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Abstract

The majority of countries that switched to funded private account retirement systems opted

to complement such systems with explicit guarantees to retirees and agents saving for retirement.

The motivation was that a social insurance system should provide a minimum standard of

living in retirement. This paper studies the optimal design of such guarantees. Particular

attention is paid to moral hazard, i.e. the incentive to take more risk once the guarantees are in

place. Surprisingly, the simple policy of complementing private accounts with a fixed annuity

in retirement is shown to be an optimal policy in the baseline model. It is also shown that

the standard practice of pricing retirement benefit guarantees as contingent claims and then

choosing the minimum cost guarantee may be a misleading indicator for welfare comparisons

between alternative policies.
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1 Introduction

In the last few decades several countries around the world have experienced dramatic changes in

the ways their citizens prepare for retirement. Many countries with substantially different economic

structures and histories like Australia, Chile, Mexico and Sweden have replaced mostly unfunded

with funded retirement systems1. Even in many countries where such changes have not occurred,

there has been intense political debate on proposals to switch from unfunded to funded retirement

systems. Under such systems individuals are able to invest their savings for retirement in a portfolio

of stocks and bonds of their choosing. The switch from defined benefit to defined contribution plans

in the private sector has had similar effects.

These trends imply an increased importance of financial markets and especially of the stock

market for retirement savings. A common argument given by proponents of the above mentioned

changes is that the rate of return for retirement funds in the stock market can be substantially

higher than the rate of return in a pay as you go system -especially in the presence of global

aging. Additionally, agents can use the added flexibility to better tailor their portfolio to their own

preferences.

A risk that is recognized uniformly by proponents and opponents of the move towards retirement

systems that are based on the principles of private choice and full funding is that they are too

exposed to market risk: A downturn in the stock market could result in substantial losses amongst

retirees, especially if agents do not appropriately take such risks into account. Furthermore, the

aggregate nature of a stock market downturn, would likely create pressures to “bailout” the investors

who lost their retirement savings, attenuating the incentives to hedge against stock market drops.

A commonly proposed remedy for this problem is to offer explicit government guarantees to

current and prospective retirees: Variants of such proposals call for the government to explicitly

guarantee a minimum level of retirement income, or a minimum return on retirement assets or

returns on a benchmark portfolio. Needless to say, this raises the concern of moral hazard. As

Becker (2005) put it in the context of the US discussion on privatizing social security:

As in Chile and other countries with private retirement accounts, the government

would guarantee retirees a minimum income - similar to, but larger than, the present

1Mitchell and Lachance (2003) report that more than 20 countries have established individual accounts.
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minimum Social Security guarantee. Unfortunately, such guarantees create a “moral

hazard” - that is savers may want to make risky investments that give high payoffs if

they succeed because the government partly bails them out. Or they may not save at

all. [Becker (2005)]

Despite this concern with moral hazard, a very large number of countries that have made the

switch to a fully funded system have accompanied this switch with explicit guarantees to retirees.

For instance, in Chile retirees are guaranteed a minimum level of retirement income, irrespective of

the level of their funds or their withdrawals2. The idea to include such guarantees was also present

in the discussion to privatize the U.S. social security system3. Presumably, such guarantees are so

popular for the same reason that led to the very appearance of social security systems in Europe

130 years ago: namely to provide a minimum standard of living to people who cannot rely on their

labor income any longer.

Accepting the (political) necessity of such complements to fully funded systems leads to a host

of questions: What form should they take? Should the government guarantee a minimum income,

a minimum rate of return, or a minimum level of assets upon entering retirement? If individuals

reduce their savings and increase the risk in their portfolios in response to such guarantees, how

successful are such guarantees likely to be in achieving the stated goal? How large is the cost of

such guarantees likely to be and who will finance them?

The existing literature has addressed mostly issues related to the cost and the financing of such

guarantees4. This research has increased our understanding of the quantitative magnitude of such

guarantees. However, to the best of my knowledge, two important issues have not been addressed

yet:

a) First, the existing literature has not developed a normative theory, in order to guide the

2See e.g. Pennacchi (1999) for a description of the Chilean and other guarantees in various Latin American

countries.
3See e.g. Feldstein (2005b), Feldstein (2005a), Feldstein and Ranguelova (2001). See also the study by the

Congressional Budget Office on the cost of such guarantees. [Sinclair, Lucas, Rehder-Harris, Simpson, and Topoleski

(2006)]
4See Feldstein and Ranguelova (2001), Feldstein (2005a), Mitchell and Lachance (2003), Constantinides, Donald-

son, and Mehra (2002), Smetters (2001), Pennacchi (1999), Sinclair, Lucas, Rehder-Harris, Simpson, and Topoleski

(2006).
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choice of one type of guarantee over another. Different countries have taken different approaches

by guaranteeing retirement income, returns on assets, including mandatory annuities etc. This of

course raises the question of finding an optimal way of achieving a minimum standard of living in

retirement. Which magnitude (retirement income, assets, returns) should be guaranteed and to

what extent?

b) Second and more importantly, existing papers do not take into account the distortions that

would be introduced by government guarantees. Even though the importance of this issue is

recognized throughout the literature5, typically the guarantees are priced assuming that individual

behavior is not going to be significantly affected by the presence of the guarantee. However, as a

matter of theory, it is not clear why the presence of guarantees would have a negligible effect on

individual behavior6.

In this paper the goal is to address these issues and develop an optimality theory of guarantees

in the presence of moral hazard.

The paper takes as a starting point that the society in the model has decided to switch to a

fully funded system and avoid all pay as you go features in social security - presumably because

pay as you go features are viewed as too distortionary. Understanding if that choice is optimal

or not and how the transition between the two systems is going to take place is the subject of a

voluminous literature and is not addressed here7.

To motivate the need for guarantees in such a fully funded system, I assume a discrepancy

between a social planner’s and an individual agent’s objectives. The social planner would like to

see retired agents provide themselves with a certain minimum standard of living in retirement, but

the agents will not necessarily choose to do so. There are a multitude of reasons why that may be the

case: On behavioral grounds one could argue that agents may have time inconsistent preferences,

5As Feldstein (2005b) points out in his presidential address “Social Insurance programs generally involve a tradeoff

of preotection and distortion”.
6Actually one might expect the opposite: The seminal paper by Bodie, Merton, and Samuelson (1992) illustrates

that if an agent can expect to receive some income in the future, the agent’s portfolio will contain a component that

will perfectly offset variations in the net present value of that income. Viewing guarantees as an anticipated source

of income and taking the Bodie, Merton, and Samuelson (1992) argument to its logical conclusion, should lead one

to conjecture that such guarantees will be perfectly offset by the agent’s portfolio choice.
7See e.g. Krueger and Kubler (2006), Ball and Mankiw (2001) for some recent examples on the status of this

debate.
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so that there is a discrepancy between the choices that they would like to make ex-ante and the

actions they choose ex-post. On rational grounds one could argue that retired agents may anticipate

government bailouts in the event of a stock market crisis, financed by raising distortionary taxes

on the young. This distortion is external to the retirees, thus providing an alternative motivation

for the wedge between the central planner’s and the agents’ objectives.

