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Abstract

We propose and illustrate a structural model for the forward curve produced by Eurodollar

futures contracts. Our model provides a three-part functional decomposition of the forward

rate: a long-term, unconditional component, a maturity-specific component, and a date-specific

component. The maturity-specific component captures preferred investment habitats, and the

date-specific component captures shocks to expectations of future spot rates. These functional

components (modeled with exponential basis functions) of the decomposition aggregate to an

arbitrage-free representation of the underlying stochastic process that drives the evolution

of the Eurodollar forward curve. We demonstrate the use of this approach by fitting this

model to yields over the period 12/9/1981 to 1/28/2008. The estimation is accomplished by

using a Kalman filter to determine the underlying representation. The estimated yield curve

provides better out-of-sample predictions than the standard random walk model in forecasts

over various horizons. We further show the profitability of a trading scheme that chooses

futures positions based upon the anticipated forward curve.
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provides better out-of-sample predictions than the standard random walk model in forecasts
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Essentially, all models are wrong, but some are useful. — George E.P. Box

Structural models of the dynamics of interest rates have many applications. They play an im-

portant role in the design and management of fixed income portfolios and in the valuation and

hedging of more complex securities. An analyst of the fixed-income market can choose from

among several alternative models, such as the Vasicek or the Cox, Ingersoll and Ross (CIR)

models. An important characteristic that guides the choice from among these alternatives is

the ability of the model to forecast forward rates or futures prices.

In a recent paper (Chua et al (2008), henceforth CFRS) the authors proposed a general

class of affine, arbitrage-free models that are then fit to the current term structure of interest

rates. Each member of this class of models corresponds to a representation of an underlying

stochastic process which can be estimated through a parsimonious set of state variables. As a

demonstration, CFRS empirically select and estimate a member of this class using a sample

of observed “training” data. The resulting model gave good out-of-sample forecasts of US

Treasury yields when compared to several extant models that include the random walk model.

Each member of this CFRS class of arbitrage-free models represents the forward curve on

any date as the sum of three curves:

1. An unconditional curve that represents the steady-state forward curve;

2. A maturity-specific curve that embeds the influence of supply and demand from

agents who have needs for loans of specific terms; and

3. A date-specific curve that embeds expectations about spot rates to prevail at

fixed future dates.

The maturity-specific curve describes deviations from the long-run, unconditional curve due

to the behavior of investors who have preferences for specific investment horizons, or to a

preferred habitat model (see for example Modigliani & Sutch (1966)). Because the curve of

maturity-specific deviations from the long-term unconditional curve embeds investors’ ma-

turity preferences, expectations of future spot rates play no role in this component. The

date-specific curve embeds all of the information that investors have regarding the levels of

future spot rates and summarizes the effects of fundamental monetary influences on expected

future interest rates. The maturity-specific and date-specific curves connect to well-established

financial models. The curve of maturity-specific deviations corresponds to the deviations from

the steady state curve in extant equilibrium models of interest rates (such as Cox, Ingersoll
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and Ross (1985) or Vasicek (1977)). The curve of date-specific deviations corresponds to the

influences of the expectations hypothesis. In this sense, the fitted parametric model exhibited

in CFRS (2008) combines both investors’ maturity-preferences and their current expectations.

The model has the additional advantage of being demonstrably arbitrage-free.

Our objective here is to show that a representative member chosen from this class of models

is able forecast 90-day forward rates to prevail at future dates. In the actual estimation we

use Eurodollar futures contracts to impute the forward rates.1 We first select a member of

the CFRS class using the Akaike information criterion over an initial set of training data;

these data are also used to estimate the parameters of the chosen model. We then roll this

model forward and compare the accuracy of its forecasts with the standard random walk over

a subsequent hold-out sample. We also report on the profitability and risk of a strategy that

trades the Eurodollar futures using forecasts produced by our model. Our results indicate

that the model is useful, most notably at longer forecast horizons.

In the remainder of this paper, we describe the general class of models briefly in Section

1; in Section 2 we describe a one Brownian-motion (one state variable) example to illustrate

the model and its dynamics; in Section 3 we describe the more complex model that we use to

forecast forward rates and futures prices. We also outline the procedure used to estimate the

model (this is more fully described in CFRS (2008)) with the Kalman filter. In Section 4, we

report the forecasting accuracy of our model, in comparison to the random walk model. We

also describe the trading strategy that can be generated with the forward rate forecasts from

our model and report on its profitability. Section 5 concludes.

1 A Brief Description of the Model

The model for the forward curve at date t is written F (τ ; t) and represents the curve of forward

rates for instantaneous loans to begin at future dates t + τ, τ > 0. The first argument τ refers

to the time to maturity; the second argument t refers to the calendar date for that curve.

Our proposed model of the forward curve decomposes F (τ ; t) as the sum of three component

curves:

F (τ ; t) = U(τ) + M(τ ; t) + D(τ ; t) (1)

1The CFRS model does not account for default and (strictly speaking) applies to forward rates implicit in Treasury yields.

The Eurodollar futures market settles to the rate on dollar-denominated inter-bank loans in London and therefore is affected by

a credit risk; we choose it because is a very liquid market and offers a rich source of data.
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where

1. U(τ) is the unconditional or steady-state forward curve;

2. M(τ ; t) is the maturity-specific curve for deviations from U(τ); and

3. D(τ ; t) is the date-specific curve for deviations from U(τ).

In keeping with our notation for the forward curve, M(τ ; t) refers to the maturity-specific

deviation embedded in the forward curve at date t for the future date t + τ .

