresponds to the basin of attraction it belongs to. Exogenous shocks to productivity θ can

however push the economy from one regime to the other. When this happens, the economy starts

converging towards its new steady state and the average capacity utilization adjusts accordingly.

Consider, for instance, an economy that starts at point O in Figure 7. Without shocks to θ, this

economy would simply reach the high-regime stationary locus at Kh (0) and remain there. Small

temporary shocks to θ can move the economy up or down on the diagram but, as long as it does not

leave the high regime, the system eventually converges back to the same stationary point. A large

negative shock to θ, such as the one illustrated by the dashed line from point O to O′, could however

move the economy to the low regime. When this happens, the low productivity level pushes firms

to adopt the low capacity, leading to a low level of output. As a result, the household invests less

and the capital stock declines. Coordination on high capacity is further impeded as capital falls:

firms continue to operate at low capacity, perpetuating the decline in capital. As capital declines

and productivity recovers, the economy follows the curved arrow in Figure 7 from point O′ to the

low regime stationary locus K l (0) where it remains trapped, even after productivity has returned

to normal. As we can see, the response of the economy as a function of the size of the shock is

highly non-linear.

While we focus on productivity shocks for simplicity, the mechanism that we propose is by no

means restricted to these shocks, but can accommodate and provide propagation to other types of

13In Fajgelbaum, Schaal, and Taschereau-Dumouchel 2015, we show how social learning and irreversibilities in
investment can generate a dynamic system with similar properties.

14The full state space is (K, θ−1, θ). For simplicity, we however omit θ−1 in our phase diagram as it becomes
irrelevant in the case of interest when γv is large.

21



F
u
tu
re

ca
p
it
al

K
′

Capital K

45◦ line

H
ig
h
θ h

M
ed
iu
m

θ m

L
ow

θ l

K l(θm)

Kh(θm)

K l(θl)

Kh(θh)

Figure 6: Multiple steady states as a function of θ

P
ro
d
u
ct
iv
it
y
θ

Capital K

0

Kh(θ)

K l(θ)

Kh(0)•
Kl(0)• O

O′

High regime

Low regime

•

•

Figure 7: Phase diagram with basins of attraction

22



shocks considered in the literature, such as financial shocks. Consider, for instance, capital quality

shocks, as in Gertler and Karadi (2011) and Gourio (2012). From Figure 7, we see that such a

shock could move an economy from point O to the basin of attraction of the low regime, leading

to a permanently depressed economy. In contract, in an RBC model, the high marginal product

of capital that would result from this shock would lead to an increase in investment and bring the

economy back to its unique steady-state. The type of coordination problem that we analyze should

be considered as a general propagation mechanism, which could interact in interesting ways with

other types of shocks and frictions.

4 Calibration

To evaluate the quantitative importance of coordination for business cycle fluctuations we cal-

ibrate the model to the United States economy. After analyzing the model’s predictions along

various business cycle moments, we run a counterfactual experiment in which we study whether

the model can account for the behavior of the economy after the 2007-2009 recession.

4.1 Parametrization

Because of changes in trend growth rate before 1985, we target moments from the 1985Q1-

2015Q2 period.15 Our calibration strategy relies on the interpretation that the US economy was in

the high regime over the period 1985Q1-2007Q3 and fell to the low regime after the 2007Q4-2009Q2

recession.16 Our final quantitative exercise will justify this interpretation.

We calibrate the model at a quarterly frequency. The capital share α, the discount rate β and

the depreciation rate δ are set to standard values. For the preferences of the household, we use

log utility, so that γ = 1, and follow Jaimovich and Rebelo (2009) in setting ν = 0.4, implying a

Frisch elasticity of 2.5 in line with macro-level estimates. The fundamental productivity process

θ is parametrized to replicate a persistence and a long-run standard deviation of log output of of

0.995 and 6%, as observed over 1985Q1-2015Q2. We are left to calibrate four parameters: σ, γv, ω

and f .

The literature uses a wide range of values for the elasticity of substitution σ. In our benchmark

calibration, we set σ = 3 so that the model lies in the equilibrium multiplicity region, as defined by

condition (14). This parameter zone broadly corresponds to the region in which multiple steady

states exist in the incomplete information environment. While it implies high mark-ups, such an

elasticity is not uncommon in plant-level studies. Hsieh and Klenow (2014) uses the same value

to study the life cycle of plants in India and Mexico. An elasticity of 3 also corresponds to the

median estimates of Broda and Weinstein (2006) at various levels of aggregation. Using trade

data, Bernard et al. (2003) estimate a value of σ = 3.79 in a model of plant-level export behavior.

15Figure 14 in the Appendix shows how the trend varies over different periods for GDP and TFP. Data sources
are detailed in Appendix B.

16Following this interpretation, we detrend the log time series using a linear trend computed over 1985Q1-2007Q3.
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Finally, among macroeconomic studies, Christiano et al. (2015) estimate a New-Keynesian model

with financial friction and find an elasticity of 3.78. To verify the robustness of our results, we

provide a full calibration of the model with σ = 5 in Appendix C. Our simulations show that

the interaction of complementaries with capacity choices still generates substantial persistence in

response to large enough temporary shocks, even though the multiplicity in steady states may

disappear with higher values of σ.

To calibrate the precision of the private signals γv, which governs the dispersion of beliefs, we rely

on forecasting data from the Survey of Professional Forecasters (SPF). We target the interquartile

range of forecasts about current quarter log GDP which averages to 0.24% over 1985Q1-2015Q2.17

To calibrate the productivity gain ω from using the high capacity, we use the Federal Reserve

Board index of capacity utilization series. This data is constructed using various surveys of capacity

utilization rates, in particular the Quarterly Survey of Plant Capacity from the Census Bureau,

and seeks to measure the ratio of current output on “sustainable maximum output”. In the context

of our model, we interpret this definition as capturing the change in output resulting from a change

in utilization u, after allowing the firm to adjust its input choice. Taking aggregate demand and

factor prices as given, Proposition 1 tells us that the ratio of individual high-capacity output on

low-capacity output resulting from an individual firm deviation is Yh/Yl = ωσ. As Panel (a) of

Figure 2 showed in the introduction, capacity utilization was stable before 2007, fell substantially

in the midst of the recession, but rebounded quickly to stabilize at about 5% below its pre-recession

level. Focusing on the recovery period, the difference in capacity utilization between 2007Q4 and

its post-2010 average is -5.42%, which amounts to a parameter value of ω = 1.0182.18

In our model, the fixed cost f governs the frequency at which regime transitions occur. In

particular, under our interpretation that the US economy stays mostly in the high regime, f

determines the probability that the economy can fall in the low regime, which corresponds to a

large, persistent fall in GDP. With only thirty years of data, time series averages are only mildly

informative about the frequency of these transitions. We propose instead to rely on probabilistic

forecasts. More precisely, the SPF provides mean probability forecasts of GDP growth over various

bins. According to the survey, the probability that real GDP growth falls below -2%, its lowest

category, is on average 0.63%.19 Adjusting for an average trend growth rate of 2.9% in the SPF

17In either the high or the low regime, m is nearly constant close to 1 or 0. Since regime transitions are rare
in the US experience, the contribution of m to average output volatility is thus negligible. Using the expression

Yt =
(

(1− α) σ−1
σ

)
1−α
α+ν

(

AeθtΩ(mt)K
α
t

)

1+ν
α+ν with Ω (m) =

(

m
(

ωσ−1 − 1
)

+ 1
) 1

σ−1 , and ignoring the contribution of

m, the variance of beliefs about current log output is Var (log (Yt) |θt−1, vt) =
(

1+ν
α+ν

)2
1

γθ+γv
yielding an interquartile

range of IQR = 2Φ−1 (0.75)

√

(

1+ν
α+ν

)2
1

γθ+γv
, where Φ is the CDF of a standard normal. Using the parameters of

the calibration together with the SPF data over the period 1985Q1-2015Q2 yields the value of γv.
18With only two capacity utilization levels, our model cannot explain the sharp, short-lived dip in capacity between

2008 and 2010. Since we are interested in understanding the slow recovery after the recession, we make the conservative
choice of removing this period from the post-recession average. Including it would imply a larger ω, widening the
gap in output between the high and the low regimes.

19We use the mean probability forecast about next year real GDP growth from the SPF. Because the SPF variable
definitions change over time, we restrict our sample to 1992Q1-2009Q1, which corresponds to the largest available
sample with a consistent definition included in our period of interest.
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data, we pick f so that the average probability that output growth in our model will be lower than

-4.9% over the next year is consistent with the survey. The calibrated value of f is such that if

all firms were to produce at high capacity the fixed costs would amount to about 1% of average

output.

The parameters are jointly estimated by a method of simulated moments that minimizes the

distance between the empirical and simulated moments, computed over long-run simulations. Table

1 lists the parameters. As it turns out, our resulting parameters are such that condition (18), which

guarantees the uniqueness of the global game equilibrium, is satisfied.

Table 1: Parameters

Parameter Value Source/Target

Time period one quarter
Total factor productivity A = 1 Normalization

Capital share α = 0.3 Labor share 0.7

Discount factor β = 0.951/4 0.95 annual

Depreciation rate δ = 1− 0.91/4 10% annual
Risk aversion γ = 1 log utility

Elasticity of labor supply ν = 0.4 Jaimovich and Rebelo (2009)
Persistence θ process ρθ = 0.94 Autocorrelation of log output

Long-run standard deviation of θ σθ = 0.009 Standard deviation of log output
Elasticity of substitution σ = 3 Hsieh and Klenow (2014)
Precision of private signal γv = 1, 154, 750 See text

TFP gain from high capacity ω = 1.0182 See text
Fixed cost f = 0.021 See text

4.2 Quantitative Evaluation

The calibrated parameters are such that, because of the coordination problem, the economy

has two stable steady-states for intermediate values of θ, but only one steady-state for high or low

values of θ.20

Ergodic distributions

To illustrate the unusual dynamic properties that result from the steady-state multiplicity, we

simulate the model for one million periods and plot the ergodic distributions of measured TFP,

output, investment, consumption, employment and the productivity process θ in logs on Figure 8.

While productivity θ is normally distributed, the other aggregates are negatively skewed and have

bimodal ergodic distributions, a sign that the economy spends a substantial amount of time in the

low regime. For consistence with our detrending method, each simulated distribution is centered

20Figure 16 in the Appendix shows the dynamics of K for various values of θ.
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around the upper mode corresponding to the high regime. For comparison with the data, Figure 9

reproduces the empirical distributions of these variables in log deviation from trend. As the data

shows, bimodality is roughly observed for most variables, and our model offers a reasonable fit to

the empirical distributions, except for investment which appears more dispersed in the data.

(a) Measured TFP: log
(

Ā
)
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Figure 8: Model: ergodic distributions of simulated data
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Figure 9: Data: distributions of aggregates

Business cycles moments

To further evaluate the fit of the model, we compute various business cycle moments from

simulated time series and compare them to their empirical counterparts. The results are shown

in table 2 together with moments generated from a standard real business cycle model.21 The

differences between the full model and the RBC model highlight the influence of the coordination

21Without our coordination mechanism to provide amplification and propagation, the aggregate productivity
process in the RBC model must be recalibrated in order to fit the autocorrelation and standard deviation of log output.
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mechanism on the dynamics of the economy. In terms of standard deviations, and correlations with

output, both models perform similarly. Our full model, however, clearly outperforms the RBC

model in terms of skewness. This result stems from the presence of the two steady states, which

imply that the economy spends a substantial amount of time in the depressed state.22

Table 2: Dynamic properties of the data, the full model and the RBC model.

Output Investment Hours Consumption

Correlation with output
Data 1.00 0.90 0.91 0.98

Full model 1.00 0.90 1.00 0.99
RBC model 1.00 0.95 1.00 0.99

Standard deviation relative to output
Data 1.00 3.09 1.03 0.94

Full model 1.00 1.44 0.71 0.88
RBC model 1.00 1.30 0.71 0.95

Skewness
Data -1.24 -0.92 -0.62 -1.31

Full model -0.58 -0.44 -0.58 -0.53
RBC model -0.00 -0.03 -0.00 -0.00

Impulse response functions

To illustrate the non-linear properties of the model, we now look at the response of various

aggregates to productivity shocks. Starting in the high steady state, we hit the economy with three

sequences of shocks of different sizes and durations, represented in panel (a) of Figure 10. For

the solid blue curve, the innovations in θ are set to -3 standard deviations for 3 quarters; for the

dashed red curve the innovations are set to -2.5 standard deviations for 3 quarters. Finally, for

the remaining green dotted curve, the innovations are set to -2 standard deviations for 2 quarters.

These specific shocks were chosen to illustrate the types of dynamics that the model can generate.

