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Abstract

I develop a theory of dynamically incomplete financial contracting and explore how to
optimally fill in that incompleteness over time. Unlike the related literature, I do not
introduce ad-hoc restrictions that make the contracting space exogenously incomplete.
By building incompleteness from assumptions on preferences, I go deeper than the
incomplete contracts literature and explore what can be left incomplete and when are
control rights needed? This analysis yields the first micro-foundation for debt, defined
as a dynamically incomplete contract with a particular preliminary cash-flow right
which can then be renegotiated under a default-contingent allocation of control rights.
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1 Introduction

Many long-term contracts are dynamically incomplete. For example, a financing contract
might officially mature at some date T , and yet the financing relationship will likely extend
well beyond that initial maturity date. How exactly should the contract be renegotiated to
extend the relationship? These details are often missing. Some contracts like debt allocate
state-contingent control rights for filling in these missing details. Other contracts have no
instructions at all. In this paper, I develop a theory of dynamically incomplete contracting
and explore how that incompleteness should be optimally completed over time.

Unlike most of the incomplete contracting literature, my study of incomplete contracts
does not rely on ad-hoc restrictions that make the contracting space exogenously incomplete.
By developing incompleteness from the ground up through assumptions about preferences,
I am able to study what can be left incomplete. From this analysis emerges a deeper un-
derstanding of how incompleteness should be filled in over time, when control rights need
to be allocated and why they need to be allocated a certain way. These insights about the
building blocks of incomplete contracts also yield a richer understanding of specific incom-
plete contracts like debt and equity. Indeed, the most important contribution I make in this
paper is providing a robust micro-foundation for debt as a dynamically incomplete contract
featuring default-contingent control rights.

I begin by fixing an ideal dynamic financial contracting setting where the players - an
entrepreneur and a financier - can negotiate a complete contract extending to the end of
time. No restrictions are placed on the contracting space. Under standard expected utility,
it is well known that optimal complete contracts are typically sensitive and complex. Simple,
incomplete arrangements like debt are difficult to rationalize. I then ask: What alternative
class of preferences would cause optimal complete contracts to always “look like” dynamically
incomplete contracts?

Intuitively, if the players have no idea what kind of surplus the relationship can generate
in the distant future, they will only agree to a contract that matures before the distant future.
Then, over time, if it becomes clear the relationship will continue to generate surplus, the
initial maturing contract can then be extended. I formalize this intuition by introducing a
class of weakly time-consistent preferences where the players are completely uncertain about
the distant future in the Knightian sense. As time passes and distant events move toward the
present, that uncertainty is gradually resolved. Players are averse to uncertainty, and, over
time, repeatedly make max-min decisions with respect to any residual uncertainty. In my
ideal contracting setting, this dynamic max-min preference implies that the payoff generated
by an optimal complete contract can be achieved by a dynamically incomplete contract in
which the allocation of control rights for filling in missing details is irrelevant.

This baseline optimality result makes no predictions about the shape of the initial dy-
namically incomplete contract or how the missing details should be filled in. It serves as the
blank slate on which I further develop my theory of dynamically incomplete contracting. In
the rest of the paper, I consider a series of modifications of the baseline setting. I study
how these modifications affect both the initial optimal dynamically incomplete contract and
the subsequent allocation of control rights. This sheds light on how frictions in the financ-
ing relationship force certain features to emerge in the resulting optimal contract such as
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state-contingent allocation of control rights.
The most important modification I consider is an informational one. Instead of perfect

information, I now assume that the entrepreneur privately observes the contract relevant
state of the world and can strategically reveal information about it to the financier. I show
that an optimal contract responds in two important ways. First, the initial dynamically
incomplete contract now gives the financier cash flow rights in a wedge payoff form D ∧ v
where D is some constant and v is the value of the underlying asset. Second, the allocation
of control rights for filling in missing details is no longer irrelevant and is, instead, done in
a state-contingent way with the financier receiving control when v < D.

I call this dynamically incomplete contract debt. With respect to the previous litera-
ture, my contribution is providing a more robust rationale for debt under a more complete
definition of what is a debt contract.

In terms of robustness, I establish the debt result in a general dynamic complete contract-
ing setting, where players need not be risk-neutral and contracts need not be deterministic.
Furthermore, the debt contract is renegotiation-proof when viewed formally as a complete
contract. Previous well-known optimality-of-debt results have notably lacked these proper-
ties, leading to robustness concerns. For example, Mookherjee and Png (1989) shows that in
the costly state verification model, if the financier is allowed to make random verifications,
then the optimal contract is no longer debt.

This more robust optimality-of-debt result is also proved under a more complete definition
of debt. In my paper debt is a preliminary wedge-shaped cash flow right which can then be
renegotiated under a state-contingent allocation of control rights. In contrast, the previous
security design literature defines debt largely based on either cash-flow rights or control
rights but not really both. For example, there is a complete contracts literature focused on
explaining the optimality of wedge-shaped cash flow rights. Seminal papers include Townsend
(1979), Gale and Hellwig (1985), and Innes (1990). But those are static models in which
there is little scope to talk about control rights ex-post. On the other hand, the primary
objective of the incomplete contracts literature is to highlight how variations in the allocation
of control rights can have important payoff implications. A classic study of debt using the
incomplete contracts approach is Aghion and Bolton (1990). However, there, as in most of
the incomplete contracting literature, exogenous restrictions are placed on the contracting
space to generate the need for control rights. Moreover, the actions over which control
rights are allocated are reduced-form representations of actual contract renegotiations such
as restructuring under bankruptcy. In contrast, my approach depends on the dynamic max-
min preferences endogenously generating incompleteness and, therefore, a role for control
rights. Thus, I can continue to work in a rich, complete contracting setting. In this rich
setting, I do not explicitly designate anything as, say, the “bankruptcy restructuring” action.
Instead, such a concept emerges organically in my model as an interpretation of the specific
way the missing details of a dynamically incomplete contract are optimally filled in over
time.

In light of these differences between my debt result and those of the related literature, a
key contribution of my paper is providing a robust micro-foundation for debt.

In addition to the modification of the baseline setting leading to debt, I consider another
modification concerning how uncertainty about distant events is resolved as those events
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move toward the present. I specialize to a setting where the interim uncertainty takes a form
where the set of beliefs the players are willing to entertain consists of “towers” of beliefs
ordered by the mean-preserving spread relation. A canonical example is when the players
have beliefs about the asset’s expected value but do not know the precise distribution. In
this case I show that optimal dynamically incomplete contracts involve players beginning
with linear shares of the asset and renegotiating to new linear shares over time as conditions
change. This motivates equity-based dynamic financing arrangements.

Again, an important quality of the result is robustness - players need not be risk-neutral
and contracts need not be deterministic. Moreover, I establish the result in a dynamic
setting. Most previous linearity results are about static contracts and the few that do
deal with dynamic contracts require strong assumptions on fundamentals and involve each
party receiving a permanently fixed linear share. In contrast, my linearity result yields a
more flexible notion of contracting with equity in a general dynamic contracting setting.
My dynamic linearity result also links this paper to a related static contracting literature
seeking to micro-found the null contract in the classic hold-up model. See, for example, Che
and Hausch (1999), Hart and Moore (1999), and Segal (1999). The closest paper is Mukerji
(1998) which points out that the null contract, by giving each party a fixed fraction of the
future surplus, may be attractive to max-min decision makers. The idea anticipates the one
behind my linearity result and is related to the insight of Carroll (2015).