The function U(τ) represents the steady state or the unconditional forward curve. If we

were to forecast the forward curve at a time in the very distant future, all presently available

information would be of little use. Let Et represent the expectation operator given the set of

all information available up to time t. This unconditional curve can be written:

U(τ) = lim
s↑∞

Et[F (τ ; s)] (2)

The unconditional curve is time invariant and may be estimated by taking an average of all

available historical curves.

The concept of a maturity-specific effect originates from the Market Segmentation Hypoth-

esis and the Preferred Habitat Theory (Modigliani & Sutch (1966)). That model postulates

that some market participants are primarily concerned with their natural maturity habitat,

with little regard for the implication of the forward rates on future spot rates. The maturity-

specific deviation M(τ ; t) in relation (1) captures that effect. That deviation is localized to

particular maturities of the forward curve. The actions of participants with preferred habi-

tats affect only those maturities (and nearby maturities) of the forward curve rather than

move progressively towards shorter maturities and eventually affect the spot rates. Therefore,

M(τ ; t) captures abnormal activity that affects the forward curve at specific maturities τ . We

model the maturity-specific curve as a point-wise mean-reverting process that reverts to zero

at a constant rate, so that

Et [M(τ ; T )] = e−Km(T−t)M(τ ; t) τ > 0, (3)

where the parameter Km > 0 determines the speed of reversion to zero. The overall maturity-

specific curve can be comprised of two or more maturity-specific deviations, for example,

M(τ ; t) = M1(τ ; t) + M2(τ ; t) .
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The components M1(τ ; t) and M2(τ ; t) may mean-revert to zero at different rates. Thus, for

each component of the maturity-specific deviation, we require that

Et [Mj(τ ; T )] = e−Kmj (T−t)Mj(τ ; t) τ > 0, j = 1, 2 . . . . (4)

The arbitrage-free formulation of the overall curve of maturity-specific deviations has the

property that M(∞; t) = 0 for all t. Note that instantaneous or spot rates are zero maturity

loans, and we assume M(0; t) = 0 for all t to allow the date-specific deviations to capture

the dynamics of present and future spot rates. Figure 1 illustrates the forecasted behavior

of maturity-specific deviations. The curve is anchored at zero at extreme maturity values,

and the entire curve decays (in expectation) point-wise towards zero as time passes, satisfying

relation (3).

In contrast, the date-specific curve represents information that affects the expectation of

the spot interest rate to prevail on a specific calendar date in the future. The concept of a

date-specific deviation has its roots from the Expectations Hypothesis (Fisher (1896)). It is

intuitive that forward rates – observable rates at which one can lock in borrowing and lending

at future dates – contain information regarding future spot rates. Therefore a high forward

rate today should naturally point towards a higher spot rate at the corresponding date in

the future. However, the Expectations Hypothesis fails in some basic ways, as shown in the

literature. For instance, in the theoretical realm, Cox, Ingersoll and Ross (1981) show that

some versions of the Expectations Hypothesis admit arbitrage.2 In empirical tests, forecasts

of forward rates generated by the Expectations Hypothesis model are generally inferior to

even the most basic benchmark, the random walk. The model proposed here attributes only

a part of the current forward curve as containing information about future spot rates.

The date-specific deviation curve D(τ ; t) is influenced by abnormal events or information

that affects the portions of the forward curve corresponding to specific maturity dates. In other

words, this curve captures the deviations of expected future spot rates from the unconditional

spot rate. For instance, suppose that on t ≡ January 1 2008 it is learned that the Treasury

needs new additional financing on (or around) s ≡ January 2009. This borrowing will drive

up interest rates during that period. On January 1 2008, the 1-year forward rate would be

elevated. As time passes, we expect the elevated portion of the forward curve to move closer

2Some recent literature seem to vindicate theoretical aspects of the Expectations Hypothesis. McCulloch (1993) and Fisher

and Gilles (1998) present examples to show that some forms of the Expectations Hypothesis are consistent with no-arbitrage.

Longstaff (2000) shows that all traditional forms of the Expectations Hypothesis are consistent with no-arbitrage if markets are

incomplete.
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to the origin since in expectation the higher rates around January 1 2009 would remain. Thus,

the date-specific deviation has the property:

Et [D(s− T ; T )] = D(s− t; t) t < T < s. (5)

The date-specific deviation at zero maturity is simply the difference between the spot interest

rate and the unconditional spot rate: D(0; t) = F (0; t)−U(0). At infinite maturity, the date-

specific deviation must be zero because it is not plausible that one can have any information

about the spot rate in the infinite future other than that contained in the unconditional spot

rate. Hence, D(∞; t) = 0 for all t. Figure 2 illustrates the forecasted behavior of the date-

specific curve. Starting from a given date-specific curve that is anchored at zero at the long

end, the entire curve shifts (in expectation) to the left as time passes, satisfying relation (5).

The Dynamic Behavior of the Forward Curve

The dynamic behavior of the forward curve in relation (1) depends on the dynamic behavior of

the date-specific and the maturity-specific curves, as indicated in relations (3) and (5). Each

of these, within a specific model that we specify in Section 2, is affected by one or more state

variables that represent the evolution of underlying economic factors.