After the small shock, firms reduce their scale of operation only slightly. They keep coordinating

on the high capacity throughout the duration of the shock and, as a result, the economy recovers

fairly quickly to the high steady state once the shock has disappeared. The response of the economy

is essentially the same as what we would observe in a standard RBC model. The situation is different

when the economy is hit by the shock of intermediate size, represented by the dashed lines in Figure

10. In this case, firms reduce their production more drastically by changing their capacity utilization

rates and cutting down on inputs, partly because of lower productivity and partly because of lower

The long-run standard deviation of θ is recalibrated to σθ = 1.6% and its persistence to ρθ = 0.97. Preferences and
technology parameters are otherwise the same as in our benchmark calibration.

22The negative skewness of these variables is a property of the data robust to changes in the time range. For
instance, the skewness of log output over 1967Q1-2015Q2 is -0.47.
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aggregate demand. Because of this failure of firms to coordinate on high production, the economy

takes substantially more time to recover to the high regime. Finally, after the large shock, capacity

utilization drops massively and stays low for a long time. With less resources, the household saves

less and the capital stock declines, making coordination on the high capacity even more difficult.

The economy converges to the low steady state and remains trapped there even after productivity

θ has fully recovered. Once in the low regime, only a sufficiently large positive shock can move the

economy back into the basin of attraction of the high steady state.23
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Figure 10: Impulse response functions

23Figure 17 in the Appendix plots the response of the return on capital R−δ and the wage W to these shocks. Both
of them drop on impact. When the economy settles in the low steady state, wages remain depressed, while the return
on capital recovers to its initial long-run value. Note that R corresponds to the real rental rate of productive capital
and is therefore the return on a risky asset. The behavior of R in our model is consistent with the the detrended
yield on AAA and BAA Corporate Bonds corrected for inflation expectations, which had recovered by 2014.
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The aftermath of the 2007-2009 recession

We now turn our attention to the Great Recession. Panel (a) of Figure 11 shows the behavior

of output, employment, investment, consumption and TFP24 from 2005 to the second quarter of

2015. All series are normalized to 0 at the beginning of the recession in 2007Q4. After the initial

hit, consumption, output and employment slowly declined and stabilized at about 10% below their

pre-recession levels.25 Similarly, investment initially dropped by about 45% before recovering to

25% below its pre-recession level.

To evaluate whether our model can replicate the US experience during this recession, we reverse-

engineer a series of productivity shocks θ so that the endogenous TFP in our model matches the

measured TFP series between 2007Q4 and 2009Q2. The economy starts from the high steady state

corresponding to θ = 0. We set the innovations to productivity to zero after 2009Q3 and let the

economy recover afterwards. As it turns out, such a series of shocks is enough to trigger a shift to

the low regime.26 The response of various aggregates is shown in panel (b) of Figure 11. As we

can see, our model offers a reasonable description for the evolution of consumption, employment

and output. Notice also that our model provides an endogenous explanation for the protracted

decline in measured TFP.27 The reaction of investment, on the other hand, is more muted in our

model compared to the data as it falls by 32% on impact and then stabilizes at about 15% below

its initial trend.28 In the simulation, the initial drop in endogenous TFP is due to the direct impact

of the productivity shock together with the transition from high to low capacity by the firms. Its

long-run behavior, however, is solely driven by the low capacity, as exogenous productivity θ has

completely recovered by then.

24TFP is measured as the Solow residual and is analogous to the endogenous TFP A (θ,m) from the model. See
Appendix B for details.

25Note also that the average growth rate of output after the recession is slightly lower than its average over the
1985Q1-2007Q3 period, so that the economy is moving away from its earlier trend. While our current theory cannot
explain it, a modified version with investment in R&D could potentially address this fact. See Benigno and Fornaro
(2015) for a similar explanation.

26Our counterfactual experiment relies on aggregate productivity shocks only as our objective is not to provide
a complete story for the 2007-2009 episode but for the recovery period that followed. As we mentioned earlier, our
coordination mechanism may provide equally strong propagation to other theories of the recession based on financial
shocks, policy changes, uncertainty and others.

27The fact that our explanation relies on an endogenous drop in TFP rather than the usual exogenous one has
important implications for the role of policy which we explore in the next section.

28In the data, a substantial fraction of the drop in investment is due to a decline in residential investment, which
the model does not address.
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(a) Data: US series centered on 2007Q4
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Figure 11: The 2007-2009 recession and its aftermath
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5 Policy

The prospect of coordination failures is often used in policy debates to justify large government

interventions, including in particular expansionary fiscal policies. In this section, we study the

appropriate policy response in our model when the economy is hindered by a coordination problem

and discuss to what extent policies such as government spending may be beneficial, if at all desirable.

We first solve for the efficient allocation and describe how it can be implemented using various

subsidies. We then consider whether an increase in government spending can be welfare improving

when the efficient subsidies are not available.

5.1 Efficient Allocation

Our model economy suffers from two related inefficiencies. The first inefficiency arises as firms

use their monopoly power to price their products at a markup over their marginal cost. As a

result, firms produce and sell too little. The second inefficiency is due to the effect of the aggregate

demand externality on capacity decisions. Firms do not internalize that producing at high capacity

positively impacts the demand that other producers face and therefore fail to coordinate on the

efficient capacity level.

To shed light on these inefficiencies, we solve the problem of a constrained social planner that

does not receive any signal and cannot aggregate the information available to private agents as in

Angeletos and Pavan (2007). The planner can, however, instruct each firm to use the high capacity

with some probability z(v) ∈ [0, 1] as a function of its private signal v. With this policy instrument,

the planner’s problem is

VSP (K, θ−1) = max
06z(·)61

E

[

max
K ′,L

U
(

Ā (θ,m)KαL1−α −m (θ, z) f −K ′ + (1− δ)K,L
)

+ βVSP (K
′, θ)

∣

∣

∣

∣

∣

θ−1

]

where m (θ, z) =
´ √

γvφ
(√

γv (v − θ)
)

z(v)dv. Notice that we already use the result, shown in

the proof in Appendix F.5, that the economy admits aggregation and directly write the planner’s

problem using the aggregate production function.

We characterize the constrained efficient allocation and its implementation in the following

proposition.

Proposition 5. The competitive equilibrium with incomplete information is inefficient, but the

constrained efficient allocation can be implemented with a lump-sum tax on the household, an input

subsidy skl and a profit subsidy sπ to intermediate goods producers such that 1 − skl =
σ−1
σ and

1 + sπ = σ
σ−1 .

Proposition 5 shows that the constrained efficient allocation can be implemented in the compet-
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itive economy using simple instruments that correct the two distorted margins directly. To offset

the distortions induced by the monopoly power, the planner uses an input subsidy skl, standard

in the New-Keynesian literature, to encourage firms to expand to the optimal scale of operation.

Despite this input subsidy, firms still operate at a suboptimal capacity level because of the ag-

gregate demand externality and the planner needs an additional instrument to induce the right

capacity choice. Perhaps surprisingly, a simple linear profit subsidy sπ is enough to correct this

margin in the global game. By increasing profits, this subsidy makes firms internalize the impact

of their capacity choice on aggregate demand and incentivizes the adoption of the high capacity.

As a result, one should expect firms to coordinate more easily on high capacity under the optimal

policy, and the basin of attraction for the high regime should consequently expand. In other words,

the economy would visit the low regime less frequently and the incidence and persistence of deep

recessions would be reduced. Finally, to complete the implementation, we use a non-distortionary

lump-sum tax on the household to ensure that the government budget constraint balances every

period.29

5.2 Government Spending

The optimal implementation result involves the use of input and profit subsidies. In the event

that such instruments are unavailable to policymakers, for instance due to political economy rea-

sons, we consider the impact of government spending on the economy. Since firms operate at an

inefficiently low capacity level in equilibrium, an increase in aggregate demand caused by govern-

ment spending may, in principle, have a positive impact on welfare by raising the incentives to

adopt the high capacity. We investigate this claim in the context of our model.

We find that, in general, government spending is detrimental to welfare because the crowding

out of private investment hurts coordination in subsequent periods. Government spending thus

creates dynamic welfare losses. However, we also find that government spending can be welfare

improving in a small region of the state space if the preferences of the household allow for a wealth

effect on the labor supply.

We now describe how these two channels operate. To do so, we assume that government

spending is pure government consumption not valued by the household and financed through a

lump-sum tax on the household.30

Crowding out of private spending

As in the neoclassical growth model, an increase in government spending leads to a reduction

in the wealth of households which, as a result, save less in physical capital. Consequently, the

amount of capital available in the following periods is reduced, which hurts coordination and reduces

29This implementation is not unique and we show, in Appendix F.5, that another implementation based on a single
sales subsidy can correct both margins at the same time because of the specific structure implied by the Dixit-Stiglitz
model of monopolistic competition.

30As Ricardian equivalence holds in our environment the timing of taxes is irrelevant.
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the measure of firms adopting the high capacity, in contrast to what efficiency requires. In this

sense, perhaps in contradiction with the common intuition, the coordination problem magnifies the

crowding out effect of government spending in our model.

We can precisely establish this point in our benchmark framework. With GHH preferences, the

crowding out effect associated with government spending unambiguously leads to welfare losses.

Proposition 6. Under GHH preferences, for γv large, an unforeseen one-time increase in govern-

ment spending financed by lump-sum taxes reduces welfare.

The intuition behind this result is as follows. Under GHH preferences, the equilibrium output

and employment only depend on current capital K, productivity θ and the measure of firms with

high capacity m. When γv is large, risk at the time of the capacity choice is negligible and the

stochastic discount factor is irrelevant in the surplus expression (16). As a result, in the limit as

γv → ∞, government spending has no impact on the outcome of the current coordination game.

The measurem remains unaffected and only the crowding out effect remains. Government spending

is thus a pure waste of resources.

Wealth effect on the labor supply

When the assumption of GHH preferences is relaxed, the labor supply curve of the household

is affected by government spending.31 As the household gets poorer, labor supply goes up, thereby

putting downward pressure on wages. With cheaper inputs, firms expand and are more tempted to

use the high capacity, which alleviates the coordination problem and may result in welfare gains.

Figure 12 illustrates the mechanism. The upper (red) and the lower (blue) curves represent the

high and the low equilibria of the model with complete information. The black curves represent

the unique equilibrium of the model with incomplete information, with and without government

spending G. As government spending increases, firms are more tempted to use the high capacity

and the zone with multiple equilibria shifts to the left, from the dotted to the shaded region. As a

result, the low equilibrium ceases to exist for the range of K to the right of the shaded region: the

wage would be so low in that equilibrium that operating at a large scale with high capacity would

always be preferable. In the environment with incomplete information, the equilibrium of the global

game lies between the two equilibria of the complete information setup. The curve that indicates

the unique equilibrium selected by the global game therefore also shifts to the left, from the dashed

curve to the solid one. Notice that for values of K in the transition region, the resulting increase in

the mass of firms using the high capacity increases the endogenous TFP Ā which increases output,

and, potentially, consumption, investment and welfare. Additionally, government spending can also

helps coordination in subsequent periods. If it succeeds in raising investment, government spending

can move the economy from the bad regime to the good one, therefore generating potentially large

dynamic welfare gains.

31We can no longer derive all our theoretical results under these new preferences, but the model can be solved
numerically. We make sure, in particular, that uniqueness still obtains for the global game in our numerical simula-
tions.
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Figure 12: Impact of an increase in government spending on coordination

Numerical simulations

To illustrate the overall impact of government spending on the economy, we proceed to a series

of simulations. To allow for a wealth effect on the labor supply, we relax the assumption of GHH

preferences and use instead standard separable preferences U(C,L) = logC − (1 + ν)−1L1+ν . The

parameters and the details of the exercise are included in Appendix D. We consider an economy

in which government spending Gt is high Gt = G > 0 with probability 1/2 and low Gt = 0 with

probability 1/2. The draws are independent across time. We set G to equal 0.5% of the steady-state

level of output and we assume that the value of G is revealed to all agents at the beginning of the

period.

Figure 13 shows the outcome of these simulations. In the top panel, we see that an increase

in government spending G helps firms coordinate on the high capacity in some region of the state

space. Interestingly, this effect is only present for values of K in which the economy is close to

the transition in m between the low and the high regime. Elsewhere, G has little to no impact on

coordination. On Panel (b), we see that the interaction of coordination and government spending

can give rise to large contemporaneous multipliers for output. When the gains from coordination

are large enough to offset the crowding out effect, government spending may improve welfare, as

expressed in consumption equivalent terms on panel (c). Notice, however, that government spending

is generally detrimental to welfare, as the dynamic welfare losses coming from the crowding out

effect dominate in most of the state space. Only in the region where the economy is close to a

transition from the low to the high regime does government spending help coordination sufficiently
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to improve welfare. This result highlight the importance of the timing of government intervention.32

(a) Impact of G on m

6.5 6.6 6.7 6.8 6.9 7.0 7.1

K

0.0

0.2

0.4

0.6

0.8

1.0

m
G = 0

G > 0

(b) Output multiplier

6.5 6.6 6.7 6.8 6.9 7.0 7.1

K

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

∆
Y
/
∆
G

(c) Impact of G on welfare

6.5 6.6 6.7 6.8 6.9 7.0 7.1

K

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

∆
c

c
e
q
u
iv

.
g
a
in

Figure 13: Impact of an increase in government spending for θ = θ−1 = 0

6 Conclusion

We develop a dynamic stochastic general equilibrium model of business cycles with coordination

failures. The model provides an alternative foundation for Keynesian-type demand-deficient down-

turns as the economy may fall into long-lasting recessions due to the failure of firms to coordinate

on a higher output. The calibrated model outperforms the RBC benchmark in terms of business

cycles asymmetries. It also replicated salient features of the slow recovery from the Great Reces-

sion. Government spending policies are generally detrimental to welfare, but may sometimes be

welfare improving, without relying on nominal rigidities, when the economy is about to transition

between regimes.

