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Abstract

Recent empirical evidence demonstrates a macroeconomic announcement effect: a large propor-
tion of the equity premium is realized on scheduled macroeconomic announcement days, while
the volatility remains unchanged. Moreover, market beta explains excess returns on announce-
ment days, but not on days without announcements. This paper proposes a rare-event based
explanation for these phenomena.

1 Introduction

Since the work of Sharpe (1964) and Lintner (1965), the capital asset pricing model (CAPM) has been

the benchmark model for the cross-section of asset returns. While deviations from the CAPM have

proliferated, the model remains the benchmark framework for understanding the relation between risk

and return. Recently, Savor and Wilson (2014) document a striking fact about the fit of the CAPM.

Though the CAPM does a poor job of explaining the overall relation between risk and return, it does

very well on a subset of trading days, namely those days in which the Federal Reserve System or the

Bureau of Labor Statistics releases macroeconomic news.

Figure 1 reproduces the main result of Savor and Wilson (2014) using updated data. We construct

beta-sorted portfolios, and show the security market line, namely the graphical relation between ex-

pected return in excess of the Treasury bill and beta. On non-announcement days (the majority),

the slope is very close to zero, and in fact is slightly negative. On announcement days, the slope is
∗We thank Winston Dou, Marco Grotteria, Nick Roussanov, and Chaojun Wang for helpful comments.
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strongly positive and statistically significant. In addition, dots representing the portfolios seem to be

well following the security market line, suggesting (partially) success of CAPM and contradicting

the well-established view that CAPM should not be able to explain the mean excess returns in cross

section.

One potential explanation for the findings of Savor and Wilson (2014), is that the risk is different

on announcement and non-announcement days. However, covariances and variances can be measured

very accurately, and it turns out that both risk measures are nearly indistinguishable on both sets of

days. This deepens the puzzle, and, as Savor and Wilson discuss, rules out a host of possible risk-

based explanations.

These cross-sectional findings are closely related to the finding that market returns are much

higher on announcement days as opposed to non-announcement days. This finding is the focus of Sa-

vor and Wilson (2013) who show that it is so strong that the majority of the observed equity premium

is realized on macroeconomic announcements. We can summarize the facts as follows:

1. The slope of the security market line is higher on announcement days than on non-announcement

days. The difference is economically and statistically significant.

2. The security market line is essentially flat on non-announcement days.

3. The equity premium is much higher on announcement days as opposed to non-announcement

days

4. Volatilities and betas with respect to the market are the same on both types of days.

We show that these findings can be explained in a model with rare economic disasters. The

presence of rare events breaks the traditional relation between risk and return. This is key, because

these findings together show a dramatic failure of the risk/return relation. We assume that the disaster

probability has an observable and an unobservable component. We assume, for simplicity, that the

unobserved component of the disaster probability follows a two-state Markov-switching process, and

that macro-announcements fully reveal the state to investors. While these assumptions are stark,

they simplify the analysis and serve to illuminate our main mechanism. Macro-announcement days

feature a premium because news that strongly affects investors utility is revealed on these days. They

do not feature higher observed volatility in samples where negative announcements, which are much

less likely that positive announcements do not occur. We calibrate the model to postwar data and

show that our model is able to reproduce main moments associated to the U.S. equity market while

addressing the puzzles associated to macro-economic announcements raised above.
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2 A model with announcement effects

2.1 Endowment and preferences

We assume an endowment economy with an infinitely-lived representative agent. Aggregate con-

sumption (endowment) follows a geometric Brownian motion with constant drift. In addition, the

consumption process is also associated to two (independent) rare events modeled as Poisson jumps:

dCt
Ct−

= µ̄Cdt+ σdBC,t +
(
eZ1,t − 1

)
dN1,t +

(
eZ2,t − 1

)
dN2,t, (1)

whereN1,t areN2,t two independent Poisson processes with jump intensity λ1,t and λ2,t, respectively.

Z1,t andZ2,t are two random variables with the same distribution, denoted by ν, and capture the actual

size of rare disasters. (We assume that Z1,t < 0 and Z2,t < 0.) BC,t is a standard Brownian motion.

All processes described above are assumed to be independent.

The Poisson processes N1t and N2t capture rare events. If no rare events occur, aggregate con-

sumption drifts at a rate µ̄C , and is hit by normal-times shocks dBCt. The rare events represent

huge negative shock to consumption. This structure follows that of Wachter (2013). We discuss the

intensity of the Poisson processes in what follows.

We assume the representative agent has recursive utility with EIS equal to 1, which gives us

closed-form solutions up to ordinary differential equations.1 We use the continuous-time character-

ization of Epstein and Zin (1989) derived by Duffie and Epstein (1992). The following recursion

characterizes utility Vt:

Vt = maxEt

∫ ∞
t

f(Cs, Vs)ds, (2)

where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log[(1− γ)Vt]

)
. (3)

Here β represents the rate of time preference, and γ represents relative risk aversion.

2.2 The jump intensity and scheduled announcements

The jump intensity, λ1,t, can take two different values: 0 < λG < λB . However, the value λ1,t is not

directly observable to the market: agents can only rationally forecast the value of λ1,t, conditioning

on the information set at time t. We call λG the good state, and λB the bad.

Following Benzoni et al. (2011), we model the the dynamics of λ1,t by a continuous time regime

1Methods of Tsai and Wachter (2017) extend this solution to an approximate analytical solution with non-unitary EIS.
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switch model. The model is characterized by

P (λ1,t+∆t = λG|λ1,t = λB) = φBGdt

P (λ1,t+∆t = λB|λ1,t = λG) = φGBdt.
(4)

We assume, as in the data, that announcements occur periodically, and let T be the period length. 2

We assume that macro-economic announcements convey news about future disasters by fully reveal-

ing the value of λ1,t.3 While disasters can take place at any time, the bad state, with which λ1,t = λB

is particularly concerning for agents as it implies a large possibility of disasters. The update of λ2,t

then becomes a huge source of risk for agents.

The process of λ2,t, however, follows a Cox-Ingersoll-Ross process (Cox et al. (1985)), and is

perfectly observable to agents:

dλ2,t = −κ(λ2,t − λ̄2)dt+ σλ
√
λ2,tdBλ,t. (5)

We assume, for simplicity, that Bλ,t is independent of BCt.

These assumptions imply that an announcement is itself perfectly anticipated. However, the tran-

sition between the good and bad states can only be revealed on announcements, and thus associate

the announcements with uncertainty.

2.3 The state-price density

We start by characterizing the state-price density, which will determine prices and returns on a cross-

section of firms. First, group the Brownian motions together into a vector:

dBt = [dBC,t, dBλ,t]
>.

Then we define

τ = t mod T,

or the time passed since the most recent announcement.

We define several additional state variables to incorporate the agents’ rational belief about the
2Scheduled announcements are not perfectly evenly distributed in the data. This simplification keeps the model tractable

and allows us to focus on the main mechanism.
3We assume that the U.S. government has a greater information set than the overall economy. We do not model the

micro-foundations of information collection. See Stein and Sunderam (2015) for a model of why announcements convey
more information than they might seem.
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good and bad states and other relevant information

pt = Pr(λ1,t = λB|Ft).

where Ft is defined as the information set of the agents at time t. So here pt can be understood as the

belief in the probability of bad state at time t. We further define

λ̄(pt) = ptλ
B + (1− pt)λG, (6)

which can be understood as the posterior jump intensity of N1,t, given the belief in the bad state pt.

Finally, we define

p0(t) = ps(t),

where

s(t) = max{s : s ≤ t and s mod T = 0}.

Here p0(t) stands for the information about the revealed state after the most recent announcement.

Obviously p0(t) can only take value 0 or 1.

The following theorem characterizes the state-price density πt.

Theorem 1. For τ ∈ (0, T ), or between announcements, the following equation characterizes the

dynamics of the unique state-price density πt:

dπt
πt−

= −rtdt− λ̄(p)Eν
[
e−γZ1,t − 1

]
dt− λ2,tEν

[
e−γZ2,t − 1

]
dt

+ σ>π,tdBt + [e−γZ1,t − 1]dN1,t + [e−γZ2,t − 1]dN2,t,

(7)

where

σπ,t =
[
−γσ, (1− γ)bλσλ

√
λ2,t

]>
(8)

bp =
(λB − λG)

[
Eνe

(1−γ)Z1,t − 1
]

(1− γ)(β + φGB + φBG)
. (9)

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λ[Eνe(1−γ)Z2,t − 1]

)
, (10)

and rt is the riskfree rate, given by

rt = β + µ̄C − γσ2 + λ̄(pt)Eν
[
e−γZ1,t(eZ1,t − 1)

]
+ λ2,tEν

[
e−γZ2,t(eZ2,t − 1)

]
. (11)
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For τ = 0, or upon announcements, the following equation characterizes πt:

πt
πt−

=
e(1−γ)(a(0;p0(t))+bppt)

e(1−γ)(a(T−;p0(t−))+bppt− )
, (12)

where

a(τ ; p0(t)) = ζp0(t)e
βτ +

1

β

(
µ− 1

2
γσ2 + bpφGB + bλκλ̄+

λG

1− γ

[
Eνe

(1−γ)Z1,t − 1
])

. (13)

ζ0 and ζ1 are the solution to the following system of equations:

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 ,
(14)

where the function pG = p(T−; 0), pG = p(T−; 1), and p(τ ; p0) is defined as

p(τ ; p0) =

(
p0 −

φGB
φGB + φBG

)
e−(φBG+φGB)τ +

φGB
φGB + φBG

.

Proof. See Appendix A.

Recall that the state-price density can be informally viewed as the marginal utility process for

the representative investor (Appendix A makes this intuition precise). The term −γσ captures the

CCAPM affect, negligible in our calibration. The terms multiplying dNj,t reflect the change in

marginal utility in the two types of disasters. Because these affect consumption directly, they al-

ways appear. When γ > 0, the agent is risk averse, and marginal utility rises when a disaster takes

place. Moreover, when γ > (EIS)−1 ≡ 1, or the agent prefers an early resolution of uncertainty,

bλ < 0, from (7) it follows that marginal utility rises when the probability of disaster rises if and only

if γ > 1.

However, pt only shows up by affecting the risk-free rate and the disaster premium, as described

by Tsai and Wachter (2016), while the marginal utility of agent does not change by baring the variation

in pt otherwise. The intuition is that the path of pt is deterministic between announcements, and as a

result pt should not be a priced risk.

Note what does not appear in (7), namely, a term accounting for the effect of announcement

periods on state prices. It might seem like these riskier periods would lead to higher prices of risk.4

Note also that τ only appear in (7) through affecting pt. It seems that by approaching announce-

ments, the economy is facing a growing uncertainty about the perspective and would charge a higher
4Indeed, a positive shock to marginal utility due to a disaster is more likely during the announcement period. To

compensate, the average marginal utility is lower, which we see from the drift in (7).
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price of risk. However, when the EIS is equal to 1, the announcements only shift the future consump-

tion without affecting consumption today (the income and substitution effects cancel out). So only

risk-free rate and disaster premium are affected.

Between announcements, the term pt only affects the dynamics of the state price density by de-

termining the posterior probability of type 1 disasters, while pt itself does not show up as a stochastic

term. The reason is that given the most recent revealed state, there is no additional information about

pt and as a result the dynamics of pt becomes deterministic. As a result the agent should be able to

fully understand this and adjust accordingly.

The following corollary characterizes the state price density upon announcements.

Corollary 2.1. The following inequality holds

ζ0 > ζ1 + bp, (15)

where γ > 1.

Proof. See Appendix A.3.1.

Corollary 2.1 implies that the value function of the representative agent will increase if the re-

vealed state after announcement. Note that 1−γ < 0, we then can see that the state price density will

decrease when the state is revealed to be good, and people’s marginal utility goes down.

2.4 Equity prices

We consider a cross-section of firms with which differ in their sensitivity to disasters. We will evaluate

the CAPM on announcement and non-announcement days using data simulated from these firms.

As in the data, the market portfolio return will be the return on a value-weighted portfolio of the

underlying firms.

For k = 1, . . . ,K, let Dk
t equal the dividend stream of firm k. Assume

dDk
t

Dk
t

= µ̄Ddt+ σdBC,t + (eφkZ1,t − 1)dN1,t + (eφkZ2,t − 1)dN2,t, (16)

where φk is the loading on disasters. We assume that firms have the same loading on the Brownian

shock dBCt. This is in part for simplicity. It also has the attractive property that, absent rare events,

dividend shares and market weights are stationary, implying that no one firm takes over the economy.5

5Given that we simulate for a finite length of time, a non-stationary distribution of relative firm values is not necessarily
a problem. However, because it affects measured CAPM betas, the resulting simulated moments are noisier and harder to
interpret.
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See Kilic and Wachter (2017) for a production-based model that micro-founds values of φk > 1.