The maturity-specific deviation is caused by abnormal pricing of forward rates specific to

certain maturities, driven by habitat and preferences of individual and institutional investors.

Changes in demand or supply at a given maturity habitat can affect a range of surround-

ing maturities — investors treat them as close substitutes — which allows us to treat the

maturity-specific deviation as a smooth curve. Since these are deviations from the average,

the average deviation should naturally be zero. Without additional information to guide us

on how these deviations behave over time, a simple yet intuitive model for these deviations

would be that they decay towards zero at some rate. In Section 2, where we develop an

arbitrage-free framework for our model, we assume that the maturity-specific deviation de-

cays at an exponential rate to satisfy the Heath-Jarrow-Morton requirement for the model to

be arbitrage-free.

Our model (in the general form under discussion so far) does not a priori preclude the

possibility that there might be negative forward rates. Given an observed term structure of

forward rates that is positive at all maturities, it is possible to find maturity-specific and

date-specific deviations that fit the current term structure but produce forecasts of negative

forward rates in the future. For example, an extremely large and positive maturity-specific
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deviation coupled with an extremely large and negative date-specific deviation can produce

such negative forward rate forecasts. However, in the explicit parametrized forms of the model

described in Section 2 below we ensure that the model is arbitrage-free by checking the HJM

restrictions.

In the implementations of explicit forms of our general model (described in Section 2

and made clear in the estimation procedure in Section 3) we employ sums of exponential

basis functions for U(τ) and similar basis functions (that are scaled by Brownian motions) to

specify dynamic functional forms for M(τ ; t), and D(τ ; t). The resulting model for forward

rates F (τ ; t) is exponentially affine in the state variables and has a structure that lends itself

to estimation.3

2 Example: A One-factor Illustration of the Model

As a first step, it is useful to consider a basic dynamic model for the forward rate that is driven

by a single Brownian motion — we denote this F1(τ ; t) with the subscript “1” indicating the

number of Brownian motions.4 In this basic setting, the random variation that affects the

maturity-specific curve is perfectly correlated with the random variation that drives the date-

specific curve. The explicit parametrization is chosen as a linear combination of exponential

basis functions.5 The three components of the current forward curve F1(τ ; t) are as follows:

1. The time-invariant unconditional curve is now explicitly written as

U1(τ) = C0 − C1e
−2Kmτ , (6)

where C0, C1 and Km are positive constants to be estimated from the data. This form

generates a smooth upward-sloping unconditional curve that starts at U1(0) = C0 − C1

at the origin and asymptotes to C0 at infinite maturity.

2. The maturity-specific deviation is explicitly written as

M1(τ ; t) = m(t)
[
e−Kmτ − e−2Kmτ

]
. (7)

3See CFRS (2008) for further discussion of the connection of their model to other models.
4The instantaneous forward rate on date t for maturity on date s is really a function of {t, s − t, m(t), and d(t)} where the

final two arguments are state variables that affect the maturity- and date-specific deviations. For simplicity, we will continue to

write our model for the forward rate as a function of 2 variables: {τ = s− t, t}, writing F1(τ ; t) in place of F1(t, s, m(t), d(t)) and

suppressing the dependence on the two state variables.
5The precise choice of exponential bases can affect the arbitrage-free status of the model, making it important to verify the

HJM conditions for each choice.
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By design, M1(0; t) = 0 ∀t. Because limτ→∞ M(τ ; t) = 0 the deviation has a humped

shape with a peak at maturity τ = ln 2
Km

. The stochastic process m(t) is an Itô process

whose dynamics are induced by the Brownian motion, defined further below; m(t) serves

to scale the deviation which has a fixed shape.

3. The date-specific deviation is specified as

D1(τ ; t) = d(t)
[
e−2Kmτ

]
. (8)

Here d(t) is an Itô process whose dynamics are related to the Brownian motion, also

defined below; it serves to scale an exponential function which is either monotonically

upward- or downward-sloping. Note that the overall date-specific deviation D1(0; t) =

d(t) at zero maturity, and it asymptotes to zero at infinite maturity (D1(∞; t) = 0),

reflecting the fact that there can be no expectation about the spot rate in the distant

future other than the long-run mean.

Given this parametrization, Itô’s lemma implies that the model forward rate obeys the

following SDE:

dF1(τ ; t) =
∂F1

∂t
dt +

∂F1

∂m(t)
dm(t) +

∂F1

∂d(t)
dd(t), (9)

indicating dependence on the driving Itô processes m(t) and d(t); all second-order terms are

zero.

Recall that the model requires (see relation (3)) the maturity-specific deviation to decay

exponentially towards zero at rate Km. Therefore we require the SDE for the state variable

m(t) to have the drift −m(t)Km, and specify its diffusion coefficient γt later (when we impose

the arbitrage-free condition):

dm(t) = −m(t)Km dt + γt dB(t), (10)

where B(t) is the one Brownian motion for this parametrization.

In the SDE for the Itô process d(t) we make its drift rate equal to −2d(t)Km so that we

satisfy the relation (5) above. We specify the diffusion of the process d(t) to be identical to

that of m(t) in order to ensure that the drift and diffusion of the forward rate conform to the

HJM condition:

dd(t) = −2d(t)Km dt + γt dB(t). (11)

Note that the maturity-specific curve and the date-specific curve are driven by the same

Brownian motion, so that their innovations are perfectly correlated. By choosing the overall
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forward curve as the sum of several components driven by multiple Brownian motions (as we

do below) we avoid this extreme implication.

