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Using Stocks or Portfolios in
Tests of Factor Models

Abstract

We examine the efficiency of using individual stocks or portfolios as base assets to test asset

pricing models using cross-sectional data. The literature has argued that creating portfolios

reduces idiosyncratic volatility and allows more precise estimates of factor loadings, and con-

sequently risk premia. We show analytically and empirically that smaller standard errors of

portfolio beta estimates do not lead to smaller standard errors of cross-sectional coefficient es-

timates. Factor risk premia standard errors are determined by the cross-sectional distributions

of factor loadings and residual risk. Portfolios destroy information by shrinking the dispersion

of betas, leading to larger standard errors.



1 Introduction

Asset pricing models should hold for all assets, whether these assets are individual stocks or

whether the assets are portfolios. The literature has taken two different approaches in specifying

the universe of base assets in cross-sectional factor tests. First, researchers have followed Black,

Jensen and Scholes (1972) and Fama and MacBeth (1973), among many others, to group stocks

into portfolios and then run cross-sectional regressions using portfolios as base assets. An

alternative approach is to estimate cross-sectional risk premia using the entire universe of stocks

following Litzenberger and Ramaswamy (1979) and others. Perhaps due to the easy availability

of portfolios constructed by Fama and French (1993) and others, the first method of using

portfolios as test assets is the more popular approach in recent empirical work.

Blume (1970, p156) gave the original motivation for creating test portfolios of assets as a

way to reduce the errors-in-variables problem of estimated betas as regressors:

...If an investor’s assessments of αi and βi were unbiased and the errors in these

assessments were independent among the different assets, his uncertainty attached

to his assessments of ᾱ and β̄, merely weighted averages of the αi’s and βi’s, would

tend to become smaller, the larger the number of assets in the portfolios and the

smaller the proportion in each asset. Intuitively, the errors in the assessments of αi

and βi would tend to offset each other. ... Thus, ...the empirical sections will only

examine portfolios of twenty or more assets with an equal proportion invested in

each.

If the errors in the estimated betas are imperfectly correlated across assets, then the estima-

tion errors would tend to offset each other when the assets are grouped into portfolios. Creating

portfolios allows for more efficient estimates of factor loadings. Blume argues that since betas

are placed on the right-hand side in cross-sectional regressions, the more precise estimates of

factor loadings for portfolios enable factor risk premia to also be estimated more precisely. This

intuition for using portfolios as base assets in cross-sectional tests is echoed by other papers in
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the early literature, including Black, Jensen and Scholes (1973) and Fama and MacBeth (1973).

The majority of modern asset pricing papers testing expected return relations in the cross section

now use portfolios.1

In this paper we study the relative efficiency of using individual stocks or portfolios in tests

of cross-sectional factor models. We focus on theoretical results in a one-factor setting, but also

consider multifactor models. We illustrate the intuition with analytical forms using maximum

likelihood, but the intuition from these formulae are applicable to more general situations.2

Maximum likelihood estimators achieve the Cramér-Rao lower bound and provide an optimal

benchmark to measure efficiency. The Cramér-Rao lower bound can be computed with any set

of consistent estimators.

Forming portfolios dramatically reduces the standard errors of factor loadings due to de-

creasing idiosyncratic risk. But, we show the more precise estimates of factor loadings do not

lead to more efficient estimates of factor risk premia. In a setting where all stocks have the

same idiosyncratic risk, the idiosyncratic variances of portfolios decline linearly with the num-

ber of stocks in each portfolio. The fewer portfolios used, the smaller the standard errors of the

portfolio factor loadings. But, fewer portfolios also means that there is less cross-sectional vari-

ation in factor loadings to form factor risk premia estimates. Thus, the standard errors of the

risk premia estimates increase when portfolios are used compared to the case when all stocks

are used. The same result holds in richer settings where idiosyncratic volatilities differ across

stocks, idiosyncratic shocks are cross-sectionally correlated, and there is stochastic entry and

exit of firms in unbalanced panels. Creating portfolios to reduce estimation error in the factor

loadings does not lead to smaller estimation errors of the factor risk premia.

The reason that creating portfolios leads to larger standard errors of cross-sectional risk

premia estimates is that creating portfolios destroys information. A major determinant of the

1 Fama and French (1992) use individual stocks but assign the stock beta to be a portfolio beta, claiming to
be able to use the more efficient portfolio betas but simultaneously using all stocks. We show below that this
procedure is equivalent to directly using portfolios.

2 Jobson and Korkie (1982), Huberman and Kandel (1987), MacKinlay (1987), Zhou (1991), Velu and Zhou
(1999), among others, derive small-sample or exact finite sample distributions of various maximum likelihood
statistics but do not consider efficiency using different test assets.
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standard errors of estimated risk premia is the cross-sectional distribution of risk factor load-

ings scaled by the inverse of idiosyncratic variance. Intuitively, the more disperse the cross

section of betas, the more information the cross section contains to estimate risk premia. More

weight is given to stocks with lower idiosyncratic volatility as these observations are less noisy.

Aggregating stocks into portfolios shrinks the cross-sectional dispersion of betas. This causes

estimates of factor risk premia to be less efficient when portfolios are created. We compute

efficiency losses under several different assumptions, including cross-correlated idiosyncratic

risk and betas, and the entry and exit of firms. The efficiency losses are large.

Finally, we empirically verify that using portfolios leads to wider standard error bounds

in estimates of one-factor and three-factor models using the CRSP database of stock returns.

We find that for both a one-factor market model and the Fama and French (1993) multifactor

model estimated using the full universe of stocks, factor risk premia are highly significant. In

contrast, using portfolios often produces insignificant estimates of factor risk premia in both the

one-factor and three-factor specifications.

We stress that our results do not mean that portfolios should never be used to test factor

models. In particular, many non-linear procedures can only be estimated using a small num-

ber of test assets. However, when firm-level regressions specify factor loadings as right-hand

side variables, which are estimated in first stage regressions, creating portfolios for use in a

second stage cross-sectional regression leads to less efficient estimates of risk premia. Second,

our analysis is from an econometric, rather than from an investments, perspective. Finding

investable strategies entails the construction of optimal portfolios. Finally, our setting also con-

siders only efficiency and we do not examine power. A large literature discusses how to test

for factors in the presence of spurious sources of risk (see, for example, Kan and Zhang, 1999;

Kan and Robotti, 2006; Hou and Kimmel, 2006; Burnside, 2007) holding the number of test

assets fixed. From our results, efficiency under a correct null will increase in all these settings

when individual stocks are used. Other authors like Zhou (1991) and Shanken and Zhou (2007)

examine the small-sample performance of various estimation approaches under both the null
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and alternative.3 These studies do not discuss the relative efficiency of the test assets employed

in cross-sectional factor model tests.

Our paper is related to Kan (2004), who compares the explanatory power of asset pric-

ing models using stocks or portfolios. He defines explanatory power to be the squared cross-

sectional correlation coefficient between the expected return and its counterpart specified by

the model. Kan finds that the explanatory power can increase or decrease with the number of

portfolios. From the viewpoint of Kan’s definition of explanatory power, it is not obvious that

asset pricing tests should favor using individual stocks. Unlike Kan, we consider the criterion

of statistical efficiency in a standard cross-sectional linear regression setup. In contrast, Kan’s

explanatory power is not directly applicable to standard econometric settings. We also show

that using portfolios versus individual stocks matters in actual data.

Two other related papers which examine the effect of different portfolio groupings in testing

asset pricing models are Berk (2000) and Grauer and Janmaat (2004). Berk addresses the issue

of grouping stocks on a characteristic known to be correlated with expected returns and then

testing an asset pricing model on the stocks within each group. Rather than considering just a

subset of stocks or portfolios within a group as Berk examines, we compute efficiency losses

with portfolios of different groupings using all stocks, which is the usual case done in practice.

Grauer and Janmaat do not consider efficiency, but show that portfolio grouping under the

alternative when a factor model is false may cause the model to appear correct.

The rest of this paper is organized as follows. Section 2 presents the econometric theory and

derives standard errors concentrating on the one-factor model. We describe the data and com-

pute efficiency losses using portfolios as opposed to individual stocks in Section 3. Section 4

compares the performance of portfolios versus stocks in the CRSP database. Finally, Section 5

concludes.
3 Other authors have presented alternative estimation approaches to maximum likelihood or the two-pass

methodology such as Brennan, Chordia and Subrahmanyam (1998), who run cross-sectional regressions on all
stocks using risk-adjusted returns as dependent variables, rather than excess returns, with the risk adjustments
involving estimated factor loadings and traded risk factors. This approach cannot be used to estimate factor risk
premia.
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2 Econometric Setup

2.1 The Model and Hypothesis Tests

We work with the following one-factor model (and consider multifactor generalizations later):

Rit = α + βiλ+ βiFt + σiεit, (1)

where Rit, i = 1, ..., N and t = 1, ..., T , is the excess (over the risk-free rate) return of stock

i at time t, and Ft is the factor which has zero mean and variance σ2
F . We specify the shocks

εit to be IID N(0, 1) over time t but allow cross-sectional correlation across stocks i and j.

We concentrate on the one-factor case as the intuition is easiest to see and present results for

multiple factors in the Appendix. In the one-factor model, the risk premium of asset i is a linear

function of stock i’s beta:

E(Rit) = α + βiλ. (2)

This is the beta representation estimated by Black, Jensen and Scholes (1972) and Fama and

MacBeth (1973). In vector notation we can write equation (1) as

Rt = α1 + βλ+ βFt + Ω1/2
ε εt, (3)

where Rt is a N × 1 vector of stock returns, α is a scalar, 1 is a N × 1 vector of ones, β =

(β1 . . . βN)′ is an N × 1 vector of betas, Ωε is an N ×N invertible covariance matrix, and εt

is an N × 1 vector of idiosyncratic shocks where εt ∼ N(0, IN).4

Asset pricing theories impose various restrictions on α and λ in equations (1)-(3). Under

the Ross (1976) Arbitrage Pricing Theory (APT),

Hα=0
0 : α = 0. (4)

4 The majority of cross-sectional studies do not employ adjustments for cross-sectional correlation, such as
Fama and French (2008). We account for cross-sectional correlation in our empirical work in Section 4.
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This hypothesis implies that the zero-beta expected return should equal the risk-free rate. A

rejection of Hα=0
0 means that the factor cannot explain the average level of stock returns. This

is often the case for factors based on consumption-based asset pricing models because of the

Mehra-Prescott (1985) equity premium puzzle, where a very high implied risk aversion is nec-

essary to match the overall equity premium.

However, even though a factor cannot price the overall market, it could still explain the

relative prices of assets if it carries a non-zero price of risk. We say the factor Ft is priced with

a risk premium if we can reject the hypothesis:

Hλ=0
0 : λ = 0. (5)

A simultaneous rejection of both Hα=0
0 and Hλ=0

0 economically implies that we cannot fully

explain the overall level of returns (the rejection of Hα=0
0 ), but exposure to Ft accounts for

some of the expected returns of assets relative to each other (the rejection of Hλ=0
0 ). By far

the majority of studies investigating determinants of the cross section of stock returns try to

rejectHλ=0
0 by finding factors where differences in factor exposures lead to large cross-sectional

differences in stock returns. Recent examples of such factors include aggregate volatility risk

(Ang et al., 2006), liquidity (Pástor and Stambaugh, 2003), labor income (Santos and Veronesi,

2006), aggregate investment, and innovations in other state variables based on consumption

dynamics (Lettau and Ludvigson, 2001b), among many others. All these authors reject the null

Hλ=0
0 , but do not test whether the set of factors is complete by testing Hα=0

0 .

In specific economic models such as the CAPM or if a factor is tradeable, then defining

F̃t = Ft + µ, where F̃t is the non-zero mean factor with µ = E(F̃t), we can further test if

Hλ=µ
0 : λ− µ = 0. (6)

This test is not usually done in the cross-sectional literature but can be done if the set of test

assets includes the factor itself or a portfolio with a unit beta (see Lewellen, Nagel and Shanken,
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2010). We show below, and provide details in the Appendix, that an efficient test for Hλ=µ
0 is

equivalent to the test for Hλ=0
0 and does not require the separate estimation of µ. If a factor is

priced (so we reject Hλ=0
0 ) and in addition we reject Hλ=µ

0 , then we conclude that although the

factor helps to determine expected stock returns in the cross section, the asset pricing theory

requiring λ = µ is rejected. In this case, holding the traded factor Ft does not result in a long-

run expected return of λ. Put another way, the estimated cross-sectional risk premium, λ, on a

traded factor is not the same as the mean return, µ, on the factor portfolio.

We derive the statistical properties of the estimators of α, λ, and βi in equations (1)-(2). We

present results for maximum likelihood and consider a general setup with GMM, which nests

the two-pass procedures developed by Fama and MacBeth (1973), in the Appendix. The max-

imum likelihood estimators are consistent, asymptotically efficient, and analytically tractable.

We derive in closed-form the Cramér-Rao lower bound, which achieves the lowest standard

errors of all consistent estimators. This is a natural benchmark to measure efficiency losses.

An important part of our results is that we are able to derive explicit analytical formulas for

the standard errors. Thus, we are able to trace where the losses in efficiency arise from using

portfolios versus individual stocks. In sections 3 and 4, we take this intuition to the data and

show empirically that in actual stock returns efficiency losses are greater with portfolios.