32In a recent paper covering the period 1947Q1 to 2008Q4, Auerbach and Gorodnichenko (2012) find that the fiscal
multiplier for total government spending in the United States is in general small but exceeds 1 during recessions. This
evidence is potentially consistent with the model if the small recessions during that period coincide with episodes
during which the economy slightly enters the transition zone before recovering.
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In this paper, we have limited the scope of our policy analysis to simple subsidies and a basic

government spending policy, but other types of interventions may help alleviate the coordination

problem. For instance, in the presence of nominal rigidities, monetary policy may encourage coor-

dination in the future by affecting interest rates and the rate of accumulation of capital. Investment

subsidies and other types of government spending may also lead to different conclusions.

Non-convexities in the firm’s problem are an essential part of our mechanism. In this paper,

we have focused on a simple binary capacity utilization choice, but we believe that the central

mechanism of the paper applies to a larger class of non-convexities. For instance, it would be

interesting to extend the model to include fixed cost of adjusting capital or labor, which have been

widely documented in the empirical literature.

More broadly, we believe that the interaction of non-convexities and complementarities can

generate interesting mechanisms in other contexts. For instance, the possibility of falling in the low

regime may have interesting asset pricing implications, as we can interpret our model as providing

a theory of endogenous rare disasters. Another likely important factor influencing coordination is

social learning. In Schaal and Taschereau-Dumouchel (2015), we consider an environment in which

people learn from the actions of others in a coordination game. The interaction of complementaries

and social learning give rise to exuberant periods of economic activity followed by brutal crashes.
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Figure 14: Impact of detrending on GDP and TFP
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Figure 15: Various measures of TFP over 2005-2015
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B Data - For online publication

Table 3 details the data sources. All time series are quarterly from 1985Q1 to 2015Q2.33 All

time series except capacity utilization are seasonally adjusted. For all time series except capacity

utilization, we remove a linear trend from the log series.

Table 3: Data sources

Variable Source

Output BEA - Real Gross Domestic Product
Investment BEA - Real Gross Domestic Investment

Hours BLS - Nonfarm Business sector: Hours of all persons
Consumption BEA - Real Personal Consumption Expenditures

Capacity utilization FRB - Capacity Utilization: Total Industry
Total Factor Productivity Fernald (2014): Raw Business Sector TFP

C Calibration with σ = 5 - For online publication

This section contains a full calibration of the model with an elasticity of substitution of σ = 5.

We calibrate this model exactly as in section 4. The parameters are the same as in the benchmark

simulation except for those included in table 4. Since the complementarity is weaker, the fixed

cost must be higher to match the calibration targets. If all firms produce at high capacity, 1.4% of

average output is used to pay the fixed costs.

Parameter Value Source/Target

Elasticity of substitution σ = 5
Fixed cost f = 0.0535 See text of section 4.1

Precision of private signal γv = 1, 161, 250 See text of section 4.1

Table 4: Calibration with σ = 5. Parameters that differ from the benchmark calibration of table 1.

This economy does not feature multiple steady states in the dynamics of capital for θ−1 = θ = 0.

As a result, large shocks do not lead to permanent downturns but the mechanism still increases

the duration of recessions. Figure 18 shows how the economy responds to the same shocks as those

used in figure 10. Unlike in the economy with σ = 3, the economy eventually recovers from the

large shock but the coordination mechanism slows down the recovery substantially.

33Before 1985, the economy appears to be on a different trend. We therefore limit ourselves to data after 1985 to
simplify the detrending.
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(a) Shocks to fundamental θ
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Figure 18: Impulse response functions in the calibrated economy with σ = 5

D Simulation of Government Spending - For online publication

Table 5 details the parameters of the model used to illustrate the impact of shocks to government

spending. We take the same parameters as the calibration except when necessary to highlight the

mechanism.
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Table 5: Parameters

Parameter Value Source/Target

Time period one quarter
Total factor productivity A = 1 Normalization

Capital share α = 0.3 Labor share 0.7

Discount factor β = 0.951/4 0.95 annual

Depreciation rate δ = 1− 0.91/4 10% annual
Risk aversion γ = 1 log utility

Elasticity of labor supply ν = 0.4 Jaimovich and Rebelo (2009)
Persistence θ process ρθ = 0.94 Autocorrelation of log output

Long-run standard deviation of ǫθ σθ = 0.006 Standard deviation of log output
Elasticity of substitution σ = 3 Hsieh and Klenow (2014)

Fixed cost f = 0.016 See text
TFP gain from high capacity ω = 1.0182 See text
Precision of private signal γv = 1, 013, 750 See text

Size of government spending G = 0.00662 0.5% of average output

E Complete Information: Proofs - For online publication

E.1 Equilibrium characterization

Proposition 1. For a given measure mt of firms with high capacity the equilibrium output of the

final good is given by

Yt = A (θt,mt)K
α
t L

1−α
t ,

where A (θt,mt) =
(

mtAh (θt)
σ−1 + (1−mt)Al (θt)

σ−1
)

1
σ−1

and aggregate labor is

Lt =

[

(1− α)
σ − 1

σ
A (θt,mt)K

α
t

]
1

α+ν

.

The corresponding production and profit levels of intermediate firms are, for i ∈ {h, l},

Yit =

(

Ai (θt)

A (θt,mt)

)σ

Yt and Πit =
1

σ

(

Ai (θt)

A (θt,mt)

)σ−1

Yt.

Proof. The household’s problem delivers the two standard conditions

Uc (Ct, Lt) = βE [(Rt+1 + 1− δ)Uc (Ct+1, Lt+1)] and Lν
t =

Wt

Pt
. (19)

The first order conditions for an individual firm of type i ∈ {h, l} in terms of capital and labor are

α
σ − 1

σ

PtY
1
σ
t Y

1− 1
σ

it

Kit
= Rt and (1− α)

σ − 1

σ

PtY
1
σ
t Y

1− 1
σ

it

Lit
= Wt. (20)
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Combining both equations, we obtain the expression

σ − 1

σ
Y

1
σ
t Y

− 1
σ

it =
1

Ai (θt)

(

Rt

α

)α( Wt

1− α

)1−α

.

Since Pit

Pt
=
(

Yit

Yt

)− 1
σ
, we recognize in this expression the optimal strategy for firms to price their

products at a constant markup σ
σ−1 over marginal cost (recall that Pt = 1),

Pit =
σ

σ − 1

1

Ai (θt)

(

Rt

α

)α( Wt

1− α

)1−α

. (21)

The price of the final good is

Pt =
(

mtP
1−σ
ht + (1−mt)P

1−σ
lt

)
1

1−σ =
σ

σ − 1

1

A (θt,mt)

(

Rt

α

)α( Wt

1− α

)1−α

. (22)

We may then express individual production

Yit =

(

Pit

Pt

)−σ

Yt =

(

Ai (θt)

A (θt,mt)

)σ

Yt, (23)

and aggregate output of the final good

Yt =

(

mtY
σ−1
σ

ht + (1−mt)Y
σ−1
σ

lt

)
σ

σ−1

= A (θt,mt)K
α
t L

1−α
t . (24)

Derive the factor demands from the first order conditions,

Kit = α
σ − 1

σ

PtY
1
σ
t Y

1− 1
σ

it

Rt
= α

σ − 1

σ

(

Ai (θt)

A (θt,mt)

)σ−1 PtYt

Rt

Lit = (1− α)
σ − 1

σ

(

Ai (θt)

A (θt,mt)

)σ−1 PtYt

Wt
.

Market clearing on the factor markets implies

Kt = mtKht + (1−mt)Klt = α
σ − 1

σ

PtYt

Rt

Lt = mtLht + (1−mt)Llt = (1− α)
σ − 1

σ

PtYt

Wt
.

The equilibrium level of labor as a function of mt can be obtained by combining the household’s

labor supply equation to the aggregate labor demand:

Lt =

(

Wt

Pt

)
1
ν

=

(

(1− α)
σ − 1

σ

Yt

Lt

)
1
ν

,
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which delivers the equilibrium labor and output levels

Lt =

[

(1− α)
σ − 1

σ
A (θt,mt)K

α
t

]
1

α+ν

(25)

Yt =

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(

A (θt,mt)K
α
t

)
1+ν
α+ν . (26)

Finally, we may now derive expressions for individual profits:

Πit = PitYit −RtKit −WtLit =
1

σ
PitYit =

1

σ

(

Ai (θt)

A (θt,mt)

)σ−1

PtYt. (27)

E.2 Multiplicity of equilibria

Proposition 2. Consider the following condition on parameters:

1 + ν

α+ ν
> σ − 1. (14)

Under condition (14), there exist thresholds BH < BL such that:

i) if AeθtKα
t < BH , the static equilibrium is unique and all firms choose low capacity, mt = 0;

ii) if AeθtKα
t > BL, the static equilibrium is unique and all firms choose high capacity, mt = 1;

iii) if BH 6 AeθtKα
t 6 BL, there are three static equilibria: two in pure strategies, mt = 1 and

mt = 0, and one in mixed strategies, mt ∈ (0, 1).

If condition (14) is not satisfied, the static equilibrium is always unique.

Proof. Substituting in the equilibrium profit functions derived in proposition 1, the capacity deci-

sion problem becomes

uit = argmax
ui∈{uh,ul}

{

1

σ

(

Ah (θt)

A (θt,mt)

)σ−1

Yt − f,
1

σ

(

Al (θt)

A (θt,mt)

)σ−1

Yt

}

.

The capacity decision is governed by the sign of the surplus from choosing high capacity which we

define as

∆Π (K, θ,m) ≡ Πh −Πl − f =
1

σ

Ah (θ)
σ−1 −Al (θ)

σ−1

A (θ,m)σ−1

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f.

The economy admits a pure strategy equilibrium with high capacity if and only if ∆Π (K, θ, 1) > 0,

which is equivalent to

1

σ

Ah (θ)
σ−1 −Al (θ)

σ−1

Ah (θ)
σ−1

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(Ah (θ)K
α)

1+ν
α+ν − f > 0.
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A high equilibrium exists if and only if the following condition is satisfied:

AeθKα > 1

ω

σ

σ − 1

(

(σ − 1) f

1− ω1−σ

)
α+ν
1+ν

≡ BH .

Similarly, there exists a pure strategy equilibrium with low capacity utilization if and only if ∆Π (K, θ, 0) 6
0, which is equivalent to

1

σ

Ah (θ)
σ−1 −Al (θ)

σ−1

Al (θ)
σ−1

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(Al (θ)K
α)

1+ν
α+ν − f 6 0.

A low equilibrium exists if and only if the following condition is satisfied:

A (θ)Kα 6 σ

σ − 1

(

(σ − 1) f

ωσ−1 − 1

)
α+ν
1+ν

(1− α)−
1−α
1+ν ≡ BL.

The thresholds are such that BL > BH if and only 1+ν
α+ν > σ − 1.

Next, let us consider the mixed strategy equilibrium. Firms are indifferent between both ca-

pacities if

1

σ

Ah (θ)
σ−1 −Al (θ)

σ−1

A (θ,m)σ−1

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f = 0.

There is a mixed strategy equilibrium if there is a solution to this equation with m ∈ (0, 1). We

can rewrite this equation as

AeθKα =
σ

σ − 1

(

(σ − 1) f

ωσ−1 − 1

)
α+ν
1+ν

(1− α)−
1−α
1+ν
(

m
(

ωσ−1 − 1
)

+ 1
)

α+ν
1+ν

− 1
σ−1 . (28)

If 1+ν
α+ν > σ− 1, the right-hand side is strictly decreasing in m and equals BL for m = 0 and BH for

m = 1. Therefore, as long as BH < AeθKα < BL there is a mixed strategy equilibrium in addition

to the two others. Notice that the equilibrium m is decreasing in AeθKα.

If 1+ν
α+ν 6 σ − 1, then BL 6 BH and the right-hand side of (28) is increasing in m from BL to BH .

There is therefore a unique static equilibrium for all AeθKα.

E.3 Efficiency

Proposition 3. If 1+ν
ν+α > σ − 1, there exists a threshold BSP , with BSP ≤ BL, such that the

planner makes all firms use the high capacity, mt = 1, if AeθtKα
t > BSP and firms use the low

capacity, mt = 0, if AeθtKα
t 6 BSP . The threshold BSP is lower than BH for σ small.

