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Abstract

Stocks are more volatile over long horizons than over short horizons from an investor’s
perspective. This perspective recognizes that observable predictors imperfectly deliver true
expected return and that parameters are uncertain, even with two centuries of data. Stocks
are often considered less volatile over long horizons due to mean reversion induced by pre-
dictability. However, mean reversion’s negative contribution to long-horizon variance is more
than offset by uncertainty about future expected return, combined with effects of predictor im-
perfection and parameter uncertainty. Using a predictive system to capture these effects, we
find 30-year variance is 21 to 75 percent higher per year than 1-year variance.
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1. Introduction

Stock returns are often thought to be less volatile over longer investment horizons. Various empir-

ical estimates are consistent with such a view. For example, using over two centuries of U.S equity

returns, Siegel (2008) reports that variances realized over investment horizons of several decades

are substantially lower than short-horizon variances on a per-year basis. Such evidence pertains

to unconditional variance, but a similar message is delivered by studies that condition variance

on information useful in predicting returns. Campbell and Viceira (2002, 2005), for example, re-

port estimates of conditional variances that generally decrease with the investment horizon. The

long-run volatility of stocks is no doubt of interest to investors. Evidence of lower long-horizon

variance is cited in support of higher equity allocations for long-run investors (e.g, Siegel, 2008) as

well as the increasingly popular “life-cycle” mutual funds that allocate less to equity as investors

grow older (e.g., Gordon and Stockton, 2006, and Viceira, 2008).

We find that stocks are actually more volatile over long horizons. At a 30-year horizon, for

example, we find return variance per year to be 21 to 75 percent higher than the variance at a

1-year horizon. This conclusion stems from the fact that we assess variance from the perspective

of investors who condition on available information but realize their knowledge is limited in two

key respects. First, even after observing 206 years of data (1802–2007), investors do not know

the true parameters that govern the processes generating returns and observable “predictors” used

to forecast returns. Second, investors recognize that, even if those parameters were known, the

predictors could deliver only an imperfect proxy for the true conditional expected return.

Under the traditional random-walk assumption that returns are distributed independently and

identically (i.i.d.) through time, return variance per period is equal at all investment horizons.

Explanations for lower variance at long horizons commonly focus on “mean reversion,” whereby

a negative shock to the current return is offset by positive shocks to future returns, and vice versa.

Define the conditional expected return �t in the equation

rtC1 D �t C utC1; (1)

where rtC1 denotes the continuously compounded return from time t to time t C 1, and utC1 has

zero mean conditional on information available at time t . With mean reversion, the unexpected

return utC1 is negatively correlated with future values of �t . If �t follows an AR(1) process,

�tC1 D .1 � ˇ/Er C ˇ�t C wtC1; (2)

mean reversion is equivalent to a negative correlation between the innovations utC1 and wtC1, or

�uw < 0. If fluctuations in �t are fairly persistent as well (i.e., high ˇ), then a negative shock in
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utC1 is accompanied by offsetting positive shifts in the �t ’s for multiple future periods, resulting

in a stronger negative contribution to the variance of long-horizon returns.

Our conclusion that stocks are more volatile in the long run obtains despite the presence of

mean reversion. We show that mean reversion is only one of five components of long-run variance:

(i) i.i.d. uncertainty

(ii) mean reversion

(iii) uncertainty about future expected returns

(iv) uncertainty about current expected return

(v) estimation risk.

Whereas the mean-reversion component is strongly negative, the other components are all positive,

and their combined effect outweighs that of mean reversion.

Of the four components contributing positively, the one making the largest contribution at

the 30-year horizon reflects uncertainty about future expected returns. This component (iii) is

often neglected in discussions of how return predictability affects long-horizon return variance.

Such discussions typically highlight mean reversion, but mean reversion—and predictability more

generally—require variance in the conditional expected return �t . That variance makes the future

values of �t uncertain, especially in the more distant future periods, thereby contributing to overall

uncertainty about future returns. The greater the true degree of predictability (i.e., the higher

the true R2 in equation (1)), the larger is the variance of �t and thus the greater is the relative

contribution of uncertainty about future expected returns to long-horizon return variance.

Three additional components also make significant positive contributions to long-horizon vari-

ance. One is simply the variance attributable to the unexpected return utC1. Under an i.i.d. as-

sumption for utC1, the variance of utC1 makes a constant contribution to variance per period at

all investment horizons. At the 30-year horizon, this component (i), though quite important, is

actually smaller in magnitude than both components (ii) and (iii) discussed above.

Another component of long-horizon variance reflects uncertainty about the current �t . Com-

ponents (i), (ii), and (iii) all condition on the current value of �t . Conditioning on the current

expected return is standard in long-horizon variance calculations using a vector autoregression

(VAR), such as Campbell (1991) and Campbell, Chan, and Viceira (2003). In reality, though, an

investor does not observe the true �t but a vector of predictors, xt , capable of producing only

an imperfect proxy for �t . Pástor and Stambaugh (2008) introduce a predictive system to deal

with imperfect predictors, and we use that framework to assess long-horizon variance and capture

component (iv). When expected returns are persistent (high ˇ), this component grows with the
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horizon. Uncertainty about the current �t then contributes to uncertainty about �t in multiple

future periods, on top of the uncertainty about future �t ’s discussed earlier.

The fifth and last component adding to long-horizon variance, also positively, is one we label

“estimation risk,” following common usage of that term. This component reflects the fact that,

after observing the available data, an investor remains uncertain about the parameters of the joint

process generating return rtC1 , expected return �t , and the observed predictors xt . That parameter

uncertainty adds to the overall variance of returns assessed by an investor. If the investor knew the

true parameter values, this estimation-risk component would be zero.

Parameter uncertainty also enters long-horizon variance more pervasively. Unlike the fifth

component, the first four components are non-zero even if the parameters are known to an investor.

At the same time, those four components can be affected significantly by parameter uncertainty.

Each component is an expectation of a function of the parameters, with the expectation evaluated

over the distribution characterizing an investor’s parameter uncertainty. We find that Bayesian

posterior distributions of these functions are often skewed, so that less likely parameter values

exert a significant influence on the posterior means, and thus on long-horizon variance.

Variance that incorporates parameter uncertainty is known as predictive variance in a Bayesian

setting. In contrast, true variance excludes parameter uncertainty and is defined by setting param-

eters equal to their true values. True variance is the more common focus of statistical inference;

the usual sample variance, for example, is an estimate of true unconditional variance. We compare

long- and short-horizon predictive variances, which are relevant from an investor’s perspective.

Our objective is thus different from trying to infer whether true return variances per period differ

across long and short horizons. The latter inference problem is the focus of an extensive literature

that uses variance ratios and other statistics to test whether true return variances differ across hori-

zons.1 The variance of interest in that hypothesis is generally unconditional, as opposed to being

conditioned on current information, but even ignoring that distinction leaves the results of such

exercises less relevant to investors. Investors might well infer from the data that the true variance,

whether conditional or unconditional, is probably lower at long horizons. At the same time, in-

vestors remain uncertain about the values of the true parameters, enough so that they assess the

relevant variance from their perspective to be higher at long horizons.

The effects of parameter uncertainty on the variance of long-horizon returns are analyzed in

previous studies, such as Stambaugh (1999) and Barberis (2000). Barberis discusses how parame-

ter uncertainty essentially compounds across periods and exerts stronger effects at long horizons.

1A partial list of such studies includes Fama and French (1988), Poterba and Summers (1988), Lo and MacKinlay
(1988, 1989), Richardson and Stock (1989), Kim, Nelson, and Startz (1991), and Richardson (1993).
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Barberis and Stambaugh both find that the Bayesian predictive variance is substantially higher than

variance estimates that ignore parameter uncertainty. However, both studies find that long-horizon

predictive variance is lower than short-horizon variance for the horizons those studies consider—

up to 10 years in Barberis (2000) and up to 20 years in Stambaugh (1999).2 In contrast, we find

that predictive variance even at a 10-year horizon is significantly higher than at a 1-year horizon.

A key difference between our analysis and the above studies is our inclusion of uncertainty

about the current expected return �t . That variance contribution, arising from predictor imperfec-

tion, is large enough at a 10-year horizon that subtracting it from predictive variance leaves the

remaining portion lower than the 1-year variance. Moreover, once predictor imperfection is admit-

ted, parameter uncertainty is more important in general. That is, when �t is not observed, learning

about its persistence (ˇ) and its predictive ability (R2) is more difficult than when �t is assumed

to be given by observed predictors, as in the VAR approach employed by Stambaugh (1999) and

Barberis (2000). As noted earlier, the effects of parameter uncertainty pervade all components

of long-horizon returns. The greater parameter uncertainty accompanying predictor imperfection

further widens the gap between our analysis and these previous studies.