Whatever the exact reason, the wedge between the central planner’s and the agent’s objective

leads to the same dynamic moral hazard formulation for the problem: In a first step the central

planner chooses (optimally) a process of transfers for the agent and then the agent chooses savings

and portfolio strategies taking the transfers as given. To avoid the perfect “offsetting” of the gov-

ernment transfers by increased risk taking, the model imposes a borrowing constraint, by requiring

that the agent’s financial wealth always stay non-negative8. Given the backdrop of a fully funded

system and the normative nature of the analysis, the baseline model considers the case where the

guarantees are fully funded by raising appropriate taxes on the agent while she is working9.

The first result of the paper is the derivation of an upper bound on the welfare that any set of

transfers can attain. The second result is to illustrate that there exist multiple government policies

that are optimal. Interestingly, the simplest conceivable policy of just transferring a constant income

stream to the agent in retirement is optimal. However, an appropriate type of portfolio insurance

policy that guarantees a minimum return on the agent’s retirement portfolio -after some cumulated

losses- is also optimal. A noteworthy implication of the analysis is that these two policies are

equivalent from a welfare perspective, even though they are associated with substantially different

actuarial costs. This surprising finding implies that just focusing on the cost of guarantees, as is

routinely done in the literature and policy discussions may be misleading for welfare comparisons.

An additional outcome of the analysis, which is of practical importance, is that it derives

explicitly a minimum level of funds that need to be available when entering retirement, if there is to

exist any post-retirement set of transfers that will “keep” the agent’s post-retirement consumption

above the required minimum level. This helps one compute the income taxes that would have to be

levied on the agent while she is working in order to ensure that such guarantees can be prefunded.

It is also shown that the presence of moral hazard will raise the magnitude of these minimum assets

8 It is also shown that this constraint arises endogenously as long as the government outlaws securitization of future

government transfers.
9This is in contrast to e.g. Smetters (2001) where guarantees are unfunded, i.e. pay when needed.
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and the associated taxes.

Simple closed form solutions are given for all quantities. An interesting result is that the presence

of moral hazard will tend to substantially magnify the amount of transfers that are required to

ensure a minimum standard of living.

In summary, this paper lends support to the view expressed by Feldstein (2005b) that by

combining elements of a fully funded defined contribution system with some explicit guarantees

can achieve the goal of making the retirement system robust to market downturns, even when one

takes account of the “moral hazard” effects. The model presented here suggests that there may

be many equivalent ways to achieve the goal of a minimum standard of living in retirement and

just looking at their costs can be misleading. Under certain assumptions, it also suggests that a

particularly simple and optimal way of achieving the stated goal is to introduce a minimum constant

“fixed annuity” feature next to a purely privatized “defined contribution” system.

The paper is structured as follows. Section 2 sets up the model and briefly lays out the reasons

for government intervention. Section 3 introduces a government with the task of keeping the

agent’s consumption above a minimum level by usage of appropriate taxes and transfers. Section

4 considers the agent’s reaction to the presence of such intervention. Section 5 derives an upper

bound to welfare (which coincides with the government objective function) no matter which set of

admissible taxes/transfers is utilized. Section 6 illustrates two distinct ways of attaining that upper

bound, which are hence optimal. Section 7 discusses the cost involved in these transfer schemes

and identifies the lowest amount of funds that need to be available in order to achieve the stated

goal of guaranteeing a minimum level of retirement consumption. Section 8 discusses extensions to

heterogenous incomes and arbitrary stochastic discount factors. Section 9 concludes.

2 The model

2.1 Agents, preferences, and endowments

The model is very similar to the small open economy version of Blanchard (1985). There is a

continuum of identical agents with mass 1. At each point an agent faces a constant probability of

death q per unit of time dt, and newly born agents also arrive at the same rate. To focus on the
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moral hazard aspects of guarantees and simplify the setup, I will assume away all heterogeneity

in preferences and incomes. In particular, all agents have constant relative risk aversion γ, and a

constant discount rate ρ, so that each agent who is born at time T1 aims to maximize

FT1 = ET1

Z ∞

T1

e−(ρ+q)(s−T1)
(cs)

1−γ

1− γ
ds (1)

Purely for empirical relevance, I will focus on the case γ ≥ 1. It is only a matter of making a
few additional technical assumptions to extend the results to γ < 1. Once born, agents are endowed

with a non-tradeable constant income stream of Y per unit of time dt. That income stops after a

duration of time equal to T. After this point of time the agent can only rely on her assets to sustain

herself. Agents will be referred to as “workers” while they receive labor income and will be referred

to as “retirees” once they cannot expect to receive any further income.

2.2 Investment opportunity set

Agents can invest in a riskless and a risky asset. The extension to multiple risky assets is straightfor-

ward, and is left out. As is quite standard in the literature that studies incentive problems between

a central planner and agents, I will fix the rates of return that agents can earn when accessing

financial markets. Alternatively put, I will consider a small open economy and accordingly fix the

stochastic discount factor. Section 8.2 shows how the results can be extended to setups where the

stochastic discount factor is arbitrary.

In particular, I will assume that agents can invest in the money market, where they receive a

constant strictly positive interest rate r > 0. In addition they can invest in a risky security with a

price per share that evolves as

dPt
Pt

= µdt+ σdBt

where µ > r and σ > 0 are given constants and Bt is a one-dimensional Brownian motion on

a complete probability space (Ω, F, P ).10 The realization of this Brownian motion will be the only

source of uncertainty in this economy.

As is well understood, dynamic trading in the stock and the bond leads to a dynamically

complete market. (See e.g. Duffie (2001) or Karatzas and Shreve (1998)). As Karatzas and Shreve

10 I shall denote by F = {Ft} the P -augmentation of the filtration generated by B.
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(1998) show, the assumptions of a constant interest rate and risk premium imply the existence of

a unique stochastic discount factor (or state price density) which is given by:

H(t) = exp

½
−
Z t

0
κdBs − rt− 1

2
κ2t

¾
, H(0) = 1 (2)

where κ is the Sharpe ratio, defined as

κ =
µ− r

σ

Using this stochastic discount factor, the no-arbitrage price of any claim that delivers dividends

equal to Ds is given by11:

Et

Z ∞

t

Hs

Ht
Dsds

The agent can also enter into contracts with a competitive life insurance company as is explained

in detail in Blanchard (1985). As Blanchard (1985), I shall assume that the agent’s hazard rate of

death is a constant q, so that the insurance company can offer the agent contracts that promise an

income stream of q per unit of time dt, in exchange for receiving one dollar if the agent dies over

the next interval dt.

2.3 Portfolio and wealth processes

An agent chooses a portfolio process πt and a consumption process ct. The portfolio process πt is

the dollar amount invested in the risky asset (the ”stock market”) at time t. The rest, Wt − πt,

is invested in the money market. The agent has no bequest motives. As Blanchard (1985) shows,

it is optimal in this case for the agent to enter an annuity contract: The agent receives from the

insurance company an income stream of qWt per unit of time dt while she is alive. In exchange,

the entire remaining wealth of the agent gets transferred to the insurance company when the agent

dies. Accordingly, the wealth process of a retired agent evolves as

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt− ctdt (3)

11From a macroeconomic perspective one can also think of Ht as the marginal utility of consumption of the world-

representative agent.
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and the wealth process of a working agent is given by:

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt+ Y dt− ctdt

An additional requirement is that wealth must remain non-negative throughout:

Wt ≥ 0 for all t (4)

This constraint excludes uncollateralized borrowing. Section 3 discusses how this constraint

arises endogenously when the government can prohibit financial intermediaries from accepting gov-

ernmental transfers as collateral.