Relation (9), the SDE for the forward rate in this explicit 1-Brownian motion setup can

now be rewritten as:

dF1(τ ; t) =
{−Km(2C1 + m(t))e−2Km(τ)

}
dt +

{
e−Km(τ)γt

}
dB(t). (12)

Appendix A.1 details the proof that this model conforms to HJM’s specifications for no-

arbitrage. The pricing of bonds as well as interest rate derivatives are also quite straightfor-

ward within the context of this model (see CFRS (2008) for more details).

3 The Forecasting Version of the Model

Before we describe the version of the model we chose for building forecasts, it is useful to

describe the data we use.

3.1 Data: Eurodollar Futures

For the period 12/9/1981 to 1/28/2008, we obtain daily prices of all Eurodollar futures con-

tracts listed in the Chicago Mercantile Exchange.

The Eurodollar futures price on date t for maturity on date t + τ , P (τ ; t), refers to 100

minus the annualized 90-day Libor rate for the period t+τ to t+τ+90. Since the CFRS (2008)

model is built around instantaneous forward rates, we make the simplifying assumption that

the instantaneous forward rate in the middle of the 90-day period referenced by the Eurodollar

futures contract equals the annualized forward rate implied by the Eurodollar futures price as

the standard annualized discount rate: f(τ + 45; t) = 100− P (τ ; t).

Summary statistics of the implied forward rates are displayed in Table 1. A typical day

would see approximately 40 active contracts, with the maximum being 45. The maturities

of the forward rates range from 45 days (corresponding to a Eurodollar futures contract that

expires at the end of that trading day) to slightly more than 10 years. The training sample,

which is an early sub-sample of the data, is more sparsely populated with an average of

(approximately) 10 active contracts per trading day, with maturities stretching out to 4 years.

One feature of the data that merits special attention is what appears to be a microstructure

effect: there are persistent blips in the data for December contracts, perhaps caused by those
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who use these contracts for swaps. These blips occur systematically and our model – whose

form and whose dynamics are both smooth – cannot accommodate them. In order to build a

useful model for prediction, we elected to incorporate these microstructure features into the

forecast. We describe this adjustment used below in Section 3.3.

3.2 Model Selection using the AIC Criterion

In this section we describe the model we chose (from alternative parameterizations) and briefly

describe the procedure employed in that choice.

We restricted the alternative models to have no more than 4 Brownian Motions (BMs)

that serve as driving state variables. The advantage of our general model-building procedure

is that we can bifurcate the influence of each BM to impact the maturity-specific deviation,

or the date-specific deviation, or both. In this way we can permit the shape of the forward

curve to accommodate several humps and also allow the dynamics of the forward curve to be

influenced by correlated deviations driven by independent BMs.

To choose from the list of alternative models, we fit each model over the period 12/09/1981

to 10/28/1991, using daily data from the Eurodollar futures market (2500 days of data).

Each estimation employs the Kalman filter in the manner explained in next section. The

various alternative models are generated by combining different sub-models (also referred to

as arbitrage-free units or AFU, in CFRS (2008)). CFRS (2008) also details the proof that

combinations of these sub-models are arbitrage-free.

Because the alternative parameterizations involve forms with varying numbers of parame-

ters, we used the Akaike information criterion (henceforth AIC, see Akaike (1973)) to choose

among the models. Table 2 shows the descriptions of the various candidate models and their

respective AIC numbers. Model 5 obtains the lowest AIC among the 6 candidate models. We

therefore chose Model 5 (henceforth CFRS ED model) for empirical implementation reported

in the rest of this paper.

The CFRS ED model, driven by 3 independent Brownian motions, is the sum of the un-

conditional curve, 2 maturity-specific curves, and 4 date-specific curves fitted to 3 exponential

basis functions
{
e−Km , e−2Km , e−4Km

}
. We denote the error term in the fitted model as ε(τ ; t):

f(τ ; t) = F3(τ ; t) + ε(τ ; t) (13)

so that

f(τ ; t) = (e
~kτ )′

(
~u + M~m(t) + D~d(t)

)
+ ε(τ ; t), (14)
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where

(e
~kτ ) =




1

e−Kmτ

e−2Kmτ

e−4Kmτ




,M =




0 0

1 2

−1 −1

0 −1




,D =




0 0 0 0

0 0 0 0

1 1 0 1

0 0 1 0




,

~m(t) =


 m1(t)

m2(t)


 , ~d(t) =




d1(t)

d2(t)

d3(t)

d4(t)




, ~u =




C0

0

−C1

−C2




.

Therefore there are 6 state variables in this system: m1(t), m2(t), d1(t), d2(t), d3(t) and d4(t).