The remainder of the paper proceeds as follows. Section 2 derives expressions for the five

components of long-horizon variance discussed above and analyzes their theoretical properties.

The effects of parameter uncertainty on long-horizon variance are first explored in Section 3 using

a simplified setting. Section 4 then presents our empirical analysis. We use a predictive system,

with 206 years of data, to examine the effects of parameter uncertainty on long-horizon predictive

variance and its components. Section 5 returns to the above discussion of the distinction between

an investor’s problem and inference about true variance. Section 6 summarizes the paper’s conclu-

sions.

2. Components of long-horizon variance

Define the k-period return from period T C 1 through period T C k,

rT;T Ck D rT C1 C rT C2 C : : : C rT Ck; (3)

and let DT denote the information used by an investor at time T in assessing the variance of rT;T Ck .

As noted earlier, DT typically reveals neither the true value of �T in (1) nor the true values of the

parameters governing the joint dynamics of rtC1, �tC1, and the predictors that investors use in

forecasting returns. Let � denote the vector containing those true parameter values.
2Instead of predictive variances, Barberis reports asset allocations for buy-and-hold, power-utility investors. His

allocations for the 10-year horizon exceed those for short horizons, even when parameter uncertainty is incorporated.
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In computing the desired variance Var.rT;T Ck jDT /, a useful building block is the conditional

variance Var.rT;T Ckj�T ; �; DT /. We assume throughout, for simplicity, that �t follows the AR(1)

process in (2), and that the conditional covariance matrix of ŒutC1 wtC1� is constant.3 These as-

sumptions imply that Var.rT;T Ck j�T ; �; DT / D Var.rT;T Ckj�T ; �/. The Appendix shows that

Var.rT;T Ckj�T ; �/ D k�2
u

h
1 C 2 Nd�uwA.k/ C Nd2B.k/

i
; (4)

where

A.k/ D 1 C
1

k

�
�1 � ˇ

1 � ˇk�1

1 � ˇ

�
(5)

B.k/ D 1 C
1

k

�
�1 � 2ˇ

1 � ˇk�1

1 � ˇ
C ˇ2 1 � ˇ2.k�1/

1 � ˇ2

�
(6)

Nd D
�

1 C ˇ

1 � ˇ

R2

1 � R2

�1=2

: (7)

(Recall that �uw is the correlation between ut and wt , and that R2 is the true predictive R-

squared—the ratio of the variance of �t to the variance of rtC1, based on equation (1).)

The conditional variance in (4) consists of three terms. The first term, k�2
u , captures the well-

known feature of i.i.d. returns—the variance of k-period returns increases linearly with k. The

second term, containing A.k/, reflects mean reversion in returns arising from the likely negative

correlation between realized returns and expected future returns (�uw < 0), and it contributes

negatively to long-horizon variance. The third term, containing B.k/, reflects the uncertainty

about future values of �t , and it contributes positively to long-horizon variance. When returns

are unpredictable, only the first term is present (because R2 D 0 implies Nd D 0, so the terms

involving A.k/ and B.k/ are zero). Now suppose that returns are predictable, so that R2 > 0 and
Nd > 0. When k D 1, the first term is still the only one standing, because A.1/ D B.1/ D 0. As

k increases, though, the terms involving A.k/ and B.k/ become increasingly important, because

both A.k/ and B.k/ increase monotonically from 0 to 1 as k goes from 1 to infinity.

Figure 1 plots the variance in (4) on a per-period basis (i.e., divided by k), as a function of the

investment horizon k. Also shown are the terms containing A.k/ and B.k/. It can be verified that

A.k/ converges to 1 faster than B.k/. (See Appendix.) As a result, the conditional variance in

Figure 1 is U-shaped: as k increases, mean reversion exerts a stronger effect initially, but uncer-

tainty about future expected returns dominates eventually.4 The contribution of the mean reversion
3Our stationary AR(1) process for �t nests a popular model in which the stock price is the sum of a random walk

and a positively autocorrelated stationary AR(1) component (e.g., Summers, 1986, Fama and French, 1988). In that
special case, �uw as well as return autocorrelations at all lags are negative. See the Appendix.

4Campbell and Viceira (2002, pp. 95–96) also model expected return as an AR(1) process, but they conclude that
variance per period cannot increase with k when �uw < 0. They appear to equate conditional variances of single-
period returns across future periods, which would omit the uncertainty about future expected return.
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term, and thus the extent of the U-shape, is stronger when �uw takes larger negative values. This

effect is illustrated in Figure 1. The contributions of mean reversion and uncertainty about future

�T Ci’s both become stronger as predictability increases. These effects are illustrated in Figure 2,

which plots the same quantities as Figure 1, but for three different R2 values.

The key insight arising from Figures 1 and 2 is that, although mean reversion can significantly

reduce long-horizon variance, that reduction can be more than offset by uncertainty about future

expected returns. Both effects become stronger as R2 increases, since R2 enters the variance in

(4) via Nd in (7), and Nd is increasing in R2. Note, though, that Nd is squared in the B.k/ term,

which captures uncertainty about future expected returns, but Nd is not squared in the A.k/ term,

which captures mean reversion. As a result, mean reversion can be stronger when R2 is low while

uncertainty about future expected returns prevails when R2 is high.

The persistence in expected return also plays an important role in multiperiod variance, albeit in

a more complicated fashion, since ˇ appears in Nd as well as in A.k/ and B.k/. Figure 3 illustrates

effects of ˇ, �uw and R2 by plotting the ratio of per-period conditional variances,

Vc.k/ D
.1=k/Var.rT;T Ckj�T ; �/

Var.rT C1j�T ; �/
; (8)

for k D 20 years. Note that Vc.20/ is generally not monotonic in ˇ. At lower values of R2 and

larger negative values of �uw , Vc.20/ is higher at ˇ D 0:99 than at the two lower ˇ values. At

higher R2 values, however, Vc.20/ is higher at ˇ D 0:85 than at both the higher and lower ˇ

values. At larger negative values of �uw , Vc.20/ exhibits a U-shape with respect to R2.

As observed above, uncertainty about future expected returns can cause the long-horizon vari-

ance per period to exceed the short-horizon variance, even in the presence of strong mean re-

version. Importantly, the long-horizon variance can be larger even without including uncertainty

about parameters � and the current �T . That additional uncertainty exerts a greater effect at longer

horizons, further increasing the long-horizon variance relative to the short-horizon variance.

To incorporate the uncertainty about �T and �, observe that the variance of rT;T Ck conditional

on an investor’s information DT can be decomposed as

Var.rT;T Ck jDT / D EfVar.rT;T Ckj�T ; �; DT /jDT g C VarfE.rT;T Ckj�T ; �; DT /jDT g: (9)

The first term on the right is the expectation of the conditional variance in (4). Each of the three

terms in (4) is now replaced by its expectation with respect to �. (We need not take the expectation

with respect to �T , since �T does not appear on the right in (4).) The interpretations of these terms

are the same as before, except that now each term also incorporates parameter uncertainty.
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The second term on the right in equation (9) is the variance of the true conditional expected

return. This variance is taken with respect to � and �T . It can be decomposed into two compo-

nents: one reflecting uncertainty about the current �T , or predictor imperfection, and the other

reflecting uncertainty about �, or “estimation risk.” (See the Appendix.) Let bT and qT denote the

conditional mean and variance of the unobservable expected return �T :

bT D E.�T j�; DT / (10)

qT D Var.�T j�; DT /: (11)

The right-hand side of equation (9) can then be expressed as the sum of five components:

Var.rT;T CkjDT / D

E
n

k�2
u jDT

o

„ ƒ‚ …
i.i.d. uncertainty

C E
n
2k�2

u
Nd�uwA.k/jDT

o

„ ƒ‚ …
mean reversion

C E
n
k�2

u
Nd2B.k/jDT

o

„ ƒ‚ …
future �T Ci uncertainty

C E

(�
1 � ˇk

1 � ˇ

�2

qT jDT

)

„ ƒ‚ …
current �T uncertainty

C Var

(
kEr C

1 � ˇk

1 � ˇ
.bT � Er/jDT

)

„ ƒ‚ …
estimation risk

: (12)

Parameter uncertainty plays a role in all five components in equation (12). The first four com-

ponents are expected values of quantities that are viewed as random due to uncertainty about �,

the parameters governing the joint dynamics of returns and predictors. (If the values of these pa-

rameters were known to the investor, the expectation operators could be removed from those four

components.) Parameter uncertainty can exert a non-trivial effect on the first four components, in

that the expectations can be influenced by parameter values that are unlikely but cannot be ruled

out. The fifth component in equation (12) is the variance of a quantity whose randomness is also

due to parameter uncertainty. In the absence of such uncertainty, the fifth component is zero, which

is why we assign it the interpretation of estimation risk.