Proof. Consider the planning problem:

max
Kt+1,Lt,mt

E

∞
∑

t=0

βtU

(

(

mtY
σ−1
σ

ht + (1−mt)Y
σ−1
σ

lt

)
σ

σ−1

+ (1− δ)Kt −mtf −Kt+1, Lt

)
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subject to

Yit = Ai (θt)K
α
itL

1−α
it , i ∈ {h, l}

Kt = mtKht + (1−mt)Klt

Lt = mtLht + (1−mt)Llt.

In the optimal allocation, the marginal products are equalized across firms:

α
Y

1
σ
t Y

1− 1
σ

ht

Kht
= α

Y
1
σ
t Y

1− 1
σ

lt

Klt
and (1− α)

Y
1
σ
t Y

1− 1
σ

ht

Lht
= (1− α)

Y
1
σ
t Y

1− 1
σ

lt

Llt
.

Combining these two equations, we obtain the same aggregation result that we derived in proposi-

tion (1), i.e., Yit =
(

Ai(θt)

A(θt,mt)

)σ
Yt and Yt = A (θt,mt)K

α
t L

1−α
t . The planner’s problem then reduces

to

max
Kt+1,Lt,mt

E

∞
∑

t=0

βtU
(

A (θt,mt)K
α
t L

1−α
t + (1− δ)Kt −mtf −Kt+1, Lt

)

.

The optimality for labor is

(1− α)A (θt,mt)K
α
t L

−α
t = Lν

t .

In particular, the planner’s problem inherits the structure of the competitive economy, which can

be solved in two stages thanks to the GHH preferences. Solving for Lt, one obtains

Lt =
[

(1− α)A (θt,mt)K
α
t

]
1

α+ν ,

a similar expression as (12) for the competitive equilibrium, except that the monopoly distortions,

captured by σ
σ−1 do not distort the factor demand. Plugging this expression back in the objective

function and noticing that Yt − L1+ν
t

1+ν = α+ν
1+ν Yt, the planner’s problem can be rewritten as

max
Kt+1,mt

E

∞
∑

t=0

βt 1

1− γ

(

α+ ν

1 + ν
(1− α)

1−α
α+ν

(

A (θt,mt)K
α
t

)
1+ν
α+ν −mtf + (1− δ)Kt −Kt+1

)1−γ

,

so that the maximization over mt boils down to maximizing production net of disutility of labor,

α+ ν

1 + ν
(1− α)

1−α
α+ν

(

A (θt,mt)K
α
t

)
1+ν
α+ν −mtf.

This problem is strictly convex in m when 1+ν
α+ν > σ − 1, so that the planner always picks a corner

solution mt = 0 or mt = 1. Comparing both values, the planner uses high capacity if and only if

α+ ν

1 + ν
(1− α)

1−α
α+ν (Ah (θt)K

α
t )

1+ν
α+ν − f > α+ ν

1 + ν
(1− α)

1−α
α+ν (Al (θt)K

α
t )

1+ν
α+ν ,

48



which is equivalent to the condition

AeθtKα
t >

(

1

(1− α)
1−α
α+ν

1 + ν

α+ ν

f

ω
1+ν
α+ν − 1

)
α+ν
1+ν

≡ BSP ,

where BSP is a threshold such that the planner picks the high capacity if and only if AeθtKα
t ≥ BSP .

First, let us show that BSP ≤ BL:

BSP ≤ BL ⇔ 1 + ν

α+ ν

1

ω
1+ν
α+ν − 1

≤
(

σ

σ − 1

)
1+ν
α+ν σ − 1

ωσ−1 − 1

which is satisfied if
1 + ν

α+ ν

1

ω
1+ν
α+ν − 1

≤ σ − 1

ωσ−1 − 1
.

The function f(x) = 1
x (ω

x − 1) being increasing, we then conclude that BSP < BL under the

condition that 1+ν
α+ν > σ − 1.

Let us now compare BSP and BH :

BSP ≤ BH ⇔ 1 + ν

α+ ν

1

ω
1+ν
α+ν − 1

≤
(

σ

σ − 1

)
1+ν
ν+α 1

ω
1+ν
α+ν

−σ+1

σ − 1

ωσ−1 − 1
.

The left-hand side is independent of σ. Since limσ→1
ωσ−1−1
σ−1 = log ω, the right-hand side goes to

∞ as σ → 1 from above and BSP ≤ BH for σ small enough.

F Incomplete Information: Proofs - For online publication

F.1 Notation and Definitions

This section introduces some useful notation and restates various equilibrium results established

in the paper when the economy is subject to an input subsidy skl, a sales subsidy sy, a profit subsidy

sπ and a lump-sum tax on the household to finance the subsidies. Under these subsidies the problem

of the firm becomes

Πit = max
Yit,Pit,Kit,Lit

(1 + sy)PitYit − (1− skl) (RtKit +WtLit)

subject to 4 and 5 and where the capacity choice is such that

uj = uh ⇐⇒ Eθ [Uc (Ct, Lt) ((1 + sπ) (Πh (Kt, θt,mt)−Πl (Kt, θt,mt))− f) | θt−1, vjt] > 0.
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Notation

As introduced in the main text, we denote by A the endogenous aggregate TFP of the economy,

with

A (θ,m) ≡ AeθΩ (m) ,

where Ω (m) ≡
(

m
(

ωσ−1 − 1
)

+ 1
)

1
σ−1 is an average of capacity across firms. The equilibrium level

of output and labor as a function of K, θ and m is

Y (K, θ,m) ≡
[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν

A (θ,m)
1+ν
α+ν Kα 1+ν

α+ν ,

and labor

L (K, θ,m) ≡
[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1

α+ν

A (θ,m)
1

α+ν K
α

α+ν .

The corresponding rental rate of capital is

R (K, θ,m) ≡ α
σ − 1

σ

1 + sy
1− skl

Y (K, θ,m)

K
.

To lighten notation, it is also useful to introduce the gross output level net of fixed costs and

depreciation

y (K, θ,m) ≡ Y (K, θ,m) + (1− δ)K −mf,

and the corresponding net interest rate

r (K, θ,m) ≡ R (K, θ,m) + 1− δ.

Finally, we denote the equilibrium output level for firms of type h and l by

Yh (K, θ,m) ≡ ωσ

Ω (m)σ
Y (K, θ,m) and Yl (K, θ,m) ≡ 1

Ω (m)σ
Y (K, θ,m) ,

and profit rates

Πh (K, θ,m) ≡ 1

σ

1 + sy
1− skl

ωσ−1

Ω (m)σ−1Y (K, θ,m) and Πl (K, θ,m) ≡ 1

σ

1 + sy
1− skl

1

Ω (m)σ−1Y (K, θ,m) .

We sometimes abuse notation in part F.4 of the proofs, once conditions for existence and

uniqueness of a solution to the global game have been established, by writing Y (K, θ−1, θ) =

Y (K, θ,m (K, θ−1, θ)), R (K, θ−1, θ) = R (K, θ,m (K, θ−1, θ)), and so on. Furthermore, we use the

vector notation θ = (θ−1, θ)
′ in several parts of the proofs to avoid spelling out the entire state

space.
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Assumptions and Definitions

Our existence and uniqueness proofs require the value and policy functions to be bounded. We

thus restrict the fundamental to remain between two bounds
[

θ, θ
]

, chosen large enough that they

contain most of the ergodic distribution of θ.34

Definition 3. Let Θ =
[

θ, θ
]

. The fundamental θ follows the autoregressive process

θ = min
(

max
(

ρθ−1 + eθt , θ
)

, θ
)

,

and we denote its transition density π (θ, dθ′) = Pr {θt+1 ∈ [θ′, θ′ + dθ′] | θt = θ}.

Definition 4. Let K =
[

0,K
]

where K is implicitly defined by

Y
(

K, θ, 1
)

+ (1− δ)K − L
(

K, θ, 1
)1+ν

1 + ν
= K.

Definition 4 defines the set in which the stock of capital lies and K which corresponds to the

maximal output ever achievable is an upper bound on capital. The upper bound K exists and is

unique under assumption 1 below.

Assumption 1. The parameters satisfy

σ − 1

σ

1− α

1 + ν

1 + sy
1− skl

6 1.

Assumption 1 is a feasibility condition required by the GHH preferences. It guarantees that

total production, y (K,θ), net of minimum consumption, (1 + ν)−1L (K,θ)1+ν , is positive, so that

there exists a solution to the static equilibrium in production.

Assumption 2. The lower bound θ is chosen sufficiently small that there exists K− > 0 such that

y (K−, θ, θ)− L(K−,θ,θ)
1+ν

1+ν > K− and βE [r (K−, θ, θ′) | θ = θ] 6 1.

Assumption 2 is from Coleman (1991) and is necessary to show the existence of a non-zero

equilibrium. Note that there always exists a K− that satisfies the first part of the definition given

our choice for the production function and m ≃ 0. The key requirement comes from the second

part and can be achieved by assuming that θ is sufficiently low.

34For arbitrarily large bounds, this restriction has no bearing on our quantitative results and the Bayesian updating
rules for untruncated normals, that we use to update private beliefs in the static global game, provide an arbitrarily
good approximation to the true beliefs with truncated normals for the relevant part of the ergodic distribution of θ.
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F.2 Main proposition

Proposition 4 (Full). Under Assumption 1-2, for γv large and ω sufficiently close to 1 such that

i) approximation (31) holds, ii) parameters satisfy

√
γv

γθ
>

1√
2π

ωσ−1 − 1

σ − 1
, (18)

and
1− α 1+ν

α+ν

α 1+ν
α+ν

> 1√
2π

ωσ−1 − 1

σ − 1

γθ + γv√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

(29)

and iii) y (K, θ−1, θ)− L(K,θ−1,θ)
1+ν

1+ν is weakly increasing in K, there exists a unique dynamic equi-

librium. The equilibrium capacity decision takes the form of a continuous cutoff v̂ (K, θ−1) such

that firm j invests if and only if vj > v̂ (K, θ−1). Furthermore, the cutoff is a decreasing function

of its arguments.

Proof. We prove this proposition in several steps. In a first step, we show in section F.3 below that,

for a small departure from complete information, i.e., when γv is large, risk becomes irrelevant for

firms and the stochastic discount factor drops out of their capacity decision (lemma A1). In that

case, we can solve the global game independently from the rest of the dynamic equilibrium. In

proposition A1, we show that there exists a unique equilibrium to the global game under condition

(18) and that the equilibrium capacity decision takes the form of a cutoff strategy v̂ (K, θ−1) such

that firms choose high capacity if and only if they receive a signal vj above that threshold.

Using the resulting v̂ from the global game, we show the existence and uniqueness of the dy-

namic equilibrium in section F.4. Proposition A2 establishes existence under several additional

assumptions. First, assumption 1 ensures that the firm’s decision is well defined and bounded by

putting an upper bound on the subsidies that they receive. It is trivially satisfied for a competi-

tive economy without government subsidies, but the proposition shows how the result extends to

economies with input, sales and profit subsidies. Assumption 2 is relatively mild as it only requires

us to choose a sufficiently low bound θ. Second, the condition that ω is close to 1 ensures that

the Euler equation is a monotone operator, which our proof uses to prove existence. In particu-

lar, monotonicity requires that R is a nonincreasing function of K, which (29) guarantees (lemma

(A2).(v)), and that output net of fixed costs minus labor, y (K, θ−1, θ) − L(K,θ−1,θ)
1+ν

1+ν , is nonde-

creasing in K, a property satisfied for ω sufficiently close to 1 (lemma (A2).(iv)). These last two

conditions are sufficient but not necessary and could be relaxed in practice.35 Notice also that the

proposition provides the existence of a strictly positive equilibrium, in the sense that consumption

is non-zero whenever K > 0.

Proposition A3 finally establishes uniqueness of the (strictly positive) equilibrium under the

same conditions on the parameters.

35For instance, one could check numerically that functions R and y have the correct monotonicity properties for
the proof to go through.
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F.3 Global game

Description

This section describes the solution of the static game played every period between the interme-

diate goods producers.

The decision of intermediate producer j to operate at high capacity over low capacity is deter-

mined by the sign of the surplus,

∆Π (K, θ−1, vj ,m) = Eθ [UC (C,L) ((1 + sπ) (Πh (K, θ,m)−Πl (K, θ,m))− f) | θ−1, vj ] ,

such that producer j chooses high capacity if and only if ∆Π > 0. In equilibrium, C and L are

functions of the aggregate state space (K, θ−1, θ), which we sometimes write (K,θ) with vector

θ = (θ−1, θ)
′. Anticipating on the rest of the proof, let us denote the inverse marginal utility of

consumption P (K,θ) = [UC (C (K,θ) , L (K,θ))]−1. Substituting with the equilibrium value of

profits, the expected surplus from operating at high vs. low capacity for firm j with a perceived

mass of entrants m (K, θ, θ−1) is

∆Π (K, θ−1, vj ,m) = Eθ

[

1

P (K,θ)

(

1

σ

(1 + sπ) (1 + sy)

1− skl

ωσ−1 − 1

Ω (m)σ−1Y (K, θ,m)− f

)

| θ−1, vj

]

.