2.2 Likelihood Function

The constrained log-likelihood of equation (3) is given by

L = −
∑
t

(Rt − α− β(Ft + λ))′Ω−1ε (Rt − α− β(Ft + λ)) (7)
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ignoring the constant and the determinant of the covariance terms. For notational simplicity,

we assume that σF and Ωε are known.5 We are especially interested in the cross-sectional

parameters (αλ), which can only be identified using the cross section of stock returns. The

factor loadings, β, must be estimated and not taking the estimation error into account results

in incorrect standard errors of the estimates of α and λ. Thus, our parameters of interest are

Θ = (αλβ). This setting permits tests of Hα=0
0 and Hλ=0

0 . In the Appendix, we state the

maximum likelihood estimators, Θ̂, and discuss a test for Hλ=µ
0 .

2.3 Standard Errors

The standard errors of the maximum likelihood estimators α̂, λ̂, and β̂ are:

var(α̂) =
1

T

σ2
F + λ2

σ2
F

β′Ω−1ε β

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2
(8)

var(λ̂) =
1

T

σ2
F + λ2

σ2
F

1′Ω−1ε 1

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2
(9)

var(β̂) =
1

T

1

λ2 + σ2
F

×
[
Ω +

λ2

σ2
F

(β′Ω−1ε β)11′ − (1′Ω−1ε β)β1′ − (1′Ω−1ε β)1β′ + (1′Ω−1ε 1)ββ′

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2

]
. (10)

We provide a full derivation in Appendix A.

To obtain some intuition, consider the case where idiosyncratic risk is uncorrelated across

stocks so Ωε is diagonal with elements {σ2
i }. We define the following cross-sectional sample

moments, which we denote with a subscript c to emphasize they are cross-sectional moments

5 Consistent estimators are given by the sample formulas

σ̂2
F =

1

T

∑
t

F 2
t

Ω̂ε =
1

T

∑
t

(Rt − α̂− β̂(Ft + λ̂))(Rt − α̂− β̂(Ft + λ̂))′.

As argued by Merton (1980), variances are estimated very precisely at high frequencies and are estimated with
more precision than means.
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and the summations are across N stocks:

Ec(β/σ
2) =

1

N

∑
j

βj
σ2
j

Ec(β
2/σ2) =

1

N

∑
j

β2
j

σ2
j

Ec(1/σ
2) =

1

N

∑
j

1

σ2
j

varc(β/σ
2) =

(
1

N

∑
j

β2
j

σ4
j

)
−

(
1

N

∑
j

βj
σ2
j

)2

covc(β
2/σ2, 1/σ2) =

(
1

N

∑
j

β2
j

σ4
j

)
−

(
1

N

∑
j

β2
j

σ2
j

)(
1

N

∑
j

1

σ2
j

)
. (11)

In the case of uncorrelated idiosyncratic risk across stocks, the standard errors of α̂, λ̂, and

β̂i in equations (8)-(10) simplify to

var(α̂) =
1

NT

σ2
F + λ2

σ2
F

Ec(β
2/σ2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)
(12)

var(λ̂) =
1

NT

σ2
F + λ2

σ2
F

Ec(1/σ
2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)
(13)

var(β̂i) =
1

T

σ2
i

(σ2
F + λ2)

(
1 +

λ2

Nσ2
i σ

2
F

Ec(β
2/σ2)− 2βiEc(β/σ

2) + β2
i Ec(1/σ

2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)

)
. (14)

Comment 2.1 The standard errors of α̂ and λ̂ depend on the cross-sectional distributions of

betas and idiosyncratic volatility.

In equations (12) and (13), the cross-sectional distribution of betas scaled by idiosyncratic

variance determines the standard errors of α̂ and λ̂. Some intuition for these results can be

gained from considering a panel OLS regression with independent observations exhibiting het-

eroskedasticity. In this case GLS is optimal, which can be implemented by dividing the re-

gressor and regressand of each observation by residual standard deviation. This leads to the

variances of α̂ and λ̂ involving moments of 1/σ2. Intuitively, scaling by 1/σ2 places more

weight on the asset betas estimated more precisely, corresponding to those stocks with lower
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idiosyncratic volatilities. Unlike standard GLS, the regressors are estimated and the parameters

βi and λ enter non-linearly in the data generating process (1). Thus, one benefit of using max-

imum likelihood to compute standard errors to measure efficiency losses of portfolios is that it

takes into account the errors-in-variables of the estimated betas.

Comment 2.2 Cross-sectional and time-series data are useful for estimating α and λ but pri-

marily only time-series data is useful for estimating βi.

In equations (12) and (13), the variance of α̂ and λ̂ depend on N and T . Under the IID error

assumption, increasing the data by one time period yields another N cross-sectional observa-

tions to estimate α and λ. Thus, the standard errors follow the same convergence properties as a

pooled regression with IID time-series observations, as noted by Cochrane (2001). In contrast,

the variance of β̂i in equation (14) depends primarily on the length of the data sample, T . The

stock beta is specific to an individual stock, so the variance of β̂i converges at rate 1/T and the

convergence of β̂i to its population value is not dependent on the size of the cross section. The

standard error of β̂i depends on a stock’s idiosyncratic variance, σ2
i , and intuitively stocks with

smaller idiosyncratic variance have smaller standard errors for β̂i.

The cross-sectional distribution of betas and idiosyncratic variances enter the variance of

β̂i, but the effect is second order. Equation (14) has two terms. The first term involves the

idiosyncratic variance for a single stock i. The second term involves cross-sectional moments

of betas and idiosyncratic volatilities. The second term arises because α and λ are estimated,

and the sampling variation of α̂ and λ̂ contributes to the standard error of β̂i. Note that the

second term is of order 1/N and when the cross section is large enough it is approximately

zero.6

Comment 2.3 Sampling error of the factor loadings affects the standard errors of α̂ and λ̂.

6 The estimators are not N -consistent as emphasized by Jagannathan, Skoulakis and Wang (2002). That is,
α̂ 9 α and λ̂ 9 λ as N →∞. The maximum likelihood estimators are only T -consistent in line with a standard
Weak Law of Large Numbers. With T fixed, λ̂ is estimated ex post, which Shanken (1992) terms an ex-post price
of risk. As N →∞, λ̂ converges to the ex-post price of risk. Only as T →∞ does α̂→ α and λ̂→ λ.
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Appendix A shows that the term (σ2
F + λ2)/σ2

F in equations (12) and (13) arises through

the estimation of the betas. This term is emphasized by Gibbons, Ross and Shanken (1989) and

Shanken (1992) and takes account of the errors-in-variables of the estimated betas. If Hλ=µ
0

holds and λ = µ, then this term reduces to the squared Sharpe ratio, which is given a geometric

interpretation in mean-variance spanning tests by Huberman and Kandel (1987).

2.4 Portfolios and Factor Loadings

From the properties of maximum likelihood, the estimators using all stocks are most efficient

with standard errors given by equations (12)-(14). If we use only P portfolios as test assets, what

is the efficiency loss? Let the portfolio weights be φpi, where p = 1, . . . , P and i = 1, . . . , N .

The returns for portfolio p are given by:

Rpt = α + βpλ+ βpFt + σpεpt, (15)

where we denote the portfolio returns with a superscript p to distinguish them from the under-

lying securities with subscripts i, i = 1, . . . , N , and

βp =
∑
i

φpiβi

σp =

(∑
i

φ2
piσ

2
i

)1/2

(16)

in the case of no cross-sectional correlation in the residuals.

The literature forming portfolios as test assets has predominantly used equal weights with

each stock assigned to a single portfolio (see for example, Fama and French, 1993; Jagannathan

and Wang, 1996). Typically, each portfolio contains an equal number of stocks. We follow

this practice and form P portfolios, each containing N/P stocks with φpi = P/N for stock i

belonging to portfolio p and zero otherwise. Each stock is assigned to only one portfolio usually

based on an estimate of a factor loading or a stock-specific characteristic.
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2.5 The Approach of Fama and French (1992)

An approach that uses all individual stocks but computes betas using test portfolios is Fama

and French (1992). Their approach seems to have the advantage of more precisely estimated

factor loadings, which come from portfolios, with the greater efficiency of using all stocks as

observations. Fama and French run cross-sectional regressions using all stocks, but they use

portfolios to estimate factor loadings. First, they create P portfolios and estimate betas, β̂p, for

each portfolio p. Fama and French assign the estimated beta of an individual stock to be the

fitted beta of the portfolio to which that stock is assigned. That is,

β̂i = β̂p ∀ i ∈ p. (17)

The Fama-MacBeth (1973) cross-sectional regression is then run over all stocks i = 1, . . . , N

but using the portfolio betas instead of the individual stock betas. In Appendix D we show that in

the context of estimating only factor risk premia, this procedure results in exactly the same risk

premium coefficients as running a cross-sectional regression using the portfolios p = 1, . . . , P

as test assets. Thus, estimating a pure factor premium using the approach of Fama and French

(1992) on all stocks is no different from estimating a factor model using portfolios as test assets.

Consequently, our treatment of portfolios nests the Fama and French (1992) approach.

2.6 Intuition Behind Efficiency Losses Using Portfolios

Since the maximum likelihood estimates achieve the Cramér-Rao lower bound, creating subsets

of this information can only do the same at best and usually worse.7 In this section, we present

the intuition for why creating portfolios leads to higher standard errors than using all individual

stocks. To illustrate the reasoning most directly, assume that σi = σ is the same across stocks

7 Berk (2000) also makes the point that the most effective way to maximize the cross-sectional differences in
expected returns is to not sort stocks into groups. However, Berk focuses on first forming stocks into groups
and then running cross-sectional tests within each group. In this case the cross-sectional variance of expected
returns within groups is lower than the cross-sectional variation of expected returns using all stocks. Our results
are different because we consider the efficiency losses of using portfolios created from all stocks, rather than just
using stocks or portfolios within a group.
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and the idiosyncratic shocks are uncorrelated across stocks. In this case the standard errors of

α̂, λ̂, and β̂i in equations (8)-(10) simplify to

var(α̂) =
σ2

NT

σ2
m + λ2

σ2
m

Ec(β
2)

varc(β)

var(λ̂) =
σ2

NT

σ2
m + λ2

σ2
m

1

varc(β)

var(β̂i) =
1

T

σ2

(σ2
F + λ2)

(
1 +

λ2

Nσ2σ2
F

Ec(β
2)− 2βiEc(β) + β2

i

varc(β)

)
. (18)

Assume that beta is normally distributed. We create portfolios by partitioning the beta space

into P sets, each containing an equal proportion of stocks. We assign all portfolios to have 1/P

of the total mass. Appendix E derives the appropriate moments for equation (18) when using

P portfolios. We refer to the variance of α̂ and λ̂ computed using P portfolios as varp(α̂) and

varp(λ̂), respectively, and the variance of the portfolio beta, βp, as var(β̂p).

The literature’s principle motivation for grouping stocks into portfolios is that “estimates of

market betas are more precise for portfolios” (Fama and French, 1993, p. 430). This is true and

is due to the diversification of idiosyncratic risk in portfolios. In our setup, equation (14) shows

that the variance for β̂i is directly proportional to idiosyncratic variance, ignoring the small

second term if the cross section is large. This efficiency gain in estimating the factor loadings

is tremendous.

Figure 1 considers a sample size of T = 60 with N = 1000 stocks under a single factor

model where the factor shocks are Ft ∼ N(0, (0.15)2/12) and the factor risk premium λ =

0.06/12. We graph various percentiles of the true beta distribution with black circles. For

individual stocks, the standard error of β̂i is 0.38 assuming that betas are normally distributed

with mean 1.1 and standard deviation 0.7 with σ = 0.5/
√

12. We graph two-standard error

bands of individual stock betas in black through each circle. When we create portfolios, var(β̂p)

shrinks by approximately the number of stocks in each portfolio, which is N/P . The top plot of

Figure 1 shows the position of the P = 25 portfolio betas, which are plotted with small crosses

linked by the red solid line. The two-standard error bands for the portfolio betas go through
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the red crosses and are much tighter than the two-standard error bands for the portfolios. In the

bottom plot, we show P = 5 portfolios with even tighter two-standard error bands where the

standard error of β̂p is 0.04.

However, this substantial reduction in the standard errors of portfolio betas does not mean

that the standard errors of α̂ and λ̂ are lower using portfolios. In fact, aggregating information

into portfolios increases the standard errors of α̂ and λ̂. Grouping stocks into portfolios has two

effects on var(α̂) and var(λ̂). First, the idiosyncratic volatilities of the portfolios change. This

does not lead any efficiency gain for estimating the risk premium. Note that the term σ2/N

using all individual stocks in equation (18) remains the same using P portfolios since each

portfolio contains equal mass 1/P of the stocks:

σ2
p

P
=

(σ2P/N)

P
=
σ2

N
. (19)

Thus, when idiosyncratic risk is constant, forming portfolios shrinks the standard errors of

factor loadings, but this has no effect on the efficiency of the risk premium estimate. In fact,

the formulas (18) involve the total amount of idiosyncratic volatility diversified by all stocks

and forming portfolios does not change the total composition.8 Equation (19) also shows that

it is not simply a denominator effect of using a larger number of assets for individual stocks

compared to using portfolios that makes using individual stocks more efficient.