2 A Toy Model

In the introduction I explained that I will first establish in a baseline setting a “blank slate”
result about the optimality of dynamically incomplete contracts where the incompleteness
emerges endogenously from assumptions about preferences. Then I will modify the baseline
setting in various ways and see how optimal contracts respond, yielding, among other things,
a micro-foundation for debt. In this section, I partially carry out that program in a toy
model analysis. I introduce a toy version of the baseline setting and establish the optimality
of dynamically incomplete contracts. Then, I perform the second modification described in
the introduction on the toy baseline setting and show that these optimal contracts become
linear.

There are two players, E and F , who share an asset spanning dates 1 and 2. At date 1,
the asset produces some random amount of capital v1 ∼ U [0, x1]. A portion of this capital
can be withdrawn for consumption, c1,E for E and c1,F for F . The asset then turns the
remaining capital k1 := v1− (c1,E +c1,F ) into some random amount of capital v2 ∼ U [0, x2k1]
at date 2 which is then consumed by the players, c2,E + c2,F = v2. x1 is known at the time
of contracting which occurs before date 1 while x2 is realized at date 1.

A complete contract specifies a history-dependent consumption plan

{c1,E(v1, x2), c1,F (v1, x2), c2,E(v1, x2, v2), c2,F (v1, x2, v2)}.

A belief is completely summarized by a joint distribution π1 of (v1, x2) with the property that
π1|v1 ∼ U [0, x1]. Here, |v1 means the marginal distribution over v1. The optimal contracting
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problem is to characterize the set of all renegotiation-proof contracts.

Definition. Given a contract, a date 1 continuation contract is the contract with (v1, x2)
treated as fixed. A contract is renegotiation-proof at date 1 if every date 1 continuation
contract is Pareto-optimal. A contract is renegotiation-proof if it is Pareto-optimal among
all contracts that are renegotiation-proof at date 1.

The standard expected utility setting is one where E and F share a single belief π1, so
that E (and similarly F ) evaluates contracts as follows,

E(v1,x2)∼π1
[
uE(c1,E(v1, x2)) + Ev2∼U [0,x2k1]uE(c2,E(v1, x2, v2))

]
.

Here, uE is the weakly concave, strictly increasing utility function of E. It is well known
that optimal dynamic contracts under expected utility are typically complex and not robust.
Moreover, they do not look dynamically incomplete. In contrast, my goal is to make robust
predictions about dynamically incomplete contracts.

To achieve my goal, I now introduce a toy version of the baseline setting which features the
dynamic max-min preferences that I discussed in the introduction and will formally define in
the next section. At the time of contracting, the players have no idea if the relationship can
generate any surplus in the distant future which is represented by date 2. That is, the players
not only entertain belief π1 but also any other belief π′1 satisfying π′1|v1 = π1|v1 = U [0, x1].
Suppose E and F are averse to their inability to pin down a precise belief. Then E (and
similarly F ) evaluates contracts as follows,

min{
π′
1

∣∣ π′
1|v1=U [0,x1]

} E(v1,x2)∼π′
1

[
uE(c1,E(v1, x2)) + Ev2∼U [0,x2k1]uE(c2,E(v1, x2, v2))

]
.

Theorem 1. Every Pareto-optimal payoff can alternatively be achieved by a dynamically
incomplete contract with unspecified renegotiation.

Here, the Pareto-frontier is the payoff frontier generated by renegotiation-proof complete
contracts. I will define what exactly is a “dynamically incomplete contract with unspecified
renegotiation” in the course of proving the result.

Theorem 1 is the “blank slate” I referred to in the introduction. As will become clear from
the proof, the result makes no predictions about the shape of the dynamically incomplete
contract or how it should be renegotiated to fill in missing details. The rest of the paper is
then focused on modifying the baseline setting in various ways so that I can say something
more specific about the structure of optimal contracts.

Proof. Fix a point on the Pareto-frontier. There are many renegotiation-proof complete
contracts that achieve this payoff point. The entire collection is a union of sets, each of
which can be characterized as follows: There exists a split (α∗E(v1), α∗F (v1)) of v1 depending
only on v1 such that a contract belongs in the set if and only if it is renegotiation-proof at
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date 1 and every date 1 continuation contract Pareto-dominates the split - that is,(
uE(c1,E(v1, x2)) + Ev2∼U [0,x2k1]uE(c2,E(v1, x2, v2)),

uF (c1,F (v1, x2)) + Ev2∼U [0,x2k1]uF (c2,F (v1, x2, v2))
)

≥ (uE(α∗E(v1)), uF (α∗F (v1)))

for every (v1, x2). This characterization of the set admits the following interpretation:
Consider a tentative split (αE(v1), αF (v1)) of v1 representing outside options for E and

F at date 1. This split does not necessarily equal actual date 1 consumption. Instead, it
serves as the individual rationality constraints for E and F at date 1 as they renegotiate a
Pareto-optimal continuation contract. Let us refer to this split as a dynamically incomplete
contract since there are no instructions for how the split should be renegotiated at date 1.

Under expected utility, players cannot rank dynamically incomplete contracts and there-
fore, it is not well-defined to talk about optimal dynamically incomplete contracting. The
characterization of the set of renegotiation-proof complete contracts that achieve a com-
mon payoff implies that under the current max-min setup, optimal dynamically incomplete
contracting is well-defined. Given an arbitrary split (αE(v1), αF (v1)), so long as it is always
Pareto-improved to some Pareto-optimal date 1 continuation contract, the players can assign
a value to the split while still being agnostic about which Pareto-optimal date 1 continuation
contract will be chosen.

Thus, to achieve a point on the complete contracts Pareto-frontier, it suffices for E and
F to initially negotiate only an optimal dynamically incomplete contract (α∗E(v1), α∗F (v1))
that leaves details concerning any future renegotiation completely unspecified. Then, once
date 1 arrives, E and F can renegotiate freely to some Pareto-optimal date 1 continuation
contract that Pareto-dominates the split.

These optimal dynamically incomplete contracts lack any ex-ante restrictions on how
future renegotiations should be settled. This open-ended property is sometimes referred to
as “ex-post renegotiation.” Despite the intended meaning of ex-post renegotiation, much of
the previous literature models it as a specific renegotiation protocol that gives each party a
constant share of any surplus generated from renegotiation. Players are assumed to know,
ex-ante, what their constant shares will be. My concept of “unspecified renegotiation” better
captures the we’ll-cross-that-bridge-when-we-get-there spirit of ex-post renegotiation.

The fact that contracts can allow for unspecified renegotiation and still be optimal de-
pends, in part, on the perfect information assumption. If, instead, E were to privately
observe (v1, x2) then, depending on the shape of the initial dynamically incomplete contract,
there could be scope for manipulation and the financing relationship could be compromised.
In a few special cases this is not a problem. For example, if it is known ex-ante that v1 will
never be lower than some constant v, then a dynamically incomplete “safe debt” contract
like (α∗E(v1) = v1 − v, α∗F (v1) = v) with unspecified renegotiation at date 1 is still robust to
manipulation.

What can the parties do when safe debt contracts do not exist? In the formal analysis
of the next section, I tackle this question and show that optimal complete contracts look
like dynamically incomplete contracts where the renegotiation at date 1 is partially specified
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through the allocation of state-contingent control rights.
Before moving on to that formal analysis, I perform a modification on the toy baseline

setting - the second one described in the introduction - and show that it results in optimal
dynamically incomplete contracts that are linear.