We solve for the value of an asset with dividend stream given by (16). In addition to the state

variables defined in the previous section, we further define

τ = t mod T. (17)

Here τ equals the time elapsed since end of the most recent announcement period. The following

theorem characterizes the price of the assets with the dividend process given above:

Theorem 2. The time-t price of asset k with dividend stream (16) takes the form

F kφ
(
Dk
t , pt, p0(t), λ2,t, τ, s

)
= Dk

tG
k
φ

(
pt, p0(t), λ2,t, τ

)
, (18)

where

Gkφ
(
pt, p0(t), λ2,t, τ

)
=

∫ ∞
0

exp
{
akφ
(
τ, s; p0(t)

)
+ bkφ,p(s)pt + bkφ,λ(s)λ2,t

}
ds, (19)

is the price-dividend ratio, and

bkφ,p(s) =
(λB − λG)Eν

[
e(φk−γ)Z1,t − e(1−γ)Z1,t

]
φBG + φGB

(
1− e−(φBG+φGB)s

)
. (20)

The function bkφ,λ(s) solves the ODE

dbkφ,λ(s)

ds
=

1

2
σ2
λb
k
φ,λ(s)2 +

[
(1− γ)bλσ

2
λ − κ

]
bkφ,λ(s) + Eν

[
e(φk−γ)Z2,t − e(1−γ)Z2,t

]
, (21)

with boundary condition

bφ,λ(0) = 0.

aφ
(
τ, s; p0(t)

)
is given by

aφ
(
τ, s; p0(t)

)
= h

(
n, τ, s; p0(t)

)
+

∫ s

0

(
−β − µ+ µ̄D + λGEν

[
e(φk−γ)Zt − e(1−γ)Zt

]
+ κλ̄bkφ,λ(u)

)
du,

(22)

where n =
[
τ+s
T

]
is the number of announcements before the maturity, and h

(
n, τ, s; p0(t)

)
is defined

recursively by

1. h(0, τ, s; 0) = h(0, τ, s; 1) = 0;
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2. For k = 1, 2, 3, . . . , n

h(k, τ, s; 0) = log
{
pG exp(1−γ)(a(0;1)+bp)+h(k−1,τ,s;1)+bφ,p

(
s∗+(k−1)T

)
+ (1− pG) exp(1−γ)a(0;0)+h(k−1,τ,s;0)

}
− bφ,p

(
s∗ + (k − 1)T

)
pG − (1− γ)bpp

G − (1− γ)a(T−; 0)

h(k, τ, s; 1) = log
{
pB exp(1−γ)(a(0;1)+bp)+h(k−1,τ,s;1)+bφ,p

(
s∗+(k−1)T

)
+ (1− pB) exp+bpa(0;0)+h(k−1,τ,s;0)

}
− bφ,p

(
s∗ + (k − 1)T

)
pB − (1− γ)bpp

B − (1− γ)a(T−; 1)

(23)

where s∗ = (τ + s) mod T ; pG = p(T−; 0), pB = p(T−; 1) are the probability of bad state

right before the announcement, given that the most recent announcement revealed a good (bad)

state.

Proof. See Appendix B.

Thus the termDk
t exp

{
akφ
(
τ, s; p0(t)

)
+ bkφ,p(s)pt + bkφ,λ(s)λ2,t

}
is the price today of a dividend

paid s periods in the future. Each of the terms in this exponential has an economic interpretation which

we give below.

The terms bkφ,p(s), is the responses of prices to the change in pt, or the posterior probability of bad

state. Because λ1,t, is market-wide cash flow variables, it affects future riskfree rates (11) and disaster

premium (7), and thus the price response reflects a tradeoff among a cash flow, a risk premium and

a risk-free rate effect. Equation 20 shows that bkφ,p(s) < 0 if and only if φk > 1. That is, when

φk > 1 (recall that 1 is the EIS of the representative agent) the joint effect of cash flow and risk

premium dominates, and the prices is an decreasing function of pt. bkφ,λ(s) also reflects the impact

of the distribution of cash flows. Namely, bkφ,λ(s) reflect the response of prices to to a change in

λ̃t. When φk > 1, the price is a decreasing function of λ2,t because higher λ2,t implies that future

consumption and cash flow become riskier. We can see the role of both of these forces in the last term

in the ODE (21). If this last term were zero, then bkφ,λ(s) = 0 for all s.

To summarize, provided that φk is greater than 1, asset prices fall upon the realization of a disaster

dN2,t = 1 and dN2,t = 1. Asset prices also fall upon an unpredictable increase in the probability of

a disaster dBλt > 0.

2.4.1 Risk premium during non-announcement periods

This section describes risk premium on the equities whose prices we computed in Section 2.4. The

formulas we derive show that the model can qualitatively match the facts we describe in the introduc-
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tion.

Again, we start with characterizing the premium during non-announcement periods, and then

focus on the premium associated to announcements.

To simplify the notation, let F kt = F k
(
Dk
t , pt, p0(t), λ2,t, τ

)
, Gkt = Gkφ

(
pt, p0(t), λ2,t, τ

)
When

τ ∈ (0, T ), locally, there exist processes µkF,t and σkF,t such that

dF kt
F kt

= µkF,tdt+ σkF,tdBt +
J1(F kt )

F k
t−

dN1,t +
J2(F kt )

F k
t−

dN2,t, (24)

where Jj(·) is the operator for the change of a process conditioning on a Poisson arrival of type j rare

event.

The instantaneous expected excess return of the asset is then given by

rkt − rt = µkF,t + λ̄(pt)Eν1

[
J1(F kt )

F k
t−

]
+ λ2,tEν2

[
J2(F kt )

F k
t−

]
+
Dk
t

F kt
− rt. (25)

The following theorem characterizes the instantaneous expected excess return, or the premium,

of the asset during non-announcement periods:

Theorem 3. While τ ∈ (0, T ), or during the announcement period, the instantaneous risk premium

for an equity asset defined in section 2.4 is given by

rkt − rt = γσ2 − λ2,t(1− γ)
1

Gkt

∂Gkt
∂λt

bλσ
2
λ

− λ̄(pt)Eν

[(
e−γZ1,t − 1

)(
eφkZ1,t − 1

)]
− λ2,tEν

[(
e−γZ2,t − 1

)(
eφkZ2,t − 1

)]
. (26)

The theorem divides the premium into four components: the first is the standard consumption

CAPM term. The second term is the premium the investors require for baring the risk of facing the

time-varying probability of type 2 disasters. The third term is the premium directly linked to the type 1

rare disasters: the jump intensity the agent uses is the posterior intensity given by the best information

available; the fourth term stands for the premium demanded for baring the type 2 disaster.

The following corollary characterizes all terms in Equation 26.

Corollary 2.2. 1. For φk > 0, j = 1, 2, the premiums for both type 1 and type 2 are positive.

2. The premium for the time-varying probability of disaster is positive if and only if φk > 1.

Proof. The first part is given by the fact that γ > 0, and φk > 0.
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The second part is given by the fact ∂Gkt /∂λt < 0 if and only if φk > 1. This can be proved by

the fact that bkφ,λ(s) < 0, ∀s > 0, with bkφ,λ(0) = 0 when φk > 1.

2.5 The announcement premium

In this section, we focus on characterizing the announcement premium. Specifically, we define the

announcement premium as the expect return upon realization of the announcements, given the infor-

mation right before. Since there is no time needed for the realization of the shocks, excess return

equals to return for announcements premium.

The following theorem gives a characterization of the announcement premium.

Theorem 4. Upon announcements, or when t mod T = 0, the announcement premium for F kt ,

defined as

E

[
F kφ (Dk

t , pt, p0(t), λ2,t, 0)

F kφ (Dk
t− , pt− , p0(t−), λ2,t− , T

−)

∣∣∣Ft−
]
, (27)

is positive when φk > 1.

Proof. See Appendix B.5

When the λ1,t is revealed to be λG, with φk > 1, the asset price will increase. Note that Corollary

2.2 implies that λG is good news for the agents. This implies that agents are baring risk by tak-

ing positive position of the assets before announcements, and then the agents will charge a positive

premium.

2.5.1 The observed premium without rare events

The premium takes into account the case in which the rare events actually take place. However, if we

assume that 1) rare events is absent 2) The regime remains good all the time, the premium the market

observes is actually given by the following corollary.

Corollary 2.3. When τ ∈ (0, T ), the observed instantaneous risk-premium for an equity asset defined

in section 2.4, conditional on that the rare event does not take place, is given by

rkt − rt = γσ2 − λ2,t(1− γ)
1

Gkt

∂Gkt
∂λt

bλσ
2
λ

− λ̄(pt)Eν

[
e−γZ1,t

(
eφkZ1,t − 1

)]
− λ2,tEν

[
e−γZ2,t

(
eφkZ2,t − 1

)]
. (28)
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When τ = 0, or upon announcements, the observed announcement premium for an equity asset,

conditional on that the regime remains good all the time, is given by

Gkφ(0, 0, λ2,t, 0)

Gkφ(pG, 0, λ2,t, T−)
− 1. (29)

On important feature is that, for any zero-coupon dividend claim, the observed announcement

return is constant, given that the regime remains good. Let Hk
φ(pt, p0(t), λ2,t, τ, s) be the time t price

of Dt+s. Then we have

Hk
φ(pt, p0(t), λ2,t, τ, s) = Dt exp

{
akφ
(
τ, s; p0(t)

)
+ bkφ,p(s)pt + bkφ,λ(s)λ2,t

}
. (30)

Then upon announcements, given that the most recent revealed and announced states are both

good, the observed announcement premium for Hk
φ is given by

Hk
φ(0, 0, λ2,t, 0, s)

Hk
φ(pG, 0, λ2,t− , T

−, s+)
− 1

=
exp

{
akφ
(
0, s; 0

)
+ bkφ,p(s)× 0 + bkφ,λ(s)λ2,t

}
exp

{
akφ
(
T−, s+; 0

)
+ bkφ,p(s

+)pG + bkφ,λ(s+)λ2,t−

} − 1

=
exp

{
akφ
(
0, s; 0

)}
exp

{
akφ
(
T−, s+; 0

)
+ bkφ,p(s

+)pG
} − 1,

(31)

which is only a function of s and obviously positive. This implies that there will be no volatility

observed in the sample for the announcement premium of zero-coupon dividend assets. As a result,

the announcement premium for the equity claim, which is a weighted average of (31), will also be

observed to be almost constant with zero volatility (as the weights depend on the stochastic state

variable, λ2,t.

This helps us to address the puzzle raised above. On any given trading day, the assets will bare

a volatility which is captured by the variation driven by dBC,t and dBλ,t, and the market charges the

premium associated. In addition, the market also charges the premium associated to the disaster risk.

However, on announcement days, the market in fact bares the risk associated to the state to be

revealed. But we might not be able to observe the variation associated as the change of regime is very

rare and we then can only see the price the market is charging for baring it on good days.

12



3 Quantitative results

In this section, we start with showing the empirical evidence of macro-economic announcement ef-

fects documented by Savor and Wilson (2014) with extended samples. After that we proceed to

simulations and show that the effects can be produced with our model.

To avoid confusion with notations, we use capitalized letters to denote realization of random

variables. For example, we use RXt,t+∆t to denote the realization of excess return for the period

from t to t + ∆t. We also use hats to denote the empirical estimates of variables. For example,

we use Ê(RXt,t+∆t) to denote the estimated unconditional mean excess return, or the estimated

unconditional premium.

As we simulate daily returns, it is easier to distinguish sample days with and without announce-

ments. To be specific, we let A and N be the sets of announcement and non-announcement days,

respectively.

3.1 Empirics

3.1.1 Data and methodology

We obtain daily stock returns from the Center for Research in Security Prices (CRSP) for all the

individual stocks traded on NYSE, AMEX, NASDAQ and ARCA from Jan 1961 to Sept 2016. We

use the daily excess returns of Fama-French 25 portfolios and industry portfolios provided by Kenneth

French. In addition, we also use the daily market excess returns and risk-free rate provided by Kenneth

French.

The scheduled announcement dates before 2014 are provided by Savor and Wilson (2014). We

manually add the dates of the Federal Open Market Committee target rate, Bureau of Labor Statistics

inflation and employment announcements after 2014 to the data set following the approach by Savor

and Wilson (2014).

