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Abstract

Contracts in a dynamic model must address a number of issues absent from static

frameworks. Shocks to �rm value may weaken the incentive e¤ects of securities given

to the CEO (e.g. cause options to fall out of the money), and the impact of some CEO

actions may not be felt until far in the future. To address these concerns, we derive

the optimal contract in a setting where the CEO can a¤ect �rm value through both

productive e¤ort or costly manipulation, and may undo the contract by privately sav-

ing. The e¢ cient contract takes a surprisingly simple form, and can be implemented

by a �Dynamic Incentive Account.�The CEO�s expected pay is escrowed into an ac-

count, a fraction of which is invested in the �rm�s stock and the remainder in cash.

The account features state-dependent rebalancing and time-dependent vesting. It is

constantly rebalanced so that the equity fraction remains above a certain threshold;

this threshold sensitivity is typically increasing over time even in the absence of career

concerns. The account vests gradually both during the CEO�s employment and after

he quits, to deter short-termist actions before retirement.

Keywords: Contract theory, executive compensation, incentives, principal-agent prob-

lem, manipulation, private saving, vesting.

JEL Classification: D2, D3, G34, J3

�aedmans@wharton.upenn.edu, xgabaix@stern.nyu.edu, tsadzik@nyu.edu, sannikov@gmail.com.
For helpful comments, we thank Zhiguo He and Eric Talley, and seminar participants at the Harvard
Law School / Sloan Foundation Conference on Corporate Governance, the NBER, NYU and the
University of Chicago. Qi Liu and Andrei Savotchkine provided excellent research assistance.

1



1 Introduction

Many classical models of CEO compensation consider only a single period, or multiple

unlinked periods. However, the optimal contract in a static analysis may be suboptimal in a

dynamic world where the CEO�s current actions, such as his e¤ort or savings/consumption

choice, impact future periods. For example, short-term contracts can encourage the CEO

to manipulate earnings or scrap investment projects to boost the current stock price at the

expense of fundamental value; these long-run costs may not appear until after the CEO has

retired. By privately saving, the CEO can separate his consumption stream from the path of

income provided by his contract, and thus undo the intended incentives. Securities given to

incentivize the CEO may lose their power over time: if �rm value declines, options fall out-

of-the-money and bear little sensitivity to the stock price. In addition to the three above

challenges, a dynamic setting also provides opportunities absent from a static framework

� in particular, the �rm has the option to reward current e¤ort with future rather than

contemporaneous compensation.

This paper analyzes optimal executive compensation in a dynamic model that allows for

all of the above complexities, which are likely important features in real life. Despite the

complications that result from a dynamic setting, the optimal contract is surprisingly simple

and features intuitive economic principles. We �rst consider an in�nite horizon model where

the CEO has no option to manipulate earnings or privately save, to provide a benchmark

against which to analyze the e¤ect of introducing these complexities. In this baseline model,

the optimal contract is time-independent: the sensitivity of pay to the �rm�s return is the

same in each period. The relevant measure of incentives is the percentage change in CEO

pay for a percentage change in �rm value; translated into real variables, this is the fraction

of CEO pay that comprises of stock. If the CEO�s outside option doubles, his total pay

doubles but the relative weighting on cash and stock remains the same. Thus, the contract

is also scale-independent. This result extends to a dynamic setting Edmans, Gabaix and

Landier (2009), who advocated this incentive measure in a one-period model with a risk-

neutral CEO. The optimal contract also involves consumption smoothing. Since the agent

is risk-averse, it is e¢ cient to spread the reward for e¤ort across all future periods rather

than concentrating it in the current period (the �deferred reward principle�). This result
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is consistent with Boschen and Smith (1995), who �nd that �rm performance has a much

greater e¤ect on the present value of future pay rather than on contemporaneous pay.

With a �nite horizon, the sensitivity of income to �rm returns is now increasing over time

�the �increasing incentives principle.�As the CEO approaches retirement, there are fewer

periods in which to spread the reward for e¤ort, and so the reward in the current period

must increase. We thus generate a similar prediction to Gibbons and Murphy (1992), but

without invoking career concerns.

Allowing the CEO to manipulate the stock price has two e¤ects on the optimal contract,

which must change to prevent such behavior. The CEO�s income is now sensitive to �rm

returns even after retirement, to deter him from in�ating the stock price just before he

leaves. In addition, the contract sensitivity now must rise over time, even in an in�nite-

horizon model. This is because the CEO bene�ts immediately from short-termism as it

boosts his current consumption, but the cost is only su¤ered in the future and thus has a

discounted e¤ect on the CEO�s utility. Therefore, an increasing slope is needed to ensure

that the CEO loses more dollars in the future than he gains today.

By contrast, the possibility of private savings does not change the contract�s sensitivity

to �rm value, since it does not a¤ect the CEO�s e¤ort. Instead, the ability to save privately

a¤ects the level of pay, causing it to increase more rapidly over time. Rising pay e¤ectively

saves for the CEO, thus removing the incentive for him to do so privately.

In practice, the optimal contract can be implemented in a straightforward manner. When

initially appointed, the CEO is given a �Dynamic Incentive Account�: a portfolio of which a

given fraction is invested in the �rm�s stock and the remainder in cash. As time evolves, and

�rm value changes, this portfolio is constantly rebalanced, so that the fraction in the �rm�s

stock remains su¢ cient to induce e¤ort at minimum risk to the CEO. For example, a fall in

the share price decreases the equity in the incentive account below the threshold fraction;

this is addressed by using cash in the account to purchase stock. By contrast, if the stock

appreciates, some of the equity can be sold without falling below the threshold, to reduce

the risk borne by the CEO. The required fraction represents the contract�s sensitivity, and

so is constant in an in�nite horizon model where manipulation is impossible, and increasing

over time otherwise.
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In addition to continuous rebalancing, the Dynamic Incentive Account also features grad-

ual vesting, both during the CEO�s employment and after his retirement. He can only with-

draw a fraction of the account in each period, and it does not immediately vest upon leaving

the �rm �full withdrawal is only possible after a su¢ cient period has elapsed for the e¤ects

of manipulation to have been reversed. If the model horizon is in�nite, the vesting fraction

is time-independent (constant across periods), just like the contract sensitivity.

In sum, the Dynamic Incentive Account has two key features, which each achieve separate

objectives. State-dependent rebalancing ensures that the CEO always exerts the required

level of e¤ort, while minimizing the risk that he bears. Time-dependent vesting ensures

that the CEO always abstains from manipulation, while allowing him to �nance consump-

tion. The model thus o¤ers theoretical guidance on how executive compensation might be

reformed to address and prevent the problems that manifested in the recent crisis, at mini-

mum cost. A number of commentators (e.g. Bebchuk and Fried (2004), Holmstrom (2005))

have argued that lengthening vesting horizons on stock and options may deter manipulation.

Even if such a change could be achieved at little cost, it only solves one of the two prob-

lems: while it entails time-dependent vesting and thus addresses myopia, it does not involve

state-dependent rebalancing and so ensure continued incentive compatibility over time.

Moreover, existing theories demonstrate costs of lengthening vesting horizons, which

may lead to the optimal vesting horizon being short. Such costs arise because vesting and

rebalancing are the same event in these models � therefore, long vesting prevents timely

rebalancing and may aggravate the e¤ort problem. In the Dynamic Incentive Account,

vesting and rebalancing are separate events, allowing each issue to be addressed without

worsening the other. For example, in Peng and Roell (2009), long vesting periods increase

the risk borne by the CEO as they delay the rebalancing of stock for cash, and so the

�rm chooses a short vesting horizon even though this induces some manipulation. In our

model, distant vesting can be achieved without imposing excessive risk: stock can be sold for

cash upon good interim performance, although the proceeds are retained within the account.

Brisley (2006) and Bhattacharyya and Cohn (2008) show that allowing the CEO to rebalance

his securities for cash can increase his willingness to undertake risky projects by reducing his

�rm-speci�c risk. Since rebalancing can only be achieved through vesting, Bhattacharyya
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and Cohn show that the optimal vesting period is short. While they consider stock, Brisley

analyzes options where rebalancing is only necessary upon strong performance, since only

in-the-money options subject the CEO to risk. Therefore, as in our model, state-dependent

rebalancing is optimal; since rebalancing and vesting are the same event in Brisley�s model,

this requires state-dependent vesting. Indeed, recent empirical studies (e.g. Bettis, Bizjak,

Coles and Kalpathy (2008)) document that performance-based (i.e. state-dependent) vesting

is becoming increasingly popular. However, state-dependent vesting may allow the CEO

to manipulate the stock price upwards (an action not featured in the two above theories)

and cash out his shares. Thus, state-dependent vesting has critically di¤erent e¤ects to

the combination of state-dependent rebalancing and time-dependent vesting � under our

contract, high stock returns allow sales of equity, but the proceeds remain within the account

in case the returns are subsequently reversed. Our framework incorporates manipulation

and so requires these two features to achieve the two separate goals of e¤ort inducement and

manipulation deterrence.

In addition to the above papers on vesting horizons, our paper is also related to the

literature on optimal contracts in the presence of manipulation. Lacker and Weinberg (1989)

identify a class of one-period settings in which no manipulation is optimal and linear contracts

obtain. Goldman and Slezak (2006) model the trade-o¤ between e¤ort inducement (which

increases the optimal equity stake) and manipulation deterrence (which reduces it). More

generally, the theory is related to dynamic models of the principal-agent problem, such as

DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007), He (2008a), Sannikov (2008)

and Garrett and Pavan (2009), and the macroeconomic literature seeking to understand

dynamic optimal incentives, such as Atkeson and Lucas (1992), Golosov, Kocherlakota and

Tsyvinski (2003), Shimer and Werning (2008), Phelan and Skrzypacz (2008) and Farhi and

Werning (2009). Our modeling setup builds on the multi-period framework of Edmans and

Gabaix (2009) (�EG�), which allows us to derive contracts that are both attainable in closed

form and �detail-neutral��the functional form is independent of the noise distribution and

agent�s utility function. However, EG do not consider manipulation and restrict the CEO

to consuming in the �nal period only. He (2008b) considers a dynamic setting in which

the agent can privately save and also engage in a myopic action (similar to manipulation
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in this paper). He shows that the optimal wage pattern is non-decreasing over time, that

su¢ ciently good past performance leads to permanent pay raises, and that severance pay

is e¢ cient. Our model has quite di¤erent speci�cations (multiplicative utility, continuous

action choice and a cost function that is not restricted to being linear) which leads to a closed-

form, scale-independent contract. Our analysis focuses on the state-dependent rebalancing

and time-dependent vesting of the optimal contract, and its implementation via the dynamic

incentive account.

In addition to its results, our paper contributes a number of methodological innovations.

To our knowledge, it is the �rst to derive conditions on the model primitives which guarantee

the validity of the �rst-order approach to solve a dynamic agency problem with private

savings. An agency problem is a maximization problem subject to the agent�s incentive

constraints. The �rst-order approach replaces the incentive constraints against complex

multi-period deviations with weaker local constraints (i.e. �rst-order conditions), with the

hope that the solution to the relaxed problem satis�es all incentive constraints.1 This method

is often valid without private savings (hence the one-shot deviation principle), but it has

proved problematic when the agent can save. The di¢ culties arise since the agent can engage

in joint deviations to save and reduce e¤ort, because savings provide insurance against future

shocks to income and thus reduce the agent�s incentives to exert e¤ort in the future. Our

method of guaranteeing the validity of the �rst-order approach centers around viewing the

agent�s total lifetime income as a function of his total disutility of e¤ort. If this function is

concave, the �rst-order approach is valid, since the agent�s utility is concave in income. Our

method of guaranteeing the validity of the �rst-order approach involves reparameterizing the

agent�s utility from being a function of consumption and e¤ort to one of consumption and

leisure. The new variable, leisure, is de�ned to ensure that the utility function is jointly

concave in both arguments. We then linearize the agent�s utility function and show that

the linear utility function is jointly concave in leisure and manipulation (it is automatic that

1There are methods to verify the validity of the �rst-order approach which �nd the solution of the relaxed
problem and verify global incentive compatibility of each individual solution numerically rather than �nding
conditions on primitives to �nd validity. For example, see Werning (2001) and Dittmann, Maug and Spalt
(2008). Also, Williams (2008) derives conditions on primitives to guarantee the validity of the �rst-order
approach, which apply to a range of dynamic contracting problems that do not involve private saving.
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there is no incentive to save under linear utility). Since the actual utility function is concave,

linearized utility provides an upper bound for the agent�s actual utility. Thus, since there is

no pro�table deviation under a linear utility function, there is no pro�table deviation under

the actual utility function either.