2.4 A role for government guarantees

As already mentioned in the introductory section, there are many ways to justify the observed

popularity of retirement benefit guarantees. From a rational perspective, retirees may have little

incentive to hedge the downside of their investments, because they can induce the government to

bail them out if their level of consumption were to fall below some lower bound ξ in retirement.

Assuming that such bailouts are associated with sufficiently large taxes and distortions on the

young (which are external to the old), the central planner will generally have an incentive to alter

the lifetime consumption choices of the representative agent, so as to ensure that her consumption

in retirement stays above ξ, and as a result bailout demands will not be triggered.

Alternatively, there is a behavioral way to justify retirement benefit guarantees that abstracts

from political economy motivations. When the agent evaluates her expected lifetime utility at birth,

she may correctly anticipate some inelastic consumption expenditure ξ in retirement (say due to

medical or nursing expenditures) so that she might have a preference for considering only paths

that involve consumption choices above ξ in retirement. However, future “selves” might ignore this

requirement and as a result choose consumption paths that will violate that requirement.

Finally, societies might exhibit altruism towards aging members of the society, so that the utility

of the younger members of society would be lower if the consumption of retirees were to fall below

a given level ξ. This creates a consumption externality between members of society.
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Fortunately, the exact reason why societies opt for retirement benefit guarantees is irrelevant

for the purposes of this paper. Section 8 shows formally that either of the above justifications

will have a common feature: Namely either approach will introduce a wedge between the central

planner’s objective and the agent’s objective. Specifically, section 8 shows that either of the three

justifications will imply that a benevolent central planner will view choices of an agent that involve

consumption below ξ in retirement as having external effects either on the young (rational, bailout-

prevention motivation or altruism) or on the objective of the agent’s “self” when she is born

(behavioral motivation).

However for all of the paper’s results, the exact nature of the external effects is immaterial. All

that matters is that under either motivation the objective of the central planner can be expressed

as

bFT1 =
⎧⎨⎩ FT1 − b, if Pr{ct < ξ for all t > T1 + T} > 0

FT1 otherwise
(5)

where FT1 is the objective of the agent (given in equation [1[) and b > 0 captures the “social cost”

associated with the external effects of retiree consumption dropping below ξ. As can be seen by

comparing (1) and (5), the difference between the objective of the agent and the central planner is

due to the fact that the central planner internalizes the external effects. Assuming that b is large

enough, it is reasonable to conjecture that the central planner will want to maximize the agent’s

lifetime utility (1) subject to the additional constraint:

ct ≥ ξ for all t ≥ T1 + T (6)

To expedite the exposition of the paper’s key results, I will assume from this point on that

the central planner’s objective is to maximize (1) subject to (6). After solving for the optimal

retirement benefit guarantees that will maximize (1) subject to (6), I will revisit the nature of the

social costs and show that there exists b large enough such that the central planner will indeed find

it optimal to enforce the constraint (6) on the agent’s choices.

3 Introducing a role for the government

The central planner understands that the agent will not automatically impose on herself the con-

straint (6). (For brevity I will refer to the central planner as the government). Indeed the choices of
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the agent will be made so as to maximize (1) without regard to (6). To achieve the goal of imposing

constraint (6) on the agent’s choices, the government can provide agents with an optimally chosen

post retirement transfer process (i.e. a guarantee). Determining such optimal transfers is the goal

for the rest of the analysis.

It is most useful to split the problem in two parts: The first step is to solve for the optimal

transfer process (i.e. guarantee) that will maximize the agent’s retirement utility subject to (6),

and the appropriate incentive compatibility constraints, assuming that the guarantee is financed

with a lump sum tax upon entering retirement and that the agent has enough assets to pay this

tax. This is done in sections 3.1 - 7. The second step is to use the solution of this problem to

construct the optimal process of taxes and transfers over the life cycle. This is done in section 7.2.

3.1 Admissible transfers

Given that the time of retirement is central to the analysis, the paper will adopt the following timing

convention. Since the setup is time-invariant, time 0 will be the time at which the representative

agent retires. Hence the representative agent will be assumed to be born at time T1 = −T.Moreover,
since all quantities depend on ratios of the stochastic discount factor between two points in time,

I will take the value of the stochastic discount factor at time 0 to be equal to 1. Both of these

conventions involve no loss in generality

As already mentioned, post retirement the government can make transfers to the retiree. It

is reasonable to follow a common approach in the literature12 and assume that the government is

subject to severe informational constraints compared to the agent.

To capture this, I will assume that governmental transfers can be made contingent on quantities

that are “exogenous” to the agent (i.e. the returns in the stock market). However, the government

cannot directly observe (or at least verify) an individual agent’s consumption, portfolio, or wealth

process. Therefore, transfers cannot depend on these quantities.13 This will form the source of the

moral hazard problem, since the agent will need to be induced to choose a consumption process

that satisfies (6) given the government’s transfers. One exception is that the government will be

12See e.g. Cole and Kocherlakota (2001).
13There is an analogy to standard principal agent models here. Just as in the standard principal agent model

the principal cannot write contracts that are contingent on the agent’s effort choice, here it is impossible to write

contracts that depend directly on agent’s consumption, portfolio choices or assets.
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assumed to know an agent’s wealth upon entering retirement, namely W0. This assumption will be

relaxed later in the text.

The following definition formalizes the informational requirements:

Definition 1 Let eFt be the filtration generated by the Brownian motion Bt and knowledge of the

retiree’s assets at the time that she enters retirement (W0). An admissible cumulative transfer

process Gt is a non-decreasing, progressively measurable (with respect to eFt) process starting at

G0 = 0 and satisfying:

E

Z ∞

0
e−qsHsdGs <∞

With some abuse of mathematical precision, the non-negative increments of the process Gt,

namely dGs ≥ 0, will be referred to as the “transfers” to the agent.
It is useful to discuss the requirements of Definition 1. The requirement that the process be

non-decreasing and start at 0 captures the fact that Gt progressively adds all the positive transfers

to the agent.

Progressive measurability with respect to eFt is the requirement that captures “exogenous”
information and knowledge of W0. The government is assumed to observe the Brownian path, and

hence all the quantities that can depend on that Brownian path (for instance the stock market).

However, it cannot condition its transfers directly on an agent’s consumption choice, portfolio choice

or wealth (except at time 0). It can at most infer these choices from its knowledge of the brownian

path, along with its knowledge of an agent’s optimizing behavior.

Given the assumption that Gt is progressively measurable with respect to Ft, the fair value of
a claim delivering the cumulative transfer process Gt is given by14:

Et

Z ∞

t
e−q(s−t)

Hs

Ht
dGs (7)

Before formalizing the government’s problem, it remains to discuss how these transfers will be

financed. Given the “backdrop” of the normative analysis, which is a fully funded system, I will

assume until section 7.2 that transfers are funded by levying a lump sum tax D0 on the agent at

14This is a consequence of the martingale representation theorem.
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the time of retirement (time 0). The arbitrage free value of the claim that delivers the transfers Gt

is:

D0 = E0

Z ∞

0
e−qsHsdGs.