The second effect in forming portfolios is that the cross-sectional variance of the portfolio

betas, varc(βp), changes compared to the cross-sectional variance of the individual stock betas,

varc(β). Forming portfolios destroys some of the information in the cross-sectional dispersion

of beta making the portfolios less efficient. When idiosyncratic risk is constant across stocks,

the only effect that creating portfolios has on var(λ̂) is to reduce the cross-sectional variance of

beta compared to using all stocks, that is varc(βp) < varc(β). Figure 1 shows this effect. The

cross-sectional dispersion of the P = 25 betas is similar to, but smaller than, the individual beta

8 Kandel and Stambaugh (1995) and Grauer and Janmaat (2008) show that repackaging the tests assets by linear
transformations of N assets into N portfolios does not change the position of the mean-variance frontier. In our
case, we form P < N portfolios, which leads to inefficiency.
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dispersion. In the bottom plot, the P = 5 portfolio case clearly shows that the cross-sectional

variance of betas has shrunk tremendously. It is this shrinking of the cross-sectional dispersion

of betas that causes var(α̂) and var(λ̂) to increase when portfolios are used.

Our analysis so far forms portfolios on factor loadings. Often in practice, and as we inves-

tigate in our empirical work, coefficients on firm-level characteristics are estimated as well as

coefficients on factor betas.9 We show in Appendix B that the same results hold for estimating

the coefficient on a firm-level characteristic using portfolios versus individual stocks. Grouping

stocks into portfolios destroys cross-sectional information and inflates the standard error of the

cross-sectional coefficients.

What drives the identification of α and λ is the cross-sectional distribution of betas. Intu-

itively, if the individual distribution of betas is extremely diverse, there is a lot of information

in the betas of individual stocks and aggregating stocks into portfolios causes the information

contained in individual stocks to become more opaque. Thus, we expect the efficiency losses of

creating portfolios to be largest when the distribution of betas is very disperse.

3 Data and Efficiency Losses

In our empirical work, we use first-pass OLS estimates of betas and estimate risk premia coef-

ficients in a second-pass cross-sectional regression. We work in non-overlapping five-year pe-

riods, which is a trade-off between a long enough sample period for estimation but over which

an average true (not estimated) stock beta is unlikely to change drastically (see comments by

Lewellen and Nagel, 2006; Ang and Chen, 2007). Our first five-year period is from January

1971 to December 1975 and our last five-year period is from January 2011 to December 2015.

We consider each stock to be a different draw from equation (1). Our data are sampled monthly

and we take all non-financial stocks listed on NYSE, AMEX, and NASDAQ with share type
9 We do not focus on the question of the most powerful specification test of the factor structure in equation (1)

(see, for example, Daniel and Titman, 1997; Jagannathan and Wang, 1998; Lewellen, Nagel and Shanken, 2010)
or whether the factor lies on the efficient frontier (see, for example, Roll and Ross, 1994; Kandel and Stambaugh,
1995). Our focus is on testing whether the model intercept term is zero, Hα=0

0 , whether the factor is priced given
the model structure, Hλ=0

0 , and whether the factor cross-sectional mean is equal to its time-series average, Hλ=µ
0 .
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codes of 10 or 11. In order to include a stock in our universe it must have data for at least three

of the years in each five-year period, have a price that is above $0.5 and market capitalization

of at least $0.75 million. Our stock returns are in excess of the Ibbotson one-month T-bill rate.

In our empirical work we use regular OLS estimates of betas over each five-year period. Our

simulations also follow this research design and specify the sample length to be 60 months.

We estimate a one-factor market model using the CRSP universe of individual stocks or

using portfolios. Our empirical strategy mirrors the data generating process (1) and looks at

the relation between realized factor loadings and realized average returns. We take the CRSP

value-weighted excess market return to be the single factor. We do not claim that the uncondi-

tional CAPM is appropriate or truly holds, rather our purpose is to illustrate the differences on

parameter estimates and the standard errors of α̂ and λ̂ when the entire sample of stocks is used

compared to creating test portfolios.

3.1 Distribution of Betas and Idiosyncratic Volatility

Table 1 reports summary statistics of the betas and idiosyncratic volatilities across firms. The

full sample contains 30,833 firm observations. As expected, betas are centered approximately at

one, but are slightly biased upwards due to smaller firms tending to have higher betas. The cross-

sectional beta distribution has a mean of 1.14 and a cross-sectional standard deviation of 0.76.

The average annualized idiosyncratic volatility is 0.50 with a cross-sectional standard deviation

of 0.31. Average idiosyncratic volatility has generally increased over the sample period from

0.43 over 1971-1975 to 0.65 over 1995-2000, as Campbell et al. (2001) find, but it declines later

consistent with Bekaert, Hodrick and Zhang (2010). Stocks with high idiosyncratic volatilities

tend to be stocks with high betas, with the correlation between beta and σ equal to 0.26.

In Figure 2, we plot empirical histograms of beta (top panel) and lnσ (bottom panel) over

all firm observations. The distribution of beta is positively skewed, with a skewness of 0.70,

and fat-tailed with an excess kurtosis of 4.44. This implies there is valuable cross-sectional dis-
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persion information in the tails of betas which forming portfolios may destroy. The distribution

of lnσ is fairly normal, with almost zero skew at 0.17 and excess kurtosis of 0.04.

3.2 Efficiency Losses Using Portfolios

We compute efficiency losses using P portfolios compared to individual stocks using the vari-

ance ratios
varp(α̂)

var(α̂)
and

varp(λ̂)

var(λ̂)
, (20)

where we denote the variances of α̂ and λ̂ computed using portfolios as varp(α̂) and varp(λ̂),

respectively. We compute these variances using Monte Carlo simulations allowing for progres-

sively richer stochastic environments. First, we form portfolios based on true betas, which are

allowed to be cross-sectionally correlated with idiosyncratic volatility. Second, we form port-

folios based on estimated betas. Third, we specify that firms with high betas tend to have high

idiosyncratic volatility, as is observed in data. Finally, we allow entry and exit of firms in the

cross section. We show that each of these variations further contributes to efficiency losses

when using portfolios compared to individual stocks.

3.2.1 Cross-Sectionally Correlated Betas and Idiosyncratic Volatility

Consider the following one-factor model at the monthly frequency:

Rit = βiλ+ βiFt + εit, (21)

where εit ∼ N(0, σ2
i ). We specify the factor returns Ft ∼ N(0, (0.15)2/12), λ = 0.06/12 and

specify a joint normal distribution for (βi, lnσi) (not annualized):

 βi

lnσi

 ∼ N


 1.14

−2.09

 ,

0.58 0.13

0.13 0.28


 , (22)
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which implies that the cross-sectional correlation between betas and lnσi is 0.31. These param-

eters come from the one-factor betas and residual risk volatilities reported in Table 1. From this

generated data, we compute the standard errors of α̂ and λ̂ in the estimated process (1), which

are given in equations (12) and (13).

We simulate small samples of size T = 60 months withN = 5000 stocks. We use OLS beta

estimates to form portfolios using the ex-post betas estimated over the sample. Note that these

portfolios are formed ex post at the end of the period and are not tradable portfolios. In each

simulation, we compute the variance ratios in equation (20). We simulate 10,000 small samples

and report the mean and standard deviation of variance ratio statistics across the generated small

samples. Table 2 reports the results. In all cases the mean and medians are very similar.

Panel A of Table 2 forms P portfolios ranking on true betas and shows that forming as few

as P = 10 portfolios leads to variances of the estimators about 3 times larger for α̂ and λ̂. Even

when 250 portfolios are used, the variance ratios are still around 2.5 for both α̂ and λ̂. The large

variance ratios are due to the positive correlation between idiosyncratic volatility and betas in

the cross section. Creating portfolios shrinks the absolute value of the−covc(β2/σ2, 1/σ2) term

in equations (12) and (13). This causes the standard errors of α̂ and λ̂ to significantly increase

using portfolios relative to the case of using all stocks. When the correlation of beta and lnσ

is set higher than our calibrated value of 0.31, there are further efficiency losses from using

portfolios.

Forming portfolios based on true betas yields the lowest efficiency losses; the remaining

panels in Table 2 form portfolios based on estimated betas.10 In Panel B, where we form

portfolios on estimated betas with the same data-generating process as Panel A, the efficiency

losses increase. For P = 25 portfolios the mean variance ratio varp(λ̂)/var(λ̂) is 4.9 in Panel

B compared to 2.8 in Panel A when portfolios are formed on the true betas. For P = 250 port-

folios formed on estimated betas, the mean variance ratio for λ̂ is still 4.2. Thus, the efficiency

10 We confirm the findings of Shanken and Zhou (2007) that the maximum likelihood estimates are very close to
the two-pass cross-sectional estimates and portfolios formed on maximum likelihood estimates give very similar
results to portfolios formed on the OLS betas.
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losses increase considerably once portfolios are formed on estimated betas. More sophisti-

cated approaches to estimating betas, such as Avramov and Chordia (2006) and Meng, Hu and

Bai (2007), do not make the performance of using portfolios any better because these methods

can be applied at both the stock and the portfolio level.

3.2.2 Cross-Sectionally Correlated Residuals

We now extend the simulations to account for cross-sectional correlation in the residuals. We

extend the data generating process in equation (21) by assuming

εit = ξiut + σvivit, (23)

where ut ∼ N(0, σ2
u) is a common, zero-mean, residual factor that is not priced and vit is a

stock-specific shock. This formulation introduces cross-sectional correlation across stocks by

specifying each stock i to have a loading, ξi, on the common residual shock, ut.

To simulate the model we draw (βi ξi lnσvi) from


βi

ξi

lnσvi

 ∼ N




1.14

1.01

−2.09

 ,


0.58 0.22 0.13

0.22 1.50 0.36

0.13 0.36 0.28


 , (24)

and set σu = 0.09/
√

12. In this formulation, stocks with higher betas tend to have residuals

that are more correlated with the common shock (the correlation between β and ξ is 0.24) and

higher idiosyncratic volatility (the correlation of β with lnσvi is 0.33).

We report the efficiency loss ratios of α̂ and λ̂ in Panel C of Table 2. The loss ratios are much

larger, on average, than Panels A and B and are 30 for varp(α̂)/var(α̂) and 17 for varp(λ̂)/var(λ̂)

for P = 25 portfolios. Thus, introducing cross-sectional correlation makes the efficiency losses

in using portfolios worse compared to the case with no cross-sectional correlation. The intuition
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is that cross-sectionally correlated residuals induces further noise in the estimated beta loadings.

The increased range of estimated betas further reduces the dispersion of true portfolio betas.

3.2.3 Entry and Exit of Individual Firms

One reason that portfolios may be favored is that they permit analysis of a fixed cross section of

assets with potentially much longer time series than individual firms. However, this particular

argument is specious because assigning a stock to a portfolio must be made on some criteria;

ranking on factor loadings requires an initial, “pre-ranking” beta to be estimated on individual

stocks. If a firm meets this criteria, then analysis can be done at the individual stock level.

Nevertheless, it is still an interesting and valid exercise to compute the efficiency losses using

stocks or portfolios with a stochastic number of firms in the cross section.

We consider a log-logistic survivor function for a firm surviving to month T after listing

given by

P (T > t) =
[
1 + ((0.0323)T )1.2658

]−1
, (25)

which is estimated on all CRSP stocks taking into account right-censoring. The implied median

firm duration is 31 months. We simulate firms over time and at the end of each T = 60 month

period, we select stocks with at least T = 36 months of history. In order to have a cross

section of 5,000 stocks, on average, with at least 36 observations, the average total number of

firms is 6,607. We start with 6,607 firms and as firms delist, they are replaced by new firms.

Firm returns follow the data-generating process in equation (21) and as a firm is born, its beta,

common residual loading, and idiosyncratic volatility are drawn from equation (24).

Panel D of Table 2 reports the results. The efficiency losses are a bit larger than Panel C with

a fixed cross section. For example, with 25 portfolios, varp(λ̂)/var(λ̂) = 19 compared to 17 for

Panel C. Thus, with firm entry and exit, forming portfolios results in greater efficiency losses.

Although the number of stocks is, on average, the same as in Panel C, the cross section now

contains stocks with fewer than 60 observations (but at least 36). This increases the estimation

error of the betas, which accentuates the same effect as Panel B. There is now larger error in
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assigning stocks with very high betas to portfolios and creating the portfolios masks the true

cross-sectional dispersion of the betas. In using individual stocks, the information in the beta

cross section is preserved and there is no efficiency loss.

3.2.4 Summary

Potential efficiency losses are large for using portfolios instead of individual stocks. The effi-

ciency losses become larger when residual shocks are cross-sectionally correlated across stocks

and when the number of firms in the cross section changes over time.

4 Empirical Analysis

We now investigate the differences in using portfolios versus individual stocks in the data with

actual historical stock returns from 1971 to 2015. First, we estimate factor risk premia using all

of the stocks in our sample as the test assets. Then, we compare the efficiency of our factor risk

premia estimates from using all stocks to estimates from using portfolios as test assets.