3. Parameter uncertainty: A simple illustration

In Section 4, we compute Var.rT;T CkjDT / and its components empirically, incorporating param-

eter uncertainty via Bayesian posterior distributions. Before turning to that analysis, we use a

simpler setting to illustrate the effects of parameter uncertainty on multiperiod return variance.

Let ��b denote the correlation between �T and bT , conditional on all other parameters. If the
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observed predictors capture �T perfectly, then ��b D 1; otherwise ��b < 1. We then have

Var.�T j�; DT / D .1 � �2
�b/�2

� D .1 � �2
�b/R2�2

r (13)

Var.bT j�; DT / D �2
�b�2

� D �2
�bR2�2

r ; (14)

where �2
� and �2

r are the unconditional variances of �t and rtC1, respectively. The parameter

vector is � D Œˇ; R2; �uw ; Er ; �r ; ��b �. We assume for this simple illustration that the elements of

� are distributed independently of each other, conditional on DT . (This is generally not true in the

Bayesian posteriors in the next section.) We define � such that

Var.Er jDT / D �E.�2
r / (15)

and set � D 1=200, so that the uncertainty about the unconditional mean return Er corresponds to

the imprecision in a 200-year sample mean. With the above independence assumption, equations

(13) through (15), and the fact that �2
u D .1�R2/�2

r , it is easily verified that E.�2
r / can be factored

from each component in Var.rT;T Ck jDT / and thus does not enter the variance ratio,

V .k/ D
.1=k/Var.rT;T Ck jDT /

Var.rT C1jDT /
: (16)

The uncertainty for the remaining parameters is specified by the probability densities displayed in

Figure 4, whose medians are 0.86 for ˇ, 0.12 for R2, -0.66 for �uw , and 0.70 for ��b .

Table 1 displays the 20-year variance ratio, V .20/, under different specifications of uncertainty

about the parameters. In the first row, ˇ, R2, �uw , and Er are held fixed, by setting the first three

parameters equal to their medians and by setting � D 0 in (15). Successive rows then specify one

or more of those parameters as uncertain, by drawing from the densities in Figure 4 (for ˇ, R2,

and �uw) or setting � D 0 (for Er). For each row, ��b is either fixed at one of the values 0, 0.70

(its median), and 1, or it is drawn from its density in Figure 4. Note that the return variances are

unconditional when ��b D 0 and conditional on full knowledge of �T when ��b D 1.

Table 1 shows that when all parameters are fixed, V .20/ < 1 at all levels of conditioning (all

values of ��b). That is, in the absence of parameter uncertainty, the values in the first row range

from 0.95 at the unconditional level to 0.77 when �T is fully known. Thus, this fixed-parameter

specification is consistent with mean reversion playing a dominant role, causing the return variance

(per period) to be lower at the long horizon. Rows 2 through 5 specify one of the parameters ˇ, R2,

�uw , and Er as uncertain. Uncertainty about ˇ exerts the strongest effect, raising V .20/ by 17% to

26% (depending on ��b), but uncertainty about any one of these parameters raises V .20/. In the

last row of Table 1, all parameters are uncertain, and the values of V .20/ substantially exceed 1,

ranging from 1.17 (when ��b D 1) to 1.45 (when ��b D 0). Even though the density for �uw in
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Figure 4 has almost all of its mass below 0, so that returns almost certainly exhibit mean reversion,

parameter uncertainty causes the long-run variance to exceed the short-run variance.

The fifth component of variance in equation (12) includes the variance of kEr , so uncertainty

about Er implies V .k/ ! 1 as k ! 1. (The variance of kEr given DT is k2Var.Er jDT /, so

dividing by k still leaves the per-period variance increasing at rate k.) This effect of uncertainty

about the unconditional expected return has been discussed previously (e.g., Barberis, 2000). We

can see from Table 1 that uncertainty about Er contributes nontrivially to V .20/, but somewhat

less than uncertainty about ˇ or R2 and only slightly more than uncertainty about �uw . With

uncertainty about only the latter three parameters, V .20/ is still well above 1, especially when

��b < 1. Thus, although uncertainty about Er must eventually dominate variance at sufficiently

long horizons, it does not do so here at the 20-year horizon.

The variance ratios in Table 1 increase as ��b decreases. In other words, less knowledge about

�T makes long-run variance greater relative to short-run variance. We also see that drawing ��b

from its density in Figure 4 produces the same values of V .20/ as fixing ��b at its median.

4. Long-horizon predictive variance: Empirical results

This section takes a Bayesian empirical approach to assess long-horizon return variance from an

investor’s perspective. After describing the data and the empirical framework, we specify prior

distributions for the parameters and analyze the resulting posteriors. Those posterior distributions

characterize the remaining parameter uncertainty faced by an investor who conditions on essen-

tially the entire history of U.S. equity returns. That uncertainty is incorporated in the Bayesian

predictive variance, which we then analyze along with its five components.

4.1. Empirical framework: Predictive system

As discussed previously, the return variance faced by an investor is higher when observable pre-

dictors at time t do not perfectly capture the true expected return �t . To incorporate the likely

presence of predictor imperfection, we employ the predictive system of Pástor and Stambaugh

(2008), which consists of equations (1) and (2) along with a model characterizing the dynamics of

the predictors, xt . We follow that study in modeling xt as a first-order vector autoregression,

xtC1 D � C Axt C vtC1 : (17)
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The vector of residuals in the system, Œut v0
t wt �, are assumed to be normally distributed, inde-

pendently across t , with a constant covariance matrix ˙ . We also assume that 0 < ˇ < 1 and that

the eigenvalues of A lie inside the unit circle.

Our data consist of annual observations for the 206-year period from 1802 through 2007, as

compiled by Siegel (1992, 2008).5 The return rt is the annual real log return on the U.S. equity

market, and xt contains three predictors: the dividend yield on U.S equity, the first difference in

the long-term high-grade bond yield, and the difference between the long-term bond yield and the

short-term interest rate. We refer to these quantities as the “dividend yield,” the “bond yield,” and

the “term spread,” respectively. These three predictors seem reasonable choices given the various

predictors used in previous studies and the information available in Siegel’s dataset. Dividend

yield and the term spread have long been entertained as return predictors (e.g., Fama and French,

1989). Using post-war quarterly data, Pástor and Stambaugh (2008) find that the long-term bond

yield, relative to its recent levels, exhibits significant predictive ability in predictive regressions.

That evidence motivates our choice of the bond-yield variable used here.

Table 2 reports properties of the three predictors in the standard predictive regression,

rtC1 D a C b0xt C etC1: (18)

The first three regressions in Table 2 contain just one predictor, while the fourth contains all three.

When all predictors are included, each one exhibits significant ability to predict returns, and the

overall R2 is 5.6%. The estimated correlation between etC1 and the estimated innovation in ex-

pected return, b0vtC1, is negative. Pástor and Stambaugh (2008) suggest this correlation as a

diagnostic in predictive regressions, with a negative value being what one would hope to see for

predictors able to deliver a reasonable proxy for expected return. Table 2 also reports the OLS

t -statistics and the bootstrapped p-values associated with these t -statistics as well as with the R2.6

For each of the three key parameters that affect multiperiod variance—�uw, ˇ, and R2—we

implement the Bayesian empirical framework under three different prior distributions, displayed

in Figure 5. The priors are assumed to be independent across parameters. For each parameter,

we specify a “benchmark” prior as well as two priors that depart from the benchmark in opposite

5We are grateful to Jeremy Siegel for supplying these data.
6In the bootstrap, we repeat the following procedure 20,000 times: (i) Resample T pairs of . Ovt ; Oet/, with replace-

ment, from the set of OLS residuals from regressions (17) and (18); (ii) Build up the time series of xt , starting from the
unconditional mean and iterating forward on equation (17), using the OLS estimates . O� ; OA/ and the resampled values
of Ovt ; (iii) Construct the time series of returns, rt , by adding the resampled values of Oet to the sample mean (i.e., under
the null that returns are not predictable); (iv) Use the resulting series of xt and rt to estimate regressions (17) and (18)
by OLS. The bootstrapped p-value associated with the reported t-statistic (or R2) is the relative frequency with which
the reported quantity is smaller than its 20,000 counterparts bootstrapped under the null of no predictability.
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directions but seem at least somewhat plausible as alternative specifications. When we depart from

the benchmark prior for one of the parameters, we hold the priors for the other two parameters at

their benchmarks, obtaining a total of seven different specifications of the joint prior for �uw , ˇ,

and R2. We estimate the predictive system under each specification, to explore the extent to which

a Bayesian investor’s assessment of long-horizon variance is sensitive to prior beliefs.