The second methodological innovation allows us to solve for the optimal level of e¤ort,

rather than only the (exactly) optimal contract that implements a given e¤ort level (the �rs

stage of Grossman and Hart (1983)). Following the argument of Fong and Sannikov (2009)

that predictions of optimal contracting theories are important only insofar as they have

sizable, rather than negligible, impact on pro�tability, we aim to derive a simple contract

that is close to the optimal contract in terms of e¢ ciency, rather than the complicated

optimal contract. Our contract is approximately optimal under the assumption that �rm

value is signi�cantly larger than the CEO�s wage, which is indeed true in the vast majority

of practical applications. Under this assumption, the di¤erence in pro�tability between our

contract and the optimal contract converges to 0 as �rm�s earnings become larger. The

methodological innovation here is in proving that the contract is approximately optimal

without deriving the optimal contract. To do so, we construct an upper bound on pro�t

that any contract can attain, justify it using martingale methods, and show that our simple

contract comes close to the upper bound. (See also He (2008b) who uses a related technique

in a di¤erent setting.)

This paper is organized as follows. Section 2 presents the model setup, and Section

3 derives the optimal contract when the CEO has logarithmic utility, as this version of

the model is most tractable. Section 4 shows that the key results continue to hold under

general CRRA utility functions and autocorrelated noise. This section also provides a full

justi�cation of the DIA: it derives su¢ cient conditions that ensure that the agent will not

undertake global deviations, and shows that the principal cannot improve upon implementing

maximum e¤ort. Section 5 concludes, Appendix A contains proofs, and Appendices B and

C show that the model is robust to a variable marginal cost of e¤ort and continuous time,

respectively.
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2 The Core Model

2.1 Assumptions

We consider a multiperiod model featuring a �rm (also referred to as the principal) which

employs a CEO (also referred to as the agent). The �rm pays only one cash �ow, a terminal

dividend D� (also referred to as earnings) in the �nal period � . In the core model, the

terminal dividend is given by

D� = X exp

 
�X
s=1

(as + �s)

!
; (1)

where X represents the baseline size of the �rm and as 2 [0; �a] is the agent�s action (also
referred to as �e¤ort�). The action as is broadly de�ned to encompass any decision that

improves �rm value but is personally costly to the manager. The main interpretation is

e¤ort, but it can also refer to rent extraction, in which case a low as re�ects cash �ow

diversion or private bene�t consumption. �s is noise, which is independent across periods

and has a log-concave density2 with support [�; ��], where the bounds need not be �nite.

(Section 4.1 allows for autocorrelated noises). As in Edmans and Gabaix (2009), we assume

that, in each period t, the agent privately observes �s before choosing his action as. They

show that this assumption leads to tractable contracts in discrete time, as well as consistent

results with the continuous time case, where noise and actions are simultaneous. This timing

is also featured in cash �ow diversion models where the CEO sees total output before deciding

how much to divert (e.g. DeMarzo and Fishman (2007)), as well as models in which the

CEO observes the �state of nature�before choosing his e¤ort level (e.g. Harris and Raviv

(1979), Sappington (1983), La¤ont and Tirole (1986) and Baker (1992)).

After the action is taken at time t, the principal observes a public signal of �rm value,

2A random variable is log-concave if it has a density with respect to the Lebesgue measure, and the log
of this density is a concave function. Many standard density functions are log-concave, in particular the
Gaussian, uniform, exponential, Laplace, Dirichlet, Weibull, and beta distributions (see, e.g., Caplin and
Nalebu¤ (1991)). On the other hand, most fat-tailed distributions are not log-concave, such as the Pareto
distribution.
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given by:

St = X exp

 
tX

s=1

(as + �s)

!
:

The incremental news contained in St, over and above the information known in period t�1
(and thus contained in St�1) can be summarized by rt = lnSt � lnSt�1, i.e.

rt = at + �t: (2)

rt captures the additional �news�about D� that arises in period t. With a slight abuse of

terminology, we call rt the �rm�s �return�for the remainder of the paper.3 By observing St,

the principal learns rt, but not its constituent components at and �t. The agent�s strategy

is a function at(r1; : : : rt�1; �t) that speci�es how his action depends on the current level of

noise for each history of returns before time t:

After St (and thus rt) is publicly observed, the principal pays the agent an amount yt

according to the contract. We allow for a fully history-dependent contract in which the

agent�s compensation yt(r1; : : : rt) in period t depends on the entire history of past returns.
4

Having received income yt, the agent consumes ct and saves (yt � ct) at the risk-free rate

R. We allow (yt � ct) to be negative, i.e. the agent may borrow as well as save. Such

borrowing and saving are unobserved by the principal. Following a standard argument, we

can restrict attention to contracts in which the agent chooses not to save or borrow, and

3rt is the actual increase in the expected dividend as a result of the action and noise at time t. Given
rational expectations, the stock return is the unexpected increase in �rm value. In turn, �rm value is the
discounted expected dividend. We later show that the optimal contract implements the maximal e¤ort �a in
every period. Therefore, �rm value is given by

Pt = X exp

 
tX

s=1

(as + �s) + (� � t) (a�R+ lnE [e�t ])
!
;

where R is the risk-free rate. Therefore, the �rm�s log return is lnPt � lnPt�1 = Rt � �a+R.
4A fully general contract can also involve the agent sending a message regarding �t and the income yt

depending on such messages. However, such messages are redundant: the agent�s announcement of �t would
be uniquely determined by rt: since he will make the announcement that maximizes his expected utility.
Therefore, the principal can automatically back out the message after seeing rt, and so such messages would
convey no additional information on top of what is already known from the history of returns. See also
Edmans and Gabaix (2009).
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instead consumes his entire income in each period (i.e. ct = yt). Our analysis develops a

number of methodological contributions, since the analytical challenges of dynamic agency

problems with private savings are well recognized.5

The agent�s utility over consumption ct 2 [0;1) and e¤ort at in each period is given by

u(cth(at)); (3)

where u is a CRRA utility function with relative risk aversion coe¢ cient 
 > 0, i.e.

u (x) =

8<: x1�


1�
 if 
 6= 1
lnx if 
 = 1;

and h is a decreasing, concave function.

The agent lives in periods 1 through T � � and retires after period L � T . After

retirement, the �rm replaces him with a new CEO and continues to contract optimally. The

agent discounts future utility at rate �, so that his total discounted utility is given by:

U =
TX
t=1

�tu(cth(at)): (4)

As in Edmans, Gabaix and Landier (2009), we model e¤ort as having a multiplicative e¤ect

on both CEO utility (equation (3)) and �rm earnings (equation (1)). Multiplicative prefer-

ences consider private bene�ts as a normal good (i.e. the utility they provide is increasing in

consumption), consistent with the treatment of most goods and services in consumer theory;

they are also common in macroeconomic models. With a multiplicative production function,

e¤ort has a percentage e¤ect on �rm earnings and so the dollar bene�ts of working are higher

for larger �rms. This assumption is plausible for the majority of CEO actions, since they

can be �rolled out�across the entire �rm and thus have a greater e¤ect in a larger company.

Edmans et al. show that multiplicative speci�cations are necessary to generate empirically

consistent predictions for the scaling of various measures of CEO incentives with �rm size.6

The principal is risk-neutral and uses discount rate R, continuously compounded. There-

5See Werning (2002), Kocherlakota (2004) and Williams (2006).
6They also allow to analyze incentives in a market equilibrium model à la Gabaix and Landier (2008).
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fore, her objective function is given by:

max
fat;t=1;:::Lg;fyt;t=1;:::Tg

E

"
e�R�D� �

TX
t=1

e�Rtyt

#

i.e. the expected discounted dividend, minus the expected cost of compensation. The indi-

vidual rationality constraint is that the agent achieves his reservation utility of u; i.e.

Ea

"
TX
t=1

�tu(cth(at))

#
= u:

The incentive compatibility constraints require that any deviation (in either the action or

consumption) by the agent reduces his utility, i.e.

E â

"
TX
t=1

�tu(cth(ât))

#
� u

for all alternative e¤ort strategies fât; t = 1; : : : Lg and feasible consumption strategies
fct; t = 1; : : : Tg: A consumption strategy is feasible if it satis�es the budget constraint

TX
t=1

e�Rtct �
TX
t=1

e�Rtyt:

We used the notation Ea and E â to highlight that the agent�s e¤ort strategy a¤ects the

probability distribution over return paths.

In some versions of the model, we allow the agent to a¤ect the �rm�s returns not only

by exerting e¤ort but also via manipulation. In practice, such manipulation can take many

forms. In the most literal interpretation, the manager can change accounting policies to

accelerate the realization of revenues or delay the impact of costs (either by concealing

information, or capitalizing rather than expensing costs).7 Alternatively, he can engage in

short-termist behavior by scrapping positive-NPV investments (as modeled by Stein (1988)

and Edmans (2009)) or taking on negative-NPV projects that generate an immediate return

but have a downside that may not manifest for several years (such as sub-prime lending).

7See Goldman and Slezak (2006) and Peng and Roell (2008, 2009) for models featuring such manipulation.

11



In both cases, the increase in current returns are at the expense of long-run fundamental

value. Note that manipulation may be downwards as well as upwards: the CEO may sacri�ce

current returns to boost future returns if his future performance is benchmarked against past

performance, or if the contract�s sensitivity to performance increases over time. This can

be achieved by investing in negative-NPV projects, or �big bath�accounting (taking large

write-downs in the current period).

In each period t � L, at the same time as taking his action, the agent can also engage

in manipulation mt;i, simultaneously selecting a �release lag� i � M . The release lag is the

number of periods before the e¤ects of manipulation are reversed. For example, forgoing an

investment project that pays o¤ in the very long-run will only worsen earnings far into the

future, and so the release lag is high. M is the maximum release lag, where M � � � L,

i.e. the e¤ects of all manipulation are reversed before the terminal dividend is paid. The

terminal dividend (1) now becomes

D� = X exp

 
�X
s=1

(�s + as)�
�X
s=1

MX
i=1

� (ms;i)

!
;

where � (ms;i) is the fundamental cost of manipulation. We have � (0) = �0 (0) = 0, and

�00 (ms;i) > 0. [XG It was written�0 (jms;ij) > 0; �00 (jms;ij) > 0 but is should bejust �00 (ms;i) >

0; with no �0 (jms;ij) > 0 :we don�t necessarily assume that � is symmetrical around 0, and
the motonicity assumption isnt�necessary] Manipulation reduces fundamental value, since

it involves undertaking negative-NPV projects, forsaking positive-NPV projects, or using

resources to change accounting policies. For conciseness, we will sometimes shorten ms;i to

ms where there is no ambiguity.