We define the excess daily returns (level) as the daily return of an asset in excess of the risk-free

rate given by Kenneth French, and log excess return as the difference between the log daily return

and log risk free rate.

3.1.2 Beta-sorted portfolios

Following Savor and Wilson (2014), we start with constructing 10 beta-sorted portfolios with US

equity data. The beta-sorted portfolios are portfolios constructed according to one stock’s CAPM

market beta.
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We consider all stocks traded on NYSE, AMEX, NASDAQ and ARCA from Jan 1961 to Sept

2016. The portfolio compositions are updated monthly. At the end of each trading month, individual

stock’s market betas are estimated using daily excess returns with a 12-month rolling window. To

ensure the accuracy of estimates, we only include stocks which are available for trading on more than

90% of the trading days in the sample for beta estimation.

After finishing estimating the betas, we compute the 10 quantiles of the stock betas, and then

assign individual stocks to 10 different portfolios accordingly. The portfolio returns are value-weight

averages of the individual stocks. As a result, we obtain the time-series of the daily excess returns of

10 beta-sorted portfolios.

3.1.3 Excess return v.s. CAPM beta on announcement and non-announcement days

The main message of the empirical analysis is delivered in Figure 1 and Table 1.

We compute the mean excess returns of the ten beta-sorted portfolios on announcement and non-

announcement days, respectively. In addition, we use the market excess returns and compute the

corresponding CAPM beta of the portfolios on those two type of days.

We can see that the CAPM beta estimated on announcement days and non-announcement days are

nearly identical for each portfolio. The volatility, measured by standard deviation of excess returns,

also remains nearly identical.

We can also see the announcement premium described by Savor and Wilson (2014). The security

market line of the portfolios on announcement days seem to be associated to a much higher slope than

that on non-announcement days. In addition, it appears that the market beta is capable of explaining

the cross-sectional variation in mean excess returns on announcement days, as the risk premium

realized on announcement days appears to be proportional to the CAPM beta.

3.2 Simulation

In this part, we focus on evaluating the performance of our model through simulation.

We start with calibrating the aggregate economy with multiple equity assets (or portfolios). The

parameters are mainly from Wachter (2013). In our simulation, there are 240 trading days per year,

and one announcement day every ten trading days. This specification can reflect the fact that there are

approximately 2 macro-economy announcements in each calendar month, while keeps the simplicity

of simulation.

We choose λ̄, φGB , φBG, λB and λG such that the the unconditional jump intensity for the two

Poisson processes together is 3.55% per annum, a number which we take from the work of Wachter
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(2013) and Barro and Ursúa (2008). In addition, we employ the samples of rare consumption decline

from Barro and Ursúa (2008), and assume that the distribution is multinominal in out model. φGB
implies that on average it takes 20 years for an economy in good state to switch to a bad one, while

φBG implies a average length of 3 years in bad state. For simplicity, we let λG = 0. The bad state

can then be understood as a period with much higher chance of diasters.

The details of parameter choice are reported in Table 2.

In our simulation, we have 12 firms (portfolios) with different leverage levels φk, and set the

announcement at the middle of the announcement days. This allows us to quickly compute the daily

returns of the assets by facilitating end-of-day prices while avoiding the prices right before and after

announcements.

We run 500 parallel simulation samples. Each sample runs 100 years (or 240× 100 periods). We

drop the first 50 years of observations in order to obtain a stationary distribution of the state variables

at the beginning of each sample. In addition, we focus on samples that always remain in the good

state and without disaster realization in the second half. This is obtained by re-sampling the sample

path of state variables (state, rare events, etc) until we obtain a path that meets our criteria. In fact,

by such sampling strategy we can obtain a stationary distribution of state variables at the beginning

of samples, conditioning on that there is no rare events.

3.2.1 Simulated moments

For each simulation sample, with the simulated state variables, we then can employ (18) and obtain

a time series of asset prices {F kt }t. Then we use the following approximation to compute the time

series of daily returns of assets.

Rkt,t+∆t ≈
F kt+∆t +Dk

t+∆t∆t

F kt

=
Dk
t+∆tG

k
t+∆t +Dk

t+∆t∆t

Dk
tG

k
t

=
Dk
t+∆t

Dk
t

Gkt+∆t + ∆t

Gkt

≈ exp
{
µ̄D∆t− 0.5σ2∆t+ σ(BC,t+∆t −BC,t)

} Gkt+∆t + ∆t

Gkt
,

(32)

where ∆t = 1/240.

The risk free rate is approximated by

Rft = exp(rt∆t). (33)
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The daily excess return of asset k is then

RXk
t,t+∆t = Rkt,t+∆t −R

f
t . (34)

In addition, the log excess return of asset k is defined as

log(1 +Rkt,t+∆t)− log(1 +Rft ) = log(1 +Rkt,t+∆t)− rt∆t.

For each simulation sample, we use the value-weighted average of the portfolios excess returns

as the market. Specifically, we enforce that all assets have same values at the beginning of the second

half of each sample, (as we only keep the second half for statistics calculation), and then let the

values vary with state variables. We then can use the excess returns on announcement and non-

announcement days to compute portfolio CAPM beta on those two types of days, respectively. In

addition, we compute the mean excess returns of the portfolios on the two types of days.

The main feature we want to show with respect to our model can be summarized in Table 3, 4 and

5.

The medians of the simulated mean excess returns, volatilities and betas for the 12 beta-sorted

portfolios on announcement and non-announcement days across simulation samples are reported in

Table 4. The median volatilities and beta on two types of days are nearly identical in the simula-

tion samples, while there is a spread between the mean excess returns on announcement and non-

announcement days. The reason is that the time-varying probability of type 2 disasters is the main

driver of volatilities attach to the assets as well as the aggregate market6, and as a result moments asso-

ciated to volatility, including volatility and beta, are unaffected on announcement days. However the

announcements are associated with a premium, and on sample paths where there is no regime switch,

the volatility associated can not be observed. As a result in statistics it appears that the premium is

not associated with a higher level of risk.

Figure 3 delivers the boxplots of distribution of the mean excess returns on announcement and

non-announcement days across simulation samples. We remove the outliers detected by the boxplots

for the sake of clarity.

In addition, the simulation result for mean excess returns essentially captures the fact that CAPM

beta is able to explain the cross-sectional variation in portfolio mean excess returns on announcement

days. The reason is that the assets have the same loading on the two types of disasters.

We then turn to the Fama-MacBeth type regressions utilized by Savor and Wilson (2014). In fact,

we run the following cross-sectional regressions
6See Wachter (2013).
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Ê(RXk
t | t ∈ i) = δiβ

k
i + ηki , (35)

where i = A or N . With the simulation moments, we can easily build the 90% confidence interval

under our model. The results are reported in Table 3. The 90% confidence interval constructed can

well cover the empirical results, and suggest that the spread between the announcement and non-

announcement day security market line slopes is significant.

Table 5 delivers similar message on the portfolio level: for each simulated portfolio, the difference

in mean excess returns on the two types of trading days is significant, and appear to be proportional

to the CAPM beta.

In addition, we also compute the summary statistics of the market portfolio, and the results are

shown in Table 6. The important feature here is that the volatility of the market portfolio is the same

on two different type of days, while the mean excess returns appear to be quite different.

3.2.2 Variance Ratio

We calculate the quarterly variance ratios of the portfolios on announcement and non-announcement

day returns, similarly to the work done by Savor and Wilson (2014).

Specifically, for each calendar quarter, we compute the sum of the log daily excess returns on

announcement and non-announcement days, respectively, and obtain the quarterly log announcement

and non-announcement day returns. The quarterly returns are then used to compute cumulative of

multiple quarters and then the variance ratios.

The results are reported in Table 7 and Figure 4.

One key fact of our computation here is that we compute the variances using sample variances,

instead of the average squared returns. As pointed out by Barndorff-Nielsen and Shephard (2002),

we need the sample path of returns to be continuous in order to correctly obtain the volatility using

the squared return. However, in this case this condition does not hold as the model implies a jump in

prices after announcements.

For reference, we also plot the variance ratios if we use mean squared return to estimate the

unconditional variance. It is straightforward to see that the 90% confidence interval gets much wider,

and the variance ratio does not move back to 1 at horizon of 20 quarters.

In fact this is again consistent with the fact that the premium on announcement days are much

larger than on non-announcement days. To better understand the reason, consider a simplified model

where the returns are i.i.d. Let rt,t+l be the log return over a period with length l starting at time t.
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We have mean squared return that follows

E(r2
t,t+l) = var(rt,t+l) + E(rt,t+l)

2. (36)

As l grows, var(rt,t+l) grows at rate l while E(rt,t+l)
2 grows at rate l2. Then as l → ∞, the

E(rt,t+l)
2 term dominates and the variance ratio statistics, computed by

V R =
r̂2
t,t+l

l × r̂2
t,t+1

, (37)

will grow at a rate of l. The effect will be particularly large at smaller l’s if E(rt,1) is fairly large,

which is the case in our analysis on announcement days.
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Appendices

A Solving the representative agent’s value function

To begin, we define

pt = Pr
(
λ1,t = λB

∣∣∣Ft) (A.1)

τ = t mod T (A.2)

p0(t) = ps(t), (A.3)

where

s(t) = max{s : s ≤ t and t mod T = 0}. (A.4)

Let Jj(f) be the change in a random variable or function f associated to type-j Poisson arrival,

and J̄j(f) be its expectation with respect to the distribution ν.

A.1 The dynamics of pt

We start with solving the probability of bad state based on the agent’s information set.

When τ ∈ (0, T ), or when the economy is in a non-announcement periods, for each dt, a measure

of (1− pt)φGBdt will become bad state; in addition, a measure of ptφBGdt will become good state.

This leads to a change of [−ptφBG + (1− pt)φGB]dt, and the following dynamics of pt:

dpt = [−ptφBG + (1− pt)φGB] dt = [−pt(φGB + φBG) + φGB] dt. (A.5)

This implies that the dynamics of pt is in fact non-stochastic between two neighboring announce-

ments:

pt = De−(φBG+φGB)t +
φGB

φGB + φBG
, (A.6)

where D is some un-determined constant.

Upon announcements, the value of λ1,t is fully revealed, and pt can only take values 0 or 1. This

implies that pt in fact is a function of τ and p0(t). We call this p
(
τ ; p0(t)

)
, and then obtain

p
(
τ ; p0(t)

)
=

(
p0(t)− φGB

φGB + φBG

)
e−(φGB+φBG)τ +

φGB
φGB + φBG

. (A.7)
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A.2 Representative agent’s continuation value

Lemma A.1. In equilibrium, the representative agent’s continuation value, as a function of the rep-

resentative’s consumption, Ct, and state variables pt, p0(t), λ2,t and τ , is given by

J(Ct, pt, p0(t), λ2,t, τ) =
1

1− γ
C1−γ
t I(pt, p0(t), λ2,t, τ)1−γ , (A.8)

where

I(pt, p0(t), λ2,t, τ) = exp{a
(
τ ; p0(t)

)
+ bpp+ bλλ2,t}, (A.9)

and the coefficients are given by

bp =
(λB − λG)Eν

[
e(1−γ)Z1,t − 1

]
(1− γ)(β + φGB + φBG)

, (A.10)

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λ[Eνe(1−γ)Z2,t − 1]

)
. (A.11)

and

a
(
τ ; p0(t)

)
= ζp0(t)e

βτ +
1

β

(
µ− 1

2
γσ2 + bpφGB + bλκλ̄+

λG

1− γ

[
Eνe

(1−γ)Z1,t − 1
])

. (A.12)

ζ0 and ζ1 are the solution to the following system of equations:

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 ,
(A.13)

where pG = p(T−; 0), pB = p(T−; 1), and the function p(τ ; p0) is defined as

p(τ ; p0) =

(
p0 −

φGB
φGB + φBG

)
e−(φGB+φBG)τ +

φGB
φGB + φBG

.

Here Eν is the expectation with respect to distribution ν.

Proof. Let J(Ct, pt, p0(t), λ2,t, τ) be the representative agent’s value function at time t, given the

representative agent’s consumption Ct, pt, p0(t), λ2,t and τ . For τ ∈ [0, T ), the optimality im-

plies that J(Ct, pt, p0(t), λ2,t, τ) should be characterized by the following Hamilton-Jacobi-Bellman
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Equation,

f(Ct, Jt) +
∂J

∂τ
+
∂J

∂C
Ctµ+

∂J

∂p
[−p(φGB + φBG) + φGB]− ∂J

∂λ
κ(λ2,t − λ̄)

+
1

2

∂2J

∂C2
C2
t σ

2 +
1

2

∂2J

∂λ2
λ2,tσ

2
λ

+
[
pλB + (1− p)λG

]
J̄1

(
J(Ct, pt, p0(t), λ2,t, τ)

)
+ λ2,tJ̄2

(
J(Ct, pt, p0(t), λ2,t, τ)

)
= 0.