The benchmark prior for �uw , the correlation between expected and unexpected returns, has

97% of its mass below 0. This prior follows the reasoning of Pástor and Stambaugh (2008), who

suggest that, a priori, the correlation between unexpected return and the innovation in expected

return is likely to be negative. The more informative prior concentrates toward larger negative

values, whereas the less informative prior essentially spreads evenly over the range from -1 to 1.

The benchmark prior for ˇ, the first-order autocorrelation in the annual expected return �t , has a

median of 0.83 and assigns a low (2%) probability to ˇ values less than 0.4. The two alternative

priors then assign higher probability to either more persistence or less persistence. The benchmark

prior for R2, the fraction of variance in annual returns explained by the true mean �t , has 63% of

its mass below 0.1 and relatively little (17%) above 0.2. The alternative priors are then either more

concentrated or less concentrated on low values. These priors on the true R2 are shown in Panel C

of Figure 5. Panel D displays the corresponding implied priors on the “observed” R2—the fraction

of variance in annual real returns explained by the predictors. Each of the three priors in Panel D

is implied by those in Panel C, while holding the priors for �uw and ˇ at their benchmarks and

specifying non-informative priors for the degree of imperfection in the predictors. Observe that

the benchmark prior for the observed R2 has much of its mass below 0.05.

We compute posterior distributions for the parameters using the Markov Chain Monte Carlo

(MCMC) method discussed in Pástor and Stambaugh (2008). Figure 6 plots posterior distributions

computed under the benchmark priors. These posteriors characterize the parameter uncertainty

faced by an investor after updating the priors using the 206-year history of equity returns and

predictors. Panel B displays the posterior of the true R2. The posterior lies to the right of the

benchmark prior, in the direction of greater predictability. The prior mode for R2 is less than 0.05,

while the posterior mode is nearly 0.1. The posterior of ˇ, shown in Panel C, lies to the right of

the prior, in the direction of higher persistence. The benchmark prior essentially admits values of

ˇ down to about 0.4, while the posterior ranges only to about 0.7 and has a mode around 0.9.

Compared to the benchmark prior, the posterior for �uw is substantially more concentrated

toward larger negative values, even to a greater degree than the more concentrated prior. Very

similar posteriors for �uw are also obtained under the two alternative priors for �uw in Figure 5.

These results are consistent with observed autocorrelations of annual real returns and the posteriors
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of R2 and ˇ discussed above. Equations (1) and (2) imply that the autocovariances of returns are

given by

Cov.rt ; rt�k/ D ˇk�1
�
ˇ�2

� C �uw

�
; k D 1; 2; : : : ; (19)

where �2
� D �2

w=.1 � ˇ2/. From (19) we can also obtain the autocorrelations of returns,

Corr.rt ; rt�k/ D ˇk�1

�
ˇR2 C �uw

q
.1 � R2/R2.1 � ˇ2/

�
; k D 1; 2; : : : ; (20)

by noting that �2
� D R2�2

r and that �2
u D .1 � R2/�2

r . The posterior mode of �uw in Table 6 is

about -0.9, and the posterior modes of R2 and ˇ are about 0.10 and 0.90, as observed earlier. Eval-

uating (20) at those values gives autocorrelations starting at -0.028 for k D 1 and then increasing

gradually toward 0 as k increases. Such values seem consistent with observed autocorrelations that

are typically near or below zero. For example, the first five autocorrelations of annual real returns

in our 206-year sample are 0.02, -0.17, -0.04, 0.01, and -0.10.

Panel A of Figure 6 plots the posterior for the R2 in a regression of the true expected return

�t on the three predictors in xt . This R2 quantifies the degree of imperfection in the predictors

(R2 D 1 if and only if the predictors are perfect). Recall from the earlier discussion that predictor

imperfection—incompleteknowledge of �t —gives rise to the fourth component of return variance

in equation (12). The posterior for this R2 indicates a substantial degree of predictor imperfection,

in that the density’s mode is about 0.2, and values above 0.8 have near-zero probability.

Further perspective on the predictive abilities of the individual predictors is provided by Figure

7, which plots the posterior densities of the partial correlation coefficients between �t and each

predictor. Dividend yield exhibits the strongest relation to expected return, with the posterior for its

partial correlation ranging between 0 and 0.9 and having a mode around 0.5. Most of the posterior

mass for the term spread’s partial correlation lies above zero, but the posterior density ranges only

to about 0.4. The bond yield’s marginal contribution is the weakest, with much of the posterior

density lying between -0.2 and 0. In the multiple regression reported in the last row of Table 2, all

three variables (rescaled to have unit variances) have comparable slope coefficients and t-statistics.

When compared to those estimates, the posterior distributions in Figure 7 indicate that dividend

yield is more attractive as a predictor but that bond yield is less attractive. These differences are

consistent with the predictors’ autocorrelations and the fact that the posterior distribution of ˇ,

the autocorrelation of expected return �t , centers around 0.9. The autocorrelations for the three

predictors are 0.92 for dividend yield, 0.65 for the term spread, and -0.04 for the bond yield. The

bond yield’s low autocorrelation makes it look less correlated with �t , whereas dividend yield’s

higher autocorrelation makes it look more like �t .
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4.2. Multiperiod predictive variance and its components

Each of the five components of multiperiod return variance in equation (12) is a moment of a quan-

tity evaluated with respect to the distribution of the parameters �, conditional on the information

DT available to an investor at time T . In our Bayesian empirical setting, DT consists of the 206-

year history of returns and predictors, and the distribution of parameters is the posterior density

given that sample. Draws of � from this density are obtained via the MCMC procedure and then

used to evaluate the required moments of each of the components in equation (12). The sum of

those components, Var.rT;T CkjDT /, is the Bayesian predictive variance of rT;T Ck .

Figure 8 displays the predictive variance and its five components for horizons of k D 1 through

k D 30 years, computed under the benchmark priors. The values are stated on a per-year basis

(i.e., divided by k). The predictive variance (Panel A) increases significantly with the investment

horizon, with the per-year variance exceeding the one-year variance by about 30% at a 15-year

horizon and about 60% at a 30-year horizon. This is the main result of the paper.

The five variance components, displayed in Panel B of Figure 8, reveal the sources of the greater

predictive variance at long horizons. Over a one-year horizon (k D 1), virtually all of the variance

is due to the i.i.d. uncertainty in returns, with uncertainty about the current �T and parameter

uncertainty also making small contributions. Mean reversion and uncertainty about future �t ’s

make no contribution for k D 1, but they become quite important for larger k. Mean reversion

contributes negatively at all horizons, consistent with �uw < 0 in the posterior (cf. Figure 6), and

the magnitude of this contribution increases with the horizon. Nearly offsetting the negative mean

reversion component is the positive component due to uncertainty about future �t ’s. At longer

horizons, the magnitudes of both components exceed the i.i.d. component, which is flat across

horizons. At a 10-year horizon, the mean reversion component is nearly equal in magnitude to

the i.i.d. component. At a 30-year horizon, both mean reversion and future-�t uncertainty are

substantially larger in magnitude than the i.i.d. component. In fact, the mean reversion component

is larger in magnitude than the overall predictive variance.

Both estimation risk and uncertainty about the current �T make stronger positive contributions

to predictive variance as the investment horizon lengthens. At the 30-year horizon, the contribution

of parameter uncertainty, 0.0208, is not far below that of the i.i.d. component, 0.0259. Uncertainty

about the current �T , arising from predictor imperfection, makes the smallest contribution among

the five components at the longer horizons, but it still accounts for about 17% of the total predictive

variance at the 30-year horizon.

Table 3 reports the predictive variance at horizons of 10 and 30 years under various prior

13



distributions for �uw , ˇ, and R2. For each of the three parameters, the prior for that parameter is

specified as one of the three alternatives displayed in Figure 5, while the prior distributions for the

other two parameters are maintained at their benchmarks. Also reported in Table 3 is the ratio of

the long-horizon predictive variance to the one-year variance, as well as the contribution of each

of the five components to the long-horizon predictive variance.