The advantage of manipulation to the agent is that it temporarily increases outsiders�

perceptions of �rm value, and thus the �rm�s returns and his income. To show how ma-

nipulation a¤ects signals and returns, we illustrate for simplicity the case where the CEO

engages in only one manipulation, at time t. The signal now changes from

St = X exp

 
tX

s=1

(�s + as)

!
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to

S 0t+j =

8<: St+je
mt;i��(mt;i) for j = 0; :::; i� 1

St+je
��(mt;i) for j � i:

The return now changes from rt = at + �t to

r0t = rt +mt;i � � (mt;i)

r0t+i = rt+i �mt;i

r0s = rs for s 6= t; t+ i;

i.e. it rises in period t by mt;i � � (mt;i) and falls it in period t+ i by mt;i.8

The principal�s problem is complex because contracts are history-dependent, the agent

can manipulate returns and privately save, and the principal must choose the optimal level of

e¤ort and manipulation. Our strategy for solving the problem is as follows. We start with a

guess that, if the �rm is su¢ ciently large (X is su¢ ciently high), we can attain the optimum

at least approximately by a contract that enforces maximal e¤ort and zero manipulation in

each period, and in which the local constraints bind. Following this guess we

� characterize the class of contracts that satisfy the local incentive constraints in Section
3.1. This class includes all incentive-compatible contracts, but some contracts from

the class may not be fully incentive-compatible.

� construct a candidate contract based on our guess and these characterizations in Section
3.2.

� verify that the candidate contract is also fully incentive-compatible. See Theorem 3 in

8If the CEO engages in multiple manipulations at time t, the signal becomes:

S0t+j = St+j exp(ms;i1s+i>t +
X
s�t
i�M

�� (ms;i))

and the return changes to:

r0t = rt +
MX
i=1

(mt;i � � (mt;i))�
minfM;t�1gX

i=1

mt�i;i:
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Section 4.2.

� verify that the candidate contract is approximately optimal among all contracts that
satisfy the local incentive constraints. Speci�cally, Theorem 4 in Section 4.3 shows that

the di¤erence in pro�tability between our contract and the optimal contract converges

to 0 as X becomes large.

3 Log Utility

3.1 Local Constraints

In this section we characterize the class of contracts that satisfy the local incentive con-

straints. There are (up to) three such constraints. The incentive compatibility (IC) constraint

ensures that the agent wishes to exert the maximum level of e¤ort (at = a). The private

savings (PS) constraint ensures that the agent wishes to consume the full income provided

by the contract (ct = yt). The no-manipulation (NM) constraint ensures that the agent will

not engage in manipulation (mt = 0). To show the e¤ect of allowing private savings and

manipulation on the contract, we will consider versions of the model in which the PS and/or

NM constraints are not imposed. We use these constraints to identify a candidate contract in

Section 3.2, which we later show to be approximately optimal and fully incentive-compatible.

Consider an arbitrary contract fyt; t = 1; : : : Tg together with a consumption strat-
egy fct; t = 1; : : : Tg; an e¤ort strategy fat; t = 1; : : : Lg and a manipulation strategy
f(mt; it); t = 1; : : : Lg: Recall that yt; ct and (mt; it) depend on the entire history (r1; : : : rt)

and at depends on (r1; : : : rt�1; �t):9 To capture history-dependence, we denote by Et the

expectation conditional on the history (r1; : : : rt).

We �rst address the IC constraint and consider a local deviation in the action at after

history (r1; : : : rt�1; �t): The derivative of CEO utility with respect to at is

Et

�
@U

@rt

@rt
@at

+
@U

@at

�
;

9Since the agent has observed �t, his action choice pins down rt and so he knows rt when choosing his
manipulation.
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where @rt=@at = 1 and @U=@at = e��th0(at)u
0(cth(at)): The IC constraint is thus:

IC : Et

�
@U

@rt

�8>><>>:
� if at = �a

= if at 2 (0; �a)
� if at = 0

9>>=>>; �tct(�h0(at))u0(cth(at)): (5)

We next consider the PS constraint. If the CEO saves a small amount dt in period t and

invests it until t+ 1; his utility increases to the leading order by:

�Et
�
@U

@ct

�
dt + Et

�
@U

@ct+1

�
eRdt:

To deter private saving or borrowing, this change should be zero to the leading order, i.e.

EE : �th(at)u
0(cth(at)) = Et

�
�t+1eRh(at+1)u

0(ct+1h(at+1))
�
: (6)

This is the standard Euler equation for consumption smoothing: discounted marginal utility

eRt�th(at)u
0(cth(at)) is a martingale. Intuitively, if it were not a martingale, the agent would

privately reallocate consumption to the time periods with higher marginal utility.

The Euler equation can be contrasted with the �Inverse Euler Equation�(IEE), which

characterizes solutions to agency problems where the agent cannot privately save and so the

PS constraint need not be imposed (Rogerson (1985), Golosov, Kocherlakota and Tsyvinski

(2003) and Farhi and Werning (2009)), when utility is additively separable in consumption

and e¤ort. In our model, utility becomes additive if u(x) = lnx, and so the IEE is:

IEE: e�Rt��tct is a martingale. (7)

The IEE states that the inverse of the agent�s marginal utility, which equals the marginal

cost of delivering utility to the agent, is a martingale. If (7) did not hold, the principal could

bene�t by shifting the agent�s utility to periods with a lower marginal cost of delivering

utility. This argument is invalid for 
 6= 1, because the agent�s marginal cost of e¤ort

depends on his consumption when utility is nonadditive.

Finally, we consider the NM constraint. If the agent engages in a small manipulation
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(mt; it) at time t, his utility changes to the leading order by

Et

�
@U

@rt

�
(mt;i � � (mt;i)) + Et

�
@U

@rt+i

�
(�mt;i) :

To prevent manipulation, this change must be zero. Since � (0) = �0 (0) = 0, this implies

NM : Et

�
@U

@rt

�
= Et

�
@U

@rt+i

�
for t � L, 0 � i �M: (8)

We will consider versions of the model in which private savings and/or manipulation are

impossible (and so the PS and/or NM constraints need not be imposed), to demonstrate

how the possibility of private savings and/or manipulation a¤ect the contract.

3.2 The Contract

We now derive the cheapest contract that satis�es the local constraints and implements

maximum e¤ort. We �rst present the contract under log utility, as the expressions are most

transparent and the key principles are the same as in the general CRRA case. Section 4

considers the general CRRA case and extends the model to autocorrelated noise. For the

derivation, it is useful to introduce the increasing function:

g (a) = � lnh (a) ; (9)

which represents the utility cost of exerting action a.

Theorem 1 (Log utility.) The cheapest contract that satis�es the constraints and imple-
ments maximum e¤ort is as follows. In each period t, the CEO�s incremental utility over

the previous period is linear in the signal rt, i.e.

ln ct = ln c0 +
tX

s=1

�srs +
tX

s=1

ks; (10)

where �s and ks are constants. If manipulation is impossible, the slope �s is given by

�s =

(
g0(�a)

1+�+:::�T�s for s � L;

0 for s > L:
(11)
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If manipulation is possible, �s is given by:

�s =

(
g0(�a)

1+�+:::�T�s�
1�s for s � L+M;

0 for s > L+M
(12)

If private saving is impossible, the constant ks is given by:

ks = R + ln �� lnE[e�s(�a+�)]: (13)

If private saving is possible, ks is given by:

ks = R + ln �+ lnE[e��s(�a+�)]: (14)

The initial condition c0 is chosen to give the agent his reservation utility u:

Heuristic proof. The Appendix contains a full proof; here we present a heuristic proof

in a simple case, that gives the key intuition behind the formal proof. We consider a two-

period model with no discounting, i.e. L = T = 2, � = 1, R = 0, with the PS constraint but

without the NM constraint. We wish to show that the optimal contract is written:

ln c1 = g0 (a)
r1
2
+ �1; ln c2 = g0 (a)

�r1
2
+ r2

�
+ �1 + k2 (15)

for some constants �1 (the equivalent of ln c0 + k1 in the Theorem) and k2 that makes the

IR constraint bind.

Step 1: Optimal log-linear contract

We �rst solve the problem in a restricted class where contracts are log-linear, i.e.:

ln c1 = �1r1 + �1, ln c2 = �21r1 + �2r2 + �1 + k2 (16)

for some constants �1, �21; �2, �1; k2 to be determined. This �rst step is not necessary, but

it clari�es the economics, and it is helpful in more complicated cases in guessing the form of

the optimal contract.

First, intuitively, the optimal contract should entail consumption smoothing, i.e. a shock

to consumption has a permanent impact. This implies �21 = �1. To see this more formally,
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the Euler Equation (6) yields:

1 = E1

�
c1
c2

�
= e(�1��21)r1E1

�
e��2r2�k2

�
: (17)

This must hold for all r1. Therefore, �21 = �2.

Next, consider total utility U :

U = ln c1 + ln c2 � g (a1)� g (a2)

= 2�1r1 + �2r2 � g (a1)� g (a2)

From (5), the two IC conditions are E2
h
@U
@r1

i
� g0 (a) and E2

h
@U
@r2

i
� g0 (a). They are

equivalent to:

2�1 � g0 (a) ; �2 � g0 (a) :

It is intuitive that the IC constraints should bind, otherwise the CEO is exposed to unnec-

essary risk. We therefore have:

2�1 = g0 (a) ; �2 = g0 (a) :

Combining this equation with (16), we see that the optimal contract is given by (15).

Finally, we revisit equation (17), which gives k2 = lnE1
�
e��2r2

�
, as in (13).

Step 2: Optimality of log-linear contracts

We next verify that optimal contracts should be log-linear. To do so, we use the following

reasoning from EG. (5) yields: d (ln c2) =dr2 � g0 (a). In the Appendix we show that the

cheapest contract involves this local IC condition binding, i.e.

d (ln c2) =dr2 = g0 (a) � �2: (18)

Integrating yields the contract:

ln c2 = �2r2 +B (r1) ; (19)
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where B (r1) is a function of r1 which we will determine shortly. It is the integration �con-

stant�of equation (18) viewed from time 2.

We next apply the Euler Equation (6) for t = 1:

1 = E1

�
c1
c2

�
= E1

h c1
e�2r2+B(r1)

i
= E1

�
e��2r2

�
c1e

�B(r1): (20)

Hence, we obtain

ln c1 = B (r1) +K; (21)

where the constant K is independent of r1. (In this proof, expressions such as K and K 0 are

constants independent of r1 and r2.) Total utility is:

U = ln c1 + ln c2 +K 0 = 2B (r1) +K 0: (22)

We next apply (5) to (22) to yield: 2B0 (r1) � g0 (a) : Again, the cheapest contract

involves this condition binding, i.e. 2B0 (r1) = g0 (a) : Integrating yields:

B (r1) = g0 (a)
r1
2
+K 00; (23)

Combining (23) with (21) yields:

ln c1 = g0 (a) r1 + �1;

for another constant �1. Combining (23) with (19) yields:

ln c2 = g0 (a)
�r1
2
+ r2

�
+ �1 + k2;

for some constant k2. �
We now discuss the economics behind the contract. (10) shows that time-t income should

be linked to the return not only in period t, but also in all previous periods. Therefore,

exerting e¤ort in a particular period boosts income in both the current and all future periods.

We call this the �deferred reward principle�: since the CEO is risk-averse, it is optimal

to spread the reward for e¤ort across all future periods rather than concentrate it in the
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period in which e¤ort is exerted. This prediction is consistent with Boschen and Smith

(1995), who �nd that changes in �rm value have a much greater e¤ect on future rather than

contemporaneous pay.