The stochastic processes for vectors ~m(t) and ~d(t) are:

d~m(t) = Vm ~m dt + Σm(~m) d ~B(t) (15)

d~d(t) = Vd
~d dt + Σd(~m) d ~B(t) (16)

where

Vm =


 −Km 0

0 −Km


 , Vd =




−2Km 0 0 0

0 −2Km 0 0

0 0 −4Km 0

0 0 0 −2Km




Σm(~m) =


 γ1,t 0 0

0 γ2,t 0


 , Σd(~m) =




γ1,t 0 0

0 γ2,t 0

0 γ2,t 0

0 0 γ3,t




, dBt =




dB1,t

dB2,t

dB3,t


 ,

using 3 independent Brownian motions, and

γ2
1,t = (m1(t) + C1)K

2
m

γ2
2,t = (m2(t) + C1)

K2
m

4

γ2
3,t = (3m2(t) + 4C2)2K

2
m

Note that, in the model selection process, we limit the choice of models to those having

at most 4 BMs and a few alternative forms within that restriction; it is possible that more

extensive forms may perform better than our model in forecast accuracy.
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3.3 Generating Model Forecasts

Suppose that on date T , we want to forecast future forward rates for date T2. We use a

three-step process:

1. Over the parameter space of {Km, σ∗2}, (which are the rate of decay of the maturity-

specific deviations and the variance of the measurement errors of the Kalman filter,

respectively) search for a point that maximizes the quasi-likelihood. The quasi-likelihood

for any point in the space is obtained via the following procedure:

(a) Use all the data across dates and maturities for the Eurodollar forward rates, which

we now label as f(τ ; t), for all dates up to date T to fit the unconditional forward

curve of the form: U(τ) = C0 − C1e
−2Kmτ − C2e

−4Kmτ

(b) Subtract the fitted unconditional forward curve from the observed forward rates to

obtain the cross-section of deviations. These deviations form the “observations” in

the context of the Kalman filter (The operations of the Kalman filter are detailed in

Appendix A.2): ~zt ≡ f(~τ ; t)− Û(~τ) = A~xt + ~εt

(c) Run the Kalman filter to estimate the state variables for the maturity-specific and

date-specific curves.

(d) Determine the quasi-likelihood from the Kalman filter: ln L = −nT
2

ln 2π − 1
2

∑T
t=1

(ln |Ht| + v′tH
−1
t vt) where Ht denotes the conditional covariance matrix of the pre-

diction errors vt. See equation (33) in the Appendix.

2. Beginning with estimated state variables at date T obtained in the previous step, we

evolve these estimates forward according to their respective decay rates to obtain forecasts

for future date T2:

m̂1(T2) = E[m1(T2)
∣∣m̂1(T )]= m̂1(T )e−K̂m(T2−T )

m̂2(T2) = E[m2(T2)
∣∣m̂2(T )]= m̂2(T )e−K̂m(T2−T )

d̂1(T2) = E[d1(T2)
∣∣d̂1(T )] = d̂1(T )e−2K̂m(T2−T )

d̂2(T2) = E[d2(T2)
∣∣d̂2(T )] = d̂2(T )e−2K̂m(T2−T )

d̂3(T2) = E[d3(T2)
∣∣d̂3(T )] = d̂3(T )e−4K̂m(T2−T )

d̂4(T2) = E[d4(T2)
∣∣d̂4(T )] = d̂4(T )e−2K̂m(T2−T )
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3. Correct the model predictions to accommodate market microstructure effect (discussed

above) present at time T . Figure 3 illustrates the type of effects captured by the ad-

justment described there. To that end, on the observed day T , we back out the forward

curve using the current estimates of the underlying state variables, obtaining a fitted

curve. We then subtract this fitted curve from the observed forward rates, producing

ε(τ ; T ). Because this microstructure persists in time, our forecast for the future data is

f̂(τ ; T2) = (e
~kτ )′

(
~̂u + M ~̂m(T2) + D ~̂d(T2)

)
+ ε(τ + (T2 − T ); T ). In effect, we model the

observed forward rates as a sum of the smooth curve implied by our model plus additive

microstructure effects. Our assumption is that the imprecise cross-sectional fits are not

measurement noise per se, which should dissipate over a longer term, but are market

micro-structure distortions that can be expected to persist over the short-term.

4 Results

In this section, we test the efficacy of our forecasts using 2 different yardsticks: (1) the accuracy

of prediction of future forward rates implied by Eurodollar futures prices, as measured using

RMSE; and (2) the profitability of a simple trading strategy uses the predictions of the model

to generate trade signals.

It should be emphasized that the model selection in section 3.2 uses only data up to

10/28/1991 while forecast generation in section 3.3, uses only the data that is available up

to the date that the forecast is being made. This means that the forecasts made are truly

out-of-sample. We make forecasts for 5-trading-days, 20-trading-days, 65-trading-days and

250-trading-days ahead, approximately corresponding to 1-calendar-week, 1-calendar-month,

1-calendar-quarter and 1-calendar-year ahead, respectively. Refer to Figure 4 to get a graphical

view of the model training and forecasting timeline.

4.1 Predictive Accuracy

The forecast error are calculated as the differences between the forecasted forward rates and

the actual Eurodollar futures implied forward rates that prevail at the end of the forecasting

period. We compare the forecasts of the CFRS ED model against the hypothesis that the

Eurodollar futures prices of each contract remains unchanged over the forecasting period, the

random walk model (RW model). For each date, we measure the cross-sectional square root

of the mean squared forecast errors (RMSE). We report the time-series average and standard

12



deviation of these cross-sectional RMSEs in Panel A of Table 3. We report the statistical

significance of the differences between the RMSE of the CFRS ED model and the RW model

in Panel B of Table 3.