Across the different priors in Table 3, the 10-year variance ratio ranges from 1.00 to 1.22,

and the 30-year variance ratio ranges from 1.21 to 1.75. The variance ratios exhibit the greatest

sensitivity to prior beliefs about R2. The “loose” prior beliefs that assign higher probability to

larger R2 values produce the lower variance ratios. When returns are more predictable, mean

reversion makes a stronger negative contribution to variance, but uncertainty about future �t ’s

makes a stronger positive contribution. The contributions of these two components offset to a

large degree as the prior on R2 moves from tight to loose. At the 10-year horizon, mean reversion

strengthens a bit more than uncertainty about future �t ’s, but the opposite is true at the 30-year

horizon.

At both the 10- and 30-year horizons in Table 3, the decline in predictive variance as the R2

prior moves from tight to loose is accompanied by a decline of nearly the same magnitude in

estimation risk. The reason why greater predictability implies lower estimation risk involves ˇ.

The estimation-risk term in equation (12) contains the expression .1 � ˇk/=.1 � ˇ/ inside the

variance operator, so we can roughly gauge the relative effects of changing ˇ by squaring that

expression. As the prior for R2 moves from tight to loose, the posterior mean (and median) of

ˇ declines from 0.93 to 0.86, and the squared value of .1 � ˇk/=.1 � ˇ/ declines by 43% for

k D 10 and by 69% for k D 30. These drops are commensurate with those in the estimation-risk

component: 42% for k D 10 and 63% for k D 30. To then understand why making higher R2

more likely also makes lower ˇ more likely, we turn again to the return autocorrelations in (20).

Recall that the posterior for �uw is concentrated around -0.9 and is relatively insensitive to prior

beliefs. Holding �uw roughly fixed, therefore, an increase in R2 requires a decrease in ˇ in order

to maintain the same return autocorrelations (for R2 within the range relevant here). Since the

sample is relatively informative about such autocorrelations, the prior (and posterior) that makes

higher R2 more likely is thus accompanied by a posterior that makes lower ˇ more likely.

As the prior for R2 becomes looser, we also see a smaller positive contribution from i.i.d.

uncertainty, which is the posterior mean of k�2
u . This result is expected, as greater posterior density

on high values of R2 necessitates less density on high values of �2
u D .1 � R2/�2

r , given that the

sample is informative about the unconditional return variance �2
r . Finally, prior beliefs about �uw

exert the anticipated effect, in that priors concentrated on larger negative values strengthen the
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negative contribution of mean reversion, but the degree of sensitivity is modest.7

In sum, when viewed by an investor whose prior beliefs lie within the wide range of priors

considered here, stocks are considerably more volatile at longer horizons. The greater volatility

obtains despite the presence of a large negative contribution from mean reversion.

4.3. Robustness

Our main empirical result—that long-run predictive variance of stock returns is larger than short-

run variance—is robust to various sample changes. We describe these changes below, along with

the corresponding results. We do not tabulate the results to save space.

First, we conduct subperiod analysis. We split the 1802–2007 sample in half and estimate the

predictive variances separately at the ends of both subperiods. In the first subperiod, the predictive

variance per period rises monotonically with the horizon, under the benchmark priors. In the

second subperiod, the predictive variance exhibits a U-shape with respect to the horizon: it initially

decreases, reaching its minimum at the horizon of 5 years, but it increases afterwards, rising above

the 1-year variance at the horizon of 8 years. That is, the negative effect of mean reversion prevails

at short horizons, but the combined positive effects of estimation risk and uncertainty about current

and future �t ’s prevail at longer horizons. For both subperiods, the 30-year predictive variance

exceeds the 1-year variance across all prior specifications. The 30-year predictive variance ratios,

which correspond to the ratios reported in the first row of Panel B in Table 3, range from 1.16 to

1.92 across the 14 specifications (seven prior specifications times two subperiods).

Second, we analyze excess returns instead of real returns. We compute annual excess stock

returns in 1802–2007 by subtracting the short-term interest rate from the realized stock return. The

predictive variance increases monotonically with the horizon, using the benchmark priors. The

30-year predictive variance ratios range from 1.24 to 1.56 across the seven prior specifications.

Third, instead of using three predictors, we use only one, the dividend yield. The predictive

variance again rises monotonically with the horizon in the benchmark case, and the 30-year pre-

dictive variance ratios range from 1.04 to 1.74 across the seven prior specifications.

Finally, we replace our annual 1802–2007 data by quarterly 1952Q1–2006Q4 data. In the

7This relative insensitivity to prior beliefs about �uw appears to be specific to the long sample of real equity returns.
Substantially greater sensitivity to prior beliefs about �uw appears if returns in excess of the short-term interest rate
are used instead, or if quarterly returns on a shorter and more recent sample period are used. In all of these alternative
samples, we obtain variance results that lead to the same qualitative conclusions.
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postwar period, the data quality is higher, and the available predictors of stock returns have more

predictive power. We use the same three predictors as Pástor and Stambaugh (2008): dividend

yield, CAY, and bond yield.8 The R2 from the predictive regression of quarterly real stock returns

on the three predictors is 11.1%, twice as large as the corresponding R2 in our annual 206-year

sample. We adjust the prior distributions to reflect the different data frequency: we shift the priors

for R2 and �uw to the left and for ˇ to the right. We find that the results in this quarterly sample

are even stronger than the results in our annual sample. Using our benchmark priors, the 10-year

predictive variance is 20% larger than the 1-year variance, and the 30-year predictive variance is

more than double the 1-year variance. Across our seven prior specifications, the 30-year predictive

variance ratios range from 1.95 to 2.52. In short, our empirical results seem very robust.

In our baseline estimation, we assume that all parameters of the predictive system are constant

over 206 years. This strong assumption seems conservative in that it minimizes parameter uncer-

tainty. As discussed earlier, parameter uncertainty increases long-horizon variance by more than

short-horizon variance. If we allowed the unknown parameters to vary over time, an investor’s un-

certainty about the current parameter values would most likely increase, and the larger parameter

uncertainty would then further increase the long-horizon predictive variance ratios.

Time variation in the parameters, if present, need not change our algebraic results. For example,

suppose there is time variation in the conditional covariance matrix of the residuals in the predictive

system, �tC1 � ŒutC1 vtC1 wtC1�0. Let ˙t denote this conditional covariance matrix, and let

˙ D E.˙t/ denote the unconditional covariance matrix. It seems plausible to assume that, if

˙t D ˙ at a given time t , then Et

�
�tCk�0

tCk

�
D ˙ for all k > 0.9 Under this assumption, the

conditional variance of the k-period return in equation (4) is unchanged, provided we interpret it as

Var.rT;T Ck j�T ; �; ˙T D ˙/. The introduction of parameter uncertainty is also unchanged, under

the interpretation that ˙ is uncertain but that, whatever it is, it also equals ˙T . Setting ˙T D ˙

removes horizon effects due to mean-reversion in ˙T . If instead ˙T were low relative to ˙ , for

example, then the reversion of future ˙T Ci’s to ˙ could also contribute to volatility that is higher

over longer horizons. Setting ˙T D ˙ excludes such a contribution to higher long-run volatility.

8See that paper for more detailed descriptions of the predictors. Our quarterly sample ends in 2006Q4 because
the 2007 data on CAY are not yet available as of this writing. Our quarterly sample begins in 1952Q1, after the 1951
Treasury-Fed accord that made possible the independent conduct of monetary policy.

9Such a property is satisfied, for example, by a stationary first-order multivariate GARCH process, vech.˙tC1/ D
c0 C C1vech.�tC1�0

tC1/ C C2vech.˙t /; where vech.:/ stacks the columns of the lower triangular part of its argument.
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5. Predictive variance versus true variance

We have thus far analyzed multiperiod return variance from the perspective of an investor who

conditions on the historical data but remains uncertain about the true values of the parameters. One

can instead conduct inference about the true multiperiod variance implied by those parameters. In

that inference setting, a commonly employed statistic is the sample long-horizon variance ratio.