An alternative interpretation of this setup is that the government passes a law that requires the

agent to buy a contract that offers the payoffs dGt from competitive financial firms. The competitive

financiers will charge D0 for such a contract. Clearly, raising such a tax will only be feasible if

the agent has accumulated a minimum amount of assets by the time she retires. Therefore I will

assume that:

W0 ≥
1
γ + φ− 1
φ− 1 Kξ (8)

where φ is a constant that is defined as:

φ =
−
³
ρ− r − κ2

2

´
+

r³
ρ− r − κ2

2

´2
+ 2 (ρ+ q)κ2

κ2
(9)

with the property15 φ > 1 and K is another constant defined as:

K =
γ

γ−1
γ

κ2

2 + γ (r + q) + (ρ− r)
(10)

A full discussion of condition (8) will wait until section 7. For now I just remark, that without

this condition there would be no combination of D0,Gt that will safeguard ct ≥ ξ. Section 7.2 shows

how to use forced savings pre-retirement to ensure that condition (8) is satisfied.

It is now possible to formulate the government’s objective.

15To see why φ > 1 notice that φ solves the quadratic equation

κ2

2
φ2 + ρ− r − κ2

2
φ− (ρ+ q) = 0

Evaluating the left hand side of this equation at φ = 1 gives:

−(r + q) < 0

Hence the larger of the two roots of the quadratic equation is larger than 1.
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Problem 1 Assuming (8), the government’s objective is to determine an admissible cumulative

transfer process Gt and an initial tax D0 so as to maximize:

V = max
Gt,D0

E0

Z ∞

0
e−(ρ+q)s

c1−γs

1− γ
ds (11)

subject to

ct ≥ ξ for all t > 0 (12)

D0 = E0

Z ∞

0
e−qtHtdGt (13)

and subject to the constraint that ct solves the agent’s optimization problem given Gt

ct = arg max
<ct,πt>

Et

Z ∞

t
e−(ρ+q)(s−t)

c1−γs

1− γ
ds (14)

subject to :

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt− ctdt+ dGt (15)

W0+ = W0 −D0 (16)

Wt ≥ 0 for all t > 0 (17)

There are several remarks on the above setup: As already mentioned, in this section the central

planner focuses on maximizing the agent’s post retirement welfare, as can be seen from equation

(11).

Equation (12) captures the requirement that transfers should induce a consumption process

that keeps consumption above the level ξ. Equation (13) requires that the guarantee given to the

agent should be financed by the tax raised upon entering retirement.

Equations (14)-(17) capture the incentive compatibility requirement, namely that the consump-

tion process be optimal from the perspective of an agent taking the governmental taxes and transfers

as given. Equation (15) presents the wealth evolution equation, taking into account the presence

of transfers. Equation (16) states that the consumer’s financial assets W0 will be reduced by the

tax D0, so that the agent’s post tax assets are given by W0+ .

Equation (17) requires that assets be non-negative at all times. I shall refer to this constraint as

the borrowing constraint and it will play a key role in this paper. In practical terms, this constraint

implies that the agent has no ability to borrow against future transfers, by -say- securitizing them16.

16This seems plausible, as long as the government can outlaw such securitization. But if the government outlaws
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For the purposes of this paper, equation (17) is the key constraint of the analysis. Without

this constraint, it would be impossible for the government to find a set of taxes and transfers that

would induce the agent to choose a consumption path that satisfies (12). The reason is that the

magnitude of the tax D0 raised at time t = 0 is exactly equal to the expected net present value of

the government’s transfers to the agent. If the agent was unconstrained in her ability to transfer

resources between dates and states, she could completely “undo” the effects of the lump sum tax

and the transfers by appropriate saving and trading strategies. This result is a manifestation of

the well understood principle of Ricardian Equivalence17. As long as the agent who is taxed is

the same agent that receives the future transfers and markets are dynamically complete, Ricardian

Equivalence asserts that government intervention will have no effects.

The presence of a borrowing constraint such as (17), however, makes taxes and transfers non-

neutral. The reason is that a borrowing constraint implies stronger restrictions than a simple

intertemporal budget constraint on the agent’s feasible consumption choices. Hence, by a judicious

choice of an initial tax and subsequent transfers, the government can affect the agent’s consumption.

Sections 4-7 are devoted to the study of problem 1.

4 The agent’s consumption choices in the presence of government

intervention and borrowing constraints

To solve problem 1 it is instructive to take an intermediate step: This section examines how different

forms of transfers will affect the agent’s optimal consumption choices.

Specifically, suppose that at the time that the agent enters retirement (time 0) the government

taxes her by an amount D0 and then promises an admissible cumulative transfer process Gt. It is

now natural to ask how the agent’s consumption choices will be affected by this intervention in the

presence of the constraint (17). The following result shows how to obtain the optimal consumption

process in this case and is due to He and Pages (1993):

such securitization, then the only way the agent could borrow against this future income would be by reputation

(unsecured lending). However, as is well known from the seminal Bulow and Rogoff (1989) paper, unsecured lending

based on reputation cannot be supported. To conclude, as long as the government can outlaw securitization of these

transfers, the constraint (17) results naturally from the results in Bulow and Rogoff (1989).
17See e.g. Barro (1974),Abel (2003).
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Proposition 1 Let D be the set of non-increasing, non-negative and progressively measurable

processes that start at X(0) = 1. Then, the value function V (W0) of an agent can be expressed as:

V (W0) = min
λ>0, Xs∈D

⎡⎣ E
³R∞
0 e−(ρ+q)smaxcs

³
c1−γs
1−γ − λeρsHsXscs

´
ds+ λ

R∞
0 e−qsHsXsdGs

´
+λ (W0 −D0)

⎤⎦
(18)

Let X∗
t , λ

∗ denote the process Xt and the constant λ that minimize the above expression. Then the

optimal consumption process c∗t for a consumer faced with the borrowing constraint (17) is:

c∗t =
¡
λ∗eρtHtX

∗
t

¢− 1
γ for all t > 0 (19)

Moreover, the process X∗
t decreases only when the associated wealth process (Wt) falls to zero

and is otherwise constant, i.e.:Z ∞

0
WtdX

∗
t = 0 (20)

Finally, the resulting wealth process for any t > 0 satisfies:

Wt =
Et

¡R∞
t e−q(s−t)X∗

sHsc
∗
sds
¢

X∗
tHt

− Et

¡R∞
t e−q(s−t)X∗

sHsdGs

¢
X∗
tHt

(21)

The simplest way to gain some intuition as to the proposition’s statements is to focus first on

equation (19). Note that this equation can be rewritten as:

e−ρt (c∗t )
−γ = λ∗HtX

∗
t (22)

IfX∗
t is set to 1 in equation (22), the equation reduces to the standard prediction that one obtains in

a dynamically complete market, namely that the marginal utility of consumption is proportional to

the stochastic discount factor. In the presence of borrowing constraints, however, the markets will

not be dynamically complete and this will make X∗
t different than 1. In particular X

∗
t will change

when and only when Wt = 0 as revealed by (20), i.e. when the borrowing constraint is binding.