(A.14)

When τ = 0, or upon announcements, agent’s value function at t− can be written as

Vt− = E

[∫ ∞
t

f(Cs, Vs)ds | Ft−
]

= E

[
E
[ ∫ ∞

t
f(Cs, Vs)ds | Ft

]
| Ft−

]
= E

[
Vt | Ft−

]
,

(A.15)

or equivalently,

J(Ct− , pt− , p0(t−), λ2,t− , T
−) = E

[
J(Ct, pt, p0(t), λ2,t, 0)

∣∣∣Ft−] . (A.16)

Note that, Ct and λ2,t does not change upon announcements, we then can write

J(Ct, pt− , p0(t−), λ2,t, T
−) = E

[
J(Ct, pt, p0(t), λ2,t, 0)

∣∣∣Ft−] ,
for t such that t mod T = 0.

Conjecture that

J(Ct, pt, p0(t), λ2,t, τ) =
1

1− γ
C1−γ
t I(pt, p0(t), λ2,t, τ)1−γ , (A.17)

where

I(pt, p0(t), λ2,t, τ) = ea
(
τ ;p0(t)

)
+bpp+bλλ2,t . (A.18)

We first know that under this specification, we have

J̄1

[
J(Ct, pt, p0(t), λ2,t, τ)

]
J(Ct, pt, p0(t), λ2,t, τ)

= Eν

[
e(1−γ)Z1,t − 1

]
J̄2

[
J(Ct, pt, p0(t), λ2,t, τ)

]
J(Ct, pt, p0(t), λ2,t, τ)

= Eν

[
e(1−γ)Z2,t − 1

]
,

(A.19)
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where Eν denotes the expectation with respect to distribution ν.

Plug (A.17) into (A.14) and then divide both sides by J , we obtain the following equation:

− β(1− γ)
[
a
(
τ ; p0(t)

)
+ bpp+ bλλ2,t

]
+ (1− γ)

∂a

∂τ
(τ ; p0(t)) + (1− γ)µ̄C + (1− γ)bp [−p(φGB + φBG) + φGB]− (1− γ)bλκ(λ2,t− λ̄2)

− 1

2
γ(1− γ)σ2 +

1

2
(1− γ)2b2λσ

2
λλ2,t

+ p(λB − λG)Eν

[
e(1−γ)Z1,t − 1

]
+ λGEν

[
e(1−γ)Z1,t − 1

]
+ λ2,t

[
Eνe

(1−γ)Z2,t − 1
]

= 0.

(A.20)

Collect the coefficients of λ2,t and pt, we can obtain the following equations:

−β(1− γ)bp − (1− γ)bp(φGB + φBG) + (λB − λG)Eν

[
e(1−γ)Z1,t − 1

]
= 0

−β(1− γ)bλ − (1− γ)bλκ+
1

2
(1− γ)2b2λσ

2
λ + Eν

[
e(1−γ)Z2,t − 1

]
= 0.

(A.21)

Then we have

bp =
(λB − λG)Eν

[
e(1−γ)Z1,t − 1

]
(1− γ)(β + φGB + φBG)

. (A.22)

We also have the following quadratic function of bλ:

1

2
(1− γ)σ2

λb
2
λ − (β + κ)bλ +

1

1− γ
Eν

[
e(1−γ)Z2,t − 1

]
= 0, (A.23)

which has the following solution7:

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λEν
[
e(1−γ)Z2,t − 1

])
. (A.24)

Finally we solve a
(
τ ; p0(t)

)
. a
(
τ ; p0(t)

)
is characterized by the following O.D.E:

− β(1− γ)a
(
τ ; p0(t)

)
+(1−γ)

∂a

∂τ
(τ ; p0(t))+(1−γ)µ̄C+(1−γ)bpφGB+(1−γ)bλκλ̄−

1

2
γ(1−γ)σ2+λGEν

[
e(1−γ)Z1,t − 1

]
= 0.

7See Tsai and Wachter (2016) for details about choosing the solution to bλ.
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Or equivalently, we can write the following O.D.E:

∂a

∂τ
(τ ; p0(t)) = βa

(
τ ; p0(t)

)
− µ̄C +

1

2
γσ2 − bpφGB − bλκλ̄−

λG

1− γ
Eν

[
e(1−γ)Z1,t − 1

]
.

Then we have the following general form of a
(
τ ; p0(t)

)
:

a
(
τ ; p0(t)

)
= ζp0(t)e

βτ +
1

β

(
µ− 1

2
γσ2 + bpφGB + bλκλ̄+

λG

1− γ
Eν

[
e(1−γ)Z1,t − 1

])
, (A.25)

where ζ1 and ζ0 are two un-determined constant terms. We will solve them in what follows.

Condition A.16 gives another restriction on a
(
τ ; p0(t)

)
:

exp
{

(1− γ)
[
a
(
T−; p0(t−)

)
+ bpp(T

−; p0(t−))
]}

= E
[
exp

{
(1− γ)

[
a
(
0; p(t)

)
+ bpp(0; p(t))

]} ∣∣∣Ft−] ,
for p0(t−) and p0(t) being 0 or 1.

Define pG = p(T−; 0), pB = p(T−; 1)

This leads to the following system of equations,

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 ,

which uniquely pins down ζ0 and ζ1.
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A.3 The state price density

Lemma A.2. The process of state price density, πt, can be characterized by the following equation:

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, p0(t), λ2,t, τ)1−γ , (A.26)

where I(pt, p0(t), λ2,t, τ) is defined by Equation A.9.

Proof. We know that,

πt = exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
∂

∂C
f(Ct, Vt). (A.27)

We also know that

∂

∂C
f(Ct, Vt) = β(1− γ)

Vt
Ct

= β(1− γ)
(1− γ)−1(Ct)

1−γI(pt, p0(t), λ2,t, τ)1−γ

Ct

= βC−γt I(pt, p0(t), λ2,t, τ)1−γ .

(A.28)

Combining Equation A.27 and A.28, we can then get

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, p0(t), λ2,t, τ)1−γ .

Proof of Theorem 1. We know that

∂

∂V
f(Ct, Vt) =

∂

∂V

(
β(1− γ)Vt logCt − βVt log[(1− γ)Vt]

)
= β(1− γ) logCt − β log[(1− γ)Vt]− β

= −β
{

1 + (1− γ)[a
(
τ ; p0(t)

)
+ bpp+ bλλ2,t]

}
.

(A.29)
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Then by Itô’s Lemma, with Equation A.26, it is easy to show that during non-announcement periods,

dπt
πt−

=

{
−β
[
1 + (1− γ)a

(
τ ; p0(t)

)
+ (1− γ)bpp+ (1− γ)bλλ2,t

]
+ (1− γ)

∂a

∂τ

}
dt

− γµdt+ (1− γ)bp [−pφBG + (1− p)φGB] dt− (1− γ)bλκ(λ2,t − λ̄)dt

+
1

2
γ(γ + 1)σ2dt+

1

2
(1− γ)2b2λσ

2
λλ2,tdt

− γσdBC,t + (1− γ)bλσλ
√
λ2,tdBλ,t

+
(
e−γZ1,t − 1

)
dN1,t +

(
e−γZ2,t − 1

)
dN2,t. (A.30)

Clean up, and with the Equations that characterizing a
(
τ ; p0(t)

)
, bp and bλ, we then have

dπt
πt−

= −
{
β + µ̄C − γσ2 + λ̄(p)

[
Eνe

(1−γ)Z1,t − 1
]

+ λ2,tEν
[
e(1−γ)Z2,t − 1

])
dt

− γσdBC,t + (1− γ)bλσλ
√
λ2,tdBλ,t +

(
e−γZ1,t − 1

)
dN1,t +

(
e−γZ2,t − 1

)
dN2,t,

(A.31)

where λ̄(pt) is as defined before.

We can further clean up, and get8

dπt
πt−

= −
{
β + µ̄C − γσ2 + λ̄(pt)Eν

[
e−γZ1,t(eZ1,t − 1)

]
+ λ2,tEν

[
e−γZ2,t(eZ2,t − 1)

]}
dt

− λ̄(p)Eν
[
e−γZ1,t − 1

]
dt− λ2,tEν

[
e−γZ2,t − 1

]
dt

− γσdBC,t + (1− γ)bλσλ
√
λ2,tdBλ,t +

(
e−γZ1,t − 1

)
dN1,t +

(
e−γZ2,t − 1

)
dN2,t,

= −rtdt− λ̄(pt)Eν
[
e−γZ1,t − 1

]
dt− λ2,tEν

[
e−γZ2,t − 1

]
dt

− γσdBC,t + (1− γ)bλσλ
√
λ2,tdBλ,t +

(
e−γZ1,t − 1

)
dN1,t +

(
e−γZ2,t − 1

)
dN2,t.

(A.32)

For τ = 0, or upon announcements, we can see from the derivation of I(pt, p0(t), λ2,t, τ) that

there is a jump of pt and p0(t) after the revealing of λ1,t. This then can be characterized as

πt
πt−

=
e(1−γ)(a(0;p0(t))+bppt)

e(1−γ)(a(T−;p0(t−))+bppt− )
, ∀p0(t). (A.33)

By the smooth condition of the value function, we know that

E

[
πt

πt− × 1

∣∣∣Ft−] = 1. (A.34)

8See Wachter (2013) for solution to rt.
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Intuitively, one dollar paid immediately after the announcement should have price 1 right before the

announcement, as there is no maturity allowed for discounting.

A.3.1 State price density on announcements

Proof of Corollary 2.1. We want to show ζ0 > ζ1 + bp. We prove this by contradiction.

Suppose that ζ0 ≤ ζ1 + bp.

Note that, the system of equations that determines ζ0 and ζ1 is given by

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 ,

Obviously, 0 < pG < pB < 1, given that T > 0.

This then implies that

(1− γ)ζ0 ≥ (1− γ)(ζ0e
βT + bpp

G) ≥ (1− γ)(ζ1e
βT + bpp

B) ≥ (1− γ)(ζ1 + bp),

as 1− γ < 0. We have
ζ0 ≤ ζ0e

βT + bpp
G

⇒− bppG ≤ ζ0(eβT − 1)

⇒ζ0 > 0, as eβT − 1 > 0, bp < 0.

Similarly, we have
ζ1e

βT + bpp
B ≤ ζ1 + bp

⇒ζ1(eβT − 1) ≤ bp(1− pB) < 0.

⇒ζ1 < 0.

However, this means that

ζ1 + bp < ζ1 < 0 < ζ0,

which is a contradiction.
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B Pricing equity

In this section we start with characterizing the process of the price for dividend claim. Then we use

the characterization to solve the price of dividend assets.

B.1 Pricing zero-coupon risky dividend payment during non-announcement periods

Lemma B.1. Let Ht = H(Dt, pt, p0(t), λ2,t, τ, t
∗ − t) denote the time-t price of a future dividend

paid at time t∗, then

H(Dt, pt, p0(t), λ2,t, τ, t
∗ − t) = Et

[
πt∗

πt
Dt∗

]
. (B.1)

Moreover, during non-announcement periods, or for t such that t mod T 6= 0, there exist processes

µH,t = µH(Dt, pt, p0(t), λ2,t, τ, t
∗ − t) and σH,t = σH(Dt, pt, p0(t), λ2,t, τ, t

∗ − t), such that

dHt

Ht−
= µH,tdt+ σH,tdBt +

J1(Ht)

Ht−
dN1,t +

J2(Ht)

Ht−
dN2,t, (B.2)

and

µH,t + µπ,t + σ>H,tσπ,t + λ̄(pt)
J̄1(Htπt)

Htπt
+ λ2,t

J̄2(Htπt)

Htπt
= 0. (B.3)

Proof. Part 1 follows the definition of state price density.

Obviously

πtHt = Et(πt∗Ht∗), (B.4)

or πtHt is a martingale.