We form portfolios based on two types of sorting procedures, ex-post and ex-ante. To create

ex-post portfolios, we rank stocks into portfolios based on same-sample factor loadings. To

create ex-ante portfolios, we rank stocks into portfolios based on factor loadings formed just

prior to rebalancing. Once the stocks are sorted into ex-post and ex-ante portfolios, we compute

the same-sample realized betas for each portfolio type. We then relate these realized betas to

same-sample returns in order to form factor risk premia estimates for all of our test assets.

In estimating factor risk premia, we find that the efficiency losses predicted by our analytical

framework are borne out in the data. When stocks are grouped into portfolios, the estimated

factor loadings show less variance, which translates into higher variance of the risk premia

estimates. The more cross-sectional dispersion that stocks lose when grouped into portfolios,

either due to the sorting method or to the number of portfolios formed, the more extreme the

effect.
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We compare estimates of a one-factor market model on the CRSP universe in Section 4.1

and the Fama-French (1993) three-factor model in Section 4.2, for all stocks and for the two

types of portfolio sorts. We compute standard errors for the factor risk premia estimates us-

ing maximum likelihood, which assumes normally distributed residuals, and also using GMM,

which is distribution free. The standard errors account for cross-correlated residuals, which are

modeled by a common factor and also using industry factors. These models are described in

Appendix F. In order to present a concise discussion in this section, we refer to the results for

the common factor residual model alone. The results using the industry classification are simi-

lar, and we present both models in the tables for completeness and as an additional robustness

check. The coefficient estimates are all annualized by multiplying the monthly estimates by 12.

4.1 One-Factor Model

4.1.1 Using All Stocks

The factor model in equation (1) implies a relation between realized firm excess returns and

realized firm betas. Thus, we stack all stocks’ excess returns from each five-year period into

one panel and run a regression using average realized firm excess returns over each five-year

period as the regressand, with a constant and the estimated betas for each stock as the regressors.

Panel A of Table 3 reports the estimates and standard errors of α and λ in equation (1), using

all 30,833 firm observations.

Using all stocks produces risk premia estimates of α̂ = 8.54% and λ̂ = 4.79%. The GMM

standard errors are 1.40 and 1.05, respectively, with t-statistics of 6.1 and 4.6, respectively.

The maximum likelihood t-statistics, which assume normally distributed residuals, are larger, at

53.9 and 29.8, respectively. With either specification, the CAPM is firmly rejected since Hα=0
0

is overwhelmingly rejected. We also clearly reject Hλ=0
0 , and so we find that the market factor

is priced. The market excess return is µ = 6.43%, which is close to the cross-sectional estimate

λ̂ = 4.79%, over our 1971-2015 sample period. We formally test Hλ=µ
0 below.
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Using individual stocks as test assets to estimate the relationship between realized returns

and realized factor loadings gives t-statistics that are comparable in magnitude to other studies

with the same the experimental design like Ang, Chen and Xing (2006). The set-up of many

factor model studies in the literature differ in two important ways. First, portfolios are often

used as test assets instead of stocks, and second, the portfolios are often sorted on predicted

rather than realized betas. In this section, we investigate empirically the potential impact of

these two specification differences on the size of the α̂ and λ̂ t-statistics.

Our theoretical results in section 2 show that there could be a large loss of efficiency in the

estimation of factor risk premia using portfolios as test assets instead of individual stocks. Thus,

our empirical focus is on the increase in standard errors, or the decrease in absolute values of

the t-statistics, resulting from the choice of test asset (stocks versus portfolios, and the type and

size of portfolio). The various types of standard errors (maximum likelihood versus GMM) also

differ, but our focus is on the relative differences for the various test assets within each type of

standard error. We now investigate these effects.

4.1.2 “Ex-Post” Portfolios

We first form “ex-post” portfolios. For each five-year period we group stocks into P portfolios,

based on realized OLS estimated betas over those five years. Within each portfolio, all stocks

are equally weighted at the end of the five-year period. While these portfolios are formed ex-

post and are not tradeable, they represent valid test assets to estimate the cross-sectional model

(1). Once the portfolios are formed, we regress the average realized portfolio excess returns

onto the realized portfolio betas, following the same estimation procedure as in the all stocks

case above.

In the last four columns of Table 3, we report statistics of the cross-sectional dispersion of

the factor loadings for each of the various test assets. Specifically, we show the mean asset beta

value, Ec(β̂), the cross-sectional standard deviation, σc(β̂), and the beta values corresponding

to the 5%- and 95%-tiles of the distribution. These statistics allow us to compare the cross-
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sectional information available to estimate risk premia for all stocks as compared to different

sizes of the ex-post and ex-ante portfolios.

For P = 5 ex-post portfolios, the cross-sectional standard deviation of beta is σc(β̂p) is 0.69,

whereas over all stocks, the cross-sectional standard deviation of beta σc(β̂) is 0.76, showing

the shrinkage in the cross-sectional distribution of beta when stocks are grouped into portfolios.

The lower variance of factor loading estimates indicates the loss of cross-sectional information

in the beta estimates from grouping stocks into portfolios, which ultimately produces larger

standard errors in the second-stage risk premia estimation. For P = 50, σc(β̂p) is 0.74, closer

to the variance using all stocks. The decline in standard deviation with an increasing number

of portfolios is indicative of the ultimate convergence of portfolios to individual stocks. As the

number of portfolios increases, it will eventually equal the number of stocks, thus producing

identical results.

In Panel B of Table 3, we show the implications for factor risk premia that come from the

trade-off in precision versus cross-sectional dispersion of beta estimates discussed above. Panel

B shows that the ex-post portfolio α̂ and λ̂ estimates are quite close to those computed using all

stocks. However, as implied in our analytical framework, the standard errors using portfolios

are larger than those computed using all stocks. As P increases, the standard errors in Panel

B of Table 3 decrease (and the t-statistics increase) to approach the values using individual

stocks. For example, for P = 5 portfolios, the maximum likelihood standard error on λ̂ is 0.72

compared with 0.16 using all stocks. For P = 50 ex-post portfolios, the maximum likelihood

standard error for λ̂ falls to 0.41. The loss of efficiency from forming ex-post portfolios is also

apparent for the GMM standard errors, reported in Table 3, but is smaller than for the maximum

likelihood standard errors.

The data show empirical support for our analytical model’s proposition that the standard

errors of α̂ and λ̂ depend importantly on the cross-sectional distribution of the factor loading

estimates. The distribution is increasingly truncated as a greater number of stocks are grouped

into a smaller number of portfolios. The more stocks that are grouped into each portfolio, the
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smaller the variance in factor loadings, and the larger the standard errors for the risk premia

estimates.

4.1.3 “Ex-Ante” Portfolios

Next, we form “ex-ante” tradeable portfolios. We group stocks into portfolios at the beginning

of each calendar year, ranking on the market beta estimated over the previous five years. Once

the portfolios are formed based on the pre-formation betas, they are held for twelve months

to produce ex-ante portfolio returns. We rebalance the ex-ante portfolios annually, weighting

stocks equally within each portfolio. Then, we compute the first-pass realized OLS market

betas of each portfolio, in each non-overlapping five-year period, in parallel to the procedure

used for the ex-post portfolios. These realized portfolio betas are the factor loadings for the

ex-ante portfolios. Finally, to estimate the ex-ante portfolio α and λ in Panel C of Table 3 we

run a second-pass cross-sectional regression of excess returns onto the ex-ante factor loadings.

Thus, we examine the same realized beta–realized return relation as in the case of all stocks and

ex-post portfolios, in Panels A and B, respectively, over the same sample.

The difference between the ex-post and ex-ante portfolios is in the sorting procedure used to

form the portfolios. This has an important implication for our estimation since portfolios sorted

on realized betas achieve the maximum cross-sectional dispersion in realized portfolio betas.

However, even sorting on realized betas, as in the ex-post portfolios, leaves open the possibility

of error in assigning stocks to a portfolio since the betas are estimated. Sorting on any variable

other than the realized beta, such as the pre-formation beta that we use for ex-ante portfolios or

a characteristic such as book-to-market or size, used by Fama French (1993) and others, will

produce a smaller realized portfolio beta distribution.

The last four columns of Panel C inTable 3, illustrate the reduced dispersion in realized

betas using ex-ante portfolios. For P = 5, the cross-sectional standard deviation of beta is

only σc(β̂p) = 0.35, compared to σc(β̂) = 0.76 using all stocks and σc(β̂) = 0.69 for P = 5

ex-post portfolios. This means that the loss in the cross-sectional beta information available to
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form risk premia estimates is greater than the loss when forming ex-post portfolios. The severe

shrinkage in the beta distribution means that the ex-ante portfolios miss substantial information

in the tails; the 5% and 95%-tiles for P = 5 ex-ante portfolios are 0.62 and 1.64, respectively,

compared to 0.22 and 2.26 for the same number of ex-post portfolios (Panel B), and 0.12 and

2.44 for all stocks (Panel A).

The cross-section of the realized betas relate to returns in the second-stage estimation of

risk premia in tests of factor models. The truncated distribution of the ex-ante portfolio factor

loadings produces much larger standard errors in the cross-sectional estimation of λ than using

either ex-post portfolios or the full stock universe. For all portfolio sizes, the ex-ante portfolio

standard errors exceed those of the ex-post standard errors, for both GMM and MLE. For ex-

ample, the GMM standard error of λ̂ for P = 5 ex-ante portfolios is 2.81, compared to 1.37 for

P = 5 ex-post portfolios and 1.05 for all stocks. The ex-ante portfolios fail to reject Hλ=0
0 , ex-

cept for MLE standard errors for P = 50, in contrast to the overwhelming rejection when using

any of the ex-post portfolios or all stocks. This underscores the importance of the information

in the realized-beta distribution, which is largely preserved in ex-post portfolios and entirely

preserved using all stocks.

Panel C also shows that the estimates of α and λ from ex-ante portfolios are quite dissimilar

to the estimates in Panels A and B. Using ex-ante portfolios as test assets produces an estimate

of α around 14% and an estimate of λ around 1-2%. In contrast, both all stocks (Panel A)

and ex-post portfolios (Panel B) produce alpha estimates around 8% and estimates of λ around

4-5%. This marked difference in α̂ and λ̂ is driven by the dramatic distributional shrinkage in

realized betas that stems from forming portfolios on pre-formation betas rather realized betas.

The ex-ante portfolio λ̂ eventually converges to the estimate using all stocks, but the con-

vergence rate is slow. Figure 3 plots the evolution of λ̂ as the number of ex-ante portfolios

grows larger (and the number of stocks in each portfolio decreases). For P = 2000 ex-ante

portfolios, each of which contains only one or two stocks, λ̂ = 3.79% , a full percentage point

lower than for using the full distribution of stocks. In the data, stocks have a finite life. When
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the history of a firm’s return is short, there is larger error in assigning the stock to a portfolio,

which potentially exacerbates the beta distribution’s shrinkage. Indeed, the steep and concave

curve shows that the point estimates can be severely altered when many stocks are grouped into

each portfolio, markedly shrinking the beta distribution. Even for P = 100 ex-ante portfolios,

λ̂ = 1.91%, which is quite different compared to λ̂ = 4.79% for the full stock universe.

4.1.4 Tests of Cross-Sectional and Time-Series Estimates

We end our analysis of the one-factor model by testing Hλ=µ
0 , which tests equality of the cross-

sectional risk premium and the time-series mean of the market factor portfolio. Table 4 presents

the results. Using all stocks, λ̂ = 4.79% is fairly close to the time-series estimate, µ̂ = 6.43%,

but the small standard errors of maximum likelihood causeHλ=µ
0 to be rejected with a t-statistic

of 10.16. With GMM standard errors, we fail to reject Hλ=µ
0 with a t-statistic of 1.56. Similarly,

the ex-post portfolios reject Hλ=µ
0 with maximum-likelihood standard errors at the 5% level

(expect for P = 5), but fail to reject with GMM standard errors (except for P = 50). In

contrast, the ex-ante portfolio estimates all reject Hλ=µ
0 , at least at the 10% level, with either

maximum likelihood or GMM standard errors.

4.1.5 Summary

We overwhelmingly reject Hα=0
0 and hence the one-factor model using all stocks or portfolios.

For all stocks and for ex-post portfolios, we also reject Hλ=0
0 , thus finding the market factor

priced. Using all stocks we estimate λ̂ = 4.79%. Ex-post portfolios preserve most of the cross-

sectional spread in betas and produce similar risk premium point estimates to the all stocks

case, although with larger standard errors. The fewer the portfolios, the smaller the factor

loading dispersion.

Using all stocks or portfolios can produce quite different point estimates of cross-sectional

risk premia. In particular, the formation of ex-ante portfolios on past estimated betas severely

pares the tails of the realized betas. The λ̂ produced by between 5 and 50 ex-ante portfolios
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range from only 1.14% to 1.73%. Further, this loss of information in the cross section of ex-

ante portfolio factor loadings leads us to fail to reject Hλ=0
0 , for all except the largest number

of portfolios, P = 50 with maximum likelihood standard errors. For the test of Hλ=µ
0 , all

specifications of ex-ante portfolios reject the hypothesis at the 10 percent level, while results are

mixed using ex-post portfolios and stocks. The loss of dispersion in portfolio factor loadings

can come from the number of portfolios formed or from the portfolio formation method. In

either case, individual stocks retain the entire distribution and thus give the most precise risk

premia estimates.