Linear Dynamically Incomplete Contracts

Recently, there has been significant progress made in providing a robust rationale for linear
contracts in the static contracting setting. Here, robustness means that the optimality of
linear contracts does not depend on very specific assumptions about the distributional nature
of the underlying uncertainty. Building on Mukerji (1998) and Carroll (2015), I strengthen
the robustness of the linearity result in two directions. First, I relax the requirement that
contracts must be deterministic and players must be risk-neutral. Second, I move from the
static setting into the dynamic setting.

In the toy baseline setting considered above, uncertainty about the distant future resolves
itself in a rather stark way: At date 0, players have no idea how v2 will be distributed. One
date later, they have a precise belief that v2 ∼ U [0, x2k1]. I now modify the setting so that
at each date t, the players continue to have residual uncertainty about vt+1.

Specifically, at date 1, players not only entertain the belief v2 ∼ U [0, x2k1], but, more
generally, any belief π2 such that Eπ2v2 = x2k1

2
. This captures a situation where players know

the expected value but nothing beyond that. Moving back to the moment of contracting
before date 1, the players similarly not only entertain the belief π1, but, more generally, any
belief π′1 over (v1, x2) with the property that Eπ′

1
v1 = x1

2
. I show later that the linearity

result holds under more general assumptions about what beliefs E and F can entertain. For
now, I assume this particular structure for the sake of concreteness. Given this modification,
E (and similarly F ) now evaluates contracts as follows

min{
π′
1

∣∣ Eπ′1
v1=

x1
2

} E(v1,x2)∼π′
1

uE(c1,E(v1, x2)) + min{
π2

∣∣ Eπ2v2=
x2k1

2

} Ev2∼π2uE(c2,E(v1, x2, v2))

 .
Corollary 1. Every Pareto-optimal payoff can alternatively be achieved by a linear dynam-
ically incomplete contract with unspecified linear renegotiation.

What this result says is that every point on the Pareto-frontier can be achieved by a
dynamically incomplete contract with unspecified renegotiation where (α∗E(v1), α∗F (v1)) =
(α∗E · v1, α

∗
F · v1) for some constants α∗E, α

∗
F = 1−α∗E. Moreover, every Pareto-optimal date 1

continuation contract is payoff equivalent to one that specifies a linear split of v2. Thus, at
date 1, when the players renegotiate (α∗E · v1, α

∗
F · v1) to some individually rational Pareto-

optimal continuation contract, it is without loss of generality to assume that they renegotiate
to one that splits v2 linearly. I call this linear renegotiation.

An immediate implication of Corollary 1 is that, instead of renegotiating over the entire
space of dynamically incomplete contracts, the players can simply create equity claims on
the asset and trade them. The players begin with equity stakes (α∗E, α

∗
F ). Then at date
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1, these claims on the asset establish the players’ bargaining positions as they negotiate
dividend payouts (i.e. c1,E and c1,F ) and their future equity stakes in the asset.

Proof. The proof is implied by analyzing a related static risk-sharing problem. Suppose E
and F share an asset that produces a one time random payoff v. Ex-ante, for every Pareto-
optimal payoff, the players seek to find a sharing rule (αE(v), αF (v)) that will achieve it. Un-
der expected utility, a well-known necessary condition for Pareto-optimality is Borch’s Rule,
which states that if (αE(v), αF (v)) is Pareto-optimal then the ratio u′E(αE(v))/u′F (αF (v)) of
marginal utilities must be constant across all v. Borch’s Rule implies that, outside of a few
special cases, linear sharing rules are suboptimal.

Now suppose E and F are uncertain about v in the way described above and are averse to
uncertainty. That is, there is some constant v such that they entertain any belief π satisfying
Eπv = v and evaluate shares as follows,(

min
{π | Eπv=v}

Ev∼πuE(αE(v)), min
{π | Eπv=v}

Ev∼πuF (αF (v))

)
.

Consider E’s share αE(v). Suppose it is strictly concave over, say, [0, 1]. Fix a distribution
π that E entertains and suppose it puts some weight on the open interval (0, 1). Then
construct an alternative distribution π′ which is identical to π except that it shifts the weight
on (0, 1) to the endpoints in a mean-preserving way. Since E entertains π, he entertains π′

as well. Moreover Ev∼πuE(αE(v)) ≥ Ev∼π′uE(αE(v)). Given E’s max-min preferences,
this observation implies that it is without loss of generality for E to entertain only those
distributions that do not put any weight on the strictly concave regions of αE(v). But then
it is a weak Pareto-improvement to linearize all the strictly concave regions of αE(v) and
give the surplus to F . This implies that it is without loss of generality to assume that αE(v)
is weakly convex. By the same reasoning, it is without loss of generality to assume αF (v) is
weakly convex. The only sharing rules that are weakly convex for both players are precisely
the linear sharing rules.

The proof implies that the linearity result holds under the more general assumption that
each player entertains a possibly distinct set of beliefs consisting of towers of beliefs ordered
by the mean-preserving spread relation. Such a tower is defined to consist of a most precise
belief π and all beliefs that are mean-preserving spreads of it. One caveat is that players need
to become risk-neutral when vt is sufficiently large. Otherwise, the Pareto-frontier collapses
to a point and the linearity result has no bite. There are also various other ways to get the
optimality or near-optimality of linear contracts without assuming risk-neutrality over high
values of vt by slightly modifying the structure of the set of beliefs E and F entertain. The
simplest way is to assume that vt is bounded above and that all beliefs must respect that
bound.

The proof also implies that the linearity result is essentially a result about static contracts.
Corollary 1 simply shows how this static result can be imported into a dynamic setting. In
contrast, the debt result I prove in the next section is truly a result about dynamic contracts.
The wedge-shaped cash flow rights and the default-contingent control rights that comprise
debt are jointly optimal in the dynamic asymmetric information setting. There is no static
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version of that setting in which I can exclusively derive the wedge-shaped cash flow rights
as the optimal static contract.

3 The Formal Model

In this section, I first introduce the formal baseline setting and re-establish the “blank
slate” optimality result, Theorem 1. Then I modify the setting by introducing asymmetric
information and prove the optimality of debt. The need to move beyond the toy model and
to introduce the formal model arises due to the debt analysis. As will become clear, the
optimality of debt hinges on the financier worrying about many different things that can “go
wrong.” The toy model, with its simplifying assumptions, simply removes too many degrees
of freedom for debt to emerge as the optimal dynamically incomplete contract.

Once again, E and F share an asset spanning dates 1 and 2. In addition, there is an
ex-ante date 0. At date 1, the asset produces some random amount of capital v1 ≥ 0. The
players consume c1,E + c1,F ≤ v1. The remaining capital, call it k1, then randomly generates
an amount of date 2 capital v2 which is completely consumed, c2,E + c2,F = v2.

States of the World. A date 2 state of the world s2 is a realized date 2 capital v2. Define
{s2} to be the set of all possible date 2 states of the world. A date 1 state of the world s1 is
the following object,

s1 := (v1,Π2 : k1 → 2∆({s2})).