We now consider how the contract sensitivity changes over time. We �rst consider the

case where manipulation is impossible and so the NM constraint is not imposed. (11) shows

that, in an in�nite horizon model (T = � =1), the sensitivity is constant and given by:

�t = � = (1� �) g0(a): (24)

This time-independent sensitivity is intuitive: the contract must be su¢ ciently sharp to

compensate for the disutility of e¤ort, which is constant. However, in a �nite model, (11)

shows that �t is increasing over time. The intuition for this �increasing incentives principle�

is that there are fewer remaining periods over which to smooth out the reward for e¤ort,

and so the CEO must earn a greater reward in each period. As in Gibbons and Murphy

(1992), our model predicts that CEOs closer to retirement must have sharper contracts.

While Gibbons and Murphy obtain this result by invoking career concerns, we derive this

result in the absence of career concerns: instead it arises because consumption smoothing

possibilities decline towards retirement.

Next, we study the impact of manipulation on the contract. From (12), the possibility

of manipulation has three main e¤ects. First, it requires that the CEO�s income remains

sensitive to �rm returns after his retirement in period L: it remains sensitive until period

L+M , by which time all manipulation has been reversed. This is to deter him from in�ating

returns just before retirement. Second, it causes the contract sensitivity to be higher in

each period, because the contract must now satisfy the NM constraint as well as the IC

constraint. Third, it a¤ects how the contract sensitivity trends over time. If this sensitivity

were constant, the CEO would have an incentive to in�ate the time-t return, thus increasing

his time-t consumption. Even though the return at time t + it will be lower, the e¤ect on

the CEO�s utility is smaller owing to discounting. Therefore, an increasing sensitivity is

necessary to deter manipulation. For example, in an in�nite horizon model (T = 1), the
possibility of manipulation changes the slope from the constant (24) to
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�t = (1� �) �1�tg0 (a)

The �1�t term demonstrates the increasing slope. The more impatient the CEO, the greater

the incentives to manipulate, and so the greater the required increase in sensitivity over

time to deter manipulation. In a �nite horizon model, the slope is already increasing if

manipulation is impossible; the feasibility of manipulation causes it to rise even faster.

Finally, the possibility of private savings a¤ects the constant kt but not the sensitivity �t.

Since private saving does not a¤ect the agent�s action and thus �rm returns, the sensitivity

of CEO pay to returns is unchanged. Instead, it alters the time trend in the level of pay.

The constant kt in (14), where private savings is possible, declines more slowly (or increases

more rapidly) over time than in (13) where private savings are infeasible. The faster upward

trend means that the contract e¤ectively saves for the agent, removing the need for him to

do so himself. This result is consistent with He (2008b), who �nds that the optimal contract

under private savings involves a wage pattern that is non-decreasing over time.

The contract in Theorem 1 involves binding local constraints and implements maximum

e¤ort and zero manipulation in each period. The remaining steps are to show that the agent

will not wish to undertake global deviations (e.g. make large changes, or simultaneously

reduce e¤ort, save and/or manipulate) and that the principal cannot improve signi�cantly

by implementing a di¤erent e¤ort or manipulation level, or allowing slack constraints. Since

these proofs are equally clear for general 
 as for log utility, we delay them until Section 4

where we extend the model to general CRRA utility. For now, we present the intuition for

the second result, that the principal cannot improve on the contract. The local constraints

bind because slack constraints would increase the sensitivity of the contract, subjecting the

CEO to unnecessary risk. The optimal e¤ort level is the result of a trade-o¤ between the

bene�ts of e¤ort (which are multiplicative in �rm size) and the costs of e¤ort. The latter

are the direct disutility su¤ered by the CEO from working, plus the ine¢ cient risk-sharing

caused by giving the CEO variable consumption, and are a function of the CEO�s salary. If

�rm size is su¢ ciently large compared to the CEO�s salary, the bene�ts of e¤ort swamp the

costs and maximum e¤ort is optimal. A similar argument applies to manipulation.

21



Appendix B extends the analysis to a variable marginal cost of e¤ort; the key results are

unchanged.

3.2.1 A Numerical Example

This optional section uses a simple numerical example to show most clearly the deferred

reward and increasing incentives principles, as well as the e¤ect of manipulation on the

contract. We �rst set T = 3, L = 3, � = 0 and g0 (a) = 1, and assume that manipulation is

impossible. From (11), the contract is given by:

ln c1 =
r1
3
+ �1

ln c2 =
r1
3
+
r2
2
+ �2

ln c3 =
r1
3
+
r2
2
+
r3
1
+ �3

where the �t =
Pt

s=1 ks are constants. This example shows both principles at work. First,

there is consumption smoothing: an increase in r1 leads to a permanent increase in log

consumption (and thus utility) �it rises by r1
3
in all future periods. Second, the sensitivity

increases over time, from 1=3 to 1=2 to 1=1.

We now allow the CEO to continue to live after he retires, by now considering T = 5 but

retaining all of the previous parameters. The optimal contract is now:

ln c1 =
r1
5
+ �1

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3

ln c4 =
r1
5
+
r2
4
+
r3
3
+ �4

ln c5 =
r1
5
+
r2
4
+
r3
3
+ �5:

Since the CEO takes no action from t = 4 onwards, his pay does not depend on r4 or r5.

However, it continues to depend on r1, r2 and r3 as his earlier e¤orts a¤ect his wealth, from

which he consumes until death.
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If the CEO can manipulate returns with M = 1, the contract changes to:

ln c1 =
r1
5
+ �1

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
r3
3
+ �3

ln c4 =
r1
5
+
r2
4
+
r3
3
+
r4
2
+ �4

ln c5 =
r1
5
+
r2
4
+
r3
3
+
r4
2
+ �5:

The possibility of manipulation means that r4 now a¤ects the CEO�s income, otherwise he

would have an incentive to boost r3 at the expense of r4. However, the contract is unchanged

for t � 3, i.e. for the periods in which the CEO works. Even under the original contract,

there is no incentive to manipulate at t = 1 or t = 2 because two conditions are satis�ed.

First, there is no discounting, and so the negative e¤ect of manipulation on future returns

reduces the CEO�s lifetime utility by as much as the positive e¤ect on current salary increases

it. Comparing (11) and (12) shows that, if � < 1 (i.e. there is discounting), the possibility

of manipulation causes the contract slope to rise at all t. Second, because the marginal

cost of e¤ort is constant across periods, the lifetime e¤ect of increasing returns is the same

regardless of the period in which the higher returns arise. For example, increasing r1 by one

unit raises consumption in each period by 1=5 units, and so 1 unit (undiscounted) in total.

Decreasing r2 by one unit reduces consumption in each period by 1=4 units, and so 1 unit

in total. Again, the costs and bene�ts of manipulation are the same, so there is no incentive

to manipulate even under the original contract.

3.3 Implementation of the Contract: the DIA

From Theorem 1, we have

ln ct � ln ct�1 = �trt + kt: (25)

The contract thus prescribes the percentage change in CEO pay as a function of the �rm�s

return rt, i.e. the percentage change in �rm value. The relevant measure of incentives is

23



therefore the elasticity of CEO pay to �rm value; this elasticity must be at least �t to ensure

incentive compatibility. Empiricists have used a number of statistics to measure incentives

� for example, Jensen and Murphy (1990) calculate �dollar-dollar� incentives (the dollar

change in CEO pay for a dollar change in �rm value) and Hall and Liebman (1998) measure

�dollar-percent�incentives (the dollar change in CEO pay for a percentage �rm return.) By

contrast, Murphy (1999) advocates the elasticity measure (�percent-percent�incentives) on

empirical grounds: it is invariant to �rm size, and �rm returns have much greater explanatory

power for percentage than dollar changes in pay. However, he notes that �elasticities have

no corresponding agency-theoretic interpretation.�The above analysis provides a theoretical

justi�cation for using elasticities to measure incentives. Edmans, Gabaix and Landier (2009)

showed that percent-percent incentives are the optimal measure if e¤ort has a multiplicative

e¤ect on both CEO utility and �rm value, as in this paper (equations (1) and (3)).10 Their

result was derived in a one-period model with a risk-neutral CEO; we extend it to a dynamic

model with a risk-averse CEO who can manipulate returns and privately save. In terms of

real variables, percent-percent incentives equal the fraction of total pay that is comprised of

stock. The required fraction (�t) is independent of total pay (i.e. scale-independent): if the

CEO�s outside option doubles, total pay doubles. Therefore, the value of equity must double

to ensure that the fraction of total pay invested in equity remains the same.

To ensure that percent-percent incentives equal �t in each period t, the contract can be

implemented in the following simple manner. The present value of the CEO�s expected pay

is escrowed into a �Dynamic Incentive Account� (�DIA�) at the start of period t = 1.11

A proportion �1 of the Incentive Account is invested in the �rm�s stock and the remainder

in cash.12 At the start of each subsequent period t, this portfolio is rebalanced so that

the proportion invested in the �rm�s stock is �t. This dynamic rebalancing addresses a

common problem of option compensation: if �rm value declines, the option�s delta falls and

10�Percent-percent�incentives are also the optimal measure in Peng and Roell (2008).
11We present one possible implementation of the optimal contract; other implementations are possible.

For example, rather than placing the entire present value of the CEO�s future pay in the account at the
start, only his t = 1 reservation wage could be invested initially. In each subsequent period, the reservation
wage of that period is added to the account.
12Note that the stock pays the �rm�s actual return. As noted in footnote 3, rt is not the �rm�s actual

return, but the actual return plus a�R. This does not a¤ect the implementabiity with stock because it only
changes the constant kt, which rises by �t(a�R).
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so its incentive e¤ect is reduced. Unrebalanced stock compensation su¤ers from a similar

problem, even though the delta of a share is constant at 1 regardless of �rm value. The

relevant measure of incentives is not the delta of the CEO�s portfolio (which represents

dollar-dollar incentives) but the proportion of CEO pay which is in equity (percent-percent

incentives). When the stock price falls, the value of the CEO�s shares declines but his cash

is una¤ected. Therefore, stock constitutes a smaller proportion of the CEO�s pay, which

reduces his incentives. The DIA addresses this problem by exchanging cash for stock, to

maintain the fraction of stock in the account at �t. Importantly, the additional stock is

accompanied by a reduction in cash �it is not given for free. This addresses a major concern

with repricing options after negative returns to restore incentives �the CEO is rewarded for

failure. By contrast, if the stock price rises, stock becomes a higher fraction of the account.

Therefore, some shares can be sold for cash, thus reducing the CEO�s risk, without incentives

falling below �t. Indeed, Fahlenbrach and Stulz (2008) �nd that decreases in CEO ownership

typically occur after good performance.

The DIA thus features dynamic rebalancing to ensure that the IC constraint is satis�ed

in each period. This rebalancing is state-dependent: if the stock price rises (falls), stock is

sold (bought) for cash. The second key feature of the DIA is time-dependent vesting: the

CEO can only withdraw a fraction �t of the account in each period for consumption (we will

later derive �t in a speci�c case). This gradual vesting ensures that the NM constraint is

satis�ed in each period: it prevents the CEO from manipulating returns and then cashing out

his equity before the manipulation is revealed. Moreover, vesting is gradual not only during

the CEO�s tenure but also after retirement. The CEO is not paid the entire DIA in period

L. Instead, the account only fully vests in period L +M , to deter the CEO from in�ating

returns just before his departure. Commentators have argued that the latter problem was

particularly important in the recent �nancial crisis. For example, Angelo Mozilo, the former

CEO of Countrywide Financial, made over $100m from stock sales prior to his �rm�s collapse;

a November 20, 2008Wall Street Journal article entitled �Before the Bust, These CEOs Took

Money O¤ the Table�provides further examples. More broadly, Johnson, Ryan and Tian

(2009) �nd a positive correlation between corporate fraud and unrestricted (i.e. immediately

vesting) stock compensation.
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In sum, the DIA has two key features. Time-dependent vesting ensures that the CEO

does not manipulate returns, while smoothing his consumption so that he has no incentive

to privately save. State-dependent rebalancing guarantees that the CEO has su¢ cient incen-

tives to exert e¤ort, while minimizing the risk that he bears. Some existing compensation

schemes satisfy the �rst feature, but not the second. For example, restricted stock and

options vest along a given time schedule, irrespective of �rm performance (see, e.g., Kole

(1997)). Long-vesting securities are e¤ective in satisfying the NM constraint but not the IC

constraint when �rm value changes over time. Hence, the DIA is critically di¤erent from the

restricted securities observed empirically.