4.2 Fama-French (1993) Model

This section estimates the Fama and French (1993) model:

Rit = α + βMKT,iλMKT + βSMB,iλSMB + βHML,iλHML + σiεit, (26)

where MKT is the excess market return, SMB is a size factor, and HML is a value/growth

factor. We follow the same estimation procedure as Section 4.1 in that we stack all observations

into one panel of non-overlapping five-year periods to estimate the cross-sectional coefficients

α, λMKT , λSMB, and λHML.

4.2.1 Factor Loadings

We now compare the Fama French model factor loadings of all stocks to those of ex-post and ex-

ante portfolios. We form the portfolios by using the same procedures described in subsections

4.1.2 and 4.1.3, for ex-post and ex-ante portfolios, respectively. We sort stocks into n × n × n

portfolios sequentially, ranking first on β̂MKT , then on β̂SMB, and lastly on β̂HML, which gives

us the same number of stocks in each portfolio.

Table 5 reports summary statistics for the distribution of the factor loadings β̂MKT , β̂SMB,

and β̂HML for all specifications of test assets The mean of each factor loading type is almost the
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same for all stocks and for portfolios, both ex-post and ex-ante. The market betas are centered

around one after controlling for SMB and HML, and the SMB and HML factor loadings

are between 0 and 1. SMB and HML are zero-cost portfolios, but the beta estimates are not

centered around zero since the break points used by Fama and French (1993) to construct SMB

and HML are based on NYSE stocks alone rather than on all stocks. Small stocks tend to skew

the SMB and HML loadings to be positive, especially for the SMB loadings which have a

mean of 0.94 for all stocks.

The notable difference for portfolios as compared to stocks is in the distribution of the factor

loading estimates. Table 5 shows three important effects on the distribution of factor loadings

that result from portfolio formation, similar to those found for the one-factor model in Section

4.1.

First, forming portfolios reduces the cross-sectional variance in the factor loadings; the

effect is modest for the ex-post portfolios, but it is severe for the ex-ante portfolios. For example,

the β̂SMB and β̂HML cross-sectional standard deviation is 1.21 for all stocks, and it is 0.85 for

the 2×2×2 ex-post portfolios, but it is cut by more than one-half to 0.37 and 0.29, respectively,

for the ex-ante 2 × 2 × 2 portfolios. As described for the one-factor model in Section 4.1, the

mechanism amplifying the cross-sectional shrinkage in factor loading dispersion is that ex-ante

portfolios are formed on pre-formation betas, and thus the realized betas have less dispersion

than if the portfolios were formed directly on the realized betas.

Second, forming portfolios truncates the tails of the factor loading distribution. This infor-

mation loss is most pronounced for the ex-ante portfolios; the 5%-tile to 95%-tile range for

β̂MKT shifts from -0.01 to 2.24 for all stocks to 0.60 to 1.37 for the 3× 3× 3 ex-ante portfolio.

Such a difference in the distribution of factor loadings for ex-ante portfolios could produce quite

different cross-sectional factor risk premia estimates.

Finally, for ex-post and ex-ante portfolios, the fewer stocks that are grouped into each port-

folio, the less shrinkage there is in the dispersion of factor loading estimates and the less tail

information that is lost. This follows the intuition that the effect of forming portfolios on risk
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premia estimation diminishes as portfolios converge to individual stocks (once there are enough

portfolios to put each stock into its own portfolio). We now estimate Fama-French (1993) factor

risk premia for ex-ante and ex-post portfolios of different sizes.

4.2.2 Cross-Sectional Factor Risk Premia

Table 6 reports estimates of the Fama-French (1993) factor risk premia. Using all stocks in Panel

A, we find a positive and significant estimate of the market risk premium, λ̂MKT = 5.05% (very

close to the one-factor model estimate in Table 3), a positive and significant size factor premium

estimate, λ̂SMB = 6.79%, and λ̂HML = 0.01, not significantly different from 0 at the 5% level.

The ex-post portfolios in Panel B also have positive λ̂SMB and λ̂MKT , with similar magnitudes

to all stocks, but the ex-post portfolio λ̂HML is negative. The ex-ante portfolios in Panel C

yield very different estimates of factor risk premia in comparison to all stocks and the ex-post

portfolios. Notably, the ex-ante portfolio λ̂MKT are negative. Thus, the sign of the λ̂MKT and

the λ̂HML risk premia depend on the particular choice of test asset used in the Fama-French

(1993) model.

As in the one-factor model estimation in Section 4.1, the size of the standard errors on

the risk premia estimates shrink and the t-statistics increase, both for maximum likelihood and

GMM, as the number of test assets grows. This supports the main prediction of our analytical

model, that the loss of information from grouping stocks produces less efficient risk premia

estimates. It also follows the intuition of the model; efficiency loss in the cross-sectional esti-

mation of factor risk premia is directly related to the drop in cross-sectional dispersion of the

factor loadings that comes from grouping individual assets into portfolios. The cross-sectional

information loss outweighs the efficiency gain from estimating the factor loadings with portfo-

lios.
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4.2.3 Tests of Cross-Sectional and Time-Series Estimates

We report the results of the tests of the null Hλ=µ
0 for the Fama-French (1993) model in Table

7. For all three types of test assets we firmly reject the hypothesis that the cross-sectional

risk premia are equal to the mean factor portfolio returns, for the market risk premium and

SMB, using either maximum likelihood or GMM standard errors. For all stocks and the ex-

post portfolios we also reject Hλ=µ
0 for HML. Using ex-ante portfolios, the hypothesis Hλ=µ

0

for HML is rejected using maximum likelihood standard errors, but not with GMM standard

errors. All in all, while the market and size factors are cross-sectionally priced, there is little

evidence that the cross-sectional risk premia are consistent with the time-series of factor returns.

4.2.4 Summary

Like the CAPM, the Fama-French (1993) model is strongly rejected in testing Hα=0
0 using both

individual stocks and portfolios. We find that the MKT and SMB Fama-French factors do

help in pricing the cross section of stocks with large rejections of Hλ=0
0 for stocks and ex-post

portfolios. However, tests of Hλ=µ
0 reject the hypothesis that the cross-sectional risk premium

estimates are equal to the mean factor returns.

Using individual stocks versus portfolios makes a difference in the precision with which

factor risk premia are estimated. With individual stocks, the MKT and the HML factor pre-

mium are positive, though the latter is not significantly different from zero. In contrast, the sign

of the MKT and the HML factor premia flip, depending on whether stocks are sorted into

portfolios ex-ante or ex-post. Even though the sorting procedure and thus the risk premia test

results differ for these types of portfolios, both portfolio types eventually must converge to the

all-stock case as the number of portfolios converges to the number of individual stocks.
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5 Conclusion

The finance literature takes two approaches to specifying base assets in tests of cross-sectional

factor models. One approach is to aggregate stocks into portfolios. Another approach is to use

individual stocks. The motivation for creating portfolios is originally stated by Blume (1970):

betas are estimated with error and this estimation error is diversified away by aggregating stocks

into portfolios. Numerous authors, including Black, Jensen and Scholes (1972), Fama and

MacBeth (1973), and Fama and French (1993), use this motivation to choose portfolios as base

assets in factor model tests. The literature suggests that more precise estimates of factor loadings

should translate into more precise estimates and lower standard errors of factor risk premia.

We show analytically and confirm empirically that this motivation is wrong. The sampling

uncertainty of factor loadings is markedly reduced by grouping stocks into portfolios, but this

does not translate into lower standard errors for factor risk premia estimates. An important de-

terminant of the standard error of risk premia is the cross-sectional distribution of risk factor

loadings. Intuitively, the more dispersed the cross section of betas, the more information the

cross section contains to estimate risk premia. Aggregating stocks into portfolios loses infor-

mation by reducing the cross-sectional dispersion of the betas. While creating portfolios does

reduce the sampling variability of the estimates of factor loadings, the standard errors of fac-

tor risk premia actually increase. It is the decreasing dispersion of the cross section of beta

when stocks are grouped into portfolios that leads to potentially large efficiency losses in using

portfolios versus individual stocks.

In data, the point estimates of the cross-sectional market risk premium using individual

stocks are positive and highly significant. This is true in both a one-factor market model spec-

ification and the three-factor Fama and French (1993) model. For the one-factor model using

all stocks, the cross-sectional market risk premium estimate of 4.79% per annum is close to the

time-series average of the market excess return, at 6.43% per annum. In contrast, the market

risk premium is insignificant and sometimes has a negative sign when portfolios are constructed

on factor loadings that are estimated ex ante. Thus, using stocks or portfolios as base test assets
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can result in very different conclusions regarding whether a particular factor carries a significant

price of risk. Test results from using portfolios converge to those with all stocks as the number

of portfolios becomes large enough to equal the number of individual stocks.

The most important message of our results is that using individual stocks permits more

efficient tests of whether factors are priced. When just two-pass cross-sectional regression

coefficients are estimated there should be no reason to create portfolios and the asset pricing

tests should be run on individual stocks instead. Thus, the use of portfolios in cross-sectional

regressions should be carefully motivated.
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Appendix

A Derivation of Maximum Likelihood Asymptotic Variances
The maximum likelihood estimators for α, λ, and βi are given by:11

α̂ =
1

T

∑
t 1′Ω−1ε (Rt − β̂(Ft + λ̂))

1′Ω−1ε 1
(A-1)

λ̂ =
1

T

∑
t β̂
′Ω−1ε (Rt − α̂− β̂Ft)

β′Ω−1ε β
(A-2)

β̂i =

∑
t(Rit − α̂)(λ̂+ Ft)∑

t(λ̂+ Ft)2
. (A-3)

The information matrix is given by

(
E

[
− ∂2L

∂Θ∂Θ′

])−1
=

1

T

 1′Ω−1ε 1 1′Ω−1ε β 1′Ω−1ε λ
β′Ω−1ε 1 β′Ω−1ε β β′Ω−1ε λ
λ′Ω−1ε 1 λ′Ω−1ε β (λ2 + σ2

F )Ω−1ε

−1 , (A-4)

where under the null 1
T

∑
tRt → α+ βλ.

To invert this we partition the matrix as:(
A B
C D

)−1
=

(
Q−1 −Q−1BD−1

−D−1CQ−1 D−1(I + CQ−1BD−1)

)
,

where Q = A−BD−1C, and

A =

(
1′Ω−1ε 1 1′Ω−1ε β
β′Ω−1ε 1 β′Ω−1ε β

)
, B =

(
1′Ω−1ε λ
β′Ω−1ε λ

)
, C = B′, D = (λ2 + σ2

F )Ω−1ε .

We can write Q = A−BD−1B′ as(
1− λ2

λ2 + σ2
F

)(
1′Ω−1ε 1 1′Ω−1ε β
β′Ω−1ε 1 β′Ω−1ε β

)
.

The inverse of Q is

Q−1 =
σ2
F + λ2

σ2
F

1

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2

(
β′Ω−1ε β −1′Ω−1ε β
−β′Ω−1ε 1 1′Ω−1ε 1

)
. (A-5)

This gives the variance of α̂ and λ̂ in equations (8) and (9).
To compute the term D−1(I + CQ−1BD−1) we evaluate

D−1B′Q−1BD−1 =
λ2

σ2
F (λ2 + σ2

F )

1

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2

×Ωε

(
β′Ω−1ε β −1′Ω−1ε β
−β′Ω−1ε 1 1′Ω−1ε 1

)(
1′Ω−1ε λ
β′Ω−1ε λ

)
Ωε

=
λ2

σ2
F (λ2 + σ2

F )

(β′Ω−1ε β)11′ − (1′Ω−1ε β)β1′ − (1′Ω−1ε β)1β′ + (1′Ω−1ε 1)ββ′

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2
.