Hence one can interpret X∗
t as the Lagrange multiplier process associated with the borrowing

constraint Wt ≥ 0: By multiplying the state price density Ht by X∗
t one can “incorporate” the

shadow value of the borrowing constraint into the state price density. This means that the solution

to the problem of an agent who is constrained by Wt ≥ 0 and faces the state price density Ht will

be identical to the problem of an unconstrained agent who faces the state price density HtX
∗
t .
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5 Government transfers and their welfare effects: an upper bound

Turning to problem 1, Proposition 1 gives an intuitive way to summarize the effects of the incentive

compatibility requirement (equations [14]-[17]).

It asserts that every government transfer process Gt will be associated with a constant λG and

a Lagrange multiplier process XG resulting from the minimization problem in equation (18). Given

this duality between a choice of Gt and the resulting pair
¡
λG,XG

t

¢
, there is a straightforward way

to obtain an upper bound to problem 1. In particular consider the following problem:

Problem 2 Maximize:

J (W0) = max
ct,Xt∈D,λ>0

E0

Z ∞

0
e−(ρ+q)s

c1−γs

1− γ
ds (23)

subject to:

E0

µZ ∞

0
e−qsHscsds

¶
≤ W0 (24)

ct ≥ ξ (25)

ct =
¡
λeρtHtXt

¢− 1
γ (26)

Problem 2 is the problem of a central planner who can choose directly the consumption of the

agent, subject to an intertemporal budget constraint, a constraint on the minimum consumption

level (equation [25]) and the additional requirement that any chosen consumption process should

have a representation in the form of equation (26).

In effect, problem 2 allows the central planner to choose freely the pair (λ,Xt) without being

concerned whether there exist any optimal transfer process Gt that will make (λ,Xt) the optimal

solution of the minimization problem in (18).

It is reasonable to conjecture as a result, that problem 2 is a “relaxed” version of the optimization

problem 1 and hence the value function of 2 dominates the value function of problem 1. The next

proposition proves this assertion and determines the solution of problem 2:

Proposition 2 For any λ > 0, let the process X∗
t (λ) be defined as

X∗
t = min

∙
1,

ξ−γ/λ
max0≤s≤t (eρsHs)

¸
(27)
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[To simplify notation„ X∗
t will be used as a shorthand for X

∗
t (λ)]. Assuming (8), the value function

of problem (2) is given by:

J (W0) =

= min
λ≥0

"
E

ÃZ ∞

0
e−(ρ+q)s

(λeρsHsX
∗
s )
1− 1

γ

1− γ
ds− λ

Z ∞

0
e−qsHs (λe

ρsHsX
∗
s )
− 1
γ ds+ λW0

!#
(28)

= min
λ≥0

"
− Kξ1−γ

γφ (φ− 1)
µ

λ

ξ−γ

¶φ

+K
γ

1− γ
λ1−

1
γ + λW0

#
(29)

where K is given in (10) and φ is given in (9). Letting λ∗ be the scalar that minimizes (29), the

optimal triplet that solves problem (2) is given by λ∗, X∗
t (λ

∗) ,and the ct that is implied by equation

(26) for λ∗,X∗
t (λ

∗) .

Finally, let G be the class of all admissible transfer processes that lead to a consumption process
such that (12) is satisfied and let V (W0) be given as in equation (18). Then the following upper

bound characterizes the value function of problem 1:

max
Gt∈G

V (W0) ≤ J (W0) (30)

Proposition 2 illustrates that there exists an upper bound to the value function of the original

problem 1 against which one can measure any government policy. At a practical level, the usefulness

of Proposition 2 is to provide a very simple test for the optimality of an admissible transfer process

Gt: As long as an admissible process Gt attains the upper bound given by proposition 2, such a

process must be optimal.

To gain some intuition on Proposition 2, it is useful to ask why the process X∗
t is optimal for

problem 2. Taking logs in equation (26) and subtracting log ξ on both sides gives:

log ct − log ξ = −1
γ
[log λ+ ρt+ logHt + logXt]− log ξ (31)

The above equation implies that ct ≥ ξ if and only if log ct − log ξ ≥ 0. Hence the constraint (12)
will be satisfied if and only if there exists a process Xt ∈ D that will safeguard that the right hand
side of (31) will always be non-negative. The process of equation (27) does have this property18.

18To see this, consider two cases. The first case is λmax0≤s≤t eρsHs ≤ ξ−γ . In that case X∗t = 1 and accordingly

λeρtHtX
∗
t = λeρtHt ≤ λ max

0≤s≤t
eρsHs ≤ ξ−γ

18



Moreover, this process has an additional property. It is the largest X∗
t that will satisfy (31).

19

In practical terms this means that among all decreasing processes that will enforce the require-

ment (25), X∗
t is the process that will minimize the difference between the consumer’s optimal

consumption in the absence of government intervention and in its presence. Hence it achieves the

goal of having ct ≥ ξ while making the borrowing constraint bind as little as possible, and hence

distorting the consumer’s consumption choices in a minimal fashion.

6 Optimal Transfer Processes

This section illustrates two distinct policies that can attain the upper bound of (29).

6.1 A constant income stream

The simplest form of government transfer process is a constant income stream: The government

collects a lump sum tax of D0 =
y0
r+q and in exchange it delivers a constant stream of y0 in annuity.

Such a simple policy turns out to be optimal as long as y0 is chosen appropriately.

The following Proposition illustrates this fact:

Proposition 3 Let y0 be given as:

y0 = (r + q)Kξ

Ã
1
γ + φ− 1
φ− 1

!
(32)

where K is given in (10) and φ is given in (9). Assume that the government raises an initial tax

of D0 =
y0
r+qand promises a constant stream of payments equal to y0 in annuity. Then, the agent

will choose a consumption path that satisfies ct ≥ ξ and the value function V (W0) [as defined in

(18)] will attain the upper bound given in Proposition 2.

The second case is λmax0≤s≤t eρsHs ≥ ξ−γ . Then X∗t =
ξ−γ/λ

max0≤s≤t(eρsHs)
and accordingly

λeρtHtX
∗
t = λeρtHt

ξ−γ/λ
max0≤s≤t (eρsHs)

= ξ−γ
eρtHt

max0≤s≤t (eρsHs)
≤ ξ−γ

Hence λeρtHtX
∗
t ≤ ξ−γ as asserted.

19This is a consequence of the Skorohod Equation. For a reference on the Skorohod equation see e.g. Karatzas and

Shreve (1991), pp. 210-211.
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This is a somewhat surprising result. It asserts that by simply promising the agent a constant

benefit forever, one can attain the upper bound of Proposition 2. Moreover, there is a simple closed

form solution for y0 depending solely on the parameters.