Values of such ratios are often less than 1 for stocks, suggesting lower unconditional variance

per period at long horizons. Figure 9 plots sample variance ratios for horizons of 2 through 30

years computed with the 206-year sample of annual real log stock returns analyzed above. The

calculations use overlapping returns and unbiased variance estimates.10 Also plotted are percentiles

of the variance ratio’s Monte Carlo sampling distribution under the null hypothesis that returns are

i.i.d. normal. That distribution exhibits significant positive skewness and has nearly 60% of its

mass below 1. The realized value of 0.28 at the 30-year horizon corresponds to a Monte Carlo

p-value of about 0.01, supporting the inference that the true 30-year variance ratio lies below 1

(setting aside the multiple-comparison issues of selecting one horizon from many). Panel A of

Figure 10 plots the posterior distribution of the 30-year ratio for true unconditional variance, based

on the benchmark priors. The posterior probability that this ratio lies below 1 is 63%. We thus see

that the variance ratio statistic in a frequentist setting and the posterior distribution in a Bayesian

setting both favor the inference that the true unconditional variance ratio is below 1.

Inference about unconditional variance ratios is of limited relevance to investors. One reason

is that conditional variance, rather than unconditional variance, is the more relevant quantity when

returns are predictable. The ratio of true unconditional variances can be less than 1 while the

ratio of true conditional variances exceeds 1, or vice versa. At a horizon of k D 30 years, for

example, parameter values of ˇ D 0:60, R2 D 0:30, and �uw D �0:55 imply a ratio of 0.90 for

unconditional variances but 1.20 for conditional variances given �T .11 Even if the true parameters

and the conditional mean were known, the unconditional variance would not be the appropriate

measure from an investor’s perspective.

The larger point is that inference about true variance, conditional or unconditional, is distinct

from assessing the predictive variance perceived by an investor who does not know the true param-

eters. This distinction can be drawn clearly in the context of the variance decomposition,

Var.rT;T CkjDT / D E fVar.rT;T Ckj�; DT /jDT g C Var fE.rT;T Ck j�; DT /jDT g : (21)

10Each ratio is computed as VR.q/ in equation (2.4.37) of Campbell, Lo, and MacKinlay (1997).
11The relation between the ratios of conditional and unconditional variances is derived in the Appendix. Campbell

and Viceira (2002, p. 96) state that the unconditional variance ratio is always greater than the conditional ratio, but it
appears they equate single-period conditional and unconditional variances in reaching that conclusion.
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The variance on the left-hand side of (21) is the predictive variance. The quantity inside the expec-

tation in the first term, Var.rT;T Ck j�; DT /, is the true variance, relevant only to an investor who

knows the true parameter vector � (but not �T , thus maintaining predictor imperfection). That true

variance is the sum of the first four components in equation (12) with the expectations operators

removed. The data can imply that this true variance is probably lower at long horizons than at

short horizons while also implying that the predictive variance is higher at long horizons. In other

words, investors who observe DT can infer that if they where told the true parameter values, they

would probably assess 30-year variance to be less than 1-year variance. These investors realize,

however, that they do not know the true parameters. As a consequence, they evaluate the posterior

mean of the true variance, the first term in (21). That posterior mean can exceed the most likely

values of the true variance, because the posterior distribution of the true variance can be skewed

(we return to this point below). Moreover, investors must add to that posterior mean the posterior

variance of the true conditional mean, the second term in (21), which is the same as the estimation-

risk term in equation (12). In a sense, investors do conduct inference about true variance—they

compute its posterior mean—but they realize that estimate is only part of predictive variance.

The results based on our 206-year sample illustrate how predictive variance can be higher at

long horizons while true variance is inferred to be most likely higher at short horizons. Panel B of

Figure 10 plots the posterior distribution (using benchmark priors) of the variance ratio

V �.k/ D
.1=k/Var.rT;T Ckj�; DT /

Var.rT C1j�; DT /
; (22)

for k D 30 years. The posterior probability that this ratio of true variances lies below 1 is 75%, and

the posterior mode is below 0.5. In contrast, recall that 30-year predictive variance is substantially

greater than 1-year variance, as shown earlier in Figure 8 and Table 3.

As noted above, the true variance Var.rT;T Ckj�; DT / is the sum of four quantities, the first

four components in equation (12) with the expectations removed. The posterior distributions of

those four quantities are displayed in Figure 11, again using benchmark priors. Three of the four

distributions exhibit significant asymmetry. As a result, less likely values of these quantities exert

a disproportionate effect on the posterior means and, therefore, on the first term of the predictive

variance in (21). The components reflecting uncertainty about current and future �t are positively

skewed, so their contributions to predictive variance exceed what they would be if evaluated at

the most likely parameter values. This feature of parameter uncertainty also helps drive predictive

variance above what one would infer true variance is most likely to be.
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6. Conclusions

We use a predictive system and 206 years of data to compute long-horizon “predictive” variance

of annual real stock returns from the perspective of an investor who recognizes that parameters are

uncertain and predictors are imperfect. Mean reversion reduces long-horizon variance consider-

ably, but it is more than offset by other effects. As a result, long-horizon variance substantially

exceeds short-horizon variance on a per-year basis. A major contributor to higher long-horizon

variance is uncertainty about future expected returns, a component of variance that is inherent to

return predictability, especially when expected return is persistent. Uncertainty about current ex-

pected return, arising from predictor imperfection, is another important component. Estimation

risk also adds considerably to long-horizon variance, and parameter uncertainty increases the other

components of long-horizon variance as well. Our results show that long-horizon stock investors

face more volatility than short-horizon investors, in contrast to previous research.

In computing predictive variance, we assume that the parameters of the predictive system re-

main constant over the 206-year sample period. While such an assumption is certainly strong, it

also allows us to be conservative in concluding that stocks are more volatile at long horizons. Pa-

rameter uncertainty, which already contributes substantially to that conclusion, would generally be

even greater under alternative scenarios in which investors would effectively have less information

about the current values of the parameters.

Although we find that stock volatility is greater at long horizons than at short horizons, this

finding does not necessarily imply that long-horizon investors should hold less stock than short-

horizon investors. Volatility is only one key ingredient in a problem that no doubt involves other

considerations of first-order importance, such as human capital, that are beyond the scope of this

study.12 Investigating asset-allocation decisions while allowing the higher long-run volatility to

enter the problem offers an interesting direction for future research.

12See Benzoni et al. (2007) for a recent analysis of the role of human capital in portfolio choice.
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Appendix

A.1. Derivation of Var.rT;T Ckj�T ; �/

We can rewrite the AR(1) process for �t in equation (2) as an MA(1) process

�t D Er C
1X

iD0

ˇiwt�i; (A1)

given our assumption that 0 < ˇ < 1. From (1) and (A1), the return k periods ahead is equal to

rT Ck D .1 � ˇk�1/Er C ˇk�1�T C
k�1X

iD1

ˇk�1�iwT Ci C uT Ck : (A2)

The multiperiod return from period T C 1 through period T C k is then

rT;T Ck D
kX

iD1

rT Ci D kEr C
1 � ˇk

1 � ˇ
.�T � Er/ C

k�1X

iD1

1 � ˇk�i

1 � ˇ
wT Ci C

kX

iD1

uT Ci : (A3)

The conditional variance of the k-period return can be obtained from equation (A3) as

Var .rT;T Ckj �T ; �/ D k�2
u C

�2
w

.1 � ˇ/2

�
k � 1 � 2ˇ

1 � ˇk�1

1 � ˇ
C ˇ2 1 � ˇ2.k�1/

1 � ˇ2

�

C
2�uw

1 � ˇ

�
k � 1 � ˇ

1 � ˇk�1

1 � ˇ

�
: (A4)

Equation (A4) can then be written as in equations (4) to (7), where Nd arises from the relation

�2
w D �2

�.1 � ˇ2/ D �2
r R2.1 � ˇ2/ D .�2

u =.1 � R2//R2.1 � ˇ2/: (A5)

A.2. Properties of A.k/ and B.k/

1. A.1/ D 0, B.1/ D 0

2. A.k/ ! 1 as k ! 1, B.k/ ! 1 as k ! 1

3. A.k C 1/ > A.k/ 8k, B.k C 1/ > B.k/ 8k

4. A.k/ � B.k/ 8k, with a strict inequality for all k > 1

5. 0 � A.k/ < 1, 0 � B.k/ < 1

6. A.k/ converges to one more quickly than B.k/
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Properties 1 and 2 are obvious. Properties 3 and 4 are proved below. Property 5 follows from

Properties 1–3. Property 6 follows from Properties 1–4.