(30)

The presence of the stochastic discount factor in the problem of the firm introduces an additional

complication in comparison to standard global games without general equilibrium effects. Fortu-

nately, under the assumption that γv is large, i.e., for a small deviation from common knowledge,

the stochastic discount factor drops out of the equation and is, thus, asymptotically irrelevant. The

outcome of the global game may thus be approximated by a simpler problem, which we describe

below.

Approximation

Lemma A1. Let P : (K,θ) ∈ K× Θ2 → R bounded, continuous, positive and bounded away from
0 over

[

K,K
]

×Θ2 for all K > 0. Then for all v̂ ∈ R,

∣

∣

∣

∣

∣

∣

Eθ

[

(1 + sπ) (Πh (K, θ,m)− Πl (K, θ,m))− f

P (K, θ−1, θ)
| θ−1, vj

]

− Eθ





(1 + sπ) (Πh (K, θ,m)− Πl (K, θ,m))− f

P
(

K, θ−1,
γθρθ−1+γvvj

γθ+γv

) | θ−1, vj





∣

∣

∣

∣

∣

∣

−→
γv→∞

0.

Furthermore, the convergence is uniform over
[

K,K
]

×Θ2.

Proof. To lighten notation, denote

∆Y (K, θ,m) ≡ (1 + sπ) (Πh (K, θ,m)−Πl (K, θ,m))−f =
1

σ

(1 + sπ) (1 + sy)

1− skl

ωσ−1 − 1

Ω (m)σ−1Y (K, θ,m)−f.
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Since θ | θ−1, vj ∼ N
(

γθρθ−1+γvvj
γθ+γv

, 1
γθ+γv

)

, we can control the above expression as follows:

∣

∣

∣

∣

∣

∣

Eθ

[

∆Y (K, θ,m)

P (K, θ−1, θ)
| θ−1, vj

]

− Eθ





∆Y (K, θ,m)

P
(

K, θ−1,
γθρθ−1+γvvj

γθ+γv

) | θ−1, vj





∣

∣

∣

∣

∣

∣

6∆Y
P θ

inf
θ
P (K, θ−1, θ)

2Eθ

[
∣

∣

∣

∣

θ − γθρθ−1 + γvvj
γθ + γv

∣

∣

∣

∣

| θ−1, vj

]

6 ∆Y
P θ

inf
θ
P (K, θ−1, θ)

2

1

γθ + γv

√

2

π
,

where P θ and ∆Y are the modulus of uniform continuity of P and ∆Y along θ. Therefore, we

have pointwise convergence and uniform convergence on all segments
[

K,K
]

with K > 0 with the

uniform bound ∆Y P θ

inf
[K,K]×Θ2

P (K,θ−1,θ)
2

1
γθ+γv

√

2
π .

Choosing the bound K low enough that
[

K,K
]

contains all the stocks of capital ever visited

along the equilibrium path, the above lemma tells us that, in the limit as γv → ∞, we can

approximate the surplus from choosing high capacity by the simpler expression:

∆Π̃ (K, θ−1, vj ,m) ≡ 1

P
(

K, θ−1,
γθρθ−1+γvvj

γθ+γv

)Eθ [∆Y (K, θ,m) | θ−1, vj ] .

The intuition behind this expression is that, as γv → ∞, consumption risk vanishes and becomes ir-

relevant to firms. This does not mean, however, that uncertainty is unimportant: the firms’ decision

is then entirely driven by strategic concerns, captured by Eθ [∆Y | θ−1, vj ], in which uncertainty

plays a crucial role.

We focus, from now on, on the cases where γv is high and the above approximation holds.

Under that assumption, the decision of firm j is

uj = uh ⇔ Eθ [∆Y (K, θ,m) | θ−1, vj ] > 0. (31)

It is worth noting here that our numerical results suggest that the approximation is very accurate:

under our benchmark calibration, the solutions of the global game using expression (30) and (31)

are virtually indistinguishable.

Existence and Uniqueness

Proposition A1. For γv large enough that approximation (31) holds and

√
γv

γθ
>

1√
2π

ωσ−1 − 1

σ − 1
, (18)

then the optimal capacity decision takes the form of a unique cutoff strategy v̂ (K, θ−1) such that

firm j chooses high capacity if and only if vj > v̂.
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Proof. Fix K ∈ K and θ−1 ∈ Θ. Under the hypothesis that γv is large enough that the approxima-

tion (31) holds, firm j chooses the high capacity if and only if

∆Π̃ (K, θ−1, vj ,m) > 0 ⇔ Eθ

[

1

σ

(1 + sπ) (1 + sy)

1− skl

ωσ−1 − 1

Ω (m)σ−1Y (K, θ,m)− f | θ−1, vj

]

> 0.

The proof proceeds in two steps. In a first step, we start solving the game by iterated deletion of

dominated strategies. In a second step, we provide conditions under which this procedure converges

towards a unique equilibrium.

� Case 1+ν
α+ν > σ − 1

Step 1. To lighten notation, denote

∆Y (K, θ,m) ≡ 1

σ

(1 + sπ) (1 + sy)

1− skl

ωσ−1 − 1

Ω (m)σ−1Y (K, θ,m)− f

=
1

σ

(1 + sπ) (1 + sy)

1− skl

(

ωσ−1 − 1
)

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθKα
)

1+ν
α+νΩ (m)

1+ν
α+ν

−σ+1 − f.

When 1+ν
α+ν > σ − 1, ∆Y is increasing in all its arguments. We proceed by iterated deletion of

dominated strategies. Initialize the recursion by defining v̂0 = ∞ and v̂0 = −∞, such that it is

dominant to choose the high capacity for vj > v̂0 and dominant to choose low capacity for vj 6 v̂0.

We now define v̂1 (K, θ−1) such that

Eθ

[

∆Y (K, θ, 0) | θ−1, v̂
1
]

= Eθ

[

∆Y
(

K, θ,Φ
(√

γv
(

θ − v̂0
)))

| θ−1, v̂
1
]

= 0,

which means that it is dominant to choose high capacity for all firms j such that vj > v̂1, even if

no one else did. Symmetrically, we can define v̂1 (K, θ−1) such that

Eθ [∆Y (K, θ, 1) | θ−1, v̂1] = Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂0))) | θ−1, v̂1] = 0,

such that it is dominant to choose low capacity for all firms j such that vj 6 v̂1 even if all other

firms choose the high capacity. By the properties of ∆Y , we must have v̂0 < v̂1 6 v̂1 < v̂0.

This establishes the first iteration of our procedure. By induction, let n > 2 and assume that

v̂0 < . . . < v̂n−1 6 v̂n−1 < . . . < v̂0 such that it is dominant to choose high capacity if vj > v̂n−1

and dominant to choose low for vj 6 v̂n−1. Define v̂n and v̂n such that

Eθ

[

∆Y
(

K, θ,Φ
(√

γv
(

θ − v̂n−1
)))

| θ−1, v̂
n
]

= 0,

Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂n−1))) | θ−1, v̂n] = 0.

By induction, v̂n−1 > v̂n−1, so that Φ
(√

γv
(

θ − v̂n−1
))

6 Φ
(√

γv (θ − v̂n−1)
)

and v̂n > v̂n. Also,

since v̂n−1 < v̂n−2, then Φ
(√

γv
(

θ − v̂n−1
))

> Φ
(√

γv
(

θ − v̂n−2
))

and v̂n < v̂n−1. Symmetrically,

we have v̂n > v̂n−1. This establishes the recursion.

Sequence (v̂n)n>0 is a strictly increasing bounded sequence, therefore it converges. Denote v̂∞ its
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limit: v̂n →
n→∞

v̂∞. Symmetrically, establish that (v̂n)n>0 converges towards some limit v̂∞ > v̂∞.

By continuity of ∆Y , we have

Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂∞))) | θ−1, v̂

∞] = 0 and Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂∞))) | θ−1, v̂∞] = 0.

Step 2. Define H (K, θ−1, v̂) ≡ Eθ

[

∆Y
(

K, θ,Φ
(√

γv (θ − v̂)
))

| θ−1, v̂
]

. We now provide suffi-

cient conditions such that the implicit equation in v̂,

H (K, θ−1, v̂) = 0,

has a unique solution v̂ (K, θ−1). In particular, this condition is satisfied if H is strictly increasing

in v̂. Since θ | θ−1, vj = v̂ ∼ N
(

γθρθ−1+γv v̂
γθ+γv

, 1
γθ+γv

)

,

H (K, θ
−1, v̂) = Eθ [∆Y (K, θ,Φ (

√
γv (θ − v̂))) | θ

−1, v̂]

= Eε

[

c0

(

Ae
γθρθ

−1+γvv̂

γθ+γv
+ε

Kα

)

1+ν
α+ν Ω

(

Φ

(√
γv

(

γθρθ−1 + γv v̂

γθ + γv
+ ε− v̂

)))

1+ν
α+ν

−σ+1

− f

]

where c0 =
1
σ
(1+sπ)(1+sy)

1−skl

(

ωσ−1 − 1
)

[

(1− α) σ−1
σ

1+sy
1−skl

]
1−α
α+ν

and ε = θ− γθρθ−1+γv v̂
γθ+γv

∼ N
(

0, 1
γθ+γv

)

.

Compute the derivative:

∂ logH

∂v̂
=

1 + ν

α+ ν

γv
γθ + γv

+
∂

∂v̂
logH2 (θ−1, v̂)

where H2 (θ−1, v̂) = Eε

[

e
1+ν
α+ν

εΩ
(

Φ
(√

γv

(

γθ(ρθ−1−v̂)
γθ+γv

+ ε
)))

1+ν
α+ν

−σ+1
]

. Compute the last term,

∂H2

∂v̂
= −

√
γvγθ

γθ + γv

(

1 + ν

α+ ν
− σ + 1

)

Eε

[

φ

(√
γv

(

γθ (ρθ−1 − v̂)

γθ + γv
+ ε

)) Ω′
(

Φ
(√

γv

(

γθ(ρθ−1−v̂)
γθ+γv

+ ε
)))

Ω
(

Φ
(√

γv

(

γθ(ρθ−1−v̂)
γθ+γv

+ ε
)))

× e
1+ν
α+ν

εΩ

(

Φ

(√
γv

(

γθ (ρθ−1 − v̂)

γθ + γv
+ ε

)))
1+ν
α+ν

−σ+1
]

so that
∣

∣

∣

∂H2
∂v̂

∣

∣

∣
6

√
γvγθ

γθ+γv

(

1+ν
α+ν − σ + 1

)

1√
2π

Ω′

Ω H2 (θ−1, v̂). Since
∣

∣

∣

Ω′(m)
Ω(m)

∣

∣

∣
6 ωσ−1−1

σ−1 , we have

∣

∣

∣

∣

∂ logH2

∂v̂

∣

∣

∣

∣

6
√
γvγθ

γθ + γv

(

1 + ν

α+ ν
− σ + 1

)

1√
2π

ωσ−1 − 1

σ − 1
.

We may now conclude that

∂ logH

∂v̂
> 1 + ν

α+ ν

γv
γθ + γv

−
√
γvγθ

γθ + γv

1√
2π

(

1 + ν

α+ ν
− σ + 1

)

ωσ−1 − 1

σ − 1
.
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Therefore, a sufficient condition that guarantees that H is strictly increasing in v̂ is

√
γv

γθ
>

1√
2π

ωσ−1 − 1

σ − 1
.

Note in addition that H −→
v̂→∞

∞ and H −→
v̂→−∞

−∞, therefore there exists a unique solution

v̂ (K, θ−1) to the equation H (K, θ−1, v̂ (K, θ−1)) = 0.

Conclusion. Under the condition (18), there exists a unique solution to the equation

Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂))) | θ−1, v̂] = 0,

which is satisfied by both v̂∞ and v̂∞. Therefore, v̂∞ = v̂∞ = v̂ (K, θ−1) and the solution to the

global game is the unique cutoff strategy v̂ (K, θ−1) such that firm j chooses high capacity if and

only if vj > v̂ (K, θ−1).

� Case 1+ν
α+ν 6 σ − 1

In the case that the condition for multiplicity is not satisfied, the proof is similar but easier

since there is strategic substitutability between firms. By iterated deletion of dominant strategies,

define the monotone sequences (v̂n)n>0 and (v̂n)n>0 by

Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂n−1))) | θ−1, v̂

n] = 0,

Eθ

[

∆Y
(

K, θ,Φ
(√

γv
(

θ − v̂n−1
)))

| θ−1, v̂n
]

= 0.

Then, function Eθ

[

∆Y
(

K, θ,Φ
(√

γv (θ − v̂)
))

| θ−1, v̂
]

is strictly increasing in v̂ without additional

restrictions on the parameter. Conclude as in the previous case.

Regularity

In this section, we establish a number of regularity conditions and properties of v̂, m, A and Y .

Lemma A2. Under the conditions of proposition A1, (i) v̂ (K, θ−1) is continuous and weakly

decreasing in K and θ−1 and such that

− α 1
K√

γv
γθ+γv

[√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

] 6 ∂v̂

∂K
(K, θ−1) 6 0,

and

− ργθ
√
γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) 6 ∂v̂

∂θ−1
(K, θ−1) 6 0.