The CFRS ED model performs better than the random walk for all 4 forecast horizons, as

evidenced by the lower forecast error RMSEs. The differences in RMSE start from 0.02 basis

points (12.53 for the CFRS ED model vs 12.55 for the RW model) for 5-day-ahead forecasts,

and monotonically increase to an economically significant 6.31 basis points for 250-day-ahead

forecasts (98.58 for the CFRS ED model versus 104.89 for RW model). In terms of statistical

significance, we calculate the Newey-West statistic (NW-stat; see Newey and West (1987)) for

the differences between the RMSE of the CFRS ED model and the RW model.6

The NW-stat takes into account serial correlation and heteroscedasticity in the time series

of forecast errors; this structure is very evident in our situation because of the over-lapping

forecasting windows. Panel B of Table 3, shows that the CFRS ED model is consistently more

accurate, but the differences are not statistically significant at the usual levels.

4.2 Trading Strategy Profitability

We use the methodology described in section 3.3 to generate forecasts and signals to trade

forward rates 5-days, 20-days, 65-days, and 250-days ahead. Each trade signal generated is

based on whether the forecasted forward rate is above or below the current Eurodollar-implied

forward rate. If the forecasted rate is below the current rate, we go short that forward rate

(equivalently, we go long the Eurodollar futures contract), and hold that short position until

the end of the forecasting period. Conversely, if the forecasted rate is above the current

rate, we go long the that forward rate (by going short the Eurodollar futures contract), and

hold that long position until the end of the forecasting period. Trades are placed for all

Eurodollar futures contracts that will still exist at the end of the forecasting period. The

profitability on each trade is then calculated as the cross-sectional average movement in (or

against) the predicted direction over the length of the forecasting period, expressed in basis

points. For comparison, we also measure the profitability of an alternative trading strategy

that always buys-and-holds a long position in all the traded Eurodollar futures contracts,

6We first compute the difference between a given day’s cross-sectional RMSE for our model and the RW model. Then, we

compute the Newey-West (NW) standard error for the time-series of these differences. The mean difference divided by this NW

standard error is our reported NW statistic. Alternatively, we can compute the significance using the Diebold-Mariano (1995)

method.

13



which is equivalent to riding the yield curve. We report the means and standards deviations

of the profitability of the CFRS ED model trading strategy and the buy-and hold strategy in

Panel A of Table 4. We report the statistical significance of the profitability of the CFRS ED

model trading strategy, as well as the statistical significance of the differences in profitabilities

between the two strategies in Panel B of Table 4.

In terms of profitability, the trading signals generated by the CFRS ED model are signifi-

cantly positive, both economically and statistically. The average profit per trade ranges from

1.19 basis point for the 5-day holding period strategy to 49.04 basis points for the 250-day

holding period strategy. The statistical significance of this profit, reported in row 1 of Panel

B in Table 4, as measured by the NW-stat also exceeds the 5% level for all 4 holding periods.

Row 3 of Panel A in Table 4 shows that the profitabilities of the buy-and-hold strategies,

while always lower than the CFRS ED model, are quire similar in terms of magnitude. The

buy-and-hold strategy’s profits ranges from 1.16 basis point for the 5-day holding period

strategy to 48.74 basis points for the 250-day holding period strategy. The closeness between

the profitability of these CFRS ED model and the buy-and-hold is reflective of the fact that

the CFRS ED model will, more often than not, predict a fall in forward rates, due to the

fact that unconditionally, the term structure of the forward curve is upward sloping (hence,

unconditionally, the drift of forward rates is downwards). The differences in profitability will

therefore come from the times when the CRFS ED model predicts a rise in the forward rates,

while the buy-and-hold maintains the downward prediction. Hence, to test the statistical

significance between the CFRS ED model and the buy-and-hold model, we exclude all the

dates when the trade signals are identical for both strategies, and only use those dates when

their forecasted directions diverge.

Row 2 of Panel B of Table 4 shows that the profitability of the CFRS ED model is signifi-

cantly higher than that for the buy-and-hold for all holding periods, and especially so for the

65-day and 250-day holding periods, with NW-stat reaching 7.953.

5 Conclusion

We have estimated and tested a dynamic model for the forward Eurodollar rates. The model

has several desirable features, most notably that it

• Captures maturity-specific preferences that arise from preferred habitats,

14



• Accommodates date-specific expectations about future spot rates,

• Permits estimation and extrapolation via underlying state variables within the framework

of a Kalman filter, and

• Has a general structure that permits the choice of a particular model parsimonious in

parameters and state variables, while still remaining arbitrage-free.

The selected representative of our model class performs well in forecasts over various hori-

zons, relative to the Random Walk model. The chosen model also supports the construction

of a trading strategy that significantly outperforms the returns of a buy-and-hold strategy,

especially over longer holding periods.

We leave to future work the task of searching for the superior models from this general

class as well as the extension to other types of data.
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Table 1: Summary statistics of Eurodollar futures data for full sample (12/09/1981 to 1/28/2008) and training

sample (12/09/1981 to 10/28/1991)

We convert Eurodollar futures prices into estimates of instantaneous forward rates via the formula: f(τ +

45; t) = 100 − P (τ ; t). We report the counts, means and standard deviations of the maturities as well as the

forward rates for both the full sample and the training sample. Contract Number refers to the n-th nearest

contract to maturity on any particular day.

Full Sample Training Sample

Contract Maturity Forward Rates Maturity Forward Rates

Number Count Mean S.D. Mean S.D. Count Mean S.D. Mean S.D.