One can decompose y0
ξ into two components:

y0
ξ
= (r + q)K| {z }
cost with exclusion

Ã
1
γ + φ− 1
φ− 1

!
| {z }

Cost of Moral Hazard

(33)

To understand the first term, it is useful to examine the constant K first. This constant is (up

to an adjustment for the probability of death q) the wealth to consumption ratio in the Merton

(1971) model. A thought experiment is useful in order to further explore this term: Suppose that

the government promises an income stream of y to an agent who is not subject to the borrowing

constraint (17). Assuming that this agent hasWt = 0 financial wealth at time t, her total resources

are equal to Wt +
y

r+q =
y

r+q and hence her consumption will be:

ct =
1

K

y

r + q
(34)

The term y
r+q is the net present value of the promised income stream and 1

K is the consumption

to wealth ratio in a Merton model. Solving (34) for y
ct
gives y

ct
= (r + q)K. This is the first

term in equation (33). This term can be interpreted as follows: If the government wanted to

keep an agent’s consumption at ξ (once Wt = 0) by promising her an income stream y and then

could unexpectedly and permanently exclude the agent from financial markets once Wt = 0 without

making them experience a consumption drop, then the income stream that needs to promised is

given by y = (r + q)Kξ. This motivates the term “cost with exclusion”.

The second term in (33) is due to the fact that the government cannot undertake such sudden

exclusions from financial markets, and instead has to cope with the fact that agents will take more

risks due to the guarantee. There are several interesting remarks about the second term. First:

1
γ + φ− 1
φ− 1 > 1

since φ > 1. Second, this ratio has intuitive properties: For instance, increased risk aversion (γ)

will reduce the amount of y0 that needs to be promised to the agent in order to make sure that

ct ≥ ξ. This is intuitive: The larger is the risk aversion of the agent, the less risks she will take in
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the stock market, and the cheaper it is to insure her against adverse consumption variation. In the

limit, as γ →∞, the second term converges to 1, and hence the effect of moral hazard vanishes. It

can also be shown that the second term increases as the Sharpe ratio in the market increases. This

is equally intuitive: A higher Sharpe ratio will incentivize the agent to invest in the stock market

and it will become more expensive to insure a minimum consumption level.

Figure 1 gives a quantitative assessment of the components that enter the ratio of guaranteed

income to minimum consumption (y0/ξ) . The figure shows that if the government wants to ensure

a minimum consumption of one dollar, it needs to deliver more than one dollar in guaranteed

income. What drives this ratio above one is mostly the cost of moral hazard, as can be seen by the

decomposition of y0/ξ into the two components given in (33).

Summarizing, the fact that a constant income policy can attain the upper bound of Proposi-

tion 2 is both reassuring and surprising: The constant income policy has very low informational

requirements. The government can implement this policy without even knowing the realization of

the brownian paths, or the exact magnitude of the agents’ assets at time 0. Hence, even though

the model setup gives the government the ability to observe the stochastic discount factor and

the agent’s assets at time 0, this simple “constant income” policy is optimal despite the fact that

it doesn’t exploit this information. From a practical perspective, the policy has the additional

advantage that it is very simple.

The constant income policy is not the unique optimal policy however. The next section presents

an alternative approach to achieving the upper bound in (29).

6.2 Portfolio Insurance

Providing agents with a constant income is not the unique optimal way to attain the upper bound

in Proposition 2. The approach presented in this section also succeeds in attaining the same upper

bound. To describe this approach, let λ∗ be the scalar that minimizes (29). Then define the

government’s transfer process as:

dGt = −
µ
1

γ
+ φ− 1

¶
Kξ

dX∗
t

X∗
t

(35)

where X∗
t (λ

∗) is the process defined in (27).

This section shows the following results:
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Figure 1: The ratio of guaranteed income to the minimum level of guaranteed consumption
³
y0
ξ

´
and its components. The product of the lines "Cost of Moral hazard" and "Cost with Exclusion"

are equal to y0
ξ . The Sharpe ratio used in the calibrations is reported on the x-axis. The preference

parameters are given at the top of each figure. The probability of death q is fixed at 0.04 in all

figures and the interest rate is equal to 0.02.
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a) The process (35) attains the upper bound of Proposition 2.

b) The process (35) has a very intuitive economic interpretation. In particular, the process

(35) represents a type of minimum return guarantee (portfolio insurance) on the agent’s optimal

portfolio of stocks and bonds.

The following proposition formalizes the first claim:

Proposition 4 Let λ∗ be the scalar that minimizes (29) and X∗
t be the process that is given in

(27). Consider an agent who anticipates transfers given by (35) and is faced with an initial tax of

D0, where D0 satisfies (13). Then

a) her value function will coincide with the upper bound given in (29)

b) That agent will invest

πt =
κ

σ
Kξ

"
(φ− 1)

µ
Zt

ξ−γ

¶φ−1
+
1

γ

µ
Zt

ξ−γ

¶− 1
γ

#
(36)

dollars in the stock market and consume

ct = Z
− 1
γ

t (37)

where:

Zt = λ∗eρsHsX
∗
s (38)

The agent’s optimal wealth process Wt will be given by:

Wt = −K
¡
ξ−γ

¢− 1
γ

µ
Zt

ξ−γ

¶φ−1
+KZ

− 1
γ

t (39)

c) The initial tax D0 associated with (35) is given by:

D0 = Kξ

1
γ + φ− 1
φ− 1

µ
λ∗

ξ−γ

¶φ−1

The portfolio policy (36) will aid in the interpretation of (35) as a form of portfolio insurance.

To obtain some intuition on the nature of (35), consider first the following puzzling feature of (36):

As Zt → ξ−γ, equation (39) implies that Wt → 0 whereas the portfolio of the agent becomes:

lim
Zt→ξ−γ

πt =

µ
1

γ
+ φ− 1

¶
Kξ

κ

σ
> 0 (40)
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This result may seem surprising at first. How is it possible that the agent’s dollar holdings of

stock do not go to zero as Wt → 0? To understand the nature of the puzzle, note first that if the

agent holds a positive amount of stocks πt > 0 when her financial wealth isWt = 0 that means that

she must also be holding Wt − πt = −πt < 0 in bonds. But then if the stock market experiences

a realization of a return that is less than −r over the next interval dt, wouldn’t that make the
financial wealth of the investor negative?

The resolution of the puzzle is in the nature of the transfers that the agent receives onceWt = 0.

First, from the definition of Zt and X∗
t in equations (38) and (27) it follows that X

∗
t decreases when

and only when Zt = ξ. Accordingly Gt increases when and only when Zt = ξ−γ , that is when20

ct = ξ and Wt = 0. Simply put, the agent starts receiving transfers from the government when

(and only when) her wealth becomes 0 and the stock market experiences further negative returns21.

Because of these transfers, the agent becomes hedged against negative returns when her wealth is

equal to zero and hence can afford to hold stock. This motivates the name “portfolio insurance”

for the transfer process (35).

An alternative way of thinking about the transfer process Gt in (35) is that the government

makes a recommendation to the agent on how she should invest and consume. That recommenda-

tion is given by (37) and (36). Based on this recommendation and its observation of stock market

realizations, the government can compute the agent’s wealth and make “just enough” transfers

to the agent when needed, so as to keep her inferred wealth above 0. Proposition 4 asserts that

given this transfer structure, the consumer will indeed find it optimal to follow the government’s

“recommendation”.

6.3 Comparing the two policies

Given that both policies attain the upper bound of equation (29), this means that they imply the

same value function for the agent, and hence are equivalent from a welfare perspective22.