Proof that A.k C 1/ > A.k/ 8k:

A.k C 1/ D 1 C
1

k C 1

h
�1 � ˇ.1 C ˇ C : : : C ˇk�2 C ˇk�1/

i

D 1 C
k

k C 1

1

k

h
�1 � ˇ.1 C ˇ C : : : C ˇk�2 C ˇk�1/

i

D 1 C
k

k C 1

�
A.k/ � 1 �

ˇk

k

�
;

which exceeds A.k/ if and only if A.k/ < 1 � ˇk . This is indeed true because

A.k/ D 1�
1

k
�

1

k

h
ˇ1 C : : : C ˇk�1

i
D 1�

1

k

h
ˇ0 C ˇ1 C : : : C ˇk�1

i
< 1�

1

k

h
kˇk

i
D 1�ˇk :

Proof that B.k C 1/ > B.k/ 8k:

B.k C 1/

D 1 C
1

k C 1

h
�1 � 2ˇ.1 C ˇ C : : : C ˇk�2 C ˇk�1/ C ˇ2.1 C ˇ2 C : : : C .ˇ2/k�2 C .ˇ2/k�1/

i

D 1 C
k

k C 1

1

k

hn
�1 � 2ˇ.1 C ˇ C : : : C ˇk�2/ C ˇ2.1 C ˇ2 C : : : C .ˇ2/k�2/

o
� 2ˇk C ˇ2k

i

D 1 C
k

k C 1

�
B.k/ � 1 C

1

k

�
�2ˇk C ˇ2k

��
;

which exceeds B.k/ if and only if B.k/ < 1 C ˇ2k � 2ˇk . This is indeed true because

B.k/ D 1 � 2
1

k
C

1

k
� 2

1

k

�
ˇ C : : : C ˇk�2 C ˇk�1

�
C

1

k

�
ˇ2 C : : : C .ˇ2/k�2 C .ˇ2/k�1

�

D 1 C
1

k

h�
.ˇ2/0 � 2ˇ0

�
C

�
.ˇ2/1 � 2ˇ1

�
C : : : C

�
.ˇ2/k�1 � 2ˇk�1

�i

< 1 C
1

k

h
k

�
.ˇ2/k � 2ˇk

�i

D 1 C ˇ2k � 2ˇk ;

where the inequality follows from the fact that the function f .x/ D .ˇ2/x � 2ˇx is increasing in

x (because f 0.x/ D 2.lnˇ/ˇx.ˇx � 1/ > 0, for 0 < ˇ < 1).

Proof that A.k/ > B.k/ 8k > 1:

B.k/ � A.k/ D
1

k

�
ˇ2 1 � ˇ2.k�1/

1 � ˇ2
� ˇ

1 � ˇk�1

1 � ˇ

�
D

1

k

h
ˇ2 C : : : C .ˇ2/k�1 �

�
ˇ C : : : C ˇk�1

�i

D
1

k

k�1X

iD1

�
ˇ2i � ˇi

�
D

1

k

k�1X

iD1

ˇi
�
ˇi � 1

�
< 0:
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A.3. Decomposition of VarfE.rT;T Ckj�T ; �; DT /jDT g

Let ET;k D E.rT;T Ck j�T ; �; DT /. The variance of ET;k given DT can be decomposed as

VarfET;kjDT g D EfVarŒET;kj�; DT �jDT g C VarfEŒET;k j�; DT �jDT g: (A6)

To simplify each term on the right-hand side, observe from equations (1), (2), and (3), that

ET;k D E.rT C1 C rT C2 C : : : C rT Ck j�T ; �; DT /

D E.�T C �T C1 C : : : C �T Ck�1j�T ; �/

D kEr C
1 � ˇk

1 � ˇ
.�T � Er/: (A7)

Taking the first and second moments of (A7), using (10) and (11), then gives

EŒET;kj�; DT � D kEr C
1 � ˇk

1 � ˇ
.bT � Er/ (A8)

VarŒET;kj�; DT � D
�

1 � ˇk

1 � ˇ

�2

qT : (A9)

Substituting (A8) and (A9) into (A6) then gives the fourth and fifth terms in (12), using (9).

A.4. Permanent and temporary price components in our setting

Fama and French (1988), Summers (1986), and others employ a model in which the log stock price

pt is the sum of a random walk st and a stationary component yt that follows an AR(1) process:

pt D st C yt (A10)

st D � C st�1 C �t (A11)

yt D byt�1 C et ; (A12)

where et and �t are mean-zero variables independent of each other, and jbj < 1. Noting that

rtC1 D ptC1 � pt , it is easy to verify that equations (A10) through (A12) deliver a special case of

our model in equations (1) and (2), in which

Er D � (A13)

ˇ D b (A14)

�t D � � .1 � b/yt (A15)

utC1 D �tC1 C etC1 (A16)

wtC1 D �.1 � b/etC1: (A17)
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This special case has the property

�uw D Cov.utC1; wtC1/ D �.1 � b/�2
e < 0; (A18)

implying the presence of mean reversion. We also see

�2
� D Var.�t/ D .1 � b/2�2

y D .1 � b/2 �2
e

1 � b2
D

1 � b

1 C b
�2

e (A19)

and, therefore, using (19),

Cov.rtC1; rt / D ˇ�2
� C �uw D

b.1 � b/

1 C b
�2

e � .1 � b/�2
e D �

1 � b

1 C b
�2

e < 0: (A20)

Thus, under (A10) through (A12) with b > 0, all autocovariances in (19) are negative and all

unconditional variance ratios are less than 1.

A.5. Relation between conditional and unconditional variance ratios

The unconditional variance (which does not condition on �T ) is given by

Var.rT;T Ckj�/ D EŒVar.rT;T Ck j�T ; �; DT /j�� C VarŒE.rT;T Ckj�T ; �; DT /j��

D Var.rT;T Ckj�T ; �/ C
�

1 � ˇk

1 � ˇ

�2

Var.�T j�/

D Var.rT;T Ckj�T ; �/ C
�

1 � ˇk

1 � ˇ

�2

�2
u

�
R2

1 � R2

�
; (A21)

using equation (A7). It follows from equation (4) that

Var.rT;T C1j�T ; �/ D �2
u : (A22)

Combining equations (A21) and (A22) for k D 1 gives

Var.rT;T C1j�/ D Var.rT;T C1j�T ; �/ C
�2

u R2

1 � R2
D

�2
u

1 � R2
D

Var.rT;T C1j�T ; �/

1 � R2
: (A23)

The unconditional variance ratio Vu.k/ and the conditional variance ratio Vc.k/ can then be related

as follows, combining (A21), (A23), and (8):

Vu.k/ D
.1=k/Var.rT;T Ckj�/

Var.rT;T C1j�/

D
.1=k/Var.rT;T Ckj�/.1 � R2/

Var.rT;T C1j�T ; �/
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D
.1=k/Var.rT;T Ckj�T ; �/.1 � R2/

Var.rT;T C1j�T ; �/
C

1

k

�
1 � ˇk

1 � ˇ

�2

R2

D .1 � R2/Vc.k/ C
1

k

�
1 � ˇk

1 � ˇ

�2

R2: (A24)
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Table 1

Effects of Parameter Uncertainty on 20-Year Variance Ratio

The table displays the ratio .1=20/Var.rT;T C20jDT /=Var.rT C1jDT /, where DT is information used by an investor at
time T . The value of the ratio is computed under various parametric scenarios for ˇ (autocorrelation of the true con-
ditional expected return �t), R2 (fraction of variance in rtC1 explained by �t), �uw (correlation between unexpected
returns and innovations in expected returns), ��b (correlation between �T and its best available estimate given DT ),
and Er (the unconditional mean return). For ˇ, R2, �uw, and ��b, each parameter is either drawn from its density in
Figure 4 when uncertain or set to a fixed value. The parameters ˇ, R2, and �uw are set to their medians when held
fixed, while ��b is fixed at its median as well as 0 and 1. The medians are 0.86 for ˇ, 0.12 for R2, -0.66 for �uw, and
0.70 for ��b. The variance of Er given DT is either 0 (when fixed) or 1/200 times the expected variance of one-year
returns (when uncertain).

fixed (F) or
uncertain (U) ��b fixed at ��b

ˇ R2 �uw Er 0 0.70 1 uncertain
F F F F 0.95 0.87 0.77 0.87
U F F F 1.20 1.06 0.90 1.06
F U F F 1.05 0.97 0.87 0.97
F F U F 1.02 0.94 0.84 0.94
F F F U 1.05 0.97 0.88 0.97
U U U F 1.36 1.22 1.06 1.22
U U U U 1.45 1.32 1.17 1.32
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Table 2
Predictive Regressions

1802–2007

This table summarizes the results from predictive regressions rt D a C b0xt�1 C et , where rt denotes annual real log
stock market return and xt�1 contains the predictors (listed in the column headings) lagged by one year. Innovations
in expected returns are constructed as b0vt , where vt contains the disturbances estimated in a vector autoregression for
the predictors, xt D � CAxt�1Cvt . The table reports the estimated slope coefficients Ob, the correlation Corr.et ; b0vt /

between unexpected returns and innovations in expected returns, and the (unadjusted) R2 from the predictive regres-
sion. The independent variables are rescaled to have unit variance. The correlations and R2’s are reported in percent
(i.e., �100). The OLS t-statistics are given in parentheses “( )”. The t-statistic of Corr.et ; b0vt / is computed as the t-
statistic of the slope from the regression of the sample residuals Oet on Ob Ovt . The p-values associated with all t-statistics
and R2’s are computed by bootstrapping and reported in brackets “[ ]”.