Locally, there exist processes µH,t = µH(Dt, pt, p0(t), λ2,t, τ, t
∗−t) and σH,t = σH(Dt, pt, p0(t), λ2,t, τ, t

∗−
t), such that

dHt

Ht−
= µH,tdt+ σH,tdBt +

J1(Ht)

Ht−
dN1,t +

J2(Ht)

Ht−
dN2,t. (B.5)

Then by Itô’s lemma, we have

Ht+∆tπt+∆t = Htπt +

∫ t+∆t

t+
πsHs(µH,s +µπ,s +σ>H,sσπ,s)ds+

∫ t+∆t

t+
πsHs(σH,s +σπ,s)dBs

+
∑
j=1,2

∑
t<sj,l≤t+∆t

(πsj,lHsj,l − πsj,l−Hsj,l−
), (B.6)

for some arbitrarily small ∆t such that t and t+ ∆t are in the same non-announcement period. Here

sj,l = inf{t : Nj,l = j}, j = 1, 2, (B.7)
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are the arrival times of the two Poisson processes.

Note that, ∀ s, such that t < s ≤ t+ ∆t, s 6= sj , ∀j, J (Htπt) = 0. As a result we can write

∑
t<sj,l<t+∆t

(πsj,lHsj,l − πsj,l−Hsj,l−
) =

∫ t+∆t

t+
Jj(Hsπs)ds, j = 1, 2. (B.8)

Obviously,

Et

 ∑
t<sj,l≤t+∆t

(πsj,lHsj,l − πsj,l−Hsj,l−
)−

∫ t+∆t

t+
Jj(Hsπs)ds

 = 0, j = 1, 2. (B.9)

In addition, we can write

0 = Et

 ∑
t<sj,l≤t+∆t

(πsj,lHsj,l − πsj,l−Hsj,l−
)−

∫ t+∆t

t+
Jj(Hsπs)ds


= Et

 ∑
t<sj,l≤t+∆t

(πsj,lHsj,l − πsj,l−Hsj,l−
)−

∫ t+∆t

t+
E[Jj(Hsπs)ds | Fs− ]ds

 .

(B.10)

As a result9,

Et

 ∑
t<s1,l≤t+∆t

(πs1,lHs1,l − πs1,l−Hs1,l−
)−

∫ t+∆t

t+
λ̄(ps)J̄1(Hsπs)ds

 = 0,

Et

 ∑
t<s2,l≤t+∆t

(πs2,lHs2,l − πs2,l−Hs2,l−
)−

∫ t+∆t

t+
λ2,sJ̄2(Hsπs)ds

 = 0.

(B.11)

9Here Law of Iterated Expectations is used.
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We then can rewrite Equation B.6 as

Ht+∆tπt+∆t = Htπt+

∫ t+∆t

t+
πsHs

(
µH,s + µπ,s + σ>H,sσπ,s + λ̄(ps)

J̄1(Hsπs)

Hsπs
+ λ2,s

J̄2(Hsπs)

Hsπs

)
ds︸ ︷︷ ︸

(1)

+

∫ t+∆t

t+
πsHs(σH,s + σπ,s)dBs︸ ︷︷ ︸

(2)

+
∑

t<s1,l≤t+∆t

(πs1,lHs1,l − πs1,l−Hs1,l−
)−

∫ t+∆t

t+
λ̄(ps)J̄1(Hsπs)ds︸ ︷︷ ︸

(3)

+
∑

t<s2,l≤t+∆t

(πs2,lHs2,l − πs2,l−Hs2,l−
)−

∫ t+∆t

t+
λ2,sJ̄2(Hsπs)ds︸ ︷︷ ︸

(4)

. (B.12)

Since Htπt is a matingale, the time t expectation of Ht+∆tπt+∆t must be Htπt. In Equation

B.12, (2) apparently has expectation 0 at time t, and (3) and (4) are showed to have expectation 0.

As a result, the integrand in (1) must be 0, ∀s. Since Hsπs > 0, ∀s. Extend this argument to any

arbitrary t, we obtain

µH,t + µπ,t + σ>H,tσπ,t + λ1,t
J̄1(Htπt)

Htπt
+ λ2

J̄2(Htπt)

Htπt
= 0,∀t. (B.13)

B.2 Pricing a stream of dividends during non-announcement periods

Lemma B.2. Let Ft = F (Dt, pt, p0(t), λ2,t, τ) denote the time-t ex-dividend price of a future divi-

dend stream {Ds}s∈(t,∞), then during non-announcement periods, or for t such that t mod T 6= 0,

there exist processes µF,t = µF (Dt, pt, p0(t), λ2,t, τ) and σF,t = σF (Dt, pt, p0(t), λ2,t, τ) such that

µπ,t + µF,t +
Dt

Ft
+ σ>π,tσF,t + λ̄(pt)

J̄1(πtFt)

πtFt
+ λ2,t

J̄2(πtFt)

πtFt
= 0. (B.14)

Proof. Obviously by non-arbitrage we have

F (Dt, pt, p0(t), λ2,t, τ) =

∫ ∞
0

H(Dt, pt, p0(t), λ2,t, τ, s)ds. (B.15)

Again we know that locally there exists µF,t = µF (Dt, pt, p0(t), λ2,t, τ) and σF,t = σF (Dt, pt, p0(t), λ2,t, τ)
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such that
dFt
Ft−

= µF,tdt+ σF,tdBt + dN1,t
J1(Ft)

Ft−
+ dN2,t

J2(Ft)

Ft−
. (B.16)

Let µH(s),t = µH(Dt, pt, p0(t), λ2,t, τ, s) and σH(s),t = σH(Dt, pt, p0(t), λ2,t, τ, s), s ∈ [0,∞).

Apply Itô’s lemma on both sides of Equation B.15, and we get

F (Dt, pt, p0(t), λ2,t, τ)σF,t =

∫ ∞
0

H(Dt, pt, p0(t), λ2,t, τ, s)σH(s),tds. (B.17)

In addition, we have

Jj(πtF (Dt, pt, p0(t), λ2,t, τ)) = Jj
(
πt

∫ ∞
0

H(Dt, pt, p0(t), λ2,t, τ, s)ds

)
=

∫ ∞
0
Jj
(
πtH(Dt, pt, p0(t), λ2,t, τs)

)
ds, j = 1, 2.

(B.18)

The second equality holds due to the definition of operator J . Take conditional expectation of both

sides with respect to Zt, and we have

J̄j
(
πtF (Dt, pt, p0(t), λ2,t, τ)

)
=

∫ ∞
0
J̄j
(
πtH(Dt, pt, p0(t), λ2,t, τ, s)

)
ds, j = 1, 2. (B.19)

Finally, by the definition of dF (Dt, pt, p0(t), λ2,t, τ) we can see

F (Dt, pt, p0(t), λ2,t, τ)µF,t =

∫ ∞
0

H(Dt, pt, p0(t), λ2,t, τ, s)µH(s),tds−Dt. (B.20)

Dt term shows up as H(Dt, pt, p0(t), λ2,t, τ, 0) = Dt. Then we have

µF,t +
Dt

Ft
+ σ>π,tσF,t + λ̄(pt)

J̄1(πtFt)

πtFt
+ λ2,t

J̄2(πtFt)

πtFt

=
1

Ft

(∫ ∞
0

Ht(s)µH(s),tds

)
+

1

Ft
σ>π,t

∫ ∞
0

Ht(s)σH(s),tds

+ λ̄(pt)
1

πtFt

∫ ∞
0
J̄1(πtHt(s))ds+ λ2,t

1

πtFt

∫ ∞
0
J̄2(πtHt(s))ds

=
1

Ft

∫ ∞
0

Ht(s)

(
µH(s),t + σ>π,tσH(s),t + λ̄(pt)

1

πtHt
J̄1(πtHt(s)) + λ2,t

1

πtHt
J̄2(πtHt(s))

)
ds

=
1

Ft

∫ ∞
0

Ht(s)(−µπ,t)ds

=− µπ,t
1

Ft

∫ ∞
0

Ht(s)ds

=− µπ,t,
(B.21)
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where Ht(s) = H(Dt, pt, p0(t), λ2,t, τ, s).

Reorder, and we can get

µπ,t + µF,t +
Dt

Ft
+ σ>π,tσF,t + λ̄(pt)

J̄1(πtFt)

πtFt
+ λ2,t

J̄2(πtFt)

πtFt
= 0.

B.3 The premium of a dividend stream claim during non-announcement periods

Lemma B.3. For a asset with claim to a stream of dividend with time-t price F (Dt, pt, p0(t), λ2,t, τ),

its instantaneous premium during non-announcement period is given by

−σ>π,tσF,t − λ̄(pt)Eν

[
J1(πt)

πt

J1(Ft)

Ft

]
− λ2,tEν

[
J2(πt)

πt

J2(Ft)

Ft

]
. (B.22)

Proof. The expected instantaneous return of a dividend stream F (Dt, pt, p0(t), λ2,t, τ) is

Et
(dFt +Dtdt)/Ft

dt

= µF,t +
Dt

Ft
+ λ̄(pt)

J̄1(Ft)

Ft
+ λ2,t

J̄2(Ft)

Ft

= −µπ,t − σ>π,tσF,t − λ̄(pt)
J̄1(πtFt)

πtFt
+ λ̄(pt)

J̄1(Ft)

Ft
− λ2,t

J̄2(πtFt)

πtFt
+ λ2,t

J̄2(Ft)

Ft

= rt − σ>π,tσF,t + λ̄(pt)
J̄1(πt)

πt
− λ̄(pt)

J̄1(πtFt)

πtFt
+ λ̄(pt)

J̄1(Ft)

Ft
+ λ2,t

J̄2(πt)

πt
− λ2,t

J̄2(πtFt)

πtFt
+ λ2,t

J̄2(Ft)

Ft

= rt − σ>π,tσF,t − λ̄(pt)Eν

[
J1(πt)

πt

J1(Ft)

Ft

]
− λ2,tEν

[
J2(πt)

πt

J2(Ft)

Ft

]
,

(B.23)

where rt is the instantaneous risk-free rate. Subtract it from the formula above, we obtain the instan-

taneous premium.

B.4 Pricing of levered consumption claim dividend assets

To simplify notations, we only consider one single asset with loadings on disasters being φ. The

process of the dividend is then given by

dDt

Dt
= µ̄Ddt+ σdBC,t + (eφZ1,t − 1)dN1,t + (eφZ2,t − 1)dN2,t, (B.24)

where φ is the leverage on disasters.
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Lemma B.4. The time-t price of the claim to time-t+s dividend,Dt+s, with dividend growth process

given by (B.24), is

H(Dt, pt, p0(t), λ2,t, τ, s) = Dt exp
{
aφ
(
τ, s; p0(t)

)
+ bφ,p(s)pt + bφ,λ(s)λ2,t

}
, (B.25)

where

bφ,p(s) =
(λB − λG)Eν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
φBG + φGB

(
1− e−(φBG+φGB)s

)
. (B.26)

bφ,λ(s) is the solution to

dbφ,λ(s)

ds
=

1

2
σ2
λbφ,λ(s)2 +

[
(1− γ)bλσ

2
λ − κ

]
bφ,λ(s) + Eν

[
e(φ−γ)Z2,t − e(1−γ)Z2,t

]
, (B.27)

with boundary condition

bφ,λ(0) = 0.

aφ
(
τ, s; p0(t)

)
is given by

aφ
(
τ, s; p0(t)

)
= h

(
n, τ, s; p0(t)

)
+

∫ s

0

(
−β − µ+ µ̄D + λGEν

[
e(φ−γ)Zt − e(1−γ)Zt

]
+ κλ̄bφ,λ(u)

)
du,

(B.28)

where n =
[
τ+s
T

]
is the number of announcements before the maturity, and h

(
n, τ, s; p0(t)

)
is defined

recursively by

1. h
(
0, τ, s; 0

)
= h

(
0, τ, s; 1

)
= 0.

2. For k = 1, 2, 3, . . . , n

h
(
k, τ, s; 0

)
= log

{
pG exp(1−γ)(a(0;1)+bp)+h

(
k−1,τ,s;1

)
+bφ,p

(
s∗+(k−1)T

)
+(1− pG) exp(1−γ)a(0;0)+h

(
k−1,τ,s;0

) }
− bφ,p

(
s∗ + (k − 1)T

)
pG − (1− γ)bpp

G − (1− γ)a(T−; 0)

h
(
k, τ, s; 1

)
= log

{
pB exp(1−γ)(a(0;1)+bp)+h

(
k−1,τ,s;1

)
+bφ,p

(
s∗+(k−1)T

)
+(1− pB) exp(1−γ)a(0;0)+h

(
k−1,τ,s;0

) }
− bφ,p

(
s∗ + (k − 1)T

)
pB − (1− γ)bpp

B − (1− γ)a(T−; 1),
(B.29)

where s∗ = (τ + s) mod T .