Time-dependent vesting is not the only schedule seen in practice. Bettis, Bizjak, Coles

and Kalpathy (2008) show that performance-based (i.e. state-dependent) vesting is becom-

ing increasingly common. State-dependent vesting is also featured in the �Bonus Bank�

advocated by Stern Stewart, where the amount of the bonus that the executive can with-

draw depends on the total bonuses accumulated in the bank. Under performance vesting,

the vesting schedule is accelerated if the �rm performs strongly. This may induce the CEO to

in�ate returns to accelerate vesting, and sell his equity before the manipulation is reversed.

In the DIA, strong performance allows the CEO to sell his shares for cash, but critically the

cash is maintained within the DIA to allow for future stock repurchases if the stock price

later falls. The combination of time-dependent vesting and state-dependent rebalancing thus

achieves a di¤erent result from state-dependent vesting �the two separate features achieve

the two goals of deterring manipulation and maintaining e¤ort incentives.

We demonstrate the workings of the DIA in an in�nite horizon model (T = 1) were
manipulation is impossible. The contract sensitivity is constant and given by (24). The

CEO�s consumption is:

ct = c0e
�Rt+nt; where n � R + ln �+ lnE

�
e��(a+�)

�
: (26)

To obtain easy-to-interpret closed forms, we take the continuous time limit of the problem.

Let A0 = E0

hR T
0
e�Rtctdt

i
be the initial value of the DIA, i.e. the present value of future

consumption under maximum e¤ort and no manipulation. A fraction � is invested in the

�rm�s stock and the remainder in cash. This fraction is continuously rebalanced so that the
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account evolves according to: dAt=At = (R� �) dt+ ��dZt. The CEO withdraws a fraction

� of the account in each period, so that his consumption is ct = �At. This is intuitive, since

an agent with log utility wishes to consume a constant fraction of his wealth in each period,

and this fraction is independent of the return on his wealth. When the agent retires, he

receives the entire remaining value of the DIA.

If the PS constraint is not imposed, from (26) we have � = � ln � and the inverse marginal
utility, ct, is a martingale. If the PS constraint is imposed, � = � ln �� �2�2 < � ln �. The
intuition is as follows. The agent would like to invest zero wealth in the stock as it carries

a zero risk premium, but he is forced to invest � and bear unrewarded risk. Therefore, the

agent will wish to save to insure himself against this risk. To remove these incentives, we

must have � < � ln � so that the account grows faster than it vests, thus providing automatic
saving for the agent.

4 Generalization and Justi�cation

Section 4.1 generalizes our contract to all CRRA utility functions and autocorrelated noise.

Section 4.2 veri�es that the candidate contract is fully incentive compatible (i.e. the agent

does not wish to undertake global deviations) and Section 4.3 proves that the candidate

contract is approximately optimal. Speci�cally, we show that as �rm size increases, the

di¤erence in pro�t between our contract (involving maximum e¤ort, zero manipulation and

binding constraints) and the possibly much more complicated optimal contract goes to 0.

4.1 General CRRA Utility and Autocorrelated Signals

The core model assumes that the signal rt was the �rm�s stock return. This is an attractive

interpretation for a number of reasons: it allows the optimal contract to be implemented

using the �rm�s securities, and it allows us to assume that the noises �t are uncorrelated.

However, in private �rms, there is no stock return, and so alternative signals of e¤ort must

be used such as pro�ts. Unlike stock returns, shocks to pro�ts may be serially correlated.

This subsection extends the model to such a case. We now assume that the noises �1; :::; �T

follow an AR(1) process with autoregressive parameter �, i.e. �t = ��t�1 + "t; � 2 [0; 1];
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where "t are independent with support ("t; "t); the bounds need not be �nite.

We also now allow for a general CRRA utility function. Note that for 
 6= 1, the IEE

is not valid for the case where private savings are impossible, so we only consider the case

where the PS constraint is imposed. De�ne Bt = �te�(1�
)g(a).

Theorem 2 (General CRRA utility, autocorrelated noise, with Private Savings constraint)
The cheapest contract that satis�es the constraints and implements maximum e¤ort is as

follows. In each period t, the CEO is paid ct which satis�es:

ln ct = ln c0 +

tX
s=1

�s (rs � �rs�1) +
tX

s=1

ks; (27)

where �s and ks are constants, and r0 = 0. If manipulation is impossible, the slope �s is

given by:

�s =

8<:
Bt(g0(a)���t+1)PT

s=tBs
Qs
n=t+1 Et[e(1�
)[�n("n+a(1��))+kn]]

+ ��t+1 for t � L;

0 for t > L:

(28)

If manipulation is possible, �s is given by:

�t = 0 for t > L+M;

�t =
D
QL+M

n=t+1Et
�
e(1�
)[�n("n+a(1��))+kn]

�
�Bt��t+1PT

s=tBs

Qs
n=t+1Et [e

(1�
)[�n("n+a(1��))+kn]]
+ ��t+1 for t � L+M:

The constant kt is given by


kt = r + ln �+ lnE
�
e�
�t("t+a(1��))

�
for t � T: (29)

The initial condition c0 is chosen to give the agent his reservation utility u, and D is the

lowest constant such that:

D

L+MY
n=t+1

Et
�
e(1�
)[�n("n+a(1��))+kn]

�
� Btg

0(a); for all t � L:

Proof See Appendix.

From (27) we can see the e¤ect of allowing for general CRRA utility functions and
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autocorrelated noise. With independent noise � = 0 and so contracts (27) reduces to (10)

and (25). Therefore, moving from log to CRRA utility but retaining independent noise

has little e¤ect on the functional form of the optimal contract. The deferred reward and

increasing incentive principles, the e¤ect of the NM constraint, and the implementation via

the DIA remain the same. The di¤erence is that the parameters � and k are somewhat more

complex.

Equation (27) shows that, in the presence of autocorrelated signals, the optimal contract

now links the percentage change in CEO pay in period t to innovations in the signal (rt �
�rt�1) between t and t � 1, rather than the absolute signal in period t. This is intuitive:
since good luck (i.e. a positive shock) in the last period carries over to the current period,

the contract should control for the last period�s signal to avoid paying the CEO for luck.

Appendix C analyzes a further extension, to continuous time. The contract is consistent

with the discrete time case.

4.2 Global Constraints

We have thus far analyzed the �rst stage of the derivation of the optimal contract, which

is to �nd the best contract that satis�es the local constraints. The second stage is to

verify that this contract also satis�es the global constraints, i.e. the agent does not wish to

undertake global deviations (large changes, or jointly shirking, saving and/or manipulating).

At present, the analysis assumes either 
 = 1 or � = 0. It will be generalized in a later draft.

The contract in Theorem 2 pays the agent an income yt, given by:

ln yt =

tX
s=1

�s(rs +ms � �(rs�1 +ms�1)) + kt; (30)

where

ms =
MX
i=1

(ms;i � �(ms;i))�
minfM;s�1gX

i=1

ms�i;i (31)

is the overall e¤ect of manipulations on the return in period s.

The following Theorem states that if the cost functions g and � are su¢ ciently convex,

the CEO has no pro�table global deviation.
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Theorem 3 (No global deviations are pro�table.) Consider the maximization problem:

max
at;ct;mt adapted

E

"
TX
t=1

�t
(cte

�g(at))1�


1� 


#
, for 
 6= 1 (32a)

max
at;ct;mt adapted

E

"
TX
t=1

�t(ln ct � g (at))

#
, for 
 = 1; (32b)

with
PT

t=1 e
�rt (yt � ct) � 0 and yt satisfying (30). Assume 
 = 1 or � = 0. If functions

g and � are su¢ ciently convex, i.e. infm �00 (m) and infa g00 (a) are su¢ ciently large, the

solution of this problem is ct � yt; t � T; and at � a; mt = (mt;1; :::;mt;M) � 0; t � L. In

other words, there is no global deviation from the recommended policy that makes the agent

better o¤.

The proof, in the Appendix, may be of general methodological interest. It involves three

key steps. First, we reparameterize the agent�s utility from being a function of consumption

and e¤ort to one of consumption and leisure, where the new variable, leisure, is de�ned to

ensure that the utility function is jointly concave in both arguments. Second, we construct

an �upper-linearization�function: we create a surrogate agent with a linear state-dependent

utility. Since the original agent�s utility function is concave, the linear utility function is

always weakly higher than the utility of our original agent, and the same at the recommended

policy. Third, we prove that any global deviation by the surrogate agent weakly reduces his

utility below that under the recommended policy. As the surrogate agent�s utility is linear,

it is automatic that there is no motive to save; we then show that the present value of

the agent�s income is concave in the agent�s two other decisions, leisure (and thus e¤ort)

and manipulation. Since consumption equals income, and utility is linear in consumption,

the utility function is concave in leisure and manipulation and so there is no pro�table

deviation. Since our original agent�s utility is the same as the surrogate agent�s under the

recommended policy, and weakly lower under any other policy, any deviation to another

policy also reduces the original agent�s utility. [AE: we used to say �The second argument is

a potentially useful Lemma that show that the present value of income is a concave function

of actions under suitable reparametrization.�Is this indeed the most novel part of the proof?

The idea of showing that something is concave seems rather standard; to me it seems the
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reparameterization of the utility function (to concave) and then the linearization are the

most novel steps that are of most methodological interest. XG Alex and I just talked about

that on the phone]

4.3 The Optimality of Maximum E¤ort

Edmans and Gabaix (2009) show in a discrete time, one-period setting, that if the �rm is

su¢ ciently large, it is optimal for the principal to implement the maximum e¤ort level. This

section extends this maximum e¤ort principle to broader settings. The analysis is still in

progress; this section contains the results obtained thus far. We consider a continuous-time

model with a continuous dividend.

Theorem 4 (Maximum e¤ort is approximately optimal.) Fix u. For any " > 0 there exists

X� large enough such, if X > X�, the principal�s pro�t from the contract in Theorem 1

di¤ers from his pro�t from the optimal contract by at most ".

Hence, we show that contract requiring maximum e¤ort is optimal, within an ". The

proof is will be made available soon. We suspect that an analogous, and stronger result,

might be available in discrete time. In addition, we suspect that an analogous result is

available to show that zero manipulation is optimal. We are currently researching these

issues.

5 Conclusion

This paper studies optimal CEO compensation in a dynamic setting in which the CEO

consumes in each period, can privately save, and may temporarily manipulate returns. The

optimal contract involves consumption smoothing, where current e¤ort is rewarded in all

future periods, and the relevant measure of incentives is the percentage change in pay for a

percentage change in �rm value. This required elasticity is constant over time in an in�nite

horizon model where manipulation is impossible. If the horizon is �nite, the contract�s

slope rises over time since, as the CEO approaches retirement, he has fewer periods over

which to be rewarded for e¤ort. A rising slope also arises if the contract needs to prevent
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manipulation. This is to o¤set the fact that the cost of manipulation is su¤ered only in the

future and thus has a discounted e¤ect on the CEO�s utility. Deterring manipulation also

requires the CEO to remain sensitive to the �rm�s stock price after retirement. While the

possibility of manipulation a¤ects the elasticity of pay to �rm value, the option to privately

save impacts the time trend in total pay. It augments the rise in compensation over time,

removing the need for the CEO to save himself.