A date 1 state of the world consists of a realized date 1 capital plus a belief function Π2,
which specifies for each possible date 1 remaining capital k1 ∈ [0, v1] a set of beliefs about
the date 2 state of the world. I impose some mild restrictions on the shape of Π2. I assume
Π2 is weakly increasing - that is, for every pair k1 < k′1, if π2 ∈ Π2(k1) then there exists a
π′2 ≥d π2 that ∈ Π2(k′1), and if π′2 ∈ Π2(k′1) then there exists a π2 ≤d π′2 that ∈ Π2(k1). The
partial order ≥d is by first-order stochastic dominance. I also assume Π2(0) ≡ 0. Let {s1}
denote the set of all possible date 1 states of the world. Fix a subset S1 ⊂ {s1}. Given S1,
an ex-ante date 0 state of the world s0 := (Π1 ∈ 2∆(S1)) is a set of beliefs about the date 1
state of the world subject to the restriction that all beliefs have supports that are subsets of
S1.

Notice I assume that players share the same belief function at all times. I develop the
model this way purely for notational simplicity. The model can be reformulated so that
states of the world specify potentially distinct belief functions for the players. All results
would continue to hold.

Definition. A setting is a choice of (s0,S1).

Contracts and Dynamic Max-Min Preferences. Fix a setting (s0,S1). A complete contract
is a history-dependent consumption plan for E and F ,

(cE, cF ) := (c1,E(s1), c1,F (s1), c2,E(s1, s2), c2,F (s1, s2)).

A contract implies a state-contingent remaining capital amount k1(s1).
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As I have defined them, contracts are not random - consumption can only depend on the
history of the state of the world, and not some exogenous randomizing devices. However, all
of my results continue to go through even allowing for random contracts.

Notice, the definition of contracts implies that belief functions Πt are contractible. To
the extent that these Πt are formulated based on publicly observable data about the asset
(e.g. credit rating) or the market (e.g. VIX), this can be justified. Realistically though,
such belief functions are at least partially based on unobservable or unverifiable information
and one could argue that therefore they should not be modeled as contractible. However,
since I am analyzing a perfect information benchmark right now and since my goal is to
provide a rationale for why contracts are dynamically incomplete, I want to place as few
exogenous restrictions on the contracting space as possible. By letting literally everything be
contractible, I create the greatest distance between myself and my goal, allowing me to better
develop a non-ad-hoc theory of optimal dynamically incomplete contracting. Of course, once
I introduce asymmetric information, I will no longer allow the privately observed state of the
world to be directly contractible. However, I will still allow E to make contractible reports
about the state.

Given a contract (cE, cF ), E’s continuation payoff process UE characterizing his prefer-
ences is defined as follows,

U2,E(s1, s2) = uE(c2,E(s1, s2)),

U1,E(s1) = uE(c1,E(s1)) + min
π2∈Π2(k1(s1))

Es2∼π2U2,E(s1, s2),

U0,E = min
π1∈Π1

Es1∼π1U1,E(s1).

UF is defined similarly for F .

Lemma 1. The dynamic max-min preference is weakly time-consistent.

Proof. See Appendix.

By selecting the appropriate setting (s0,S1), this dynamic max-min preference can reduce
to standard expected utility (when (s0,S1) features only singleton-valued belief functions)
or the preferences used to develop my theory of dynamically incomplete contracts.

Recall, in the introduction I outlined the following program: 1. Introduce a baseline
setting in which optimal complete contracts can be implemented by dynamically incomplete
contracts in which the allocation of control rights is irrelevant. 2. Perform a series of
modifications on the baseline setting and see how optimal contracts respond.

In the previous toy model section, I partially carried out this program. I introduced a
toy version of the baseline setting, established the blank slate optimality result, Theorem 1),
and performed one modification of the baseline setting that led to the optimality of linear
dynamically incomplete contracts. All of this can be re-done in the formal model.

The formal baseline setting is the following (s0,S1),

Assumption. S1 = {s1}. s0 is a date 0 state of the world satisfying the following property:
There is a set of distributions V1 of v1 such that π1 ∈ Π1 if and only if π1|v1 ∈ V1.

9



The statement and interpretation of the baseline setting’s optimality result are un-
changed.

Theorem 1. Every Pareto-optimal payoff can alternatively be achieved by a dynamically
incomplete contract with unspecified renegotiation.

Moreover, the formal baseline setting can be modified in a way similar to what was done
in the toy section and Corollary 1 can be re-established. The proofs are essentially the same
so I will not dwell on these results anymore.

Instead, I now focus on the main modification of the baseline setting described in the
introduction - replacing perfect information with asymmetric information about the state of
the world. I will then establish the main result concerning the optimality of debt.

3.1 Asymmetric Information and Debt

In a series of papers, Mukerji (1998), Che and Hausch (1999), Hart and Moore (1999), and Se-
gal (1999) provide a micro-foundation for the null incomplete contract. This involves proving
that the optimal complete contract in a reasonably general contracting model is equivalent to
the null incomplete contract. In this section I do the same for the debt incomplete contract.

I now assume that the date 1 state of the world is privately observed by E and contracts
can depend on s1 only through a report ŝ1 made by E. For simplicity, I continue to assume
that the date 0 and date 2 states of the world are observable.

The publicly observed date 2 state of the world still consists of a realized v2. The privately
observed date 1 state of the world s1 is the following object,

s1 := (v1, θ1,E,Π2 : (k̂1, δ)→ 2∆({s2})).

Lastly, given S1 ⊂ {s1}, a publicly observed date 0 state of the world is still some s0 :=
(Π1 ∈ 2∆(S1)).

Notice, the privately observed s1 is a different object compared to the s1 under perfect
information. There is a new parameter θ1,E and the “belief function” Π2 is now a function

of a pair of as yet undefined parameters k̂1 and δ. For now, I set Π2 aside.
The parameter θ1,E is a transitory taste shock for E. Given a realized θ1,E ∈ R+, E’s

utility of consumption for date 1 is θ1,EuE(·). While this taste shock did not appear in the
baseline setting, the exclusion was purely for simplicity - Theorem 1 would have continued
to hold with taste shocks. So why do I introduce taste shocks now?

A taste shock at date 1 affects E’s intertemporal rate of substitution. Loosely speaking,
changing this intertemporal rate of substitution changes E’s opinion about the best way to
deploy the asset’s capital at date 1. For example, if θ1,E is very high, then E’s opinion is
that saving capital to invest in the future is inferior to consuming the capital today.

It turns out, F ’s belief about what E’s opinion might be plays an important role in the
optimality of debt. Specifically, a key ingredient in the proof is the combination of, ex-
ante, F being completely uncertain about E’s future opinion, and, ex-post, F not observing
that opinion. Introducing a hidden taste shock to the setting is simply a convenient way of
generating this key ingredient. Of course, taste shocks are not the only way. I could have
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also generated the key ingredient by directly assuming that E and F can have differing belief
functions. I choose the taste shock route mostly for simplicity.

At date 1, upon observing s1, E reports a taste shock θ̂1,E. In addition, E chooses to
credibly report a portion of the capital v̂1 ≤ v1. Let δ := v1 − v̂1 denote the amount of
underreporting. The budget constraint is then c1,E + c1,F ≤ v̂1. The reported remaining

capital is k̂1 := v̂1 − (c1,E + c1,F ) which is weakly smaller than the true remaining capital k1

known only to E.
Let us now return our attention to the object Π2(k̂1, δ).
In short, Π2(k̂1, δ) tells E not only what his belief function is but also what F ’s belief

function will be as a function of how he reports the state.
More specifically, let us assume that F expects E to report truthfully - this will be justified

by my restricting attention to truth-telling contracts later on. Then, on the equilibrium
path where E does indeed tell the truth, F should have the same belief function as E.
This is in keeping with the perfect information baseline setting’s simplifying assumption
that both parties share the same belief function. Let us call this common belief function
Π2,δ=0 : k1 → 2∆({s2}).