1 6600 76.7 25.6 6.091 2.939 2500 91.1 26.4 8.933 2.296

2 6600 140.1 66.4 6.218 3.016 2500 182.4 26.5 9.140 2.379

3 6598 203.0 79.2 6.349 3.063 2500 273.8 26.5 9.338 2.391

4 6541 269.0 105.8 6.410 2.998 2443 364.6 26.5 9.408 2.209

5 6176 332.2 131.0 6.216 2.721 2078 455.5 26.4 9.138 1.825

6 6164 402.7 155.9 6.350 2.752 2067 546.5 26.4 9.328 1.814

7 5907 476.9 170.7 6.223 2.465 1812 638.2 26.5 9.037 1.327

8 5866 566.5 171.7 6.332 2.383 1774 729.2 26.4 9.116 1.211

9 5197 637.0 172.1 6.056 2.060 1106 821.1 26.5 8.959 0.540

10 5196 728.4 172.9 6.184 1.994 1105 912.1 26.4 9.038 0.524

11 5194 819.1 168.4 6.300 1.938 1104 1003.1 26.4 9.105 0.521

12 5188 910.1 168.2 6.400 1.892 1100 1094.1 26.5 9.166 0.513

13 4688 981.8 164.8 6.158 1.630 600 1184.6 26.8 8.911 0.345

14 4685 1074.0 166.3 6.241 1.596 597 1283.8 37.9 8.957 0.333

15 4635 1162.0 164.2 6.295 1.558 547 1367.0 27.1 9.024 0.339

16 4624 1252.7 164.1 6.361 1.529 536 1457.9 26.7 9.063 0.322

17 3924 1307.3 150.7 5.983 1.155 0

18 3924 1398.4 150.7 6.053 1.137 0

. . . . . . .

. . . . . . .

42 2924 3513.8 80.1 6.736 0.827 0

43 2251 3566.6 39.6 6.500 0.719 0

44 1954 3648.6 30.9 6.416 0.653 0

45 57 3651.9 15.0 6.406 0.555 0
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Table 2: Log-likelihood and Akaike Information Criterion Values (AIC) in Model Selection using daily Eu-

rodollar futures data from 12/09/1981 to 10/28/1991

We use the Eurodollar Futures training data to derive the log-likelihood and AIC values for six competing

models. The model with the highest log-likelihood and lowest AIC value is our model of choice (CFRS ED

model). AIC is calculated via the formula: −2 ln L + 2K, where L is the likelihood, and K is the number

of free parameters in the model. The models that we consider are made up of different combinations of the

following 3 sub-models (where mi(t) refers to the maturity-specific state variable of the i-th sub-model, and

dj,k(t) refers to the k-th date-specific state variable of the j-th sub-model):

1. Sub-model 1 (SM1), 1 Brownian Motion:

U(s− t) + m1(t)(e−Km(s−t) − e−2Km(s−t)) + d1,1(t)e−2Km(s−t)

2. Sub-model 2 (SM2), 2 Brownian Motions:

U(s− t) + m2(t)(2e−Km(s−t) − 2e−2Km(s−t)) + 2d2,1(t)e−2Km(s−t) + d2,2(t)e−Km(s−t)

3. Sub-model 3 (SM3), 2 Brownian Motions:

U(s − t) + m3(t)(2e−Km(s−t) − e−2Km(s−t) − e−4Km(s−t)) + d3,1(t)e−2Km(s−t) + d3,2(t)e−4Km(s−t) +

d3,3(t)e−2Km(s−t)

Model Composition State Dimensions Free Parameters Log-likelihood AIC

Model 1 SM1 2 3 {C0, C1,Km} -3.2300e7 6.4600e7

Model 2 SM2 3 3 {C0, C1,Km} -0.4099e7 0.8199e7

Model 3 SM3 4 4 {C0, C1, C2,Km} -0.0985e7 0.1971e7

Model 4 SM1 + SM2 5 3 {C0, C1,Km} -0.8926e7 1.7853e7

Model 5 SM1 + SM3 6 4 {C0, C1, C2,Km} -0.0599e7 0.1198e7

Model 6 SM2 + SM3 7 4 {C0, C1, C2,Km} -1.3412e7 2.6824e7
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Figure 1: Illustration of Maturity-Specific Deviation Behavior

Starting with any given maturity-specific deviation (for illustrative purposes, we set the original maturity-

specific deviation to be M(τ ; t) = 0.05e−0.2τ − 0.1e−0.4τ + 0.05e−0.8τ ). We expect the maturity-specific

deviation to decay exponentially to zero at rate Km (In this illustration, we set Km = 0.4) as time passes

(from relation (3)): Et[M(τ ;T )] = e−Km(T−t)M(τ ; t).
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Figure 2: Illustration of Date-specific Deviation Behavior

Starting with any given date-specific deviation (for illustrative purposes, we set the original date-specific

deviation to be D(τ ; t) = 0.04e−0.2τ − 0.05e−0.4τ . We expect the date-specific deviation curve to shift to the

left uniformly as time passes (from relation (5)): Et[D(τ − (T − t); T )] = D(τ ; t).
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Figure 3: Illustration of Market Micro-structure Issues
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Figure 4: Timeline for Model Estimation and Forecasts
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A Appendix

A.1 Checking the HJM Restriction

We must now verify that the proposed dynamics in relation (12) is arbitrage-free. Denoting

the diffusion of the forward rate SDE as:

σ(t, s) = e−Km(s−t)γt, τ ≡ s− t (17)

we have ∫ s

t

σ(t, v)dv = − 1

Km

e−Km(s−t)γt +
1

Km

γt.