The optimal contract can be implemented using a Dynamic Incentive Account. The

CEO�s expected pay is placed into an account, and a certain proportion is invested in the

�rm�s stock, with the remainder in cash. The account features both state-dependent rebalanc-

ing and time-dependent vesting. As �rm value changes, the account is constantly rebalanced

so that the proportion invested in the stock remains at the required threshold. This ensures

that the CEO has adequate incentives even if the stock price falls. The gradual vesting of the

account, even after retirement, allows the CEO to consume while simultaneously deterring

myopic actions.

Our key results are robust to a broad range of settings: general CRRA utility functions,

all noise distributions with interval support, autocorrelated noise, and continuous time. How-

ever, our setup imposes some limitations, in particular that the CEO remains with the �rm

for a �xed period. It would be interesting to examine how the optimal contract changes if

�rings and voluntary departures are possible. For example, if the CEO�s outside option is

stochastic, he may leave mid-way through the contract. Conversely, if the CEO becomes

wealthy, his utility from shirking rises, given multiplicative preferences. This increases the

cost of providing incentives and may induce the principal to replace the CEO. We leave such

extensions to future research.
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A Proofs

A.1 Proof of Theorem 1

The heuristic proof gave the �essence�of the argument. The formal proof is a direct corollary

of Theorem 2.

A.2 Proof of Theorem 2

We �rst analyze the core model where manipulation is impossible. We consider the NM

constraint at the end of the proof.

Case t > L. For t > L, rt is independent of the CEO�s actions. Since the CEO is strictly

risk averse, ct will depend only on r1; :::; rL. Therefore either the PS constraint (6) or IEE

(if 
 = 1) immediately give

ln ct(r1; :::; rt) = ln cL(r1; :::; rL) + �Lt ; (33)

for some constants �Lt independent of r1; r2; ::: that will be computed explicitly at the end

of the proof.

Case t = L: The IC in period L requires that

0 2 argmax
"�0

U(r1; :::; rL�1; a+ �L + "): (34)

Since g is di¤erentiable, this yields (5) (see e.g. EG, Lemma 6), i.e.

d

d"�
ln cL (r1; :::; a+ �L + ") j"=0

"
TX
s=L

Bt

#
� BLg

0(a); for 
 = 1;

d

d"�

cL (r1; :::; a+ �L + ")1�


1� 

j"=0

"
TX
s=L

Bte
(1�
)�Lt

#
� BLcL (r1; :::; a+ �L + ")1�
 g0(a); for 
 6= 1:

and so
d

d"�
ln cL (r1; :::; a+ �L + ") � Btg

0(a)PT
t=LBte(1�
)�

L
t

:= �L: (35)

We now show that (35) holds with equality. First, condition (35) implies that for any
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r0 � r (see EG, Lemma 4)

ln cL (r1; :::rL�1; r
0)� ln cL (r1; :::rL�1; r) � �L(r

0 � r): (36)

Consider now the contract fc0tgt�T that coincides with fctgt�T for t < L, ln c0t = ln c
0
L+�

L
t for

t > L and kLt as in (33), and such that c
0
L(r1; :::; rL) = eB(r1;:::;rL�1)+�LrL , where B(r1; :::; rL�1)

is chosen to satisfy

EL�1

"
(c0L)

1�

(r1; :::; rL)

1� 


#
= EL�1

"
(cL)

1�
 (r1; :::; rL)

1� 


#
: (37)

Note that the condition (36) guarantees that the random variable ln cL (r1; :::rL�1; erL) is
weakly more dispersed than ln c0L (r1; :::rL�1; erL) :13 It also follows from the IC that both

ln cL (r1; :::rL�1; �) and ln c0L (r1; :::rL�1; �) are weakly increasing. Those facts together with
(37) imply that for the convex function  and increasing function �, where  �1(x) = x1�


1�


and �(x) = e(1�
)x

1�
 , we have (see EG, Lemmas 1 and 2):

EL�1[c
0
L(r1; :::; rL)] = EL�1[ ���ln c0L(r1; :::; rL)] � EL�1 [ � � � ln cL(r1; :::; rL)] = EL�1[cL(r1; :::; rL):

Consequently the contract fc0tgt�T is cheaper than fctgt�T :
Integrating out (35) that holds with equality, the optimal contract c is given by:

ln cL(r1; :::; rL) = B(r1; :::; rL�1) + �LrL + �L;

for some function B.

Case t < L. Suppose that for all t0, L � t0 > t, the optimal contract ct0 is such that

ln ct0(r1; :::; rt0) = B(r1; :::; rt) + �t0rt0 +
t0�1X
s=t+1

(�s � ��s+1)rs + �t0 ;

13Let X and Y denote two random variables with cumulative distribution functions F and G and cor-
responding right continuous inverses F�1 and G�1. X is said to be less dispersed than Y if and only if
F�1 (�)� F�1 (�) � G�1 (�)�G�1 (�) whenever 0 < � � � < 1.
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for some function B as well as �s as in the Theorem. The PS constraint yields

c�
t = eR
Bt+1

Bt

Et
�
c�
t+1

�
= Et

�
e�
�t+1rt+1

�
e�
B(r1;:::;rt)+R�
�t+1+lnBt+1�lnBt : (38)

We therefore have14

ln ct = B(r1; :::; rt) + ��t+1rt + �t: (39)

As in the case t = L, the IC implies that:

Btc
1�

t ��t+1 +

d

d"�
B (r1; :::rt�1; a+ �t + ")

TX
s=t

BsEt
�
c1�
s

�
� Btct

1�
g0(a); (40)

Btc
1�

t ��t+1 +

d

d"�
B (r1; :::rt�1; a+ �t + ") c1�
t �

�
TX
s=t

Bs

sY
n=t+1

Et
�
e(1�
)[�n("n+(1��)a)+�n��n�1]

�
� Btct

1�
g0(a);

d

d"�
B (r1; :::rt�1; a+ �t + ") � Bt (g

0(a)� ��t+1)PT
s=tBs

Qs
n=t+1Et [e

(1�
)[�n("n+(1��)a)+�n��n�1]]
:= �t � ��t+1:

The second equivalence above follows from the fact that for s > t

Et
�
c1�
s

�
= c1�
t Et

h
e(1�
)

Ps
n=t+1[�n("n+(1��)a)+�n��n�1]

i
=

= c1�
t

sY
n=t+1

Et
�
e(1�
)[�n("n+(1��)a)+�n��n�1]

�
:

One can inductively show that for any t � L, 0 � �t � g0(a). Therefore, proceeding

analogously as in the proof for t = L, we can establish that indeed (40) holds with equality.

Integrating out this equality we establish that for t0 � t,

ln ct0(r1; :::; rt0) = B(r1; :::; rt�1) + �t0rt0 +
t0�1X
s=t

(�s � ��s+1)rs + �t0 ;

where �s are as required.

We now determine the values of the constants �t. First, there exists a value e�� such

14Equation (39) can also be derived from the IEE if 
 = 1:
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that e�� = eRtBtE
�
c�
t
�
for t � T for all t: This yields, for all t:


�t = �+Rt+ lnBt +

tX
s=1

lnE
�
e�
�s("s+(1��)a)

�
:

Finally, constant � is chosen so that the agent�s participation constraint binds, and �kt =

�t� �t�1. When the PS constraint is not imposed, we use (7) to derive (13) in an analogous
way;

Now suppose that the NM constraint is imposed. Proceeding inductively as above we

establish that

ln ct =
tX

s=1

�s(rs � �rs�1) + �t;

with �t = 0 for t > L+M , and kt as in the Theorem. The �t are the lowest values such that

the IC and NM constraints are satis�ed, i.e.:

IC : �t � ��t+1 �
Bt (g

0(a)� ��t+1)PT
s=tBs

Qs
n=t+1Et [e

(1�
)[�n("n+(1��)a)+kn]]
; for 0 � t � L; (41)

NM : Et

�
@U

@rt

�
= Et

�
@U

@rt+i

�
, for 0 � t � L, 0 � i �M: (42)

If we set

�L+i =
DiPT

s=L+iBs

Qs
n=L+i+1Et [e

(1�
)[�n("n+(1��)a)+kn]]
;

for some constants Di, i �M , (42) is equivalent to

Btc
1�

t ��t+1 + �tc

1�

t

TX
s=t

Bs

sY
n=t+1

Et
�
e(1�
)[�n("n+(1��)a)+kn]

�
=

= Et
�
c1�
L+i(BL+i��L+i+1 +Di)

�
=

= c1�
t

L+iY
n=t+1

Et
�
e(1�
)[�n("n+(1��)a)+kn]

�
(BL+i��L+i+1 +Di);

for 0 � t � L, i �M . This yields the desired expressions for �
0
t; t � L+M; with D = DM :
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A.3 Proof of Theorem 3

We divide the proofs into the following steps.[AE->TS: I have restructured the proof. Please

take a look]

Step 1. Change of variables. Consider the new variable xt, t � L, and per period

utility functions u(ct; xt) de�ned as:

xt =

8<: �g(at) if 
 = 1

e�g(at)
1�


 � if 
 6= 1

; u(ct; xt) =

8<: ln ct + xt if 
 = 1
ct1�
(�xt)


1�
 if 
 6= 1
;

where � = sign(1 � 
); and let at = f(xt). xt measures the agent�s leisure and f is the

�production function� from leisure to e¤ort, which is decreasing and concave. The new

variables are chosen in such a way that the CEO�s utility is jointly concave in consumption

and leisure.

Let U
�
(ct)t�T ; (xt)t�L

�
=
PT

t=1 �
tu(ct; xt) be total discounted utility and consider the

maximization problem:

max
xt;ct;mt adapted

E
�
U
�
(ct)t�T ; (xt)t�L

��
; (43)

with
PT

t=1 e
�rt (yt � ct) � 0 and income yt satisfying

ln yt =
tX

s=1

�s(�s + f(xs) +ms � �(�s�1 + f(xs�1) +ms�1)) + kt; (44)

for ms de�ned in (31). Problems (43) and (32) are equivalent: (xt)t�L; (ct)t�T and (mt)t�L

solve the maximization problem (43) if and only if (f(xt))t�L; (ct)t�T and (mt)t�L solve

the maximization problem (32). Moreover, the utility function U
�
(ct)t�T ; (xt)t�L

�
is jointly

concave in (ct)t�T and (xt)t�L:

Step 2. Deriving an �upper linearization�utility function. Consider [AE: can we

call this c and get rid of the asterisks, since the f(x�t ) = a:XG I think cevokes maximum con-

sumption, and that�s bad. So stars are good] c�t (�) = exp
�Pt

n=1 �n(�n + f(x�n)� �(�s�1 + f(xs�1))) + kt
�
,

the consumption for the recommended sequence of leisure on the path of noises � = (�t)t�T
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(where a�t = f(x�t )), under no saving or manipulation. For any path of noises � = (�t)t�T we

introduce the �upper linearization�utility function bU�:
bU� �(ct)t�T ; (xt)t�L� = U +

TX
t=1

(ct � c�t (�))
@U

@ct
+

LX
t=1

(xt � x�t )
@U

@xt
; (45)

where U; @U
@ct
and @U

@xt
are evaluated at the (noise dependent) target consumption and leisure

levels (c�t (�))t�T ; (x
�
t )t�L). Since U = U

�
(ct)t�T ; (xt)t�L

�
is jointly concave in (ct)t�T and

(xt)t�L, we have the key property:

bU� �(ct)t�T ; (xt)t�L� � U
�
(ct)t�T ; (xt)t�L

�
for all paths �; (ct)t�T ; (xt)t�L.bU� �(c�t (�))t�T ; (x�t )t�L� = U

�
(c�t (�))t�T ; (x

�
t )t�L

�
for all paths �.