In the current asymmetric information setting, a date 1 state of the world should not only
specify Π2,δ=0 : k1 → 2∆({s2}) but should also model how F ’s belief function might change
given off-equilibrium path misreports by E. For simplicity, assume that F ’s belief function
is affected only by misreports of v1, not θ1,E. Then, for each δ, the date 1 state of the world

should specify a Π2,δ : k̂1 → 2∆({s2}) that would be F ’s off-equilibrium belief function if E
deviated from the equilibrium path and reported v̂1. This collection of belief functions is
captured by the two-dimensional function Π2 : (k̂1, δ)→ 2∆({s2}) that I include as part of the
date 1 state of the world.

The way I have modeled asymmetric information endows E with great powers of percep-
tion. F is facing a E who can finely tailor his reporting strategy to take advantage of any
perfectly perceived flaw in F ’s ability to forecast the future productivity of the asset. As a
result, F will demand a contract that is robust enough to defend against such a powerful E.
In practice, the disparity between E and F may not be so dramatic. Thus, one can view the
optimal contract I derive in this section as a robust lower bound contract that F can always
fall back on as he contemplates potentially better alternatives.

I impose two mild restrictions on the shape of Π2(k̂1, δ). For every δ, Π2 is weakly increas-
ing in k̂1 with Π2(0, δ) = 0 just like in the perfect information baseline setting. Also, I assume
that Π2 is weakly decreasing in δ holding k1 fixed. This means the more E underreports v1,
the weakly more pessimistic is F about the asset’s future productivity.

Given reports (v̂1, θ̂1,E), the induced public reported date 1 state of the world is

ŝ1 := (v̂1, θ̂1,E,Π2,δ : k̂1 → 2∆({s2}))

A contract specifies a history-dependent consumption plan

(cE, cF ) := (c1,E(ŝ1), c1,F (ŝ1), c2,E(ŝ1, s2), c2,F (ŝ1, s2))

along with a report strategy (v̂1(s1), θ̂1,E(s1)) for E. A contract is truth-telling if v̂1 ≡ v1
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and θ̂1,E ≡ θ1,E. As an abuse of notation, I let s1 = (v1, θ1,E,Π2 : k1 → 2∆({s2})) denote the

reported state when the privately observed state is s1 = (v1, θ1,E,Π2 : (k̂1, δ)→ 2∆({s2})) and
E tells the truth.

I focus on renegotiation-proof truth-telling contracts. Under full commitment, restricting
attention to truth-telling contracts is without loss of generality - this is the revelation princi-
ple. However, when commitment is relaxed, which is the case when doing renegotiation-proof
contracting, it is with loss of generality to restrict attention to truth-telling contracts. In
fact, renegotiation-proof truth-telling contracts are not even guaranteed to exist in general.

That being said, given the intrinsic appeal of the full information revelation implied by
truth-telling, if a contracting setting did happen to have renegotiation-proof truth-telling
contracts, then it would be worth figuring out what they were, independent of any analysis
of a more general optimal contracting problem that allows pooling of types. As it turns out,
in my setting, renegotiation-proof truth-telling contracts do exist and as I will prove shortly,
they are precisely the debt contracts.

Since there is asymmetric information at date 1, defining the renegotiation-proof con-
dition at date 1 requires care. Fix a truth-telling contract with consumption plan (cE, cF )
and some state s1. Consider a feasible (possibly off-equilibrium) reported state ŝ1. The
continuation contract is some

(c1,E(ŝ1), c1,F (ŝ1), c2,E(ŝ1, s2), c2,F (ŝ1, s2)).

where ŝ1 is now treated as fixed. A renegotiation of this continuation contract is some
alternate consumption plan

(c′1,E, c
′
1,F , c

′
2,E(s2), c′2,F (s2))

satisfying the same date 1 budget constraint c′1,E + c′1,F ≤ v̂1. The true remaining capital is

now k′1 = v1 − (c′1,E + c′1,F ) while the reported remaining capital is k̂′1 = v̂1 − (c′1,E + c′1,F ).
Under the renegotiation, E’s continuation payoff is

uE(c′1,E) + min
π2∈Π2(k′1)

Es2∼π2uE(c′2,E(s2)), (1)

and F thinks his continuation payoff is

uF (c′1,F ) + min
π2∈Π2,δ(k̂

′
1)

Es2∼π2uF (c′2,F (s2)). (2)

E is strictly better off under the renegotiation if

(1) > uE(c1,E(s1)) + min
π2∈Π2(k1)

Es2∼π2uE(c2,E(s1, s2)),

and F thinks he is strictly better off under the renegotiation if

(2) > uF (c1,F (ŝ1)) + min
π2∈Π2,δ(k̂1)

Es2∼π2uF (c2,F (ŝ1, s2)).
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Definition. A contract is renegotiation-proof at date 1 if and only if there does not exist
a state s1 and a renegotiation of the continuation contract following some reported state ŝ1

that makes E strictly better off and makes F think he is strictly better off.

Notice, if a truth-telling contract is renegotiation-proof at date 1, then truth-telling is
incentive-compatible.

Definition. A debt contract is a dynamically incomplete contract (α∗E(v1), α∗F (v1)) of the
form (v1 −D1 ∧ v1, D1 ∧ v1) for some constant D1 with partially specified renegotiation: F
(E) is allocated the control right to choose the individually rational continuation contract at
date 1 if v1 < D1 (v1 ≥ D1).

In the security design literature, it is common to impose some monotonicity constraint
on the contracting space in order to prove the optimality of debt. I could do that here as
well, but I do not need to if, instead, I modify the baseline setting (s0,S1) slightly: Replace
the condition π1|v1 ∈ V1 with π1|v1 ≥d µ1 for some µ1 ∈ V1. I now assume this modified
baseline setting.

Theorem 2. Every Pareto-optimal payoff can alternatively be achieved by debt.

The formal meaning of the theorem is the following: Assuming players act optimally when
allocated control rights, a debt contract combined with the truth-telling report strategy is
the same object as a particular complete contract. This complete contract is renegotiation-
proof. Moreover, every point on the Pareto-frontier can be achieved by such a complete
contract.

To get a feel for how the proof of Theorem 2 works, let us take the debt contract, keep
the initial split the same but change the partial specification of renegotiation so that E is
allocated control all the time. I will now informally argue that this is a poor contract for F .

First, it is important to remember that, in general, the individually rational date 1
continuation contract E wants to select depends on the realized state of the world. In
particular, if the realized belief function is optimistic about the future and E’s realized taste
shock takes a relatively low value, then it may be optimal for both parties to forgo consuming
much at date 1, and, instead, wait for date 2’s “bounty.”

Let us assume such a state has occurred at date 1. Moreover, assume that the belief
function is relatively insensitive to δ, so that underreporting by E does not seriously adversely
affect F ’s belief about future productivity.

Then, I claim that E is better off underreporting to a lower value v̂1 < v1. Why?
Embedded in the structure of a debt contract is an obvious temptation to underreport -

the less E reports, the weakly less he has to deliver to F . However, there are some potential
downsides to underreporting that may overcome this upside. For one thing, reporting a lower
capital value tightens the date 1 budget constraint, which may be painful for E if he wants
to consume a lot at date 1. Moreover, if underreporting makes F sufficiently pessimistic,
then, even though E now owes F weakly less, he may still have to give up strictly more to
deliver that smaller continuation payoff due to the increased pessimism.