However, the two policies do differ. They make transfers of different magnitudes in different

states of the world. The initial taxes that they imply are also different. Indeed, the cost of the

20This follows from (37) and (38).
21Note that the state price density Ht and the stock market Pt are perfectly negatively correlated.
22The derivations in the appendix also show that they imply exactly the same consumption process “path by path”.
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constant income policy is:

Dconst.
0 =

y0
r + q

= Kξ

Ã
1
γ + φ− 1
φ− 1

!
(41)

whereas by proposition 4, the cost of the portfolio insurance policy is:

Dp.i.
0 = Kξ

1
γ + φ− 1
φ− 1

µ
λ∗

ξ−γ

¶φ−1
(42)

All the terms in Dp.i.
0 are explicit, except for λ∗ which is determined implicitly by solving the

minimization problem of (29). Equation (19) however implies that:

c−γ0 = λ∗ ≤ ξ−γ

since H0 = X∗
0 = 1. It can also be shown by applying the implicit function theorem to (29) that λ∗

is a declining function of W0. Dividing (42) by (41) gives:

Dp.i.
0

Dconst.
0

=

µ
λ∗

ξ−γ

¶φ−1
=

µ
c0
ξ

¶−γ(φ−1)
≤ 1 (43)

since c0 ≥ ξ and φ > 1. Hence the “portfolio insurance” policy has a cost that cannot be larger

than the cost of the “constant income” policy.

This may seem puzzling, since the two policies imply the same value function, while keeping

ct ≥ ξ.To resolve the puzzle, note first that the cost of the two policies coincides when c0 = ξ.

Furthermore, one can also show that under both policies c0 = ξ if and only if W0 = Dconst.
0 , so

that post tax wealth is equal to W0+ = 0. Hence the cost of the two policies differs only when the

borrowing constraint is not binding, but is identical when the borrowing constraint does bind.

This observation is helpful, because it hints to the reason why the two policies have different

costs but are equivalent from a welfare perspective: The constant income policy delivers the same

transfers in all states of the world, including states of the world where the borrowing constraint

doesn’t bind. By contrast, the “portfolio insurance” policy delivers payments only when the bor-

rowing constraint binds. This gives intuition on why the latter policy is associated with a lower

initial tax in general. However, the very reason why the constant income policy “costs” more is

because it delivers more payments (in a net present value sense) in states of the world where the

borrowing constraint is not binding. One would intuitively expect that Ricardian Equivalence ap-

plies in these states. The agent can “undo” the effects of the increased transfers by borrowing and
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taking more risk in the stock market. Therefore, as the two policies only differ in states where

transfers are subject to the Ricardian Equivalence theorem, they are equivalent from a welfare

perspective.

The above discussion illustrates a more fundamental point about the evaluation of government

guarantees. Determining the cost of government guarantees, as is routinely done in the literature,

can be misleading from a welfare perspective. This section illustrated how two policies can both be

optimal and imply the same welfare, whereas a net present value of the transfers that they imply

could be different.

7 Minimum level of assets and implications for pre-retirement sav-

ings

7.1 Minimum assets

The previous sections illustrated several equivalent ways of giving transfers to retirees that will

safeguard a consumption process above the level ξ. A maintained assumption was (8). I will now

illustrate that this assumption is not only sufficient, but it is also necessary for the existence of

transfer processes that will induce a consumption process that satisfies ct ≥ ξ.

Proposition 5 An admissible transfer process Gt that will induce ct ≥ ξ will exist if and only if

condition (8) holds.

The practical implication of this proposition is that it gives an exact lower bound on the assets

that need to be available upon retirement in order to ensure the feasibility of attaining the goal

ct ≥ ξ. Hence, in contrast to existing literature that typically takes this lower bound as exogenously

given, the present analysis goes a step further and provides a link between the level of minimal

consumption that can be guaranteed and the amount of assets that need to have been accumulated.

Letting Wmin be the minimum amount of assets implied by (8), one can decompose Wmin in a

manner similar to section 6.1 in two parts:

Wmin

ξ
= K|{z}
Merton’s wealth to consumption ratio

1
γ + φ− 1
φ− 1| {z }

Cost due to moral hazard
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Once again, the minimum wealth
¡
Wmin

¢
to minimum consumption (ξ) ratio is not just equal

to the wealth to consumption ratio in the Merton model (K) but is increased by the factor

(1/γ + φ− 1) / (φ− 1) > 1, since agents’ portfolio and savings decisions will be distorted by any

admissible transfer process Gt that will induce ct ≥ ξ.

Figure 2 plots the left hand side of the above equation and the associated value of K for various

combinations of the parameters. For reasonable parameter choices the resulting numbers are close

to 20. For each dollar of minimum guaranteed consumption, the government needs to be able to

raise an initial tax close to 20 dollars.

The above discussion has some clear implications for pre-retirement savings. Namely, the gov-

ernment needs to make sure that the agent arrives at retirement with an amount of savings equal

toWmin. Assuming that the only policy instrument that the government has at its disposal prior to

retirement is a proportional tax χ on Y, then a feasible way to ensure that condition (8) is satisfied

upon entering retirement is to set χ equal to

χ =
(r + q) e−(r+q)T

1− e−(r+q)T
Kξ

Y

Ã
1
γ + φ− 1
φ− 1

!
(44)

and then place the proceeds into a riskless account. I will assume that the parameters are such

that χ < 1. A simple computation yields then:Z T

0
χY e−(r+q)tdt = e−(r+q)TWmin

In words, the net present value of the tax proceeds are exactly equal to the net present value of

Wmin. Given the non-negativity constraint on the agent’s personal financial wealth, such a policy

will imply that the agent’s total assets once she enters retirement can be no less than the amount

that is accumulated in the riskless account, namelyWmin. Hence condition (8) will be automatically

verified. To gain a quantitative sense, Figure 3 illustrates the resulting tax rates for various levels

of ξ
Y , Sharpe ratios and preference parameters.

7.2 The pre-retirement problem of the government

Sections 3-6 considered only the post-retirement value function of the agent. The analysis estab-

lished the upper bound (29) to the value function of the agent and showed that it can be attained,

as long as condition (8) is satisfied. The previous subsection also established additionally that
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Figure 2: The top line in each figure depicts the minimum assets per guaranteed dollar of con-

sumption
³
Wmin
0
ξ

´
. The bottom line depicts the wealth to consumption ratio in the Merton model

(K) . The preference parameters are given at the top of each figure. The probability of death q is

fixed at 0.04 in all figures and the interest rate is equal to 0.02.
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Figure 3: The top line in each figure depicts the minimum assets per guaranteed dollar of con-

sumption
³
Wmin
0
ξ

´
. The bottom line depicts the wealth to consumption ratio in the Merton model

(K) . The preference parameters are given at the top of each figure. The probability of death q is

0.04. In all figures the interest rate is equal to 0.02.

29



a feasible policy will only exist as long as (8) is satisfied. Assuming that the government’s only

policy instrument prior to retirement is a constant tax rate on Y , then the unique way of achieving

condition (8) is by raising a tax rate that is at least equal to χ in equation (44).

An intuitive argument also shows that it is not optimal to raise the pre-retirement tax rate

above that level. Given that the agent is faced with borrowing constraints prior to retirement,

any government intervention that taxes income today and returns it in the form of a lump sum

payment upon entering retirement will reduce the agent’s ability to smooth consumption. The

following proposition states this formally:

Proposition 6 The optimal pre-retirement tax rate that will ensure (8) is given by (44).