(ii) m (K, θ−1, θ) and A (K, θ−1, θ) are bounded, continuous and weakly increasing in all their ar-

guments, (iii) y (K, θ−1, θ) is bounded, continuous and, for ω sufficiently close to 1, increasing in

K, (iv) if in addition assumption 1 is verified, y (K, θ−1, θ)− L(K,θ−1,θ)
1+ν

1+ν is increasing in K, (v)
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if parameters are such that

1− α 1+ν
α+ν

α 1+ν
α+ν

> 1√
2π

ωσ−1 − 1

σ − 1

γθ + γv√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

,

then R (K, θ−1, θ) is nonincreasing in K.

Proof. (i) Continuity and monotonicity of v̂ (K, θ−1). Cutoff v̂ (K, θ−1) is implicitly defined by the

function ∆Π̃
(

K, θ−1, v̂,Φ
(√

γv (θ − v̂)
))

= 0 which is a continuously differentiable function of K,

θ−1 and v̂. Under the conditions of proposition A1, d
dv̂∆Π̃ > 0, so the implicit function theorem

tells us that v̂ is continuous and differentiable in a neighborhood of (K, θ−1). In addition, the

implicit function theorem tells us that

∂v̂

∂K
= −

(

∂H

∂v̂

)−1 ∂H

∂K
and

∂v̂

∂θ−1
= −

(

∂H

∂v̂

)−1 ∂H

∂θ−1
,

where

H (K, θ−1, v̂) ≡ ∆Π̃ (K, θ−1, v̂,Φ (
√
γv (θ − v̂)))

= −f +H0

ˆ

(

Ae
γθρθ−1+γvv̂

γθ+γv
+ε

Kα

)
1+ν
α+ν

×

Ω

(

Φ

(√
γv

(

γθ
γθ + γv

(ρθ−1 − v̂) + ε

)))
1+ν
α+ν

−σ+1 √
γθ + γvφ

(√
γθ + γvε

)

dε,

and H0 = 1
σ
(1+sπ)(1+sy)

1−skl

(

ωσ−1 − 1
)

[

(1− α) σ−1
σ

1+sy
1−skl

]
1−α
α+ν

. Computing the various derivatives, we

get
∂H

∂K
= α

1 + ν

α+ ν

1

K
(H (K, θ−1, v̂) + f)

∂H

∂θ−1
=

1 + ν

α+ ν

ργθ
γθ + γv

(H (K, θ−1, v̂) + f)

∂H

∂v̂
=

1 + ν

α+ ν

γv
γθ + γv

(H (K, θ−1, v̂) + f)−H0

(

Ae
γθρθ

−1+γvv̂

γθ+γv Kα

)
1+ν
α+ν

(

1 + ν

α+ ν
− σ + 1

)

1

σ − 1

√
γvγθ

γθ + γv

×
ˆ

e
1+ν
α+ν

εω
σ−1 − 1

Ωσ−1
φ

(√
γv

(

γθ
γθ + γv

(ρθ−1 − v̂) + ε

))

Ω

(

Φ

(√
γv

(

γθ
γθ + γv

(ρθ−1 − v̂) + ε

)))
1+ν
α+ν

−σ+1

×√
γθ + γvφ

(√
γθ + γvε

)

dε

> 1 + ν

α+ ν

γv
γθ + γv

(H (K, θ−1, v̂) + f)−
(

1 + ν

α+ ν
− σ + 1

)

1√
2π

ωσ−1 − 1

σ − 1

√
γvγθ

γθ + γv
(H (K, θ−1, v̂) + f)

> (H (K, θ−1, v̂) + f)
1 + ν

α+ ν

√
γv

γθ + γv

(√
γv − 1√

2π

ωσ−1 − 1

σ − 1
γθ

)

> 0,
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where the last inequality is a consequence of (18). Hence,

− α 1
K√

γv
γθ+γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) 6 ∂v̂

∂K
6 0,

and

− ργθ
√
γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) 6 ∂v̂

∂θ−1
6 0,

which establishes the desired inequalities.

(ii) Continuity and monotonicity of m and A. The continuity of m and A is inherited from that of

v̂ since

m (K,θ) = Φ (
√
γv (θ − v̂ (K, θ−1))) and A (K,θ) = Aeθ

(

m (K,θ)
(

ωσ−1 − 1
)

+ 1
)

1
σ−1 ,

which are bounded on K×Θ2. The monotonicity of m and A is inherited from that of v̂.

(iii) Continuity and monotonicity of y (K,θ). Recall the definition of y:

y (K,θ) ≡
[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθΩ (m (K,θ))
)

1+ν
α+νKα 1+ν

α+ν + (1− δ)K −m (K,θ) f.

Computing the total derivative, we have:

dy

dK
= α

1 + ν

α+ ν

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθΩ (m (K,θ))
)

1+ν
α+νKα 1+ν

α+ν
−1 + 1− δ +

∂y

∂m

∂m

∂K
.

The first term and ∂m
∂K are positive, so we must only compute the sign of ∂y

∂m . Compute the following:

∂y

∂m
=

1 + ν

α+ ν

1

σ − 1

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθKα
)

1+ν
α+ν

(

ωσ−1 − 1
)

Ω (m (K,θ))
1+ν
α+ν

−σ+1 − f.

Using the fact that

f = Eθ

[

1

σ

(1 + sπ) (1 + sy)

1− skl

(

ωσ−1 − 1
)

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθKα
)

1+ν
α+ν Ω(m)

1+ν
α+ν

−σ+1 | θ−1, v̂

]

6 1

σ

(1 + sπ) (1 + sy)

1− skl

(

ωσ−1 − 1
)

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν

(AKα)
1+ν
α+ν ω

1+ν
α+ν

−σ+1e
ργθθ

−1+γvv̂

γθ+γv
+ 1

2 (
1+ν
α+ν )

2 1
γθ+γv .

Consequently, we can bound ∂y
∂m :

∣

∣

∣

∣

∂y

∂m

∣

∣

∣

∣

6
(

ωσ−1 − 1
)

y0,

where y0 =
[

(1− α) σ−1
σ

1+sy
1−skl

]
1−α
α+ν

(AKα)
1+ν
α+ν ω

1+ν
α+ν

−σ+1

(

1+ν
α+ν

1
σ−1

e
1+ν
α+ν

θ
+ 1

σ

(1+sπ)(1+sy)
1−skl

e
ργθθ

−1+γvv̂

γθ+γv
+ 1

2

(

1+ν
α+ν

)

2 1
γθ+γv

)

.
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Using our result from (i), we may then bound the following

∣

∣

∣

∣

∂y

∂m

∂m

∂K

∣

∣

∣

∣

6
(

ωσ−1 − 1
)

y0
α 1

K√
γv

γθ+γv

[√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

] ,

which means that function y is increasing in K for ω close enough to 1.

(iv) This property is used in several lemmas. The argument is the same as above:

y (K,θ)− L (K,θ)1+ν

1 + ν
=

(

1− σ − 1

σ

1− α

1 + ν

1 + sy
1− skl

)

y (K,θ) + (1− δ)K −m (K,θ) f.

Therefore, under all the previous assumptions and assumption 1, then we can always find ω suffi-

ciently close to 1 that y (K,θ)− L(K,θ)1+ν

1+ν is increasing in K.

(v) Monotonicity of R. Recall the definition of R:

R (K, θ−1, θ) = R0A (θ,m (K, θ−1, θ))
1+ν
α+ν Kα 1+ν

α+ν
−1,

where R0 = ασ−1
σ

1+sy
1−skl

[

(1− α) σ−1
σ

1+sy
1−skl

]
1−α
α+ν

. Thus, the derivative with respect to K is

∂R

∂K
= R (K, θ−1, θ)

[

−
(

1− α
1 + ν

α + ν

)

1

K
+

1 + ν

α+ ν

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1

∂m

∂K

]

.

By definition m (K, θ−1, θ) = Φ
(√

γv (θ − v̂ (K, θ−1))
)

, we have

0 6 ∂m

∂K
= −√

γvφ (
√
γv (θ − v̂ (K, θ−1)))

∂v̂

∂K
6
√

γv
2π

α 1
K√

γv
γθ+γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) .

R is strictly increasing in K if

(

1− α
1 + ν

α+ ν

)

1

K
>

1 + ν

α+ ν

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1

√

γv
2π

α 1
K√

γv
γθ+γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) .

A simpler sufficient condition on parameters for the above condition to be satisfied is

1− α 1+ν
α+ν

α 1+ν
α+ν

>
1√
2π

ωσ−1 − 1

σ − 1

γθ + γv√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

.

F.4 Existence and Uniqueness of the Dynamic Equilibrium

This proof builds on the monotone operator and lattice-theoretic techniques developed in

Coleman (1991), Coleman and John (2000), Datta et al. (2002) or Morand and Reffett (2003) and

extends it to the features present in our setup. The proof uses the following version of Tarski’s
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fixed point theorem (see Tarski et al. (1955)):

Theorem. [Tarski, 1955] Suppose that (X,>) is a nonempty complete lattice and T : X → X

is an increasing mapping. Then, the set of fixed points of T is a nonempty complete lattice.

Description and Definitions

The objective of this proof is to show the existence and uniqueness of a solution to the Euler

equation in some particular space. For reasons that will appear clearer later, it is useful to repre-

sent the Euler equation in the space of inverse marginal utility, which we denote as p, instead of

consumption functions directly.36 That is to say, we will go back and forth between the spaces of

inverse marginal values and consumption functions through the following mapping,

p (K,θ) = UC (c (K,θ) , L (K,θ))−1 .

Definition 5. Let P be the set

P =
{

p (K,θ) | p : K×Θ2 −→ K such that

(a) 0 6 p (K,θ) 6 UC (y (K,θ) , L (K,θ))−1 for (K,θ) ∈ K×Θ2;

(b) p weakly increasing in K
}

.

Definition 5 describes the set in which the equilibrium inverse marginal utility p lies. We may

now introduce the following definitions which sets up the environment and the Euler equation that

we must solve:

Definition 6. (i) The mapping from marginal consumption value to consumption is

C : R+ ×K×Θ2 −→ R

(p,K,θ) 7→ U−1
C (p, L (K,θ)) = p

1
γ +

L (K,θ)1+ν

1 + ν
;

(ii) The mapping corresponding to the Euler equation is

Z : R+ × P ×K×Θ2 −→ R ∪ {−∞,∞}

(p, P,K,θ) 7→



















0 if p = 0 and
(

K = 0 or P
(

y (K,θ)− C (0,K,θ) ,θ′
)

= 0
)

1
p − βE





r

(

y(K,θ)−C(p,K,θ),θ′

)

P

(

y(K,θ)−C(p,K,θ),θ′

)



 , otherwise;

36A similar existence proof can be written in the space of consumption functions as in Coleman (1991). The
uniqueness is, however, problematic in that space since the operator corresponding to the Euler equation is not
pseudo-concave without restrictive assumptions on the preferences. On the other hand, that same operator is naturally
pseudo-concave in the space of inverse marginal utilities as noted by Coleman (2000) and Datta et al. (2002).
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(iii) The operator providing solutions to the Euler equation is

T (P ) =
{

p ∈ P | Z (p (K,θ) , P,K,θ) = 0 for K ∈ K,θ ∈ Θ2
}

.

Existence

We endow the space P with the pointwise partial order 6, such that p 6 p̂ if p (K,θ) 6 p̂ (K,θ)

for all (K,θ) ∈ K×Θ2 and two binary operations that we refer to as the meet (p∧ p̂) and the join

(p ∨ p̂) for any two points p, p̂ ∈ P. The meet is the greatest lower bound of two elements, i.e.,

(p ∧ p̂) (K,θ) = min {p (K,θ) , p̂ (K,θ)} ,

and the join is the least upper bound, defined as

(p ∨ p̂) (K,θ) = max {p (K,θ) , p̂ (K,θ)} .

Lemma A3. (P,6) is a complete lattice.

Proof. A lattice is complete if each subset has a supremum and an infimum. Consider a subset

X ⊂ P. Clearly, the join of all elements in X, sup
p∈X

p, satisfies sup
p∈X

p 6 UC (y (K,θ) , L (K,θ))−1

and sup
p∈X

p is weakly increasing in K, so sup
p∈X

p ∈ P. A symmetric argument tells us that the meet

of all elements in X, inf
p∈X

p, belongs to P. Therefore, P is a complete lattice.

We now show that mapping T , which associates the solution to the Euler equation for any

future inverse marginal utility P ∈ P is a well-defined monotone mapping from P to P.

Lemma A4. Under the conditions of proposition A1, assumption 1 and ω close enough to 1 such

that y (K,θ) − L(K,θ)1+ν

1+ν is nondecreasing in K (lemma A2.(iv)) and R is nonincreasing in K

(lemma A2.(v)) , T is a well-defined self-map on P.

Proof. Notice, first, from the definition of Z and P that Z is strictly decreasing in p but strictly

increasing in P .