But notice, neither of these two potential downsides are a concern for us. I have assumed
a state where E does not want to consume much at date 1 anyways and I have assumed that
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underreporting does not make F much more pessimistic. Thus, in this particular state, E
can profitably underreport at the expense of F .

Now, of course, this is just one special state where underreporting is attractive. No doubt
there are many other states with the same capital v1 where E would not want to underreport.
Here is where F ’s ex-ante uncertainty about the future state of the world matters. Even
though the “worst case” scenario of underreporting does not always occur, it matters at the
margin for someone who is uncertainty-averse.

My informal analysis of the altered debt contract suggests the following lesson,

Remark. Varying F ’s payoff with asset value when E is in control can backfire.

The implication is that either F ’s payoff should be constant or if this is not desirable
or feasible then F needs to be in control. A debt contract has precisely this property. The
formal proof of Theorem 2 is basically a more fleshed out version of the arguments made
here.

Just how bad can things get if, in the default region, control is taken away from F?

Corollary 2. Fix an arbitrary debt contract. Change the partially specified renegotiation
so that when in the default region, F is able to choose any individually rational contract
that gives himself up to some constant fraction of the surplus that is strictly smaller than
one. Then the modified debt contract sometimes does not induce truth-telling. Moreover, the
ex-ante payoff of the contract to F is zero.

Proof. This is implied by Step 2 of the proof of Theorem 2.

This micro-foundation for debt also provides some formal justifications for other arrange-
ments that have been studied in the incomplete contracts literature. For example, Chung
(1991) studies a variable quantity procurement model and focuses attention on a class of
simple incomplete contracts. A contract in that class consists of an initial quantity-price
pair followed by a revision scheme granting either the buyer or the seller the right to make
a take-it-or-leave-it offer ex-post consisting of a new quantity-price pair. That incomplete
contracting convention closely matches the one that endogenously emerges in my paper.
Recall, my initial dynamically incomplete contract is the outside option in the subsequent
renegotiation. It serves the same function as the initial quantity-price pair in Chung’s model.
Also, my partially specified renegotiation allocates control rights for choosing a new individ-
ually rational continuation contract to replace the initial one. This mirrors Chung’s revision
scheme which allocates bargaining power in choosing a new quantity-price pair to replace
the initial one.

One concern with regards to Chung’s incomplete contracts is that there is a tension
between imposing the renegotiation-proof condition on contracts and allowing contracts to
allocate bargaining power. That is, does it make sense to assume that the players can com-
mit to play the take-it-or-leave-it bargaining game that the contract requires? In my debt
contract, this is technically not an issue because E and F are technically not playing a bar-
gaining game. Instead, one player is simply choosing the individually rational continuation
contract. The distinction emerges because the contractible reported state in my model con-
tains all information needed to determine if a chosen continuation contract is individually
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rational. Thus, for example, in the non-default region, if E chooses an individually rational
contract and F falsely claims that it is below his outside option and rejects it, E can prove
that F has lied. This, of course, rests on the assumption that the induced belief function of
F is part of the contractible reported state. One might rightly wonder then: How robust is
my control rights arrangement to changes in the verifiability of F ’s belief function?

It turns out, I can successfully implement my control rights arrangement even without
F ’s belief function being verifiable so long as there is a competitive financing market in which
there is another F̂ who is identical to F and who is willing to step in and provide funding.
In this case, simply modify the debt contract so that E can unilaterally ask F̂ to buy out
F ’s position. Here, unilateral means subject to F̂ ’s approval but not F ’s. A buyout request
from E consists of having F̂ pay α∗F (v1) to F in exchange for some continuation contract
(c1,E, c1,F̂ , c2,E(s2), c2,F̂ (s2)).

The implementation of the optimal contract by debt differs from the previous implemen-
tation results in one important way: Renegotiation can no longer be completely unspecified.
Contrasting Theorem 2 with Theorem 1 highlights how the state-contingent allocation of
control rights emerges as an optimal response to information asymmetry. Without this in-
formation asymmetry, then once again the allocation of control rights would be irrelevant.
The initial wedge-shaped cash flow rights could be renegotiated in a completely unrestricted
way and the ex-ante payoffs of the dynamically incomplete contract to both parties would
be unaffected.

Of course, without information asymmetry, there would also be no compelling reason
for the initial dynamically incomplete contract to take a wedge-shaped form. Thus, in my
model, information asymmetry simultaneously necessitates wedged-shaped cash flow rights
and default-contingent control rights. This rationale for why the two salient features of debt
are jointly optimal, which applies in a general dynamic complete contracts model, is a key
contribution of my paper.

4 Future Directions

My work has built on a number of recent papers looking at static contracting under max-
min preferences. See, for example, Antic (2014), Frankel (2014), Garrett (2014), and Carroll
(2015). A related approach looks at contracting under standard expected utility where
the incentive problems have a similarly flexible nature but costs are parameterized using
an entropy function. See Hebert (2015) and Yang (2015). In this paper I extended the
static max-min approach to a dynamic setting. I introduced a baseline optimal contracting
setting under dynamic max-min preferences and then studied two modifications of the setting
and their effects on the structure of optimal dynamically incomplete contracts. There are
obviously many more directions to investigate, and some of them may lead to new insights.

Take, for example, the debt contract defined in the previous section that allocates F (E)
control in default (non-default) states. Corollary 2 implies that changing the default region
control rights even slightly can have serious negative effects on F ’s ex-ante payoff. What
about changing non-default region control rights? Such changes can certainly induce E to
misreport but E will never misreport to a default state. This means F ’s ex-post payoff can

15



only weakly increase and, in fact, ex-ante payoffs are unaffected. Perhaps then there is a
way of relaxing the truth-telling constraint so that debt remains optimal, but renegotiation
in the non-default region can be left completely unspecified. This would then introduce
room to think about how additional frictions in the model might map to different partial
specifications for renegotiation in the non-default region.

Another direction to investigate involves stretching out the horizons of the players. Right
now, players only have some idea about the asset’s value tomorrow. Letting players not be
completely uncertain about events two or more dates into the future could introduce further
subtleties that are hard to capture in the current setup. With longer horizons, there would
also be many more ways to model how uncertainty about distant events gets gradually
resolved over time.

A thorough analysis of optimal contracting along these lines is beyond the scope of my
paper. However, I consider one simple example where players’ horizons are longer. Working
through this example will serve to both explicitly demonstrate one way my class of dynamic
max-min preferences can model longer horizons and provide a glimpse of the new results
that may come from such an analysis.

4.1 Interim Renegotiation

So far I have shown how optimal complete contracts can be implemented as dynamically
incomplete contracts followed by renegotiation at maturity. However, empirical work by
Roberts and Sufi (2009) and Roberts (2015) shows that the typical loan contract is renegoti-
ated early and frequently, before the initial contract matures. Moreover, much of this rene-
gotiation is not triggered by the actual or anticipated violation of a pre-specified covenant. I
now modify the baseline setting to provide a rationale for dynamically incomplete contracts
with unspecified interim renegotiation.

Imagine players have some some idea about how much the asset will be worth two dates
from now. Despite this, the players cannot elucidate the precise path the asset will take to
evolve from what it is today to what the players expect it to be in two dates. Then, intuitively,
the players will initially negotiate a dynamically incomplete contract that matures two dates
from now, but contains missing details about what to do at date 1. Then, at date 1, once
players observe the interim state of the world, they can use the continuation of the original
contract as the point of departure for interim renegotiation. I now formalize this intuition.