Hence, to show that there are no pro�table deviations for EU , it is su¢ cient to show that

there are no pro�table deviations for E bU�.
Moreover, since

ert
@ bU�
@ct

= ert
@U
�
(c�t (�))t�T ; (x

�
t )t�L

�
@ct

=
Bt(c

�
t )
�


e�rt
;

when private savings are allowed, the PS constraint (6) implies that ert @
bU�
@ct

is a martingale.

Therefore, the agent is indi¤erent at which time he consumes income yt, and so we can

evaluate E bU� for ct � yt. Since it is automatic that the agent has no motive to save, we

now only need to show that he has no motive to engage in manipulation or change his choice

of leisure (and thus e¤ort). We can also abuse notation and let bU� be a function of (xt)t�L
and (mt)t�L; since they fully determine the process of income (yt)t�T and thus consumption

(ct)t�T .

The results are summarized in the following Lemma.

Lemma 1 (Upper linearization.) Let eU� ((mt)t�L; (xt)t�L) = bU� �(yt)t�T ; (xt)t�L� for bU�
de�ned as in (45) and yt as in (44), and consider the following maximization problem:

max
xt;mt adapted

E
heU� ((mt)t�L; (xt)t�L)

i
: (46)

If the target leisure level (x�t )t�L and no manipulation, mt � 0; t � L; solve the maximization
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problem (46) then (c�t )t�T , (x
�
t )t�L and mt � 0; t � L; solve the maximization problem (43).

Step 3. Pathwise concavity of utility in leisure and manipulation for 
 = 1. To

show that agent has no incentive to engage in manipulation or change his e¤ort choice, we

must demonstrate that expected utility is jointly concave in leisure (xt)t�L and manipulations

(mt)t�L. For 
 = 1, we can do so by proving pathwise concavity of utility in leisure and

manipulation. (We will deal with the case 
 6= 1 in step 4). For any 
 > 0 and every path �
the linearized utility function with no savings eU� has the form:
eU� ((mt)t�L; (xt)t�L) = A+

LX
t=1

Btxt+

TX
t=1

Ct(�)e
Pt
n=1 �n(f(xn)�
a�n+mn��(f(xn�1)�
a�n�1+mn�1))+t ln �;

(47)

for some constants A; Bt and random variables Ct(�). For example, if 
 = 1, we have:[AE

-> TS: I think the �rst below should be a sum to L, and the �txt term should be in brackets]

eU� ((mt)t�L; (xt)t�L) =
TX
t=1

�t(ln c�t (�)�1)+�txt+
TX
t=1

e
Pt
n=1 �n(f(xn)�
a�n+mn��(f(xn�1)�
a�n�1+mn�1))+t ln �:

(48)

To prove that (48) is jointly concave in (xt)t�L and (mt)t�L, we must show that the �PV

of income function�

I ((mt)t�L; (xt)t�L) =
TX
t=1

e
Pt
n=1 �n(f(xn)�
a�n+mn��(f(xn�1)�
a�n�1+mn�1))+t ln �

is concave. For this we will use the following general Lemma, proven at the end of this

section. [AE->TS: I have rede�ned variables here from x to b. b is a M+1 vector which

contains both the scalar x and the M-vector m. Previously, there was overloading of the term

x which was being used for both an M+1 vector in the lemma and a scalar outside]

Lemma 2 (Concavity of present values.) Let

I((bt)t�T ) =

TX
t=1

exp

 
t�MX
s=1

js(bs) +

tX
s=t�M+1

qts(bs)

!
;

where bs 2 RM+1 and all js and qts are twice di¤erentiable functions with
@

@bs;i@bs;k
js =
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@
@bs;i@bs;k

qts = 0,
@

@bs;i
js � @

@bs;i
qts. Suppose that for every s:

sup

"
2(M + C)(M + 1)2

�
@

@bs;i
qns

�2
+

@2

(@bs;i)2
qns

#
� 0; i �M + 1; n � s+M (49)

sup

"
2C(M + 1)2

�
@

@bs;i
js

�2
+

@2

(@bs;i)2
js

#
� 0; i �M + 1;

for C = eM(sup qts�inf qts)=2
PT

n=0 e
n sup jt=2, and at least one of these inequalities is strict. Then

the function I is concave.

Loosely speaking, the Lemma states that, if js and qt are su¢ ciently concave functions,

then the �present value of income�function I ((bt)t�L) associated with them is also jointly

concave in the sequence of decisions (bt)t�L. (The decision vector b is an M + 1-vector that

incorporates both the scalar x and the M -vector m.) This is non-trivial to prove when T

is in�nite: for su¢ ciently large t, exp (tj (b)) is a convex function of b, because its second

derivative (when b is one-dimensional) is exp (tj (b)) t
�
tj

0
(b)2 + j00 (b)

�
, which is positive for

su¢ ciently large t. It is discounting (expressed by � < 1) that allows the income function to

be concave.

To show that I ((mt)t�L; (xt)t�L) is jointly concave in leisure (xt)t�L and manipulations

(mt)t�L we use Lemma 2 with bt = (mt; xt) and:

js(xs;ms) = (�s � ��s+1)

"
f(xs)� a+

MX
i=1

(ms;i � �(ms;i))

#
�

MX
i=1

(�s+i � ��s+i+1)ms;i + ln �;

(50)

qts(xs;ms) = (�s � ��s+1)

"
f(xs)� a+

MX
i=1

(ms;i � �(ms;i))

#
�

t�sX
i=1

(�s+i � ��s+i+1)ms;i + ln �; s < t

qtt(xt;mt) = �s

"
f(xs)� a+

MX
i=1

(ms;i � �(ms;i))

#
+ ln �:

Step 4. Concavity of expected utility in leisure and manipulation for 
 6= 1.
When 
 6= 1 then the linearized utility bU� is:
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bU� �(ct)t�T ; (xt)t�L� = LX
t=1




1� 

�tc�t (�)

1�

�

xt
(�x�t )

1�


�
+

TX
t=1

�t(�x�t )



�
ct

c�
t (�)

�
; (51a)

with � = sign(1 � 
): Unlike equation (48) in the case of 
 = 1, linearized utility bU� now
depends on noise �. We therefore are unable to prove pathwise concavity of linearized utility,

and instead prove concavity of expected utility directly. Linearized utility with no savingseU� has the form (47) with

Ct(�) = e(1�
)[kt�g(a
�
t )+

Pt
n=1(�n���n+1)"n] =Mt(�)C

0
t; (52)

where Mt(�) = e
Pt
n=1[(1�
)(�n���n+1)"n�lnE(e(1�
)(�n���n+1)"n)] is a martingale and

C 0t = e(1�
)[kt�g(a
�
t )]+

Pt
n=1 lnE(e(1�
)(�n���n+1)"n):

Expected utility is given by

E
heU�((mt)t�L; (xt)t�L)

i
= E

"
A+

LX
t=1

Btxt +
TX
t=1

Mt(�)C
0
te
Pt
n=1 �n(f(xn)�
a�n+mn��(f(xn�1)�
a�n�1+mn�1))+t ln �

#

= E

"
A+

LX
t=1

Btxt +MT (�)
TX
t=1

C 0te
Pt
n=1 �n(f(xn)�
a�n+mn��(f(xn�1)�
a�n�1+mn�1))+t ln �

#
;

where the second equality follows from the law of iterated expectations and the fact that

MT (�) is a martingale. Two paragraphs below we use Lemma 2 to show that the modi�ed

�present value of income�function I 0((mt)t�L; (xt)t�L) =
PT

t=1C
0
te
Pt
n=1 �n(f(xn)�
a�n+mn��(f(xn�1)�
a�n�1+mn�1))+t ln �,

for ms de�ned in (31), is pathwise jointly concave in leisure and manipulation. Therefore,

E eU� is concave in the processes (xt)t�L and (mt)t�L.

We now conclude the proof of the Theorem. From Theorem 2, E eU� satis�es the �rst-
order conditions at (x�t )t�L and (mt)t�L. From step 4, E eU� is also concave in (xt)t�L and
(mt)t�L, and so the target leisure level (x�t )t�L and no manipulations, mt � 0, t � L; solve

the maximization problem (46). Therefore, from Lemma 1, (c�t )t�T , (x
�
t )t�L and mt � 0;

t � L; solve the maximization problem (43), establishing the result.
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[AE->TS: should we move this up to after �the fact that MT (�) is a martingale.�? Here

it is a little out of order; this proof is not that long, so I think we can put it in its correct

place] It remains to show that both I and I 0 are concave in (xt)t�L and (mt)t�L. In the

�rst case we use Lemma 2 for js and qts de�ned as in (50). We have
�t���t+1
�s���s+1 � D0 as long

as jt � sj � M; for some D0 > 0. Let � be such that supD0m � �(m) � D1, for some

D1 > 0, and m� be such that D0m � �(m) � 0 for m � m�. We can assume without loss

of generality that the CEO chooses manipulations only within the interval [�m�;m�], and

so C = eM(sup qts�inf qts)=2
PT

n=0 e
n sup jt=2 is �nite. Finally, since f 0(xs) = �1

g0(f(xs))
; f 00(xs) =

�g00(f(xs))
g03(f(xs))

and �s � g
0
(a), the condition (49) is satis�ed for i = 1 if g has su¢ ciently high

curvature. Moreover, since @
@ms;i

qns = (�s���s+1)(1��0(ms;i))�1n<i(�s+i���s+i+1); @
@ms;i

js =

(�s � ��s+1)(1 � �0(ms;i) and @2

(@ms;i)2
qns =

@2

(@ms;i)2
js = �(�s � ��s+1)�

00(ms;i), the condition

(49) is satis�ed for i > 1 if � has su¢ ciently high curvature.

In the case of I 0 we must verify condition (49) in Lemma 2 when js and qts are de�ned as:

js(xs;ms) = �s

"
f(xs)� 
a�t +

MX
i=1

(ms;i � �(ms;i))

#
�

MX
i=1

�s+ims;i +Ds; (53)

qts(xs;ms) = �s

"
f(xs)� 
a�t +

MX
i=1

(ms;i � �(ms;i))

#
�

t�sX
i=1

�s+ims;i +Ds; s < t;

for Ds = (1 � 
)
�
(ks � g(a�s))� (ks�1 � g(a�s�1))

�
+ lnE

�
e(1�
)�nen

�
+ ln �: The rest of the

proof follows just as in the 
 = 1 case, with the derivatives of the f function being:

f 0(xs) = �D
1

xsg0(f(xs))
; f 00(xs) =

1

x2sg
02(f(xs))

�
Dg0(f(xs))�D2 g

00(f(xs))

g0(f(xs))

�
;

for D = 

1�
 sign(1� 
).

Proof of Lemma 2 Let

Ps((xt)t�T ) = e
Ps�M
n=1 jn(xn)+

Ps
n=s�M+1 q

s
n(xn);

Ss((xt)t�T ) =

TX
n=s

e
Pn�M
m=1 jm(xm)+

Pn
m=n�M+1 q

n
m(xm) =

TX
n=s

Pn((xt)t�L);

for any s � T . For the rest of the proof, �x an argument sequence (xt)t�T . We will evaluate
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all the functions at this sequence, and consequently economize on notation by dropping the

argument of Ss and qt;s.