Proof. We conjecture that the time-t price of Dt+s is

H(Dt, pt, p0(t), λ2,t, τ, s) = Dt exp
{
aφ
(
τ, s; p0(t)

)
+ bφ,p(s)p+ bφ,λ(s)λ2,t

}
. (B.30)

We start with showing the effect of announcements on asset prices that can be written in the form
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of (B.30).

We know that, for t such that t mod T = 0, we must have

Dt− exp
{
aφ(T−, s+; p0(t−)) + bφ,p(s

+)pt− + bφ,λ(s+)λ2,t−
}

= E

[
e(1−γ)(a(0;p0(t))+bppt)

e(1−γ)(a(T−;p0(t−))+bppt− )
×Dt exp {aφ(0, s; p0(t)) + bφ,p(s)pt + bφ,λ(s)λ2,t}

∣∣∣Ft−
]
.

(B.31)

Note that λ2,t− = λ2,t, s+ = s and Dt− = Dt, with the solutions to bφ,p(s) and bφ,λ(s) before,

we then have

exp
{
aφ
(
T−, s; p0(t)

)
+ bφ,p(s)pt−

}
= E

[
e(1−γ)(a(0;p0(t))+bppt)

e(1−γ)(a(T−;p0(t−))+bppt− )
× exp {aφ(0, s; p0(t)) + bφ,p(s)pt}

∣∣∣Ft−
]
, (B.32)

where we use the fact that p
(
0; p0(t)

)
= p0(t) = pt when t mod T = 0.

Note that, when t mod T = 0, pt can only take value 0 or 1, and pt− (which equals to p(T−; p0(t−)))

is a function of p0(t−) only, we then can see that given s, the left hand side of (B.32) is only a function

of p0(t−). This then can imply that (B.32) can be extended into a two-equation system, which allows

us to recursively solve for aφ
(
τ, s; p0(t)

)
. We will return to this later.

During non-announcement periods, with Itô’s Lemma, we know that

µH,t = µ̄D +
∂aφ
∂τ
−
∂aφ
∂s
−
∂bφ,p
∂s

pt −
∂bφ,λ
∂s

λ2,t +
1

2
bφ,λ(s)2σ2

λλ2,t

+ bφ,p[−pφBG + (1− p)φGB] + bφ,λ(s)[−κ(λ2,t − λ̄2)]

= µ̄D +
∂a

∂τ
− ∂a

∂s
+ bφ,pφGB + bφ,λ(s)κλ̄2

+

(
−
∂bφ,p
∂s
− bφ,p(φBG + φGB)

)
pt +

(
−
∂bφ,λ
∂s

+
1

2
bφ,λ(s)2σ2

λ + κλ̄bφ,λ(s)

)
λ2,t, (B.33)

σH,t =
[
σ, bφ,λ(s)σλ

√
λ2,t

]>
µπ,t = −(β + µ− γσ2)− λ̄(pt)Eν

[
e(1−γ)Z1,t − 1

]
− λ2,tEν

[
e(1−γ)Z2,t − 1

]
σπ,t =

[
−γσ, (1− γ)bλσλ

√
λ2,t

]>
.

(B.34)
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In addition we have

J̄j(Htπt)

Htπt
= Eν

[
e(φ−γ)Zj,t − 1

]
, j = 1, 2. (B.35)

So we end up with the following equation,

µ̄D +
∂aφ
∂τ
−
∂aφ
∂s

+ bφ,pφGB + bφ,λ(s)κλ̄

+

(
∂bφ,p
∂τ
−
∂bφ,p
∂s
− bφ,p(φBG + φGB)

)
pt +

(
−
∂bφ,λ
∂s

+
1

2
bφ,λ(s)2σ2

λ − κbφ,λ(s)

)
λ2,t

− (β + µ− γσ2)−
[
λG + pt(λ

B − λG)
]
Eν

[
e(1−γ)Z1,t − 1

]
− λ2,tEν

[
e(1−γ)Z2,t − 1

]
− γσ2 + (1− γ)bλbφ,λ(s)σ2

λλ2,t

+
[
λG + p(λB − λG)

]
Eν

[
e(φ−γ)Z1,t − 1

]
+ λ2,tEν

[
e(φ−γ)Z2,t − 1

]
= 0. (B.36)

We first collect the coefficients of pt, and get(
−
∂bφ,p(s)

∂s
− (φBG + φGB)bφ,p(s)

)
+ (λB − λG)Eν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
= 0, (B.37)

which is equivalent to the following ordinary differential equation,

∂bφ,p(s)

∂s
= −(φBG + φGB)bφ,p(s) + (λB − λG)Eν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
, (B.38)

with boundary condition

bφ,p(0) = 0. (B.39)

This yields the following closed-form solution to bφ,p(s):

bφ,p(s) =
(λB − λG)Eν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
φBG + φGB

(
1− e−(φBG+φGB)s

)
. (B.40)

We next collect the coefficients of λ2,t, and get

−
∂bφ,λ
∂s

+
1

2
bφ,λ(s)2σ2

λ−κbφ,λ(s)+(1−γ)bλbφ,λ(s)σ2
λ+Eν

[
e(φ−γ)Z2,t − e(1−γ)Z2,t

]
= 0. (B.41)

So we showed that bφ,λ(s) is the solution to

dbφ,λ(s)

ds
=

1

2
σ2
λbφ,λ(s)2 +

[
(1− γ)bλσ

2
λ − κ

]
bφ,λ(s) + Eν

[
e(φ−γ)Z2,t − e(1−γ)Z2,t

]
, (B.42)

with boundary condition bφ,λ(0) = 0.
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Finally we solve aφ
(
τ, s; p0(t)

)
.

We collect the remaining terms, and get

∂aφ
∂τ
−
∂aφ
∂s

+ µ̄D + κλ̄bφ,λ(s)− β − µ̄C + γσ2 + λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
= 0. (B.43)

This gives us the following partial differential equation of aφ
(
τ, s; p0(t)

)
:

∂aφ
∂τ
−
∂aφ
∂s

= β + µ̄C − µ̄D − λGEν
[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
− κλ̄bφ,λ(s), (B.44)

with boundary condition

aφ(τ, 0; p0(t)) = 0, ∀τ, p0(t). (B.45)

Note that, (B.44) only holds during non-announcement periods.

Then for s < T−τ , or assets that will mature within the current announcement period, we have10:

aφ(τ, s; p0(t)) = −s
{
β + µ̄C − µ̄D − λGEν

[
e(φ−γ)Zt − e(1−γ)Zt

]}
+ κλ̄

∫ s

0
bφ,λ(u)du. (B.46)

For s > T − τ , or assets that will experience at least one announcement, and we need to solve the

coefficient recursively using the following algorithm:

1. Let n =
[
τ+s
T

]
. Then n is the number of announcements before the maturity of the asset. In ad-

dition, compute s∗ = (τ + s) mod T , which is the time remaining after the last announcement

before maturity.

2. Compute

aφ(0, s∗; 0) = aφ(0, s∗; 1)

= −s∗
{
β + µ̄C − µ̄D − λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]}
+ κλ̄

∫ s∗

0
bφ,λ(u)du. (B.47)

They provide the coefficients right after the last announcements before maturity, given the

revealed regime.

3. for k = 0, 1, 2, . . . , n− 2, do the following computation:
10This is solved using characteristic function of partial differential equations
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(a) Solve aφ (T−, (s∗ + kT )−; 0) and aφ (T−, (s∗ + kT )−; 1) by

aφ
(
T−, (s∗ + kT )−; 0

)
=

log

{
pG exp

{
(1− γ)

(
a(0; 1) + bp

)
+ aφ(0, s∗ + kT ; 1) + bφ,p(s

∗ + kT )
}

+ (1− pG) exp
{

(1− γ)a(0; 0) + aφ(0, s∗ + kT ; 0)
}}

− bφ,p(s∗ + kT )pG − (1− γ)bpp
G − (1− γ)a(T−; 0) (B.48)

aφ
(
T−, 1, (s∗ + kT )−

)
=

log

{
pB exp

{
(1− γ)

(
a(0; 1) + bp

)
+ aφ(0, s∗ + kT ; 1) + bφ,p(s

∗ + kT )
}

+ (1− pB) exp
{

(1− γ)a(0; 0) + aφ(0, s∗ + kT ; 0)
}}

− bφ,p(s∗ + kT )pB − (1− γ)bpp
B − (1− γ)a(T−; 1), (B.49)

which are implied by (B.32). They provide the coefficients right before the (n − k)th

announcement the asset experience between t and t+ s.

(b) Solve aφ
(
0, s∗ + (k + 1)T ; 0

)
and aφ

(
0, s∗ + (k + 1)T ; 1

)
by

aφ
(
0, s∗ + (k + 1)T ; 0

)
=

aφ
(
T−, s∗ + kT ; 0

)
− T

{
β + µ̄C − µ̄D − λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]}
+ κλ̄

∫ s∗+(k+1)T

s∗+kT
bφ,λ(u)du (B.50)

aφ
(
0, s∗ + (k + 1)T ; 1

)
=

aφ
(
T−, s∗ + kT ; 1

)
− T

{
β + µ̄C − µ̄D − λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]}
+ κλ̄

∫ s∗+(k+1)T

s∗+kT
bφ,λ(u)du. (B.51)

They provide the coefficients right after the (n− k − 1)th announcement.
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4. Solve aφ
(
T−, (s∗ + (n− 1)T )−; 0

)
and aφ

(
T−, (s∗ + (n− 1)T )−; 1

)
by

aφ
(
T−, (s∗ + (n− 1)T )−; 0

)
=

log

{
pG exp

{
(1− γ)

(
a(0; 1) + bp

)
+ aφ(0, s∗ + (n− 1)T ; 1) + bφ,p(s

∗ + (n− 1)T )
}

+ (1− pG) exp
{

(1− γ)a(0; 0) + aφ(0, s∗ + (n− 1)T ; 0)
}}

− bφ,p(s∗ + (n− 1)T )pG − (1− γ)bpp
G − (1− γ)a(T−; 0) (B.52)

aφ
(
T−, 1, (s∗ + (n− 1)T )−

)
=

log

{
pB exp

{
(1− γ)

(
a(0; 1) + bp

)
+ aφ(0, s∗ + (n− 1)T ; 1) + bφ,p(s

∗ + (n− 1)T )
}

+ (1− pB) exp
{

(1− γ)a(0; 0) + aφ(0, s∗ + (n− 1)T ; 0)
}}

− bφ,p(s∗ + (n− 1)T )pB − (1− γ)bpp
B − (1− γ)a(T−; 1), (B.53)

They provide the coefficients right before the 1st announcement the asset will experience after

t.

5. Finally, solve

aφ
(
τ, s; 0

)
=

aφ
(
T−, s∗ + (n− 1)T ; 0

)
− (T − τ)

{
β + µ̄C − µ̄D − λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]}
+ κλ̄

∫ s

s∗+(n−1)T
bφ,λ(u)du (B.54)

aφ
(
τ, s; 1

)
=

aφ
(
T−, s∗ + (n− 1)T ; 1

)
− (T − τ)

{
β + µ̄C − µ̄D − λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]}
+ κλ̄

∫ s

s∗+(n−1)T
bφ,λ(u)du. (B.55)

Simplifying the algorithm
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The algorithm before shows that

aφ(0, s∗; 0) = aφ(0, s∗; 1)

=

∫ s∗

0

(
−β − µ+ µ̄D + λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
+ κλ̄bφ,λ(u)

)
du (B.56)

To simplify notation, define

g(m,n) =

∫ n

m

(
−β − µ+ µ̄D + λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
+ κλ̄bφ,λ(u)

)
du, (B.57)

Then aφ(0, s∗; 0) = aφ(0, s∗; 1) = g(0, s∗). For step 3(a), when k = 0, we have

aφ(T−(s∗)−; 0) = log
{
pGe(1−γ)(a(0;1)+bp)+g(0,s∗)+bφ,p(s∗)+ + (1− pG)e(1−γ)a(0;0)+g(0,s∗)

}
− bφ,p(s∗)pG − (1− γ)bpp

G − (1− γ)a(T−; 0)

= g(0, s∗) + log
{
pGe(1−γ)(a(0;1)+bp)+bφ,p(s∗) + (1− pG)e(1−γ)a(0;0)

}
− bφ,p(s∗)pG − (1− γ)bpp

G − (1− γ)a(T−; 0)

aφ(T−, (s∗)−; 1) = g(0, s∗) + log
{
pBe(1−γ)(a(0;1)+bp)+bφ,p(s∗) + (1− pB)e(1−γ)a(0;0)

}
− bφ,p(s∗)pB − (1− γ)bpp

B − (1− γ)a(T−; 1)
(B.58)

It is easy to show that

aφ(0, s∗ + T ; 0) = aφ(T−, (s∗)−; 0) + g(s∗, T + s∗)

= g(0, T + s∗) + log
{
pGe(1−γ)(a(0;1)+bp)+bφ,p(s∗) + (1− pG)e(1−γ)a(0;0)

}
− bφ,p(s∗)pG − (1− γ)bpp

G − (1− γ)a(T−; 0)

aφ(0, s∗ + T ; 1) = aφ(T−, (s∗)−; 1) + g(s∗, T + s∗)

= g(0, T + s∗) + log
{
pBe(1−γ)(a(0;1)+bp)+bφ,p(s∗) + (1− pB)e(1−γ)a(0;0)

}
− bφ,p(s∗)pB − (1− γ)bpp

B − (1− γ)a(T−; 1)
(B.59)

Repeat the steps above, we can come up with the following simplified algorithm

1. Let n =
[
τ+s
T

]
. Then n is the number of announcements before the maturity of the asset. In ad-

dition, compute s∗ = (τ + s) mod T , which is the time remaining after the last announcement

before maturity.