Definition. Fix an arbitrary π1 ∈ ∆(S1). Define Π2◦π1 := {π1·π2 | π2(s1) ∈ Π2(v1) for all s1}
to be the set of all probability distributions of v2 generated by π1 assuming the asset is left
alone at date 1 - that is, k1(s1) = v1.

To capture both the extended horizon of the players and their uncertainty about the
interim, I modify the baseline setting so that,

Assumption. S1 = {s1}. s0 is a date 0 state of the world with the property that there is a
set of probability distributions of v2, call it V2, such that π1 ∈ Π1 if and only if Π2 ◦ π1 ⊂ V2.

Theorem 3. Every Pareto-optimal payoff can alternatively be achieved by a dynamically
incomplete contract with unspecified interim renegotiation.
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Proof. See Appendix.

The meaning of this result mirrors that of Theorem 1. Fix a point on the Pareto-
frontier. There are many renegotiation-proof contracts that achieve this payoff point. The
entire collection is a union of sets, each of which can be characterized as follows: There
exists a split (α∗E(v2), α∗F (v2)) of v2 such that a contract belongs in the set if and only if
it is renegotiation-proof at date 1 and every date 1 continuation contract Pareto-dominates
leaving the asset alone at date 1 and then enacting the split - that is,(

uE(c1,E(v1, x2)) + min
π2∈Π2(k1)

Ev2∼π2uE(c2,E(v1, x2, v2)),

uF (c1,F (v1, x2)) + min
π2∈Π2(k1)

Ev2∼π2uF (c2,F (v1, x2, v2))

)
≥
(
uE(0) + min

π2∈Π2(v1)
Ev2∼π2uE(α∗E(v2)), uF (0) + min

π2∈Π2(v1)
Ev2∼π2uF (α∗F (v2))

)
for every (v1, x2). This characterization of the set admits the following interpretation:

Consider a tentative agreement to leave the asset alone at date 1 and split v2 according
to some (αE(v2), αF (v2)). For simplicity, I let (αE(v2), αF (v2)) refer to the entire agreement.
This agreement (αE(v2), αF (v2)) represents the outside options for E and F at date 1. It
does not necessarily equal actual date 1 and date 2 consumption. Instead, it serves as the
individual rationality constraints for E and F at date 1 as they renegotiate a Pareto-optimal
continuation contract. Let us refer to the agreement (αE(v2), αF (v2)) as a dynamically
incomplete contract since there are no instructions for how it should be renegotiated at
date 1.

Under expected utility, players cannot rank dynamically incomplete contracts. However,
the characterization of the set of renegotiation-proof complete contracts that achieve a com-
mon payoff implies that under the current max-min setup, optimal dynamically incomplete
contracting is well-defined. Given an arbitrary agreement (αE(v2), αF (v2)), so long as it is
always Pareto-improved at date 1 to some Pareto-optimal continuation contract, the play-
ers can assign a value to it while still being agnostic about which Pareto-optimal date 1
continuation contract will be chosen.

Thus, to achieve a point on the complete contracts Pareto-frontier, it suffices for E and
F to initially negotiate only an optimal dynamically incomplete contract (α∗E(v2), α∗F (v2))
that leaves details concerning any interim renegotiation completely unspecified. Then, once
date 1 arrives, E and F can renegotiate freely to some Pareto-optimal date 1 continuation
contract that Pareto-dominates the continuation of the original agreement.

Conclusion

In this paper, I developed a theory of optimal dynamically incomplete contracting. In con-
trast to previous theories, I did not place ad-hoc restrictions on the contracting space, and,
instead, developed the theory from first-principles by extending a class of max-min prefer-
ences into the dynamic setting. I first established a “blank slate” optimality result which
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stated the optimality of dynamically incomplete contracts but made no predictions about
the structure of the contract itself or how the missing details should be completed over
time. Then I performed a series of modifications of the model - changes in the resolution
of uncertainty and the observability of information - and investigated how they affected the
structure of the initial dynamically incomplete contract, the scope of subsequent renegotia-
tion, the necessity of control rights, and the allocation of control rights. From this analysis
emerged a robust rationale for equity contracting and a micro-foundation for debt. Lastly, I
provided a glimpse of the many possible future directions one can go from here.

5 Appendix

Proof of Lemma 1. Without loss of generality, I prove the result for E. Fix a stopping
time τ ∈ {1, 2} and two consumption streams c′ and c′′ for E. Suppose that c′t = c′′t
for all t < τ and U ′τ,E(s1, . . . , sτ ) ≤ U ′′τ,E(s1, . . . , sτ ). Here U ′E and U ′′E denote the con-
tinuation payoff processes from receiving c′ and c′′, respectively. Fix an s1 such that
τ(s1) > 1. By construction, the remaining capital in s1 is the same under c′ and c′′. Call
it k1(s1). Then U ′1,E(s1) = uE(c′1(s1)) + minπ2∈Π2(k1(s1)) Es2∼π2U

′
2,E(s1, s2) = uE(c′′1(s1)) +

minπ2∈Π2(k1(s1)) Es2∼π2U
′
2,E(s1, s2) ≤ uE(c′′1(s1))+minπ2∈Π2(k1(s1)) Es2∼π2U

′′
2,E(s1, s2) = U ′′1,E(s1).

In addition, for all s1 such that τ(s1) = 1, it is assumed that U ′1,E(s1) ≤ U ′′1,E(s1). Thus, for
every s1, U ′1,E(s1) ≤ U ′′1,E(s1). Now, obviously, U ′0,E ≤ U ′′0,E.

Proof of Theorem 2. For each date 1 state of the world s1, define U1,F (s1) to be F ’s continu-
ation payoff under the continuation contract that maximizes F ’s continuation payoff. Note,
in particular, this continuation contract gives nothing to E.

Step 1. Fix a contract and a state s′′1 = (v′′1 , θ
′′
1,E,Π

′′
2) satisfying U1,F (s′′1) < U1,F (s′′1). Then

for every v′1 ≥ v′′1 , there exists a state s′1 = (v′1, θ
′
1,E,Π

′
2) satisfying U1,F (s′1) ≤ U1,F (s′′1).

Proof of Step 1. Fix a v′1 ≥ v′′1 and consider the privately observed state s′1 = (v′1; θ′1,E,Π
′
2 :

(k̂1, δ) → 2∆({s2})) with the following properties: Π′2(k1) = Π′′2([k1 − (v′1 − v′′1)] ∧ 0) and
Π′2(k̂1, δ) = Π′2(k1) for all δ ≤ v′1 − v′′1 .

Moreover, assume that θ′1,E is small enough such that the continuation contract in state
s′1 that maximizes E’s continuation payoff subject to delivering continuation payoff U1,F (s′′1)
to F satisfies c1,E + c1,F < v′′1 . That this is possible comes from two observations. First,
it is possible to deliver continuation payoff U1,F (s′′1) to F while satisfying c1,F < v′′1 in
state s′1. To see why, first compute the continuation contract that delivers U1,F (s′′1) to
F in state s′′1. Obviously, c1,F ≤ v′′1 . Since, by assumption, U1,F (s′′1) < U1,F (s′′1), one
can just take the continuation contract that delivers U1,F (s′′1) to F and decrease all the
consumption quantities for F and give them to E until the continuation payoff to F decreases
to U1,F (s′′1). By construction of s′1, this same continuation contract will also deliver U1,F (s′′1)
to F in s′1. Second, given that it is possible to deliver continuation payoff U1,F (s′′1) to F
in state s′1 while satisfying c1,F < v′′1 , then by making θ′1,E arbitrarily low, one can ensure
that the marginal opportunity cost of consuming at date 1 is arbitrarily high for E. This
implies that one can always find a θ′1,E such that the continuation contract in state s′1 that
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maximizes E’s continuation payoff subject to delivering continuation payoff U1,F (s′′1) to F
satisfies c1,E + c1,F < v′′1 . Let {c∗1,E, c∗1,F , c∗2,E(s2), c∗2,F (s2)} be this continuation contract.