11 In our empirical work we use consistent OLS estimates. Any consistent estimator can be used to evaluate the
Cramér-Rao lower bound.
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Thus,

D−1 +D−1CQ−1BD−1 =

1

λ2 + σ2
F

[
Ω +

λ2

σ2
F

(β′Ω−1ε β)11′ − (1′Ω−1ε β)β1′ − (1′Ω−1ε β)1β′ + (1′Ω−1ε 1)ββ′

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2

]
. (A-6)

This gives the variance of β̂i in equation (10).
To compute the covariances between (α̂, λ̂) and β̂i, we compute

−Q−1BD−1 =
λ

σ2
F

1

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2

(
(1′Ω−1ε β)β′ − (β′Ω−1ε β)1′

(β′Ω−1ε 1)1′ − (1′Ω−1ε 1)β′

)
. (A-7)

This yields the following asymptotic covariances:

cov(α̂, λ̂) =
1

NT

σ2
F + λ2

σ2
F

−Ec(β/σ
2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)

cov(α̂, β̂i) =
1

NT

λ

σ2
F

βiEc(β
/σ2)− Ec(β

2/σ2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)

cov(λ̂, β̂i) =
1

NT

λ

σ2
F

Ec(β/σ
2)− βiEc(1/σ2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)
. (A-8)

B Factor Risk Premia and Characteristics
Consider the following cross-sectional regression:

Rit = α+ βiλ+ ziγ + βiFt + σiεit, (B-1)

where zi is a firm-specific characteristic, the variance ofFt is σ2
F , and εit is IIDN(0, 1) with εit uncorrelated across

stocks i for simplicity. Assume that α, σi, and σi are known and the parameters of interest are Θ = (λ γ βi). We
assume the intercept term α is known to make the computations easier. The information matrix is given by

(
E

[
− ∂2L

∂Θ∂Θ′

])−1
=

1

T


∑
i
β2
i

σ2
i

∑
i
βizi
σ2
i

βiλ
σ2
i∑

i
βizi
σ2
i

∑
i
z2i
σ2
i

ziλ
σ2
i

βiλ
σ2
i

ziλ
σ2
i

λ2+σ2
F

σ2
i


−1

. (B-2)

Using methods similar to Appendix A, we can derive var(λ̂) and var(γ̂) to be

var(λ̂) =
1

NT

σ2
F + λ2

σ2
F

Ec(z
2/σ2)

varc(zβ/σ2)− covc(β2/σ2, z2/σ2)

var(γ̂) =
1

NT

σ2
F + λ2

σ2
F

Ec(β
2/σ2)

varc(zβ/σ2)− covc(β2/σ2, z2/σ2)
, (B-3)
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where we define the cross-sectional moments

Ec(z
2/σ2) =

1

N

∑
j

z2j
σ2
j

Ec(β
2/σ2) =

1

N

∑
j

β2
j

σ2
j

varc(zβ/σ
2) =

 1

N

∑
j

z2jβ
2
j

σ4
j

−
 1

N

∑
j

zjβj
σ2
j

2

covc(z
2/σ2, β2/σ2) =

 1

N

∑
j

z2jβ
2
j

σ4
j

−
 1

N

∑
j

z2j
σ2
j

 1

N

∑
j

β2
j

σ2
j

 . (B-4)

C Testing Time-Series Means
In this section we derive a test for Hλ=µ

0 : λ̃ ≡ (λ − µ) = 0. In Section C.1, we work in the context of the
same model of Appendix A using maximum likelihood and show it to have the same standard error as the test
for Hλ=0

0 : λ = 0. In Section C.2, we contrast our test with the approach of Shanken (1992), which involves
directly estimating both λ and µ, whereas we only need to directly estimate λ. Our test is consequently much more
efficient. Finally, in Section C.3 we couch our new test in GMM and contrast it with the moment conditions for
the traditional Shanken (1992) approach. This is also the easiest method computationally for dealing with multiple
factors.

C.1 Likelihood Function
Consider the model of N × 1 returns in vector notation

Rt = α+ βλ+ β(F̃t − µ) + Ω1/2
ε εt. (C-1)

The difference with equation (3) in the main text is that now the cross-sectional risk premium, λ, is potentially
different from the time-series mean of the factor, µ. The factor shocks Ft ≡ (F̃t − µ) are mean zero.

Let λ̃ = λ− µ. Then, we can write equation (C-1) as

Rt = α+ βλ̃+ βF̃t + Ω1/2
ε εt. (C-2)

This has exactly the same likelihood as equation (7) except replacing λ̃ and F̃t for λ and Ft, respectively. Hence,

the standard errors for the estimators α̂ and ˆ̃
λ are identical to equations (8) and (9), respectively, except we replace

λ with λ̃ in the latter case. Thus, the test for Hλ=µ
0 involves standard errors for ˆ̃

λ that are identical to the standard
errors for the estimator λ̂.

The intuition behind this result is that the cross section only identifies the combination (λ− µ). In the case of
an APT, the implied econometric assumption is that µ is effectively known as the factor shocks, Ft, are mean zero.
The hypothesisHλ=µ

0 does not require λ to be separately estimated; only the combination λ̃−µ needs to be tested.
Economically speaking, the cross section is identifying variation of stock returns relative to the base level of the
factor – it cannot identify the pure component of the factor itself. If we need to identify the actual level of λ itself
together with µ, we could impose that λ = µ, which would be the case from the CAPM for a one-factor market
model. Another way is to use the time-series mean of a traded set of factors to identify µ. This is the approach of
Shanken (1992), to which we now compare our test.
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C.2 Shanken (1992)
We work with the following log likelihood (ignoring the constant) of a one-factor model in vector notation for N
stocks and the factor Ft:

L = −
∑
t

(Rt − α− β(Ft + λ))′Ω−1ε (Rt − α− β(Ft + λ)) +
∑
t

1

2σ2
F

(Ft − µ)2, (C-3)

There are two differences between equation (C-3) and the factor model in equation (7). First, λ and µ are now
treated as separate parameters because we have not specified the shocks to be zero mean by construction as in an
APT. Second, we identify µ by including Ft as another asset where α = 0 and β = 1, or µ is estimated by the
time-series mean of Ft.

In constructing the Hessian matrix for θ = (αλµβ), it can be shown that the standard errors for α̂ and λ̂ are
given by

var(α̂) =
1

T

σ2
F + λ2

σ2
F

β′Ω−1ε β

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2

var(λ̂) =
σ2
F

T
+

1

T

σ2
F + λ2

σ2
F

1′Ω−1ε 1

(1′Ω−1ε 1)(β′Ω−1ε β)− (1′Ω−1ε β)2
. (C-4)

These are the maximum likelihood standard errors derived by Shanken (1992) when including both a cross-
sectional risk premium, λ, and a time-series mean of the factors, µ. We observe that var(α̂) is identical to equation
(8), but var(λ̂) differs from equation (9) by an additive term, 1

T σ
2
F . The intuition that var(α̂) is unaffected by

separating λ and σ is that when µ is estimated, a mean-zero change to the residual of one individual stock,

Rit − α− βi(Ft − λ+ µ),

changes only the estimate of λ. This result is exactly the same as saying that only the combination (λ − µ) is
identified by the cross section of stock returns.

To understand why var(λ̂) carries an additional term compared to the case where µ is not estimated, note that
the maximum likelihood estimator for µ and the standard error for µ̂ are given by:

µ̂ =
1

T

∑
t

Ft

var(µ̂) =
σ2
F

T
. (C-5)

The likelihood function in equation (C-3) has two independent estimates, λ̂ − µ̂ and µ̂. The independence arises
from the independence of εit and Ft. Thus,

var(λ̂) = var((λ̂− µ̂) + µ̂) = var(λ̂− µ̂) + var(µ̂).

Note that ˆ̃
λ = λ̂ − µ̂ is exactly the same as the variance when µ is not estimated from Section C.1. This makes

clear that the greater efficiency of the test in Section C.1 is that it tests Hλ=µ
0 : λ − µ without having to directly

estimate µ. Testing the hypothesis Hλ=µ
0 by estimating µ incurs the additional variance of µ, which is a nuisance

parameter.
Finally, consider the likelihood function, without the constant, of the system with λ̃ augmented with the non-

zero mean F̃t:

L = −
∑
t

(Rt − α− β(F̃t + λ̃))′Ω−1ε (Rt − α− β(F̃t + λ̃)) +
∑
t

1

2σ2
F

(F̃t − µ)2. (C-6)
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For the parameter vector θ = (α λ̃ µ β), the information matrix is given by:

(
E

[
− ∂2L

∂Θ∂Θ′

])−1
=

1

T


1′Ω−1ε 1 1′Ω−1ε β 0 1′Ω−1ε (λ̃+ µ)

β′Ω−1ε 1 β′Ω−1ε β 0 β′Ω−1ε (λ̃+ µ)
0 0 σ2

F 0

(λ̃+ µ)′Ω−1ε 1 (λ̃+ µ)′Ω−1ε β 0 ((λ̃+ µ)2 + σ2
F )Ω−1ε


−1

. (C-7)

This explicitly shows that the estimate µ̂ is uncorrelated with ˆ̃
λ and since λ̃ + µ = λ, the standard errors for the

system with λ and this system with λ̃ are identical. Whatever the mean of F̃t, λ̃ 6= 0 implies that the factor is
priced.

C.3 GMM
We work with the data-generating process for

Rt = α+Bλ̃+BF̃t + εt, (C-8)

with the distribution-free assumption that E[εt] = 0 for K factors in F̃t with mean µ and N stocks in Rt. We write
this as

R̃t ≡ Rt −BF̃t = Xγ + εt, (C-9)

for γ = [α λ̃] which is K + 1 and X = [1 B] which is N × (K + 1). We test Hλ=µ
0 by testing λ̃ = 0.

The Fama-MacBeth (1973) estimator is given by running cross-sectional regressions at time t:

γ̂t = (X̂ ′WX̂)−1X̂ ′WR̃t,

for weighting matrix W , X̂ = [1 B̂], and then averaging across all γ̂t:

γ̂ =
1

T

∑
γt = (X̂ ′WX̂)−1X̂ ′W ¯̃R, (C-10)

where ¯̃R = 1
T

∑
R̃t. The beta estimates are given by time-series regressions:

B̂ =

[
1

T

∑
(R̃t − ¯̃R)(F̃t − ¯̃F )′

]
Σ̂−1F , (C-11)

where ¯̃F ≡ µ̂ = 1
T

∑
F̃t and Σ̂F = 1

T

∑
(F̃t − ¯̃F )(F̃t − ¯̃F )′.

Assume the moment conditions

E[h1t] = E[R̃t − ER̃t] = 0 (N × 1)

E[h2t] = E
[
[(F̃t − EF̃t)

′Σ−1F λ]εt

]
= 0 (N × 1), (C-12)

with ht = (h1t h2t) satisfying the Central Limit Theorem

1√
T

∑
ht

d→ N(0,Σh),

where

Σh =

[
Σε 0
0 (λ′Σ−1F λ)Σε

]
.

The Fama-MacBeth estimator is consistent, as shown by Cochrane (1991) and Jagannathan, Skoulakis and
Wang (2002), among others. To derive the limiting distribution of γ̂, define D = (X ′WX)−1X ′W with its
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sample counterpart D̂ and write

γ̂t = D̂R̃t

= D̂[X̂γ + (B − B̂)λ+ R̃t −Xγ]

γ̂t − γ = D̂[(B − B̂)λ+ (R̃t − ER̃t)].

Thus, the asymptotic distribution is given by

√
T

(
1

T

∑
γ̂t − γ

)
= D̂

[
− 1√

T

∑
εt(F̃t − ¯̃F )′Σ̂−1F λ+

1√
T

∑
(R̃t − ER̃t)

]
d→ D

[
IN 0
0 −IN

]
1√
T

∑
ht

d→ N(0,Σγ), (C-13)

where
Σγ = (1 + λ′Σ−1F λ)DΩεD

′. (C-14)

Note the E[h2t] set of moment conditions define the factor betas. We refer to the case where W = I as “GMM”
standard errors, which are given by

Σγ = (1 + λ′Σ−1F λ)(X ′X)−1X ′ΩεX(X ′X)−1. (C-15)

For choice of W = Ω−1ε we have
Σγ = (1 + λ′Σ−1F λ)(X ′Ω−1ε X)−1, (C-16)

which is the same as maximum likelihood. Equation (C-16) is the matrix counterpart of equations (8) and (9) in
the main text for a single factor model. We use equation (C-16) to compute standard errors for multiple factors.

It is instructive to note the difference with Shanken (1982). Consider the model

Rt = α+Bλ+B(F̃t − µ) + εt.

To derive the Shanken (1982) standard errors for the Fama-MacBeth estimates γ̂ = [α̂ λ̂], set up the moment
conditions

E[h∗1t] = E[Rt − ERt] = 0

E[h∗2t] = E
[
[(F̃t − EF̃t)

′Σ−1F λ]εt

]
= 0.

The difference between the Shanken test and our test is that we use the moment conditions E[h1t] which utilize R̃t
in equation (C-12) rather than the moment conditions E[h∗1t]. Both cases use the same Fama-MacBeth estimator
in equation (C-10). With the following Central Limit Theorem for ht = (h∗1t h

∗
2t):

1√
T

∑
h∗t

d→ N(0,Σ∗h),

where

Σ∗h =

[
BΣFB

′ + Σε 0
0 (λ′Σ−1F λ)Σε

]
,

we can derive the Shanken (1982) standard errors (see also Jagannathan, Skoulakis and Wang, 2002). For the case
of K = 1, the standard errors of γ̂ reduce to those in equation (C-4).
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D The Approach of Fama and French (1992)
In the second-stage of the Fama and MacBeth (1973) procedure, excess returns, Ri, are regressed onto estimated
betas, β̂i yielding a factor coefficient of

λ̂ =
cov(Ri, β̂i)

var(β̂i)
.

In the approach of Fama and French (1992), P portfolios are first created and then the individual stock betas
are assigned to be the portfolio beta to which that stock belongs, as in equation (17). The numerator of the Fama-
MacBeth coefficient can be written as:

cov(Ri, β̂i) =
1

N

∑
i

(Ri − R̄)(β̂i − β̄)

=
1

P

∑
p

 1

(N/P )

∑
i∈p

(Ri − R̄)

 (β̂p − β̄)

=
1

P

P∑
p=1

(R̂p − R̄)(β̂p − β̄)

= cov(R̂p, β̂p), (D-1)

where the first to the second line follows because of equation (17). The denominator of the estimated risk premium
is

var(β̂i) =
1

N

∑
i

(β̂i − β̄)2

=
1

P

∑
p

1

(N/P )

∑
i∈p

(β̂i − β̄)2

=
1

P

P∑
p=1

(β̂p − β̄)2

= var(β̂p), (D-2)

where the equality in the third line comes from β̂p = β̂i for all i ∈ p, with N/P stocks in portfolio p having
the same value of βp for their fitted betas. Thus, the Fama and French (1992) procedure will produce the same
Fama-MacBeth (1973) coefficient as using only the information from p = 1, . . . , P portfolios.