For this version of the 1-Brownian motion arbitrage-free unit, we choose the market price of

risk κt as:7

κt =
γt

Km

(18)

Notice that the market price of risk is proportional to the diffusion term of the state variable,

just as in the CIR model. Then the HJM condition says

σ(t, s)

(∫ s

t

σ(t, v)dv − κt

)
= − 1

Km

γ2
t e
−2Km(s−t) (19)

By specifying γ2
t as:

γ2
t = (m(t) + 2C1)K

2
m , (20)

relation (19) becomes

σ(t, s)

(∫ s

t

σ(t, v)dv − κt

)
= −Km(2C1 + m(t))e−2Km(s−t)

which is exactly the drift of df1(s− t; t)(see relation (12)), thus satisfying the HJM condition.

A.2 Fitting the Kalman Filter

A standard Kalman filter can be used to estimate a system of unobserved state variables in

which the observed variables are linked to the unobserved state variables via a measurement

equation, and the transition equation for the unobserved state variables is specified as a system

of linear equations with Gaussian innovations (see Hamilton (1994) Chapter 13 for a discussion

of the Kalman filter’s implementation and estimation). If the innovations in the unobserved

state variables are not Gaussian (which is the case for our model), estimates from the standard

7It is not necessary that κt = γt
Km

. If the market price of risk takes on another form, the model requires a different specification

for γt or U(s− t) or both so that the system remains arbitrage-free.
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Kalman filter are, in general, not conditionally unbiased estimators of the true state variables

(Chen and Scott (2002)). However, it is still possible to proceed with the implementation of

the Kalman filter by assuming that the innovations are indeed Gaussian in order to obtain a

quasi-log-likelihood from the Kalman filter, and then optimize over that quasi-log-likelihood

to obtain quasi-maximum likelihood (QML) estimates for parameters of the model. The

parameters in the model that we need to optimize over the quasi-log-likelihood are Km, the

decay rate of the maturity-specific deviation, and σ∗2, the variance of the measurement errors.

By viewing ~m(t) and ~d(t) as latent state variables we are able to fit our model directly

into a Kalman filter framework. Stack a sequence of maturities into a vector ~τ = [τ1, . . ., τ`]
′.

Next place ~m(t) and ~d(t) into a vector ~xt:

~xt =


 ~m(t)

~d(t)


 . (21)

At each date t, we can relate these to the observed data with the measurement equation:

~zt ≡ f(~τ ; t)− Û(~τ) = A~xt + ~εt (22)

where A is the measurement matrix for the state variables, and ~εt is the vector of measurement

errors. The j-th row of the matrix A is defined as

Aj ≡
[

(e
~kτj)′M, (e

~kτj)′D
]
. (23)

To allow for statistical estimation, we now simplify the model by adding the assumption that

the measurement errors are homoscedastic and both cross-sectionally and serially uncorrelated:

Σε ≡ Var(~εt) = σ∗2I. (24)

We estimate the noise variance σ∗2 from the data when maximizing the quasi-likelihood.

We can now derive the transition equation of the Kalman filter as the discretized version

of the stochastic process for ~xt. First let

V =


 Vm 0

0 Vd


 and Σ(~m) =


 Σm(~m)

Σd(~m)


 .

The transition equation is therefore

~xt = W ~xt−1 + ξt, (25)

where W is a diagonal matrix with

Wii = eδVii , (26)
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where δ is the step size, and we approximate Qt ≡ Vart−1(ξt) by

Qt ≈ δ Σ(~m) Σ(~m)′. (27)

Given this specification for the Kalman filter, we set the initial estimates of the state vector

at its unconditional mean, which is zero (~̂x0 = 0), and set the initial covariance matrix at

the unconditional variance Var(~xt). We can then run the Kalman filter to estimate the state

variables by iterating between the prediction equations and the updating equations as in

DeJong and Santa-Clara (1999), Geyer and Pichler (1999) and Babbs and Nowman (1999):8

The predicting equations:

xt|t−1 = Wx̂t−1|t−1 (28)

where xt|t−1 is the time t − 1 prediction of xt and x̂t−1|t−1 is the time t − 1 estimate of xt−1,

and

Pt|t−1 = WP̂t−1|t−1W
′ + Qt (29)

where Pt|t−1 is the time t − 1 prediction of Pt and P̂t−1|t−1 is the time t − 1 estimate of Pt−1

(P is the covariance matrix of the state vector x).

Updating equations:

x̂t|t = xt|t−1 + Pt|t−1A
′H−1

t vt (30)

P̂t|t = Pt|t−1 − Pt|t−1A
′H−1

t APt|t−1 (31)

where

vt = zt − Axt|t−1 (32)

are the prediction errors, and

Ht = APt|t−1A
′ + σ∗2I (33)

is the conditional variance of the prediction errors.

The log-likelihood function is then: ln L = −nT
2

ln 2π − 1
2

∑T
t=1(ln |Ht|+ v′tH

−1
t vt)

8The framework of the model places boundaries on the values of some of the state variables. The diffusion terms, which are

functions of the maturity-specific state variables, must be constrained to be non-negative. This in turn places constraints on

those state variables. In the empirical implementation, a simple and common way of enforcing this restriction is to replace the

values of the state variables that do breach the constraints with ones that just satisfy it. See Chen and Scott (2002) and Geyer

and Pichler (1999) for further examples of such restrictions in a Kalman filter.
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