Dividend Yield Term Spread Bond Yield Corr.et ; b0vt / R2

0.023 -56.515 1.714
(1.891) (-9.808) [0.070]
[0.057] [1.000]

0.008 22.445 0.232
(0.690) (3.298) [0.498]
[0.236] [0.000]

0.025 -19.231 2.163
(2.129) (-2.806) [0.034]
[0.018] [0.997]

0.031 0.028 0.028 -13.754 5.558
(2.383) (2.137) (2.373) (-1.988) [0.013]
[0.021] [0.017] [0.010] [0.973]
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Table 3
Variance Ratios and Components of Long-Horizon Variance

The first row of each panel reports the ratio .1=k/Var.rT;T Ck jDT /=Var.rT C1jDT /, where Var.rT;T Ck jDT / is the
predictive variance of the k-year return based on 206 years of annual data for real equity returns and the three predictors
over the 1802–2007 period. The second row reports Var.rT;T Ck jDT /, multiplied by 100. The remaining rows report
the five components of Var.rT;T Ck jDT /, also multiplied by 100 (they add up to total variance). Panel A contains
results for k D 10 years, and Panel B contains results for k D 30 years. Results are reported under each of three
priors for �uw, R2, and ˇ. As the prior for one of the parameters departs from the benchmark, the priors on the
other two parameters are held at the benchmark priors. The “tight” priors, as compared to the benchmarks, are more
concentrated towards �1 for �uw, 0 for R2, and 1 for ˇ; the “loose” priors are less concentrated in those directions.

�uw R2 ˇ

Prior Tight Bench Loose Tight Bench Loose Tight Bench Loose

Panel A. Investment Horizon k D 10 years

Variance Ratio 1.17 1.17 1.17 1.22 1.17 1.00 1.15 1.17 1.14

Predictive Variance 3.54 3.54 3.54 3.76 3.54 2.93 3.43 3.54 3.43

IID Component 2.59 2.59 2.59 2.75 2.59 2.42 2.58 2.59 2.60
Mean Reversion -2.44 -2.43 -2.36 -1.73 -2.43 -2.96 -2.46 -2.43 -2.40
Uncertain Future � 0.98 0.97 0.96 0.51 0.97 1.44 1.00 0.97 0.96
Uncertain Current � 0.99 0.98 0.94 0.69 0.98 1.13 1.05 0.98 0.91
Estimation Risk 1.42 1.42 1.41 1.54 1.42 0.90 1.26 1.42 1.36

Panel B. Investment Horizon k D 30 years

Variance Ratio 1.66 1.63 1.64 1.75 1.63 1.21 1.61 1.63 1.54

Predictive Variance 5.00 4.94 4.95 5.36 4.94 3.54 4.81 4.94 4.65

IID Component 2.59 2.59 2.59 2.75 2.59 2.42 2.58 2.59 2.60
Mean Reversion -5.04 -4.99 -4.88 -3.96 -4.99 -5.40 -5.13 -4.99 -4.89
Uncertain Future � 4.05 3.98 3.93 2.62 3.98 4.52 4.17 3.98 3.86
Uncertain Current � 1.28 1.28 1.21 1.24 1.28 1.00 1.35 1.28 1.15
Estimation Risk 2.11 2.08 2.09 2.70 2.08 1.01 1.84 2.08 1.93
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Figure 1. Conditional multiperiod variance and its components for different values of �uw. Panel A
plots the conditional per-period variance of multiperiod returns from equation (4), Var.rT;T Ck j�T ; �/=k,
as a function of the investment horizon k, for three different values of �uw . Panel B plots the component
of the variance that is due to mean reversion in returns, �2

u 2 Nd�uwA.k/. Panel C plots the component of
this variance that is due to uncertainty about future values of the expected return, �2

u
Nd2B.k/. For all three

values of �uw , variances are computed with ˇ D 0:85, R2 D 0:12, and an unconditional standard deviation
of returns of 20% per year.
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Figure 2. Conditional multiperiod variance and its components for different values of R2. Panel A
plots the conditional per-period variance of multiperiod returns from equation (4), Var.rT;T Ck j�T ; �/=k,
as a function of the investment horizon k, for three different values of R2. Panel B plots the component of
the variance that is due to mean reversion in returns, �2

u 2 Nd�uwA.k/. Panel C plots the component of this
variance that is due to uncertainty about future values of the expected return, �2

u
Nd2B.k/. For all three values

of R2, variances are computed with ˇ D 0:85, �uw D �0:6, and an unconditional standard deviation of
returns of 20% per year.
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Figure 3. Variance ratios at the 20-year horizon. This figure plots Vc.k/ for k D 20 years, where Vc.k/

denotes the ratio of the conditional variance of k-period returns to the conditional variance of 1-period
returns. This ratio is formally defined in equation (8).
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Figure 4. Distributions for uncertain parameters The plots display the probability densities used to
illustrate the effects of parameter uncertainty on long-run variance. In the R2 panel, the solid line plots
the density of the true R2 (predictability given �T ), and the dashed line plots the implied density of the
R-squared in a regression of returns on bT . The dashed line incorporates the uncertainty about ��b.
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Figure 5. Prior distributions of parameters. The plots display the prior distributions for ˇ, �uw , the
true R2 (fraction of variance in the return rtC1 explained by the true mean �t ), and the “observed” R2

(fraction of variance in rtC1 explained by the observed predictors xt ). The priors shown for the observed
R2 correspond to the three priors for the true R2 and the benchmark priors for ˇ and �uw.
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Figure 6. Posterior distributions of parameters. Panel A plots the posterior of the fraction of variance in
the true expected return �t that can be explained by the predictors. Panel B plots the posterior of the true
R2 (fraction of variance in the return rtC1 explained by �t ). Panel C plots the posterior of ˇ, and Panel
D plots the posterior of �uw . These posteriors are obtained under the benchmark priors for ˇ, �uw , and
R2. The results are obtained by estimating the predictive system on annual real U.S. stock market returns in
1802-2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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Figure 7. Posterior distributions of partial correlations between each of the three predictors and the
true expected return �t . The results are obtained by estimating the predictive system on annual real U.S.
stock market returns in 1802-2007. Three predictors are used: the dividend yield, the bond yield, and the
term spread.
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Figure 8. Predictive variance of multiperiod return and its components. Panel A plots the variance
of the predictive distribution of long-horizon returns, Var.rT;T Ck jDT /. Panel B plots the five components
of the predictive variance. All quantities are divided by k, the number of periods in the return horizon.
The results are obtained by estimating the predictive system on annual real U.S. stock market returns in
1802-2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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Figure 9. Sample variance ratios of annual real equity returns, 1802–2007. The plot displays the sample
variance ratio OV .k/ D OVar.rt;tCk /=.k OVar.rt;tC1//, where OVar.rt;tCk/ is the unbiased sample variance of
k-year log returns, computed at an overlapping annual frequency. Also shown are the 1st, 10th, and 50th
percentiles of the Monte Carlo sampling distribution of OV .k/ under the hypothesis that annual log returns
are independently and identically distributed as normal.
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Figure 10. Posterior distributions for 30-year variance ratios. Panel A plots the posterior distribution
of the unconditional variance of 30-year stock market returns, Var.rT;T C30j�/, divided by 30 times the
unconditional variance of one-year returns, Var.rT C1j�/. Panel B plots the analogous ratio for the condi-
tional variance, Var.rT;T C30 jDT ; �/. (The posterior mean of that variance is the first term of the predictive
variance in equation (21).) The results are obtained by estimating the predictive system on annual real U.S.
stock market returns in 1802-2007. Three predictors are used: the dividend yield, the bond yield, and the
term spread.
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Figure 11. Posterior distributions for the first four components of 30-year predictive variance. The
results are obtained by estimating the predictive system on annual real U.S. stock market returns in 1802-
2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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