E Cross-Sectional Moments For Normally Distributed Betas
We assume that stocks have identical idiosyncratic volatility, σ, and so idiosyncratic volatility does not enter into
any cross-sectional moments with beta. If beta is normally distributed with mean µβ and standard deviation σβ ,
the relevant cross-sectional moments are:

Ec(β
2) = σ2

β + µ2
β

varc(β2) = σ2
β . (E-1)

We form P portfolios each containing equal mass of ordered betas. Denoting N(·) as the cumulative distribu-
tion function of the standard normal, the critical points δp corresponding to the standard normal are

N(δp) =
p

P
, p = 1, ..., P − 1, (E-2)
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and we define δ0 = −∞ and δP = +∞. The points ζp, p = 1, . . . , P − 1 that divide the stocks into different
portfolios are given by

ζp = µβ + σβδp. (E-3)

The beta of portfolio p, βp, is given by:

βp =

∫ δp
δp−1

(µβ + σβδ)e
− δ22 dδ√

2π∫ δp
δp−1

e−
δ2

2
dδ√
2π

= µβ +
Pσβ√

2π

(
e−

δ2p−1
2 − e−

δ2p
2

)
. (E-4)

Therefore, the cross-sectional moments for the P portfolio betas are:

Ec[βp] = µβ

Ec[β
2
p ] =

1

P

P∑
p=1

(
µβ +

Pσβ√
2π

(
e−

δ2p−1
2 − e−

δ2p
2

))2

= µ2
β + P

σ2
β

2π

P∑
p=1

(
e−

δ2p−1
2 − e−

δ2p
2

)2

varc[βp] = P
σ2
β

2π

P∑
p=1

(
e−

δ2p−1
2 − e−

δ2p
2

)2

. (E-5)

F Standard Errors with Cross-Correlated Residuals
We compute standard errors taking into account cross-correlation in the residuals using two methods: specifying a
one-factor model of residual comovements and using industry factors.

F.1 Residual One-Factor Model
For the one-factor model, we assume that the errors for stock or portfolio i in month t have the structure

εit = ξiut + vit (F-1)

where ut ∼ N(0, σ2
u) and vit ∼ N(0, σ2

vi) is IID across stocks i = 1, ..., N . We write this in matrix notation for
N stocks:

εt = Ξut + Σvvt, (F-2)

where Ξ is a N × 1 vector of residual factor loadings, Σv is a diagonal matrix containing {σ2
vi}, and vt =

(v1t, ..., vNt) is a N × 1 vector of shocks. The residual covariance matrix, Ωε, is then given by

Ωε = Ξσ2
uΞ′ + Σv. (F-3)

We estimate ut by the following procedure. We denote eit as the fitted residual for asset i at time t in the
first-pass regression

eit = Rit − âi − β̂iFt. (F-4)

We take an equally weighted average of residuals, ũt,

ũt =
1

N

∑
i

eit, (F-5)

and construct ut to be the component of ũt orthogonal to the factors, Ft, in the regression

ũt = c0 + c1Ft + ut. (F-6)
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We set σ̂2
u to be the sample variance of ut. To estimate the error factor loadings, ξi, we regress eit onto ut for each

asset i. The fitted residuals are used to obtain estimates of σ2
vi. This procedure obtains estimates Ξ̂ and Σ̂v .

F.2 Industry Residual Model
In the industry residual model, we specify ten industry portfolios: durables, nondurables, manufacturing, en-
ergy, high technology, telecommunications, shops, healthcare, utilities, and other. The SIC definitions of these
industries follow those constructed by Kenneth French at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
Data Library/det 10 ind port.html. We assume that the errors for stock or portfolio i have the structure

εit = ξ′iut + vit, (F-7)

where ξi is a 10 × 1 vector of industry proportions, the jth element of which is the fraction of stocks in portfolio
i that belong to industry j. If i is simply a stock, then one element of ξi is equal to one corresponding to the
industry of the stock and all the other elements are equal to zero. The industry factors are contained in ut, which
is a 10 × 1 vector of industry-specific returns. We assume ut ∼ N(0,Σu). We can stack all N stocks to write in
matrix notation:

Ωε = ΞΣuΞ′ + Σv, (F-8)

where Ξ is N × 10 and Σv is a diagonal matrix containing {σ2
vi}.

The industry residuals are specified to be uncorrelated with the factors Ft. To estimate Σu, we regress each
of the ten industry portfolios onto Ft in time-series regressions, giving industry residual factors ujt for industry j.
We estimate Σu as the sample covariance matrix of {ujt}.

To estimate Σv , we take the residuals eit for asset i in equation (F-4) and define

v̂it = eit − ξ̂′iut. (F-9)

We estimate Σv to be the sample covariance matrix of {v̂it}.
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Table 1: Summary Statistics of Betas and Idiosyncratic Volatilities

Means Stdev Correlations

β̂ σ̂ ln σ̂ β̂ σ̂ ln σ̂ (β̂, σ̂) (β̂, ln σ̂) No Obs

1970-1975 1.24 0.43 -0.93 0.55 0.19 0.42 0.48 0.49 2934
1975-1980 1.24 0.39 -1.04 0.58 0.20 0.47 0.38 0.45 3218
1980-1985 1.08 0.45 -0.92 0.63 0.27 0.49 0.25 0.30 3500
1985-1990 1.03 0.49 -0.85 0.52 0.29 0.52 0.05 0.13 3764
1990-1995 0.94 0.52 -0.82 0.95 0.37 0.56 -0.05 0.06 4000
1995-2000 1.01 0.65 -0.57 0.78 0.38 0.50 0.51 0.55 4363
2000-2005 1.35 0.54 -0.75 1.04 0.30 0.53 0.52 0.55 3493
2005-2010 1.33 0.51 -0.82 0.71 0.31 0.51 0.45 0.47 3009
2010-2015 1.20 0.40 -1.08 0.70 0.26 0.55 0.21 0.28 2552

Overall 1.14 0.50 -0.85 0.76 0.31 0.53 0.26 0.31 30833

The table reports the summary statistics of estimated betas (β̂) and idiosyncratic volatility (σ̂) over each five
year sample and over the entire sample. We estimate betas and idiosyncratic volatility in each five-year non-
overlapping period using time-series regressions of monthly excess stock returns onto a constant and monthly
excess market returns. The idiosyncratic stock volatilities are annualized by multiplying by

√
12. The last

column reports the number of stock observations.
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Table 2: Variance Ratio Efficiency Losses in Monte Carlo simulations

α Efficiency Loss λ Efficiency Loss

Number of
Portfolios P 10 25 50 100 250 10 25 50 100 250

Panel A: Sorting on True Betas, Correlated Betas and Idiosyncratic Volatility

Mean 2.93 2.79 2.73 2.66 2.54 2.97 2.80 2.73 2.67 2.54
StDev 0.14 0.13 0.13 0.12 0.11 0.13 0.12 0.12 0.11 0.10
Panel B: Correlated Betas and Idiosyncratic Volatility

Mean 5.17 5.07 4.96 4.78 4.37 4.97 4.86 4.75 4.60 4.23
StDev 0.44 0.42 0.40 0.38 0.33 0.40 0.39 0.37 0.35 0.31
Panel C: Correlated Betas, Idiosyncratic Volatility, Cross-Correlated Residuals

Mean 38.9 30.2 23.1 16.3 9.4 21.2 16.7 13.0 9.7 6.5
StDev 20.9 15.7 11.6 7.5 3.5 16.6 11.8 8.0 4.8 2.0
Panel D: Correlated Betas, Idiosyncratic Volatility, Cross-Correlated Residuals
Entry and Exit of Firms

Mean 43.0 34.2 26.9 19.6 11.8 24.1 19.4 15.7 12.0 8.3
StDev 22.0 16.8 12.7 8.5 4.1 18.5 13.2 9.2 5.6 2.4

The table reports the efficiency loss variance ratios varp(θ̂)/var(θ̂) for θ = α or λ where varp(θ̂) is computed
using P portfolios and var(θ) is computed using all stocks. We simulate 10,000 small samples of T = 60
months with N = 5, 000 stocks using the model in equation (21). Panel A sorts stocks by true betas in each
small sample and the remaining panels sort stocks by estimated betas. All the portfolios are formed equally
weighting stocks at the end of the period. Panels B-D estimate betas in each small sample by regular OLS and
the standard error variances are computed using the true cross-sectional betas and idiosyncratic volatilities.
Panels A and B assume correlated betas and idiosyncratic volatility following the process in equation (22).
Panel C introduces cross-sectionally correlated residuals across stocks following equation (24). In Panel D,
firms enter and exit stochastically and upon entry have a log-logistic model for duration given by equation
(25). To take a cross section of 5,000 firms that have more than 36 months of returns, on average, requires a
steady-state firm universe of 6,607 stocks.
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Note to Table 3
The point estimates of α and λ for the single factor, MKT , in equation (1) are reported over all stocks (Panel
A) and various portfolio sortings (Panels B and C). The betas are estimated by running a first-pass OLS
regression of monthly excess stock returns onto monthly excess market returns over non-overlapping five-
year samples beginning in January 1971 and ending in December 2015. All stock returns in each five-year
period are stacked and treated as one panel. We use a second-pass cross-sectional regression to compute α̂ and
λ̂. Using these point estimates we compute the various standard errors (SE) and absolute values of t-statistics
(|t-stat|). We compute the maximum likelihood standard errors (equations (12) and (13)) in the columns
labeled “Max Lik” and GMM standard errors, detailed in Appendix C, in the columns labeled “GMM”. We
allow for cross-correlated residuals computed using a one-factor model or industry classifications, which are
described in Appendix F. The three last columns labeled “β̂ Cross Section” list various statistics of the cross-
sectional beta distribution: the cross-sectional standard deviation, σc(β̂), and the beta values corresponding
to the 5%- and 95%-tiles of the cross-sectional distribution of beta. In Panel B we form “ex-post” portfolios,
which are formed in each five-year period by grouping stocks into equally-weighted P portfolios based on
realized estimated betas over those five years. In Panel C we form “ex-ante” portfolios by grouping stocks
into portfolios at the beginning of each calendar year, ranking on the estimated market beta over the previous
five years. Equally-weighted portfolios are created and the portfolios are held for twelve months to produce
monthly portfolio returns. The portfolios are rebalanced annually at the beginning of each calendar year. The
first estimation period is January 1966 to December 1970 to produce monthly returns for the calendar year
1971 and the last estimation period is January 2010 to December 2014 to produce monthly returns for 2015.
Thus, the sample period is exactly the same as using all stocks and the ex-post portfolios. After the ex-ante
portfolios are created, we follow the same procedure as Panels A and B to compute realized OLS market
betas in each non-overlapping five-year period and then estimate a second-pass cross-sectional regression. In
both Panels B and C, the second-pass cross-sectional regression is run only on the P portfolio test assets. All
estimates α̂ and λ̂ are annualized by multiplying the monthly estimates by 12.
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Table 4: Tests for Hλ=µ
0 (|T-statistics|) for the One-Factor Model

Residual Factor Industry Residuals

Num Ports P λ̂ (%) Max Lik GMM Max Lik GMM

µ̂MKT = 6.43%

All Stocks 4.79 10.16 1.56 9.32 2.98

“Ex-Post” Portfolios

5 5.07 1.95 1.02 1.20 0.88
10 5.03 2.34 1.08 1.58 1.10
25 4.88 3.20 1.29 2.38 1.63
50 4.87 3.77 1.35 2.93 1.98

“Ex-Ante” Portfolios

5 1.14 3.23 1.72 2.22 1.68
10 1.58 3.73 1.83 2.88 2.17
25 1.69 4.52 1.90 3.74 2.87
50 1.73 5.50 1.94 4.44 3.41

The table reports absolute values of t-statistics for testing if the cross-sectional risk premium, λ, is equal to the
time-series mean of the factor portfolio, µ, which is the hypothesis test Hλ=µ

0 for the one-factor model. The
maximum likelihood test and the GMM test, in the columns labeled “Max Lik” and “GMM”, respectively,
are detailed in Appendix C. We allow for cross-correlated residuals computed using a one-factor model or
industry classifications, which are described in Appendix F. The column labeled “λ̂” reports the annualized
estimate of the cross-sectional market risk premium, obtained by multiplying the monthly estimate by 12.
The data sample is January 1971 to December 2015.
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Table 5: Cross-Sectional Distribution of Fama-French (1993) Factor Loadings

Factor Loadings Ec(β̂) σc(β̂) 5% 95%

All Stocks β̂MKT 1.02 0.73 -0.01 2.24
β̂SMB 0.94 1.21 -0.52 2.91
β̂HML 0.18 1.21 -1.71 1.93

“Ex-Post” Portfolios

2× 2× 2 β̂MKT 1.03 0.54 0.25 1.75
β̂SMB 0.94 0.85 -0.07 2.17
β̂HML 0.17 0.85 -1.05 1.51

3× 3× 3 β̂MKT 1.03 0.61 0.14 2.02
β̂SMB 0.94 0.96 -0.27 2.53
β̂HML 0.17 0.97 -1.30 1.74