Step 1: T is well defined. Fix K > 0, θ and P . Note that as p → 0, Z (p, P,K,θ) → ∞ and as

p → UC (y (K,θ) , L (K,θ))−1, Z (p, P,K,θ) → −∞. For ω close enough to 1, r in nonincreasing in

K. Thus, Z is continuous and strictly decreasing in p, there exists a unique 0 < p (K,θ) < Y (K,θ)

such that Z (p (K,θ) , P,K,θ) = 0.

Step 2: T maps P onto itself. We must check properties (a)-(b) in the definition of P:

(a) Already verified in step 1.

(b) Pick 0 < K 6 K̂. Denote p = T (P ). By definition Z (p (K,θ) , P,K,θ) = 0. Evaluate Z at
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p (K,θ) for K̂:

Z
(

p (K,θ) , P, K̂,θ
)

=
1

p (K,θ)
− βE





r
(

y
(

K̂,θ
)

− C
(

p (K,θ) , K̂,θ
)

,θ′
)

P
(

y
(

K̂,θ
)

− C
(

p (K,θ) , K̂,θ
)

,θ′
)



 .

Compute the following term:

y
(

K̂,θ
)

− C
(

p (K,θ) , K̂,θ
)

= y
(

K̂,θ
)

−
L
(

K̂,θ
)1+ν

1 + ν
− p (K,θ)

1
γ

=

(

1− σ − 1

σ

1− α

1 + ν

1 + sy
1− skl

)

y
(

K̂,θ
)

−m
(

K̂,θ
)

f + (1− δ) K̂ − p (K,θ)
1
γ

> y (K,θ)− C (p (K,θ) ,K,θ) ,

where the inequality is due to the fact that y − L1+ν

1+ν is increasing in K for ω close enough to 1

(lemma A2(iv)). Therefore,

Z
(

p (K,θ) , P, K̂,θ
)

> Z (p (K,θ) , P,K,θ) = 0,

which implies that p
(

K̂,θ
)

> p (K,θ) since Z is strictly decreasing in p.

Lemma A5. Under the conditions of lemma A4, T is continuous and monotone.

Proof. Step 1: Monotonicity.

Take p 6 p̂ in the sense that p (K,θ) 6 p̂ (K,θ) for all (K,θ). Evaluate Z at

Z (Tp (K,θ) , p̂,K,θ) =
1

Tp (K,θ)
− βE





r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

p̂
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)





> Z (Tp (K,θ) , p,K,θ) = 0,

which implies that T p̂ (K,θ) > Tp (K,θ). Therefore, Tp 6 T p̂.

Step 2: Continuity.

Fix p ∈ P. Pick ε > 0 and some p̂ ∈ P such that ‖p̂− p‖ 6 ε. Fix K > 0,θ ∈ Θ2. For all

p̃ ∈ R,

Z (p̃, p̂,K,θ) =
1

p̃
− βE





r
(

y (K,θ)−C
(

p̃, K̂,θ
)

,θ′
)

p̂
(

y (K,θ)− C
(

p̃, K̂,θ
)

,θ′
)





6 1

p̃
− βE





r
(

y (K,θ)− C
(

p̃, K̂,θ
)

,θ′
)

p
(

y (K,θ)− C
(

p̃, K̂,θ
)

,θ′
)

+ ε



 ,
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which means that T p̂ 6 T (p+ ε). A similar argument yields T p̂ > T (p− ε). By definition,

Z (T [p+ ε] (K,θ) , p+ ε,K, θ) =
1

T [p+ ε] (K,θ)
− βE





r
(

y (K,θ)− C
(

T [p+ ε] (K,θ) , K̂,θ
)

,θ′

)

p
(

y (K,θ)− C
(

T [p+ ε] (K,θ) , K̂,θ
)

, θ′

)

+ ε



 .

Using the fact that T (p+ ε) > Tp and r/p is decreasing in K, we obtain:

0 6 1

T [p+ ε] (K,θ)
− βE





r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

p
(

y (K,θ)−C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

+ ε



 .

Thus,

T [p+ ε] (K,θ) 6 β−1
E





r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

p
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

+ ε





−1

6 β−1
E





p
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

+ ε

r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)



 (Jensen)

6 Tp (K,θ) + β−1εE

[

r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)−1

]

6 Tp (K,θ) + β−1r
(

y
(

K,θ
)

,θ
)−1

ε.

The same argument applied to p − ε yields Tp 6 T (p− ε) + β−1r
(

y
(

K,θ
)

,θ
)−1

ε. We can now

conclude that T is a continuous mapping on P, since ‖p̂− p‖ 6 ε implies

‖T p̂− Tp‖ 6 max (‖T (p+ ε)− Tp‖ , ‖T (p− ε)− Tp‖)

6 β−1r
(

y
(

K,θ
)

,θ
)−1

ε.

Proposition A2. Under the conditions of lemma A4 and assumption 2, there exists a strictly

positive equilibrium function p∗ ∈ P.

Proof. The existence of a fixed point is simply given by Tarski’s fixed point theorem applied to the

monotone self-map T on the complete lattice (P,6).

We now construct a strictly positive fixed point p∗. Note that we are abusing language when using

the expression “strictly positive”, since our setup is such that p∗ (0,θ) = 0 for all θ. Thus, by

“strictly positive”, we mean that p∗ (K,θ) > 0 for all K > 0. We proceed in three steps.

Step 1. Define the sequence (pn)n>0 such that p0 (K,θ) = UC (y (K,θ) , L (K,θ))−1 and pn = T np0.

By construction, the first iteration is mapped downward (p1 6 p0) and we obtain a decreasing se-

quence which converges pointwise towards a function p∗. Clearly, p∗ = inf
n>0

pn so p∗ ∈ P. Further-
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more, since T is continuous, p∗ = Tp∗, so p∗ is a fixed point of T .

Step 2. We first show that p∗ is not 0. From assumption 2, take K−such that y (K−,θ) −
L(K−,θ)

1+ν

1+ν > K− and βE
[

r
(

K−, θ, θ′
)

| θ
]

6 1. Pick an α > 0 such that C (α,K−,θ) <

y (K−,θ) − K−, i.e., such that 0 < α
1
γ < y (K−,θ) − L(K−,θ)

1+ν

1+ν − K−. Assume some p ∈ P

is such that p (K−, θ, θ′) > α for all θ′, then we show that Tp (K−,θ) > α by simply evaluating

Z (α, p,K−,θ):

Z
(

α, p,K−,θ
)

=
1

α
− βE





r
(

y (K−,θ)− C (α,K−,θ) , θ, θ′
)

p
(

y (K−,θ)− C (α,K−,θ) , θ, θ′
)





> 1

α
− βE





r
(

K−, θ, θ′
)

p
(

K−, θ, θ′
)



 > 1

α
− β

α
E

[

r
(

K−, θ, θ′
)]

> 0.

This establishes that Tp (K−,θ) > α. Since we start our iterations with

p0
(

K−,θ
)

= UC

(

y
(

K−,θ
)

, L
(

K−,θ
))−1

,

i.e., such that C (p0,K
−, θ, θ′) = y (K−, θ, θ′) and therefore p0 (K

−, θ, θ′) > α, we have p∗ (K−, θ, θ′) >
α > 0.

Step 3. We now want to show that p∗ is strictly positive for all K > 0. Assume, by contradiction,

that p∗ is not strictly positive. This means, that there exists (K0,θ0) such that p∗ (K0,θ0) = 0.

Since p∗ is increasing in all its arguments, this means that p∗ (K,θ) = 0 for all K 6 K0. Define

K̃ = sup
K6K−

{p∗ (K,θ) = 0} .

With the assumption that p∗ is not strictly positive, K̃ > 0. Since K̃ 6 K−, then we have that

y
(

K̃,θ
)

− L(K̃,θ)
1+ν

1+ν > K̃. The right hand side of the Euler equation evaluated at K̃ and θ gives

0 6 βE





r
(

y
(

K̃,θ
)

− C
(

0, K̃,θ
)

,θ′
)

p∗
(

y
(

K̃,θ
)

− C
(

0, K̃,θ
)

,θ′
)



 6 βE





r
(

K̃,θ′
)

p∗
(

y
(

K̃,θ
)

− C
(

0, K̃,θ
)

,θ′
)



 ,

which is finite since p∗
(

y
(

K̃,θ
)

− C
(

0, K̃,θ
)

,θ′
)

> 0. Thus, we obtain a contradiction since

p∗
(

K̃, θ
)

= 0 cannot be a solution. Therefore, K̃ must be 0 and p∗ is strictly positive everywhere

except at K = 0.

Uniqueness

The proof for uniqueness relies on showing that the operator T is pseudo-concave. The following

definitions are useful for that purpose. First, define a pseudo-concave operator:
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Definition 7. A monotone operator T : P −→ P is pseudo-concave if for any strictly positive

p ∈ P and t ∈ (0, 1), T (tp) (K,θ) > tTp (K,θ) for all K > 0, θ ∈ Θ2.

We now define the concept of K0-monotonicity for an operator.

Definition 8. An operator T : P −→ P is K0-monotone if it is monotone and if, for any strictly

positive fixed point p∗, there exists K0 > 0 such that for any 0 6 K1 6 K0 and any p ∈ P such

that p (K,θ) 6 p∗ (K,θ) ,∀K > K1,θ, then

p∗ (K,θ) > Tp (K,θ) ,∀K > K1,θ.

We now proceed to show that T is K0-monotone, which we will then use to prove its pseudo-

concavity. In order to do so, the following preliminary result is useful:

Lemma A6. Under the conditions of lemma A4, suppose P ∈ P and let p = T (P ), then for all
(

θ−1, θ̂−1

)

∈ Θ2,

∣

∣

∣
C
(

p
(

K, θ̂−1, θ
)

,K, θ̂−1, θ
)

−C (p (K, θ−1, θ) ,K, θ−1, θ)
∣

∣

∣
6
∣

∣

∣
y
(

K, θ̂−1, θ
)

− y (K, θ−1, θ)
∣

∣

∣
.

Proof. Pick
(

θ−1, θ̂−1

)

∈ Θ2 and assume WLOG that Y
(

K, θ̂−1, θ
)

> Y (K, θ−1, θ) and that ω

has been chosen close enough to 1 that

y
(

K, θ̂−1, θ
)

−
L
(

K, θ̂−1, θ
)1+ν

1 + ν
> y (K, θ−1, θ)−

L (K, θ−1, θ)
1+ν

1 + ν
.

Step 1. By definition Z (p (K, θ−1, θ) , P,K, θ−1, θ) = 0. Evaluate Z
(

p̃, P,K, θ̂−1, θ
)

at p̃ such that

C
(

p̃, P,K, θ̂−1, θ
)

= C (p (K, θ−1, θ) ,K, θ−1, θ) + y
(

K, θ̂−1, θ
)

− y (K, θ−1, θ) ,

in other words,

p̃
1
γ +

L
(

K, θ̂−1, θ
)1+ν

1 + ν
= p

1
γ +

L (K, θ−1, θ)
1+ν

1 + ν
+ y

(

K, θ̂−1, θ
)

− y (K, θ−1, θ) .

Assume WLOG that p̃ > p (K, θ−1, θ). Then, we have

Z
(

p̃, P,K, θ̂−1, θ
)

=
1

p̃
− βE





r
(

y
(

K, θ̂−1, θ
)

− C
(

p̃,K, θ̂−1, θ
)

, θ, θ′
)

P
(

y
(

K, θ̂−1, θ
)

− C
(

p̃,K, θ̂−1, θ
)

, θ, θ′
)





=
1

p̃
− βE





r
(

y (K, θ−1, θ)−C (p̃,K, θ−1, θ) , θ, θ
′
)

P
(

y (K, θ−1, θ)− C (p̃,K, θ−1, θ) , θ, θ′
)





6 0,
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which tells us that p
(

K, θ̂−1, θ
)

6 p̃. Thus, we have:

C
(

p
(

K, θ̂−1, θ
)

,K, θ̂−1, θ
)

−C (p (K, θ−1, θ) ,K, θ−1, θ)

6 C
(

p̃,K, θ̂−1, θ
)

− C (p (K, θ−1, θ) ,K, θ−1, θ)

6 y
(

K, θ̂−1, θ
)

− y (K, θ−1, θ) .

Step 2. We now evaluate the other side of the inequality. Evaluate Z
(

p (K, θ−1, θ) , P,K, θ̂−1, θ
)

:

Z
(

p (K, θ−1, θ) , P,K, θ̂−1, θ
)

=
1

p (K, θ−1, θ)
− βE





r
(

y
(

K, θ̂−1, θ
)

− C
(

p (K, θ−1, θ) ,K, θ̂−1, θ
)

, θ, θ′
)

P
(

y
(

K, θ̂−1, θ
)

− C
(

p (K, θ−1, θ) ,K, θ̂−1, θ
)

, θ, θ′
)





> 1

p (K, θ−1, θ)
− βE





r
(

y (K, θ−1, θ)− C (p (K, θ−1, θ) ,K, θ−1, θ) , θ, θ
′
)

P
(

y (K, θ−1, θ)− C (p (K, θ−1, θ) ,K, θ−1, θ) , θ, θ′
)



 ,

which implies that p
(

K, θ̂−1, θ
)

> p (K, θ−1, θ). Therefore,

C
(

p
(

K, θ̂−1, θ
)

,K, θ̂−1, θ
)

−C (p (K, θ−1, θ) ,K, θ−1, θ) > 0,

which establishes the desired result.