Step 1: Derivatives. For unit vectors eir and eks ; r � s, i; k � M + 1; consider the

derivatives of the function I:

@I

@eks
=

s+M�1X
n=s

@kq
n
sPn + @kjsSs+M ;

@2I

@eir@e
k
s

=

s+M�1X
n=r

@kq
n
s @iq

n
rPn + @kjs

0@ r+M�1X
n=maxfr;s+Mg

@iq
n
rPn + @ijrSr+M

1A+
+ 1r=s;i=k

"
s+M�1X
n=s

@2kq
n
sPn + @2kjsSs+M

#
;

where we de�ne @kf(x) = @
@xk

f(x) and @2kf(x) =
@2

(@xk)
f(x): Therefore, for a �xed vector y =

(yt)t�T the second derivative in the direction y = (yt)t�T is:

@2I

@y@y
=

M+1X
k;i=1

TX
s=1

TX
r=1

yksy
i
r

@2I

@eks@e
i
r

=

=2
M+1X
k;i=1

TX
s=1

X
r�s

yksy
i
r

24s+M�1X
n=r

@kq
n
s @iq

n
rPn + @kjs

0@ r+M�1X
n=maxfr;s+Mg

@iq
n
rPn + @ijrSr+M

1A35
+

M+1X
i=1

TX
s=1

yi2s

"
s+M�1X
n=s

@2i q
n
sPn + @2i jsSs+M

#
=: W + V:

Step 2: Bounding Pr and Sr. For any s � T and q � T � s we have:

Ps+q = e
Ps+q
n=1 jn+

Ps
n=s+q�M+1 q

s
n � eM sup qte

Ps+q
n=1 jn � eM sup qt+q sup jte

Ps
n=1 jn � eq sup jt+M(sup qt�inf qt)Ps;

It follows that for  = sup js
2

we have:

X
r�s

Pre
� (r�s) � C1Ps;

X
s;r�s

Pry
2
re
 (r�s) =

X
r

y2rPr
X
s�r

e (r�s) � C2
X
s

Psy
2
s ; (54)

where

C1 = eM(sup qt�inf qt)
TX
n=0

en ; C2 =
TX
n=0

en : (55)
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Moreover, since Ss+q � eq sup jt+M(sup qt�inf qt)Ss, the inequalities for Sr analogous to (54)

also hold.

Step 3: Bounding the derivatives. For any vector z=(zt)t�T ; zt 2 R; we have:

X
s;r�s

zszrPr =
X
s

zs
X
r�s

p
Przre

 
2
(r�s)

p
Pre

� 
2
(r�s) �

X
s

zs

 X
r�s

Prz
2
re
 (r�s)

!1=2 X
r�s

Pre
� (r�s)

!1=2
�

�
p
C1
X
s

zs
p
Ps

 X
r�s

Prz
2
re
 (r�s)

!1=2
�
p
C1

 X
s

z2sPs

!1=2 X
s

 X
r�s

Prz
2
re
 (r�s)

!!1=2
�

�
p
C1C2

 X
s

z2sPs

!1=2 X
s

Psz
2
s

!1=2
= C

X
s

z2sPs;

where the �rst and third inequalities follow from the Cauchy-Schwartz inequality, and C1

and C2 are as in (55). Similarly, we obtain
P

s;r�s zszrSr � C
P

s z
2
sSs: Therefore:

W = 2
M+1X
k;i=1

TX
s=1

X
r�s

yksy
i
r

24s+M�1X
n=r

@kq
n
s @iq

n
rPn + @kjs

0@ r+M�1X
n=maxfr;s+Mg

@iq
n
rPn + @ijrSr+M

1A35
� 2

M+1X
k;i=1

(
TX
n=1

Pn

" X
s�n�M;r�s

yks@kq
n
s y

i
r@iq

n
r

#
+

M�1X
m=0

TX
s=1

X
r�s

�
yks@kq

s+m
s yir@iq

r+m
r Pr+m

�
+

+
TX
s=1

X
r�s

�
yks@kjsy

i
r@ijrSr+M

�)

� 2(M + 1)2

(
TX
n=1

Pn

" X
s�n�M;r�s

max
i
(yis@iq

n
s )max

i
(yir@iq

n
r )

#

+
M�1X
m=0

TX
s=1

X
r�s

h
max
i
(yis@iq

s+m
s )max

i
(yir@iq

r+m
r )Pr+m

i
+

TX
s=1

X
r�s

h
max
i
(yis@ijs)max

i
(yir@ijr)Sr+M

i)

� 2(M + 1)2

(
TX
n=1

Pn

" X
s�n�M

M max
i
(yis@iq

n
s )
2

#
+

M�1X
m=0

TX
s=1

h
Cmax

i
(yis@iq

s+m
s )2Ps+m

i
+

TX
s=1

h
Cmax

i
(yis@ijs)

2Sr+M

i)

� 2(M + 1)2
TX
s=1

M+1X
i=1

yi2s

"
M�1X
m=0

(M + C)(@iq
s+m
s )2Ps+m + C(@ijs)

2Sr+M

#
:
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Finally,

@2I

@y@y
= W + V

�
TX
s=1

M+1X
i=1

yi2s

"
s+M�1X
n=s

�
2(M + C)(M + 1)2 (@iq

n
s )
2 + @2i q

n
s

�
Pn +

�
2C(M + 1)2 (@ijs)

2 + @2i js
�
Ss

#
;

establishing the Lemma.

B Variable Cost of E¤ort

This section extends the core model to allow a deterministically varying marginal cost of

e¤ort. In practice, this occurs if either the cost function or maximum e¤ort level changes

over time. For example, for a start-up �rm, the CEO can undertake many actions to improve

�rm value (augmenting the maximum e¤ort level) and e¤ort is relatively productive (reducing

the cost of e¤ort).

We now allow for a time-varying maximum e¤ort level at and cost of e¤ort gt (�). The
slope of the contract in Theorem 1 (equations (11) and (12)) now becomes:

�t =

8<:
g0t(�at)

1+�+:::�T�t for t � L;

0 for t > L
(56)

if manipulation is impossible, and if manipulation is possible

�t =

8<: �t =
�

1+�+:::�T�t�
�t for t � L+M;

0 for t > L+M
: (57)

where � = sups�L (�
sg0s (�as)) :

We previously showed that imposing the NM constraint causes the contract�s slope to

rise over time; the speed of the rise depended only on the CEO�s impatience �. With a

non-constant target action, it depends on � = sups�L (�
sg0s (�as)), the maximum discounted

sensitivity during the CEO�s working life. Let s � L denote the period in which �sg0s (�as) is

highest. The CEO has an incentive to increase rs at the expense of the signal in any t within

M periods of s. Therefore, the sensitivity for all t within M periods of s must increase, to
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remove these incentives. However, this in turn has a knock-on e¤ect: since the sensitivity for

t = s�M has now risen, the CEO now has an incentive to increase rs�M at the expense of

rs�2M , and so on. Therefore, the sensitivity at s forces upward the sensitivity in all periods

t � L +M , even those more than M periods away from s, because of the knock-on e¤ects.

This explains why the contract in all periods t � L+M depends on � in equation (57).

This dependence can be illustrated in a numerical example. We �rst set T = 5, L = 3,

� = 1, g01 (a1) = g02 (a2) = 1 and g03 (a3) = 2. If manipulation is impossible, the optimal

contract is

ln c1 =
r1
5
+ �1

ln c2 =
r1
5
+
r2
4
+ �2

ln c3 =
r1
5
+
r2
4
+
2

3
r3 + �3

ln c4 =
r1
5
+
r2
4
+
2

3
r3 + �4

ln c5 =
r1
5
+
r2
4
+
2

3
r3 + �5:

Since the marginal cost of e¤ort is high at t = 3, the contract sensitivity must be high at

t = 3 to satisfy the IC condition. However, this now gives the CEO incentives to engage in

manipulation if it were possible. If he manipulates r2 downwards by 1 unit to augment r3 by

1 unit, lifetime consumption falls by 1 unit and rises by 2 units. Therefore, the sensitivity

of the contract at t = 2 must increase to remove these incentives. This increased sensitivity

at t = 2 in turn augments the required sensitivity at t = 1, else the CEO would manipulate

to reduce r1 and increase r2. Therefore, even though the maximum release lag M is 1 and

so the CEO cannot directly manipulate r1 to a¤ect r3, the high sensitivity at r3 still a¤ects

the sensitivity at r1 by changing the sensitivity at r2. The new contract is given by:
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ln c1 =
2

5
r1 + �1

ln c2 =
2

5
r1 +

r2
2
+ �2

ln c3 =
2

5
r1 +

r2
2
+
2

3
r3 + �3

ln c4 =
2

5
r1 +

r2
2
+
2

3
r3 + r4 + �4

ln c5 =
2

5
r1 +

r2
2
+
2

3
r3 + r4 + �5:

C Continuous Time

We now consider the continuous-time analog of the model. The CEO�s utility is given by:

U =

8<: E
hR T
0
�t (cth(at))

1�
�1
1�
 dt

i
if 
 6= 1

E
hR T
0
�t (ln ct + lnh (at)) dt

i
if 
 = 1:

(58)

For now, we consider the log utility case; in a later draft we will extend this section to general

CRRA utility functions. The �rm�s returns evolve according to:

dRt = atdt+ �tdZt

where Zt is a Brownian motion, and the volatility process �t is deterministic. We normalize

r0 = 0 and the risk premium to zero, i.e. the expected rate of return on the stock is R in

each period.

Proposition 1 (Optimal contract, continuous time, log utility). Let �t denote the stock
volatility. The optimal contract pays the CEO ct at each instant, where ct satis�es:

ln ct =

Z t

0

�sdRs + kt, (59)

where �s and kt are deterministic functions. If manipulation is impossible, the slope �t is
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given by:

�t =

(
g0(a)R T

t ���sds
for t � L

0 for t > L:
(60)

If manipulation is possible, �t is given by:

�t =

(
g0(a)��tR T
t ���sds

for t � L+M

0 for t > L+M:
(61)

Let � = �1 denote the case if private savings are ruled out (and so the PS constraint is not
imposed), and � = 1 if they are allowed (and so the PS constraint is imposed). The value of

kt is:

kt = (R + ln �) t�
Z t

0

�sE [dRs] + �

Z t

0

�2s�
2
s

2
ds+ k; (62)

where k ensures that the agent is at his reservation utility.

The implications of the optimal contract are the same as for discrete time, except that

the rebalancing of the account is now continuous.

Proposition 2 (Optimal contract, continuous time, general CRRA utility, with Private Sav-
ings constraint). Let �t denote the stock volatility. The optimal contract pays the CEO ct at

each instant, where ct satis�es:

ln ct =

Z t

0

�sdRs + �t; (63)

where �s and �t are deterministic functions. If manipulation is impossible, the slope �t is

given by:

�t =
�te�(1�
)g(�a)g0(�a)R T

t
�se�(1�
)g(�a)+(1�
)(ks�kt)Et

�
e(1�
)

R s
t ��dR�

�
ds

for t � L, (64)

�t = 0 for t > L.
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If manipulation is possible, �t is given by:

�t =
De(1�
)(kL+M�kt)Et

h
e(1�
)

R L+M
t ��dR�

i
R T
t
�se�(1�
)g(�a)+(1�
)(ks�kt)Et

�
e(1�
)

R s
t ��dR�

�
ds

for t � L+M ,

�t = 0 for t > L+M .

The value of �t is:


�t = (r + ln �)t� (1� 
)g(a)� 


Z t

0

�sads+
1

2

2
Z t

0

�2s�
2
sds+ �; (65)

where � ensures that the agent is at his reservation utility, and D is the lowest constant such

that:

De(1�
)(kL+M�kt)Et

h
e(1�
)

R L+M
t ��dR�

i
� �te�(1�
)g(�a)g0(�a); for all t � L.
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