Suppose it is not true that U1,F (s′1) ≤ U1,F (s′′1). Then consider the case when s′1 is
privately observed by E. If E misreports to v′′1 and θ′′1,E then the reported state is s′′1
and the continuation payoff promised to F is U1,F (s′′1) which, by assumption, is strictly
smaller than what is promised to F if E tells the truth. Now consider the continuation
contract {c∗1,E, c∗1,F , c∗2,E(s2), c∗2,F (s2)}. If E had told the truth, then F would value this con-

tinuation contract at U1,F (s′′1). However, because I assume that Π′2(k̂1, δ) = Π′2(k1) for all
δ ≤ v′1 − v′′1 , even if E misreports to v′′1 , F ’s valuation of the continuation contract is un-
changed. Thus, by misreporting to s′′1 and then renegotiating the continuation contract to
{c∗1,E, c∗1,F , c∗2,E(s2), c∗2,F (s2)}, E is made strictly better off and F thinks he is equally well-off.
Now just tweak {c∗1,E, c∗1,F , c∗2,E(s2), c∗2,F (s2)} slightly so that F gets slightly more than before,
and I have shown that the contract is not renegotiation-proof. Contradiction.

Fix a Pareto-optimal contract and define the following constant:

D1 := inf
{s1 | U1,F (s1)<U1,F (s1)}

U1,F (s1)

Step 2. E and F weakly prefer debt with the above D1 to the Pareto-optimal contract.
Fix a distribution π1 ∈ Π1. For every v1 < D1, move all the weight π1 puts on v1-states

to a v1-state where the belief function is trivial. Fix an ε > 0. For every v ≥ D1, move all
the weight π1 puts on v-states with U1,F > D1 + ε to a v′-state where U1,F ≤ D1 + ε where
v′ ≥ v. Step 1 implies this is possible. Call the modified distribution π′1. Given the structure
of the setting (s0,S1), π′1 ∈ Π1.

Fix any state s1 with capital value v1 < D1. By assumption, if U1,F (s1) < U1,F (s1) then
U1,F ≥ D1 > v1. On the other hand, U1,F (s1) ≥ v1. Thus, U1,F (s1) ≥ v1. If, furthermore,
F ’s belief function is trivial, then U1,F (s1) = U1,F (s1) = v1. This implies that the value of
the portion of the Pareto-optimal contract where v1 < D1 weakly decreases moving from π1

to π′1. It is clear that the value of the portion of the Pareto-optimal contract where v1 ≥ D1

weakly decreases moving from π1 to π′1. Thus, the value of the Pareto-optimal contract
weakly decreases moving from π1 to π′1.

Similarly, the value of debt weakly decreases moving from π1 to π′1. Moreover, the value of
debt plus ε is weakly larger than the value of the Pareto-optimal contract under π′1. Letting
ε tend to zero implies that F weakly prefers debt to the Pareto-optimal contract.

Next, look at E. For every v1 < D1, there is a v1-state sv1 where U1,F (sv1) = U1,F (sv1)
and, consequently, E gets nothing. For every v1 ≥ D1, there is a v1-state sv1 where E gets
at most v1 −D1. Fix a distribution π1 ∈ Π1. For every v1, move all the weight π1 puts on
v1-states with U1,E > (v1 −D1) ∧ 0 in the Pareto-optimal contract to sv1 . Call the modified
distribution π′1. π′1 ∈ Π1. The value of the Pareto-optimal contract weakly decreases moving
from π1 to π′1. Define a similar modified distribution π′′1 for debt. The value of debt weakly
decreases moving from π1 to π′′1 . Moreover, the value of debt under π′′1 is weakly larger than
the value of the Pareto-optimal contract under π′1. Thus, E weakly prefers debt.
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Step 3. Debt is a renegotiation-proof truth-telling contract.
Fix a state with v1 < D1. Then E gets nothing and the only states that E can misreport

to are those where F retains control and E gets nothing. Thus, there is no way he can
misreport to increase his payoff.

Fix a state with v1 ≥ D1. Then E gets to maximize his payoff subject to delivering D1

to F . Clearly, E cannot profitably misreport to a state with v̂1 < D1. If he misreports to
any other state, he still has to deliver the same continuation payoff D1 to F . Moreover, he
can only make F weakly more pessimistic about the asset’s productivity by misreporting.
Again, there is no way he can misreport to a state and renegotiate the contract to make
himself strictly better off.

Proof of Theorem 3. Fix a contract (c∗E, c
∗
F ) that achieves some Pareto-optimal payoff (U∗0,E, U

∗
0,F ).

Fix an ε > 0 and define the date 1 state of the world

ŝε1 =
(
ε; Π̂2 : k1 → 2∆({s2})

)
with the following properties: Π̂2(ε) = V2, and Π̂2(δ) = 0 for all δ < ε. By construction, the
belief π̂ε1 ∈ ∆(S1) that puts all weight on ŝε1 is in Π1.

Consider the continuation contract following ŝε1. If there is any date 1 consumption by
either player, then (U1,E(ŝε1), U1,F (ŝε1)) ≤ (uE(ε), uF (ε)). This combined with the fact that
π̂ε1 ∈ Π1 means that if ε is sufficiently small, there will be no consumption at date 1 and
k1(ŝε1) = ε. In this case, define α∗E(v2) := c∗2,E(ŝε1, v2) and α∗F (v2) := c∗2,F (ŝε1, v2). Thus, the
continuation payoffs satisfy

(U∗1,E(ŝε1), U∗1,F (ŝε1)) =

(
min
π2∈V2

Ev2∼π2uE(α∗E(v2)), min
π2∈V2

Ev2∼π2uF (α∗F (v2))

)
.

Since π̂ε1 is just one element of Π1, it must be that

(U∗0,E, U
∗
0,F ) ≤ (U∗1 (ŝε1), U∗1 (ŝε1)).

However, equality can be achieved by having the continuation contract after every s1 be the
same as the one after ŝε1. To see this, note

U0,E = min
π1∈Π1

Es1∼π1U1,E(s1)

= min
π1∈Π1

Es1∼π1 min
π2∈Π2(v1)

Ev2∼π2uE(α∗E(v2))

= min
π1∈Π1

min
π2∈Π2◦π1

Ev2∼π2uE(α∗E(v2))

= U∗1,E(ŝε1).

A similar argument proves U∗0,F = U∗1,F (ŝε1).
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Now the date 1 continuation payoff for each state s1 is(
min

π2∈Π2(v1)
Ev2∼π2uE(α∗E(v2)), min

π2∈Π2(v1)
Ev2∼π2uF (α∗F (v2))

)
.

Finally, to make the contract renegotiation-proof at date 1, weakly Pareto improve each
continuation contract to a Pareto-optimal one.
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