2. Recursively define the following function h(k, τ, s; p), p = 0, 1.
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(a) h(0, τ, s; 0) = h(0, τ, s; 1) = 0;

(b) For k = 1, 2, 3, . . . , n

h(k, τ, s; 0) = log
{
pG exp(1−γ)(a(0;1)+bp)+h(k−1,τ,s;1)+bφ,p

(
s∗+(k−1)T

)
+ (1− pG) exp(1−γ)a(0;0)+h(k−1,τ,s;0)

}
− bφ,p

(
s∗ + (k − 1)T

)
pG − (1− γ)bpp

G − (1− γ)a(T−; 0)

h(k, τ, s; 1) = log
{
pB exp(1−γ)(a(0;1)+bp)+h(k−1,τ,s;1)+bφ,p

(
s∗+(k−1)T

)
+ (1− pB) exp+bpa(0;0)+h(k−1,τ,s;0)

}
− bφ,p

(
s∗ + (k − 1)T

)
pB − (1− γ)bpp

B − (1− γ)a(T−; 1)
(B.60)

3. Then

a(τ, s; 0) = h(n, τ, s; 0) + g(0, s)

= h(n, τ, s; 0) +

∫ s

0

(
−β − µ+ µ̄D + λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
+ κλ̄bφ,λ(u)

)
du

a(τ, s; 1) = h(n, τ, s; 1) + g(0, s)

= h(n, τ, s; 1) +

∫ s

0

(
−β − µ+ µ̄D + λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
+ κλ̄bφ,λ(u)

)
du

(B.61)

Proof of Theorem 3. By non-arbitrage, the price of the stream of dividends, Fφ(Dt, pt, p0(t), λ2,t, τ),

is

Fφ(Dt, pt, p0(t), λ2,t, τ) =

∫ ∞
0

H(Dt, pt, p0(t), λ2,t, τ, s)ds

=

∫ ∞
0

Dt exp
{
akφ
(
τ, s; p0(t)

)
+ bkφ,p(s)pt + bkφ,λ(s)λ2,t

}
ds

= Dt

∫ ∞
0

exp
{
akφ
(
τ, s; p0(t)

)
+ bkφ,p(s)pt + bkφ,λ(s)λ2,t

}
ds

(B.62)

Let Gφ(pt, p0(t), λ2,t, τ) be the price-dividend ratio of the asset. Then

Gφ(pt, p0(t), λ2,t, τ) =

∫ ∞
0

exp
{
akφ
(
τ, s; p0(t)

)
+ bkφ,p(s)pt + bkφ,λ(s)λ2,t

}
ds. (B.63)

We then can write

Fφ(Dt, pt, p0(t), λ2,t, τ) = DtGφ(pt, p0(t), λ2,t, τ). (B.64)
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By Ito’s Lemma, we must have

σF,t =

[
σ,

1

Gt

∂Gt
∂λt

σλ
√
λ2,t

]>
, (B.65)

where Gt = Gφ(pt, p0(t), λ2,t, τ).

As a result, with Lemma B.3 the premium of the asset is

rφt − rt =γσ2 − λ2,t(1− γ)
1

Gt

∂Gt
∂λ

bλσ
2
λ

− λ̄(pt)Eν

[(
e−γZ1,t − 1

)(
eφZ1,t − 1

)]
− λ2,tEν

[(
e−γZ2,t − 1

)(
eφZ2,t − 1

)] (B.66)

B.5 The announcement premium

Lemma B.5. Suppose that after the announcement, the asset’s price is given by exp(q0 + b∗λλ2,t) >

exp(q1 +b∗λλ2,t), conditioning on that the announcement reveals good or bad state, respectively, then

the pre-announcement price of the asset is higher if the previous announcement revealed good state.

Proof. Without loss of generality, let exp(hG + b∗λλ2,t−) and exp(hB + b∗λλ2,t−) be the prices of the

asset right before the announcement, conditioning on that the previous announcement revealed good

or bad state, respectively.

We want to show that hG > hB .

Euler equation implies that

exp
{
hG + (1− γ)a(T ; 0) + (1− γ)bpp

G
}

= pG exp {q1 + (1− γ)a(0; 1) + (1− γ)bp}+ (1− pG) exp {q0 + (1− γ)a(0; 0)}

exp
{
hB + (1− γ)a(T ; 1) + (1− γ))bpp

B
}

= pB exp {q1 + (1− γ)a(0; 1) + (1− γ)bp}+ (1− pB) exp {q0 + (1− γ)a(0; 0)} .
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This means that

hG − hB + (1− γ)
[
a(T ; 0) + bpp

G − a(T ; 1)− bppB
]

= log

{
pG + (1− pG) exp

(
q0 − q1 + (1− γ)

(
a(0; 0)− a(0; 1)− bp

))
pB + (1− pB) exp

(
q0 − q1 + (1− γ)

(
a(0; 0)− a(0; 1)− bp

))} . (B.67)

As 0 < pG < pB < 1, or 0 < 1 − pB < 1 − pG < 1, the right hand side of (B.67) is increasing

in q0 − q1.

Note that when q1 = q0, plugging in the continuity condition of the representative agent’s value

function, we can obtain hG = hB . This implies that

hG−hB+(1−γ)
[
a(T ; 0) + bpp

G − a(T ; 1)− bppB
]
> (1−γ)

[
a(T ; 0) + bpp

G − a(T ; 1)− bppB
]
,

when q0 > q1.

As a result hG > hB .

Lemma B.6. Upon announcements, or when t mod T = 0, if φ > 1, given λ2,t, if the price of a zero

coupon asset with maturity at t+s is higher when the most recent announcement revealed good state,

then at time t − T , right after the announcement, the price is lower if the announcement revealed a

good state. In other words

H(Dt− , p(T
−, 0), 0, λ2,t, T

−, s+) > H(Dt− , p(T
−, 1), 1, λ2,t, T

−, s+)

⇒ H(Dt−T , 0, 0, λ2,t−T , 0, s+ T ) > H(Dt−T , 1, 1, λ2,t−T , 0, s+ T ), (B.68)

for H given in Lemma B.4.

Proof. We have

H(Dt− , p(T
−, 0), 0, λ2,t, T

−, s+) > H(Dt− , p(T
−, 1), 1, λ2,t, T

−, s+)

⇒ aφ(T−, s; 0) + bφ,p(s)p
G > aφ(T−, s; 1) + bφ,p(s)p

B.

We want to show

aφ(0, s+ T ; 0) > aφ(0, s+ T ; 1) + bφ,p(s+ T ).
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We know that

aφ(0, s+ T ; 0) = aφ(T−, s; 0) +

∫ s+T

s

(
−β − µ̄C + µ̄D + λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
+ κλ̄bφ,λ(u)

)
du

aφ(0, s+ T ; 1) = aφ(T−, s; 1) +

∫ s+T

s

(
−β − µ̄C + µ̄D + λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
+ κλ̄bφ,λ(u)

)
du

(B.69)

In addition, as bφ,p(S) < 0 when φ > 1, we have

aφ(0, s+ T ; 0) = aφ(T−, s; 0) +

∫ s+T

s

(
−β − µ̄C + µ̄D + λGEν

[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
+ κλ̄bφ,λ(u)

)
du

= aφ(T−, s; 0) + g(s, s+ T )

> aφ(T−, s; 0) + bφ,p(s)p
G + g(s, s+ T ) > aφ(T−, s; 1) + bφ,p(s)p

B + g(s, s+ T )

= aφ(0, s+ T ; 1) + bφ,p(s)p
B,

(B.70)

where g(m,n) is as defined before.

In addition, define p̄ = φGB
φGB+φBG

, or the stationary probability of bad state, we know that

bφ,p(s)p
B =

(λB − λG)Eν
[
e(φ−γ)Z1,t − e(1−γ)Z1,t

]
φBG + φGB

(
1− e−(φBG+φGB)s

)
×
(
p̄+ (1− p̄)e−(φGB+φBG)T

)
.

(B.71)

Note that(
1− e−(φBG+φGB)s

)
×
(
p̄+ (1− p̄)e−(φGB+φBG)T

)
< 1− e−(φBG+φGB)(s+T )

⇐⇒p̄− (1− p̄)e−(φBG+φGB)(s+T ) − p̄e−(φBG+φGB)s + (1− p̄)e−(φBG+φGB)T < 1− e−(φBG+φGB)(s+T )

⇐⇒1− p̄ > p̄e−(φBG+φGB)(s+T ) − p̄e−(φBG+φGB)s + (1− p̄)e−(φBG+φGB)T .

Obviously
1− p̄ > (1− p̄)e−(φBG+φGB)T

0 > p̄e−(φBG+φGB)(s+T ) − p̄e−(φBG+φGB)s,

which means that

1− p̄ > p̄e−(φBG+φGB)(s+T ) − p̄e−(φBG+φGB)s + (1− p̄)e−(φBG+φGB)T

always holds. This implies that

bφ,p(s)p
B > bφ,p(s+ T )× 1, if φ > 1.
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As a result,

aφ(0, s+ T ; 0) > aφ(0, s+ T ; 1) + bφ,p(s+ T ). (B.72)

Proof of Theorem 4. By applying the formula of aφ(τ, s; p0(t)), we know at time t− such that t mod

T = 0, that the time-t price of ofDt+s will be negatively correlated with the state price density, when

φ > 1. As a result, by Euler Equation, the announcement premium for zero-coupon dividend assets

must be positive.

Then the announcement premium for the equity will be a weight-average of the premium for

zero-coupon dividend claims, which then must be positive as well.
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Figure 1: Portfolio excess returns against CAPM betas on announcement and non-announcement
days, data only
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Notes: The figure shows average excess returns on announcement days (diamonds) and non-
announcement days (squares) on beta-sorted portfolios in daily data from 1961.01-2016.09 as a func-
tion of the CAPM beta. Also shown are estimated regression lines for announcement day returns
against beta (solid red) and non-announcement day returns against beta (dashed red).
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Figure 2: Portfolio excess returns against CAPM betas on announcement and non-announcement
days
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Notes: The figure shows average excess returns on announcement days (diamonds) and non-
announcement days (squares) on beta-sorted portfolios in daily data from 1961.01-2016.09 as a
function of the CAPM beta. Also shown are estimated regression lines for announcement day returns
against beta (solid red) and non-announcement day returns against beta (dashed red). We simulate
500 samples of artificial data from the model, each containing a cross-section of firms. The blue and
grey dots show average announcement day and non-announcement day returns for each sample as a
function of beta, respectively.
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Figure 3: Boxplots of simulated portfolio average excess returns on announcement and non-
announcement days
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Notes: We compute average excess returns on announcement and non-announcement days for a
cross-section of assets in data simulated from the model. The red line shows the median for each
portfolio across samples; the box corresponds to the interquartile range (IQR), and the whiskers
correspond to the highest and lowest data value within 1.5 × IQR of the highest and lowest quartile.
We plot returns against the median CAPM beta across samples for each portfolio. The red solid and
dashed lines are the empirical regression lines of portfolio mean excess returns against market beta
on announcement and non-announcement days, respectively.
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Figure 4: Variance ratios for market portfolio of announcement and non-announcement day returns
This figure shows empirical quarterly variance ratios of the market portfolio return and 90% confidence interval constructed

using simulation data generated from the model. The quarterly announcement (non-announcement) day excess returns are

computed as the sum of log daily excess returns on announcement (non-announcement) days in each calendar quarter. Then

we compute the cumulative excess returns of multiple quarters with overlapping windows of length k quarters (k ≥ 1).