“Ex-Ante” Portfolios

2× 2× 2 β̂MKT 1.01 0.20 0.69 1.34
β̂SMB 0.88 0.37 0.35 1.54
β̂HML 0.22 0.29 -0.27 0.67

3× 3× 3 β̂MKT 1.01 0.23 0.60 1.37
β̂SMB 0.88 0.43 0.24 1.65
β̂HML 0.22 0.34 -0.30 0.74

The table reports cross-sectional summary statistics of estimated Fama-French (1993) factor loadings, β̂MKT ,
β̂SMB , and β̂HML. We report cross-sectional means, standard deviations (σc(β̂)), and and the estimated
factor loadings corresponding to the 5%- and 95%-tiles of the cross-sectional distribution. The factor loadings
are estimated by running a multivariate OLS regression of monthly excess stock returns onto the monthly
Fama-French (1993) factors (MKT , SMB, and HML) over non-overlapping five-year samples beginning
in January 1971 and ending in December 2015. All of the factor loadings in each five-year period are stacked
and treated as one panel. The “ex-post” portfolios are formed in each five-year period by grouping stocks
into P equally-weighted portfolios based on realized estimated factor loadings over those five years. We form
n×n×n portfolios using sequential sorts of n portfolios ranked on each of the Fama-French factor loadings
at the end of each five-year period. We sort first on β̂MKT , then on β̂SMB , and then finally on β̂HML. The
“ex-ante” portfolios are formed by grouping stocks into portfolios at the beginning of each calendar year
ranking on the estimated factor loadings over the previous five years. Equally-weighted, sequentially sorted
portfolios are created and the portfolios are held for twelve months to produce monthly portfolio returns.
The portfolios are rebalanced annually at the beginning of each calendar year. The first estimation period is
January 1966 to December 1970 to produce monthly returns for the calendar year 1971 and the last estimation
period is January 2010 to December 2014 to produce monthly returns for 2015.
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Table 6: Estimates of the Fama-French (1993) Model

Residual Factor Model Industry Residual Model

Max Lik GMM Max Lik GMM

Num Ports P Estimate (%) SE |t-stat| SE |t-stat| SE |t-stat| SE |t-stat|

Panel A: All Stocks

α̂ 2.43 0.16 14.76 0.91 2.67 0.33 7.41 0.80 3.03
λ̂MKT 5.05 0.16 31.18 0.63 8.05 0.18 28.58 0.47 10.72
λ̂SMB 6.79 0.10 67.17 0.84 8.10 0.11 61.81 0.64 10.59
λ̂HML 0.01 0.11 0.11 0.56 0.02 0.12 0.10 0.44 0.03

Panel B: “Ex-Post” Portfolios

2× 2× 2 α̂ 6.88 0.54 12.64 0.96 7.17 0.86 7.99 1.18 5.84
λ̂MKT 4.06 0.51 7.95 0.90 4.50 0.70 5.77 1.01 4.00
λ̂SMB 3.73 0.36 10.24 0.65 5.76 0.45 8.31 0.58 6.43
λ̂HML -2.99 0.32 -9.35 0.62 -4.80 0.47 -6.31 0.66 -4.51

3× 3× 3 α̂ 6.47 0.38 16.82 0.82 7.92 0.65 10.01 0.87 7.44
λ̂MKT 4.05 0.37 11.05 0.79 5.11 0.48 8.51 0.71 5.69
λ̂SMB 4.12 0.25 16.54 0.61 6.78 0.30 13.69 0.43 9.58
λ̂HML -2.77 0.24 -11.76 0.56 -4.97 0.33 -8.46 0.49 -5.64

Panel C: “Ex-Ante” Portfolios

2× 2× 2 α̂ 11.01 4.50 2.45 2.49 4.41 1.86 5.93 2.45 4.49
λ̂MKT -5.54 5.19 -1.07 3.51 -1.58 2.16 -2.57 2.87 -1.93
λ̂SMB 11.50 3.74 3.08 1.97 5.85 1.22 9.44 1.40 8.22
λ̂HML 1.64 3.91 0.42 1.93 0.85 1.40 1.17 1.85 0.89

3× 3× 3 α̂ 10.51 2.52 4.17 2.09 5.03 1.30 8.06 1.74 6.03
λ̂MKT -4.87 2.80 -1.74 2.89 -1.68 1.37 -3.56 1.98 -2.46
λ̂SMB 11.50 2.01 5.72 1.66 6.93 0.76 15.08 0.98 11.70
λ̂HML 0.86 1.95 0.44 1.59 0.54 0.91 0.94 1.23 0.70
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Note to Table 6
The point estimates α̂, λ̂MKT , λ̂SMB , and λ̂HML in equation (26) are reported over all stocks (Panel A) and
various portfolio sortings (Panels B and C). The betas are estimated by running a first-pass multivariate OLS
regression of monthly excess stock returns onto the monthly Fama-French (1993) factors (MKT , SMB, and
HML) over non-overlapping five-year samples beginning in January 1971 and ending in December 2015.
All of the stock returns in each five-year period are stacked and treated as one panel. We use a second-pass
cross-sectional regression to compute the cross-sectional coefficients. Using these point estimates we com-
pute the various standard errors (SE) and absolute values of t-statistics (|t-stat|). We compute the maximum
likelihood standard errors (equations (12) and (13)) in the columns labeled “Max Lik” and GMM standard
errors, detailed in Appendix C, in the columns labeled “GMM”. We allow for cross-correlated residuals com-
puted using a one-factor model or industry classifications, which are described in Appendix F. In Panel B
we form “ex-post” portfolios, which are formed in each five-year period by grouping stocks into P equally-
weighted portfolios based on realized estimated factor loadings over those five years. We form n × n × n
portfolios using sequential sorts of n portfolios ranked on each of the Fama-French factor loadings at the end
of each five-year period. We sort first on β̂MKT , then on β̂SMB , and then finally on β̂HML. In Panel C we
form “ex-ante” portfolios by grouping stocks into portfolios at the beginning of each calendar year, ranking
on the estimated factor loadings over the previous five years. Equally-weighted, sequentially sorted portfolios
are created and the portfolios are held for twelve months to produce monthly portfolio returns. The portfolios
are rebalanced annually at the beginning of each calendar year. The first estimation period is January 1966
to December 1970 to produce monthly returns for the calendar year 1971 and the last estimation period is
January 2010 to December 2014 to produce monthly returns for 2015. Thus, the sample period is exactly
the same as using all stocks and the ex-post portfolios. After the ex-ante portfolios are created, we follow
the same procedure as Panels A and B to compute realized OLS factor loadings in each non-overlapping
five-year period and then estimate a second-pass cross-sectional regression. In both Panels B and C, the
second-pass cross-sectional regression is run only on the P portfolio test assets. All estimates are annualized
by multiplying the monthly estimates by 12.
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Table 7: Tests for Hλ=µ
0 (|T-statistics|) for the Fama-French (1993) Model

Residual Factor Industry Residuals

Num Ports P Estimate (%) Max Lik GMM Max Lik GMM

µ̂MKT = 6.43%, µ̂SMB = 2.16%, µ̂HML = 3.90%

All Stocks λ̂MKT 5.05 8.51 2.20 7.80 2.92
λ̂SMB 6.79 45.83 5.53 42.17 7.23
λ̂HML 0.01 35.91 6.90 31.94 8.90

“Ex-Post” Portfolios

2× 2× 2 λ̂MKT 4.06 4.64 2.63 3.37 2.33
λ̂SMB 3.73 4.32 2.43 3.50 2.71
λ̂HML -2.99 21.52 11.04 14.52 10.39

3× 3× 3 λ̂MKT 4.05 6.49 3.00 5.00 3.34
λ̂SMB 4.12 7.87 3.22 6.51 4.56
λ̂HML -2.77 28.31 11.96 20.37 13.58

“Ex-Ante” Portfolios

2× 2× 2 λ̂MKT -5.54 7.22 3.41 5.55 4.18
λ̂SMB 11.50 8.88 4.75 7.67 6.68
λ̂HML 1.64 2.37 1.17 1.61 1.22

3× 3× 3 λ̂MKT -4.87 10.38 3.91 8.25 5.71
λ̂SMB 11.50 13.75 5.63 12.25 9.50
λ̂HML 0.86 4.75 1.91 3.33 2.48

The table reports absolute values of t-statistics for testing if the cross-sectional risk premium, λ, is equal to the
time-series mean of the factor portfolio, µ, which is the hypothesis testHλ=µ

0 for the Fama and French (1993)
three-factor model. The maximum likelihood test and the GMM test, in the columns labeled “Max Lik” and
“GMM”, respectively, are detailed in Appendix C. We allow for cross-correlated residuals computed using
a one-factor model or industry classifications, which are described in Appendix F. Estimates of the cross-
sectional factor risk premia are annualized by multiplying the monthly estimate by 12. The data sample is
January 1971 to December 2015.
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Note to Table 7
We estimate the Fama-French (1993) model (equation (26)) using all stocks (Panel A), 5×5 ex-ante portfolios
sorted on market beta and book-to-market ratios (upper part of Panel B), and 5× 5 ex-ante portfolios sorted
on size and book-to-market ratios (lower part of Panel B). The betas are estimated by running a first-pass
multivariate OLS regression of monthly excess stock returns onto the monthly Fama-French (1993) factors
(MKT , SMB, and HML) over non-overlapping five-year samples beginning in January 1971 and ending
in December 2015. The stock returns in each five-year period are stacked and treated as one panel. We
use a second-pass cross-sectional regression to compute the cross-sectional coefficients. Using these point
estimates we compute the various standard errors (SE) and absolute values of t-statistics (|t-stat|). We com-
pute the maximum likelihood standard errors (equations (12) and (13)) in the columns labeled “Max Lik” and
GMM standard errors, detailed in Appendix C, in the columns labeled “GMM”. We allow for cross-correlated
residuals computed using a one-factor model or industry classifications, which are described in Appendix F.
The stock universe in this table differs from Tables 6 and 7 as we require all stocks to have observable market
capitalization and book-to-market ratios. The stock universe in Panels A and B is the same. Panel A considers
a cross-sectional regression with a constant and only factor loadings and also a specification which includes
the book-to-market ratio (B/M ). In Panel B, we form “ex-ante” portfolios by grouping stocks into portfolios
at the beginning of each calendar year, ranking on market betas and book-to-market ratios or market capi-
talization and book-to-market ratios. The book-to-market ratios are constructed from COMPUSTAT as the
ratio of book equity divided by market value. Book equity is defined as total assets (COMPUSTAT Data 6)
minus total liabilities (COMPUSTAT Data 181). Market value is constructed from CRSP and defined as price
times shares outstanding. We match fiscal year-end data for book equity from the previous year, t− 12, with
time t market data. Equally-weighted portfolios are created and the portfolios are held for twelve months to
produce monthly portfolio returns. After the ex-ante portfolios are created, we follow the same procedure as
Panel A to compute realized OLS factor loadings in each non-overlapping five-year period and then estimate
a second-pass cross-sectional regression. In Panel B, the second-pass cross-sectional regression is run only on
the P portfolio test assets. The coefficients on α, βMKT , βSMB , and βHML are annualized by multiplying
the monthly estimates by 12.
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Figure 1: Standard Errors for β̂ Using All Stocks or Portfolios
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Note to Figure 1
We assume a single factor model where Ft ∼ N(0, (0.15)2/12) and the factor risk premium λ = 0.06/12.
Betas are drawn from a normal distribution with mean µβ = 1.1 and standard deviation σβ = 0.7 and
idiosyncratic volatility across stocks is constant at σi = σ = 0.5/

√
12. We assume a sample of size T = 60

months with N = 1000 stocks. We graph two standard error bars of β̂ for the various percentiles of the true
distribution marked in circles for percentiles 0.01, 0.02, 0.05, 0.1, 0.4, 0.6, 0.8, 0.9, 0.95, 0.98, and 0.99.
These are two-standard error bands for individual stock betas. The standard error bands for the portfolio
betas for P = 25 portfolios (top panel) and P = 5 portfolios (bottom panel) are marked with small crosses
and connected by the red line. These are graphed at the percentiles which correspond to the mid-point mass
of each portfolio. The formula for var(β̂) is given in equation (18) and the computation for the portfolio
moments are given in Appendix E.
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Figure 2: Empirical Distributions of Betas and Idiosyncratic Volatilities
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The figure plots an empirical histogram over the 15,256 firms in non-overlapping five year samples from
1971-2015, computed by OLS estimates. Panel A plots the histogram of market betas while Panel B plots the
histogram of annualized log idiosyncratic volatility.
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Figure 3: One-Factor Risk Premium Estimates with Ex-Ante Portfolios
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The figure plots λ̂ in a one-factor model using P “ex-ante” portfolios in blue circles. The ex-ante portfolios
are formed by grouping stocks into portfolios at the beginning of each calendar year ranking on the estimated
market beta over the previous five years. Equally-weighted portfolios are created and the portfolios are held
for twelve months to produce monthly portfolio returns. The estimate obtained using all individual stocks is
labeled “All” on the x-axis and is graphed in the red square. The first-pass beta estimates are obtained using
non-overlapping five-year samples from 1971-2015 with OLS.
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