Lemma A7. Under the conditions of lemma A4 and assumption 2, T is K0-monotone.

Proof. The proof proceeds in two steps.

Step 1. Let us show that there exists K0 > 0 such that y (K,θ) − C (p∗ (K,θ) ,K,θ) > K,∀K 6
K0,∀θ. Pick a strictly positive fixed point p∗. By contradiction, suppose that for all K0 > 0, there

exists a K 6 K0 and a θ = (θ−1, θ)
′ such that y (K,θ) − C (p∗ (K,θ) ,K,θ) < K. Suppose, by

contradiction, that y (K, θ, θ)− C (p∗ (K, θ, θ) ,K, θ, θ) > K, then we would have

C (p∗ (K,θ) ,K,θ)− C (p∗ (K, θ, θ) ,K, θ, θ) > y (K, θ−1, θ)− y (K, θ, θ) ,

which cannot be true for p∗ ∈ P according to lemma A6. Therefore, y (K, θ, θ)−C (p∗ (K, θ, θ) ,K, θ, θ) <

K. By the definition of p∗:

1

p∗ (K, θ, θ)
= βE

[

r (y (K, θ, θ)− C (p∗ (K, θ, θ) ,K, θ, θ) , θ, θ′)
p∗ (y (K, θ, θ)− C (p∗ (K, θ, θ) ,K, θ, θ) , θ, θ′)

]

> βE

[

r (K, θ, θ′)
p∗ (K, θ, θ′)

]

= β

ˆ

r (K, θ, θ′)
p∗ (K, θ, θ′)

π
(

dθ′, θ
)

,

where π (dθ′, θ) denotes the marginal density of θ′ conditional on θ. Since p∗ (K, θ, θ′) is weakly
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increasing in θ′, we have

β

ˆ

r (K, θ, θ′)
p∗ (K, θ, θ′)

π
(

dθ′, θ
)

> β

p∗ (K, θ, θ)

ˆ

θ′6θ
r
(

K, θ, θ′
)

π
(

dθ′, θ
)

=
β

p∗ (K, θ, θ)
r (K, θ, θ)P

(

θ′ 6 θ
)

,

where r (K, θ, θ) > 0. Given our specification of the stochastic process followed by θ, denote π

the lower bound on the probability that θ′ falls below current θ, i.e., π = inf
θ∈Θ

P (θ′ 6 θ | θ). In our

setting, π exists and is strictly positive. Since r (K, θ, θ) → ∞ as K → 0, we can choose K0 small

enough that βr (K, θ, θ) π > 1, then

1

p∗ (K, θ, θ)
>

β

p∗ (K, θ, θ)
r (K, θ, θ)π,

>
1

p∗ (K, θ, θ)
.

Hence, we have a contradiction.

Step 2. Keeping the same K0 given by step 1, pick a K1 6 K0 with a p such that p (K,θ) 6
p∗ (K,θ) ,∀K > K1,∀θ. Since y (K,θ)−C (p∗ (K,θ) ,K,θ) > K1, then for all K > K1 and θ,θ’:

p
(

y (K,θ)− C (p∗ (K,θ) ,K,θ) ,θ′) 6 p∗
(

y (K,θ)− C (p∗ (K,θ) ,K,θ) ,θ′)

Therefore, Z (p∗ (K,θ) , p∗ (K,θ) ,K,θ) = 0 > Z (p∗ (K,θ) , p (K,θ) ,K,θ), which implies that

Tp (K,θ) 6 p∗ (K,θ). T is K0-monotone.

Lemma A8. Under the conditions of lemma A4 and assumption 2, T is pseudo-concave.

Proof. We want for t ∈ (0, 1) that T [tp] (K,θ) > tT [p] (K,θ) for K > 0. Since Z is strictly

decreasing in p, it is equivalent to show that

0 = Z (T [tp] (K,θ) , tp,K,θ) < Z (tT [p] (K,θ) , tp,K,θ) .

Z (tT [p] (K,θ) , tp,K,θ)

=
1

tT [p] (K,θ)
− βE

[

r
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

tp
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

]

=
1

t

{

1

T [p] (K,θ)
− βE

[

r
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

p
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

]}

,
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since C is strictly increasing in p, C (tT [p] (K,θ) ,K,θ) < C (T [p] (K,θ) ,K,θ). Since r
p is strictly

decreasing in K, then

Z (tAv, tv,K,θ) =
1

t

{

1

T [p] (K,θ)
− βE

[

r
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

p
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

]}

>
1

T [p] (K,θ)
− βE

[

r
(

y (K,θ)−C (T [p] (K,θ) ,K,θ) ,θ′)

p
(

y (K,θ)− C (T [p] (K,θ) ,K,θ) ,θ′)

]

= 0,

which shows that T [tp] (K,θ) > tT [p] (K,θ) for K > 0. Therefore, T is a pseudo-concave mapping.

Proposition A3. Under the conditions of proposition A1, assumptions 1-2 and ω close enough

to 1 such that y (K,θ)− L(K,θ)1+ν

1+ν is nondecreasing in K and R is nonincreasing in K, there is a

unique strictly positive equilibrium p ∈ P.

Proof. T being K0-monotone, pseudo-concave has at most one strictly positive fixed point. Take

two fixed points p∗1 and p∗2. Suppose for some K > 0,θ ∈ Θ2, p∗1 (K,θ) < p∗2 (K,θ). Pick the

K0 from the K0-monotonicity and choose t ∈ (0, 1) such that p∗1 (K,θ) > tp∗2 (K,θ), i.e., choose

t = inf
K>K0

p∗1(K,θ)
p∗2(K,θ) which is finite, strictly positive (recall that the p’s are increasing in K, strictly

positive and bounded) and strictly less than 1 by assumption. Then, by K0-monotonicity, for all

K > K0,

p∗1 (K,θ) > T [tp∗2] (K,θ)

> tT [p∗2] (K,θ)

> tp∗2 (K,θ)

which contradicts the fact that t was the infimum. Therefore, the equilibrium is unique.

F.5 Policy

Proposition 5. The competitive equilibrium with incomplete information is inefficient, but the

constrained efficient allocation can be implemented with a lump-sum tax on the household, an input

subsidy skl and a profit subsidy sπ to intermediate goods producers such that 1 − skl =
σ−1
σ and

1 + sπ = σ
σ−1 .

Proof. We define the constrained planner problem as selecting a schedule z (vj) of probabilities to

use high capacity as a function of an agent’s private signal vj and levels of production Yh and Yl

for capacity levels. Define the planner’s Bellman equation
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VSP (K, θ−1) = max
06z(·)61

Eθ

[

max
K ′,L,Ki,Li

U
(

Y −m (θ, z) f −K ′ + (1− δ)K,L
)

+ βVSP

(

K ′, θ
)

| θ−1

]

subject to

Y =

(
ˆ 1

0
m (θ, z)Y

σ−1
σ

h + (1−m (θ, z))Y
σ−1
σ

l

)

σ
σ−1

Yi = Ai (θ)K
α
i L

1−α
i , i ∈ {h, l}

K = m (θ, z)Kh + (1−m (θ, z))Kl

L = m (θ, z)Lh + (1−m (θ, z))Ll

m (θ, z) =

ˆ √
γvφ (

√
γv (v − θ)) z(v)dv.

The first-order conditions with respect to Ki and Li tell us that the marginal products are equalized

across firms,

αY
σ−1
σ

−1

h Y
1
σ
Yh

Kh
= αY

σ−1
σ

−1

l Y
1
σ
Yl

Kl

(1− α)Y
σ−1
σ

−1

h Y
1
σ
Yh

Lh
= (1− α)Y

σ−1
σ

−1

l Y
1
σ
Yl

Ll
,

and we have equality between the marginal product of labor and the marginal rate of substitution,

(1− α)Y
σ−1
σ

−1

i Y
1
σ
Yi

Li
=

UL (C,L)

UC (C,L)
= Lν .

Solving this system of equation, we obtain the following efficient output level and labor,

YSP (K, θ,m) = (1− α)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν and LSP (K, θ,m) = (1− α)

1
α+ν

(

A (θ,m)Kα
)

1
α+ν .

(32)

The first order condition on z (v) is

Eθ

[√
γvφ (

√
γv (θ − v))UC (C,L)

(

Am (θ,m)

A (θ,m)
YSP − f

)

| θ−1

]

T 0,

with corresponding complementary slackness conditions. Substituting in the values of A and YSP ,

we get

Eθ

[√
γvφ (

√
γv (θ − v))UC (C,L)

(

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1 (1− α)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f

)

| θ−1

]

T 0.
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It is now useful to notice that, since θ = ρθ−1 +
√
γθεθ and vj = θ +

√
γvεvj , with (εθ, εvj) unit

normals, then for any arbitrary function f (K, θ,m), the following equality holds

Eθ [f (K, θ,m) | θ−1, vj ] =

ˆ

f (K, θ,m)
√
γθφ (

√
γθ (θ − ρθ−1))

√
γvφ (

√
γv (v − θ)) dθ/π (v | θ−1)

= Eθ [f (K, θ,m)
√
γvφ (

√
γv (v − θ)) | θ−1] /π (v | θ−1) .

Thus, going back to the planner’s problem, a firm with signal v chooses high capacity with positive

probability if and only if

Eθ

[

UC (C,L)

(

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1 (1− α)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f

)

| θ−1, vj

]

> 0.

This problem is familiar and we recognize a condition similar to the one that characterizes the

solution of the global game. Using the same arguments as before, we know that the stochastic

discount factor UC drops from the equation when γv → ∞, which simplifies the problem to

Eθ

[

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1 (1− α)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f | θ−1, v

]

> 0.

Then, under the same hypothesis as proposition A1, i.e., that
√
γv
γθ

> 1√
2π

ωσ−1−1
σ−1 , we know that the

only solution to the above equation is a cutoff v̂SP (K, θ−1) such that z (v) = 1 for v > v̂SP (K, θ−1)

and z (v) = 0 for v < v̂SP (K, θ−1). The cutoff is such that

Eθ

[

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1 (1− α)
1−α
α+ν

(

A (θ,Φ (
√
γv (θ − v̂SP )))K

α
)

1+ν
α+ν − f | θ−1, v̂SP

]

= 0. (33)

Comparing the two conditions (32) and (33) to that of the competitive economy, we see that

the conditions coincide either with the input subsidy 1 − skl =
σ−1
σ so as to offset the markup

and the profit subsidy 1 + sπ = σ
σ−1 to induce the right entry; or more simply, just using a sales

subsidy 1 + sy = σ
σ−1 . Under the conditions of proposition A3, we know that these two first order

conditions uniquely determine the equilibrium. Therefore, the two economies coincide under this

optimal sales subsidy and the economy without subsidy is inefficient.

Proposition 6. Under GHH preferences, for γv large, an unforeseen one-time increase in govern-

ment spending financed by lump-sum taxes reduces welfare.

Proof. Consider the case of an unforeseen shock to government spending G0 > 0 that lasts only one

period, Gt = 0 for t > 1 financed by a lump-sum tax T0 = G0.
37 Notice that, under our assumption

of GHH preferences, our expressions for equilibrium output Y (K, θ,m) and labor L (K, θ,m) from

proposition 1 remain unaffected by government spending. The only channel by which spending

may influence output is through the coordination game by affecting the measure of firms with high

capacity m. As shown in lemma A1, as γv becomes large, the within-period uncertainty vanishes

37Ricardian equivalence obtains in our environment and the actual timing of taxes is irrelevant.
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and the stochastic discount factor disappears from the surplus from choosing the high capacity

which, in the absence of other subsidies, can be approximated by

∆Π̃ (K, θ−1, vj,m) = Eθ

[

1

σ

ωσ−1 − 1

Ω (m)σ−1

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν

A (θ,m)
1+ν
α+ν Kα 1+ν

α+ν − f | θ−1, vj

]

.

As a result, when γv is large, equilibrium consumption C drops from the equation and the solu-

tion v̂ (K, θ−1) to the global game is independent from government spending G. The equilibrium

production Y is thus unaffected.

Consider now the equilibrium allocation
{

Ct

(

θt
)

,Kt+1

(

θt
)}

in the economy hit by the gov-

ernment spending shock. Because equilibrium production Yt

(

θt
)

and labor Lt

(

θt
)

are unaffected

by government spending, hence prices as well, the same allocation is feasible in an economy with-

out government spending: it satisfies both the household’s budget constraint and the aggregate

resource constraint with some extra resources left from the unused government consumption. By

increasing consumption in period 0 by G0 exactly, the household can choose an allocation that

remains feasible and strictly increases its welfare. As a conclusion, welfare in the economy without

spending is strictly greater than in the economy with government spending shock.
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