The cumulative excess returns are then used to compute the sample variances and construct the quarterly variance ratios.

The variance here are computed using sample variances (demeaned).
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Figure 5: Variance ratios for market portfolio of announcement and non-announcement day returns:
mean squared returns as estimates
This figure shows empirical quarterly variance ratios of the market portfolio return and 90% confidence interval constructed

using simulation data generated from the model. The quarterly announcement (non-announcement) day excess returns are

computed as the sum of log daily excess returns on announcement (non-announcement) days in each calendar quarter. Then

we compute the cumulative excess returns of multiple quarters with overlapping windows of length k quarters (k ≥ 1).

The cumulative excess returns are then used to compute the sample variances and construct the quarterly variance ratios.

The variance here are computed using squared returns (un-demeaned).
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Table 1: Summary statistics of the excess returns of 10 beta-sorted portfolios

Unconditional Announcement day Non-announcement day

k E[RXk] σk βk E[RXk] σk βk E[RXk] σk βk

1 1.61 53.3 0.19 3.73 53.3 0.17 1.34 53.3 0.19
2 1.91 59.4 0.44 7.28 59.2 0.42 1.22 59.4 0.44
3 2.58 68.9 0.57 7.38 70.1 0.56 1.97 68.8 0.57
4 2.69 77.6 0.68 7.88 77.1 0.65 2.03 77.6 0.68
5 2.58 87.5 0.79 7.78 87.7 0.77 1.91 87.4 0.80
6 2.61 95.5 0.89 8.51 96.0 0.86 1.85 95.5 0.89
7 2.57 106.0 1.00 8.41 108.1 0.98 1.82 105.7 1.00
8 2.38 118.0 1.12 10.50 120.4 1.10 1.34 117.6 1.12
9 2.37 136.8 1.30 12.63 139.5 1.29 1.05 136.4 1.30
10 2.35 176.6 1.65 17.94 177.7 1.62 0.35 176.3 1.66

Note: Sample statistics for excess returns of ten beta-sorted portfolios. The sample period is 1961.01-2016.09.
We show the sample mean excess returns (E[RXk]), standard deviation (σk) and CAPM beta (βk). Each
portfolio is labelled by k. Column 1-3 report estimates with all data available. Column 4-6 and column 7-9 use
returns on announcement and non-announcement days, respectively. The unit is bps per day.
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Table 2: Calibration and simulation parameters

Panel A: Basic parameters
Average log growth in consumption µ̄C(%) 2.54
Average log growth in dividend µ̄D(%) 2.92
Volatility of consumption growth σ(%) 2
Rate of time preference β 0.012
Relative risk aversion γ 3

Panel B: Rare event (disaster) parameters
Probability of disaster in good state λG 0
Probability of disaster in bad state λG(%) 5.44
Probability of switching to bad state φGB 0.05
Probability of switching to good state φBG 0.33
Average probability of disaster (Sector 2)λ̄(%) 2.84
Mean reversion in disaster probability κ 0.08
Volatility for disaster probability σλ 0.0670

Panel C: Simulation parameters
Number of finite samples 500
Number of firms 12
Number of periods in each period (years) 100
Burn-in period length (years) 50
Length of each announcement non-announcement cycle (T ) 1/24

Panel D: φk, the loading of individual portfolio k on disasters
k 1 2 3 4 5 6 7 8 9 10 11 12
φk 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Note: Parameter values for the main calibration, expressed in annual terms.
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Table 3: Empirical values and simulated distributions of regression slope coefficient of
excess returns on portfolio betas on announcement and non-announcement days.

Coefficient Data Simulation

Beta-sorted portfolios All portfolios Median 90 % CI

δa 10.47 11.92 10.77 [8.12, 13.88]
δn 1.28 1.74 2.17 [1.31, 3.95]
δa − δn 9.19 10.17 8.55 [5.47, 11.55]

Note: For each sample, the regression E[RXk
t | t ∈ i] = δiβ

k
i + ηki is estimated, where i = A,N

stands for sets of accouncement and non-announcement days, respectively. k stands for different
portfolios. (Beta-sorted or Fama-French three factor / industry portfolios in data, or simulated beta-
sorted portfolios.) The first two columns reports the regression coefficients in empirical analysis,
using beta-sorted portfolios only or including Fama-French 25 and industry portfolios as well. The
90% confidence intervals are computed using simulation samples.
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Table 4: Median of mean excess return, volatility and market beta for the twelve simulated portfolios
on announcement and non-announcement days

Unconditional Announcement day Non-announcement day

k E[RXk] σk βk E[RXk] σk βk E[RXk] σk βk

1 1.83 34.43 0.60 4.62 34.18 0.60 1.49 34.39 0.60
2 2.29 44.07 0.78 6.86 43.71 0.78 1.75 43.96 0.78
3 2.60 49.97 0.88 8.45 49.55 0.88 1.93 49.81 0.88
4 2.83 54.05 0.95 9.60 53.46 0.95 2.06 53.86 0.95
5 3.01 56.95 1.00 10.48 56.40 1.00 2.16 56.85 1.00
6 3.16 59.26 1.04 11.17 58.69 1.04 2.25 59.09 1.04
7 3.28 61.06 1.08 11.73 60.46 1.08 2.32 60.94 1.08
8 3.38 62.51 1.10 12.22 61.97 1.10 2.37 62.42 1.10
9 3.46 63.69 1.12 12.61 63.23 1.12 2.43 63.66 1.12
10 3.53 64.71 1.14 12.95 64.30 1.14 2.47 64.67 1.14
11 3.59 65.61 1.16 13.24 65.22 1.16 2.50 65.56 1.16
12 3.64 66.40 1.17 13.50 66.02 1.17 2.54 66.34 1.17

Note: For each sample, market mean excess returns on all trading days, announcement and non-announcement
days and are computed, respectively. The market is defined as the value-weighted average of portfolios. This
table reports the median of the corresponding statistics across simulation samples.
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Table 5: Distribution of simulated difference in mean excess returns on announce-
ment and non-announcement days

Portfolio Quantiles

k 10% 25% 50% 75% 90%

1 1.75 2.35 3.13 3.75 4.46
2 3.32 4.14 5.12 5.92 6.77
3 4.45 5.39 6.50 7.39 8.35
4 5.28 6.31 7.50 8.45 9.50
5 5.94 7.01 8.28 9.27 10.38
6 6.45 7.60 8.88 9.91 11.08
7 6.86 8.06 9.39 10.44 11.64
8 7.20 8.45 9.79 10.89 12.11
9 7.48 8.77 10.15 11.27 12.51
10 7.73 9.04 10.45 11.59 12.84
11 7.94 9.29 10.70 11.86 13.12
12 8.13 9.50 10.91 12.10 13.36

Note: This table reports the simulated distribution of finite sample difference in mean
excess returns on announcement and non-announcement days. The unit is bps per day.
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Table 6: Empirical values and simulated distributions of market excess return
and volatility on announcement and non-announcement days

Data Simulation

Statistic Estimate Median 90 % CI

E[RXmkt
t | A] 10.66 10.65 [7.97, 13.78]

std[RXmkt
t | A] 102.2 56.4 [40.7, 75.1]

E[RXmkt
t | N ] 1.27 2.18 [1.31, 3.95]

std[RXmkt
t | N ] 98.3 56.7 [41.1, 74.6]

E[RXmkt
t | A]− E[RXmkt

t | N ] 9.39 8.42 [5.34, 11.44]
std[RXmkt

t | A]− std[RXmkt
t | N ] 3.9 −0.1 [−2.7, 2.3]

Note: For each sample, E[RXmkt
t | i] and std[RXmkt

t | i] for market portoflio are
computed. i = A,N stands for announcement and non-announcement days, re-
spectively. The first column reports the empirical estimates, while the quantiles are
computed using simulation samples. The unit is bps per day.
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Table 7: Variance ratio of quarterly excess returnson announcement and non-announcement days

Quarter Announcement days Non-announcement days

Empirical Median 90% CI Empirical Median 90% CI

1 1.00 1.00 [1.00, 1.00] 1.00 1.00 [1.00, 1.00]
2 1.10 0.85 [1.00, 1.13] 1.11 0.86 [1.01, 1.13]
3 1.22 0.78 [0.99, 1.20] 1.07 0.81 [1.01, 1.22]
4 1.33 0.73 [0.97, 1.25] 1.02 0.76 [1.00, 1.29]
5 1.33 0.69 [0.97, 1.30] 1.01 0.71 [0.99, 1.37]
6 1.34 0.66 [0.96, 1.33] 1.01 0.68 [0.99, 1.41]
7 1.34 0.64 [0.94, 1.36] 1.00 0.65 [0.97, 1.47]
8 1.32 0.61 [0.94, 1.38] 0.95 0.64 [0.97, 1.53]
9 1.31 0.59 [0.93, 1.40] 0.92 0.61 [0.95, 1.58]
10 1.29 0.57 [0.92, 1.43] 0.90 0.60 [0.94, 1.63]
11 1.27 0.55 [0.92, 1.44] 0.89 0.58 [0.94, 1.68]
12 1.27 0.53 [0.91, 1.46] 0.87 0.57 [0.94, 1.73]
13 1.27 0.51 [0.90, 1.47] 0.86 0.56 [0.93, 1.79]
14 1.27 0.49 [0.89, 1.49] 0.84 0.55 [0.92, 1.84]
15 1.26 0.46 [0.87, 1.51] 0.83 0.53 [0.92, 1.90]
16 1.26 0.44 [0.86, 1.52] 0.82 0.51 [0.91, 1.93]
17 1.26 0.43 [0.86, 1.53] 0.81 0.50 [0.90, 1.97]
18 1.25 0.42 [0.84, 1.54] 0.82 0.48 [0.88, 2.03]
19 1.25 0.41 [0.83, 1.54] 0.83 0.47 [0.88, 2.06]
20 1.26 0.40 [0.82, 1.55] 0.83 0.45 [0.87, 2.09]
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Table 8: Variance ratio of quarterly excess returns: mean squared return as estimateson announcement and
non-announcement days

Quarter Announcement days Non-announcement days

Empirical Median 90% CI Empirical Median 90% CI

1 1.00 1.00 [1.00, 1.00] 1.00 1.00 [1.00, 1.00]
2 1.16 1.18 [1.01, 1.33] 1.12 1.08 [0.93, 1.21]
3 1.33 1.34 [1.06, 1.63] 1.08 1.15 [0.92, 1.38]
4 1.51 1.52 [1.12, 1.92] 1.05 1.21 [0.94, 1.53]
5 1.58 1.69 [1.20, 2.22] 1.05 1.27 [0.95, 1.70]
6 1.66 1.87 [1.27, 2.52] 1.06 1.33 [0.95, 1.88]
7 1.73 2.04 [1.36, 2.81] 1.05 1.39 [0.96, 2.04]
8 1.79 2.21 [1.43, 3.08] 1.02 1.45 [0.99, 2.22]
9 1.85 2.38 [1.50, 3.35] 1.00 1.51 [1.03, 2.37]
10 1.91 2.56 [1.57, 3.66] 0.98 1.58 [1.04, 2.50]
11 1.96 2.73 [1.64, 3.97] 0.98 1.65 [1.07, 2.66]
12 2.04 2.90 [1.73, 4.26] 0.97 1.72 [1.10, 2.83]
13 2.11 3.06 [1.82, 4.55] 0.96 1.78 [1.15, 2.98]
14 2.18 3.22 [1.91, 4.85] 0.95 1.84 [1.18, 3.11]
15 2.25 3.39 [1.99, 5.14] 0.94 1.90 [1.21, 3.24]
16 2.32 3.59 [2.07, 5.43] 0.93 1.95 [1.24, 3.39]
17 2.39 3.77 [2.16, 5.73] 0.93 2.01 [1.27, 3.56]
18 2.46 3.95 [2.25, 6.03] 0.95 2.08 [1.28, 3.74]
19 2.54 4.11 [2.36, 6.33] 0.96 2.12 [1.32, 3.91]
20 2.62 4.27 [2.45, 6.63] 0.96 2.18 [1.35, 4.07]
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