This proposition shows that the optimal policy of the government (pre-retirement) is to set the

tax rate on income as low as possible, but subject to the constraint that the agent has accumulated

assets equal to Wmin at retirement.

To summarize, the optimal government policy over the agent’s life cycle is to set taxes equal

to (44) prior to the agent’s retirement, place the proceeds in riskless assets, and then use the

compounded amount to finance either of the two types of guarantees described in section 6.

This describes the optimal government policy, assuming that it is optimal for the government

to intervene in the first place. To determine if government intervention is optimal one needs to

compare the lifetime expected utility of a new-born agent in the presence of government intervention

and in its absence from the perspective of the central planner (equation [5]). Since the distance

between the maximized value of FT1 in the presence of government intervention and in its absence is

bounded, there always exist a sufficiently high value of b that will justify intervention. Simply put,

since the distortions introduced by mandatory savings and transfers will have a bounded effect on

the agent’s objective FT1 , there will always exist a sufficiently high level of (social) costs associated

with violating the constraint ct ≥ ξ in retirement that will justify intervention. Even though the

exact nature of these social costs do not form the focus of the analysis, the next section explores

in detail possible sources of such costs.

8 Discussion
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8.1 Alternative way to justify guarantees

Why have so many countries that switched their retirement systems opted for some form of retire-

ment benefit guarantees? Even though the answer to this question does not affect the nature of the

optimal retirement benefit guarantees that were derived previously, it is still interesting to have

some simple models to justify the wedge between the central planner’s objective and the agent’s

objective.

8.1.1 Behavioral reasons

Perhaps the simplest justification behind such a wedge is behavioral. If one were to interpret ξ as

inelastic expenditures associated with aging (say medical costs) then it is plausible to believe that

a newly born agent is endowed with preferences given by (5). (If ξ is literally a subsistence level in

retirement, then b =∞). If, however, all future “selves”23 of the agent ignore the necessity to make
consumption choices that will provide her with the appropriate subsistence level ξ in retirement

they will maximize (1). Assuming that the agent cannot restrain the choices of her future selves,

then the central planner will be led to solve problem 1.

8.1.2 Rational reasons

The behavioral approach is only one of the ways to justify retirement benefit guarantees. Here, I

give a rational motivation, which is based on the idea that retirees can force distortionary transfers

from the young agents to the retired agents.

To capture this idea, I will assume that each cohort of agents that are born at time T1 and retire

at time T1 + T have simple time consistent CRRA preferences which are given by (1). However,

upon entering retirement the entire cohort of agents can costelessly join a “union”. The union

operates a linear “transfer” technology: Its members that decide to exert a (flow) effort n protesting,

can receive a flow of n in transfers from the young24. Exerting however an effort of n creates a

disutility of ξ−γn. Mathematically, this implies that the utility of a representative retired agent can
23For economic applications of the concept of “multiple selves”, see e.g. Harris and Laibson (2001),Amador,

Werning, and Angeletos (2006).
24This implicitly assumes that the union members who did not join in the protest do not receive transfers. This

assumption is made in order to exclude free rider problems.
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be expressed as:

max
ct,πt,nt,T1+T

ET1+T

Z ∞

T1+T
e−(ρ+q)(s−T1−T )

c1−γs

1− γ
ds−ET1+T

Z ∞

T1+T
e−(ρ+q)(s−T1−T )ξ−γns,T1+T ds (45)

where the notation ns,T1+T denotes the effort at time s of an agent who retired at time T1+T. The

dynamic budget constraint after time T1 + T now becomes:

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt+ dt− ctdt+ nt,T1+Tdt

for a retired agent. Naturally, the transfers to the retired agents need to be subtracted from the

budget constraint of the young agents. Letting Φt denote the total transfers to the old one obtains:

Φt = qe−qT
Z ∞

0
e−qsnt,t−sds

which means that the representative non-retired agent pays needs to be taxed by Φt
1−e−qT . A simple

way to capture the idea that such taxation is likely to be distortionary, is to assume that for each

dollar raised in taxes, x dollars get “destroyed” in the process, so that the representative young

agent’s budget is given by:

dWt = qWtdt+ πt {µdt+ σdBt}+ {Wt − πt} rdt+ dt− ctdt+

+

∙
Y − (1 + x)

Φt
1− e−qT

¸
dt

Finally, I will make the assumption that nt,s can only be chosen to be between 0 and n, where

n is a constant that satisfies

n <

¡
1− e−qT

¢
Y

(1 + x) e−qT
(46)

This condition will safeguard that even if all the vintages of retirees decided to protest at the same

time, the representative young agent would still be able to pay the associated taxes.

With this setup in hand, it is now possible to investigate the incentives of retired agents to

protest. Given the linearity of effort disutility in equation (45) leads to the following simple cutoff

rule for the optimal ns,T1+T :

nt,T1+T =

⎧⎨⎩ 0 if ct ≥ ξ

n if ct < ξ
(47)
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The proof of this fact is straightforward and hence I give only a brief sketch. Writing down the

Hamilton Jacobi Bellman equation for the value function J of a retired agent and keeping only terms

that involve nt,T1+T shows that nt,T1+T is determined as the solution to the following maximization

problem:

max
0≤nt,T1+T ≤n

nt,T1+T
¡
JW − ξ−γ

¢
where JW is the derivative of the value function with respect to wealth. The solution to this

linear problem is trivial. If JW ≥ ξ−γ then the agent will choose nt,T1+T = n, else nt,T1+T = 0.

Combining this observation with the envelope condition25 c−γ = JW leads to (47).

This shows that a central planner who would like to prevent retired agents from protesting

should ensure that their consumption stays above ξ in retirement, so that they have no incentive

to protest. But this is precisely the requirement in (6).

With this observation it is possible to show that if the central planner’s objective is to maximize

the expected utility of a newly born agent in steady state, and if the distortion x associated with

taxes is large enough, then the central planner would find it optimal to provide all newly born agents

with a pattern of taxes and transfers over their lifetime that will ensure that their consumption

is above ξ in retirement. Searching for the optimal such transfer process is precisely the goal of

problem 1.

Summarizing, if bailouts introduce distortions (x) that are larger than the distortions associated

with a prefunded optimal guarantee, then the central planner will find it optimal to induce agents to

choose a consumption process in retirement that will prevent such bailouts. Choosing the optimal

such guarantee leads to problem 1.

8.2 Arbitrary stochastic discount factors and multiple assets and sources of

uncertainty

The exogeneity of the stochastic discount factor and the assumption of a single source of risk and

a single asset are not as restrictive as they may seem at first. Even if the stochastic discount factor

was driven by multiple sources of uncertainty and the risk premia and interest rates were time

25See e.g. Merton (1971).
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varying, most of the results of the paper would survive. The only indispensable assumption is that

markets be dynamically complete from the perspective of a new-born agent in the absence of the

borrowing constraint and the stochastic discount factor be a continuous function of time.

A close examination of the proof that (28) provides an upper bound to problem 1 reveals that

none of the steps depend on the functional form of Ht. The proof goes through for any continuous

stochastic discount factor Ht.

It is also possible to show that there always exist variants of the “portfolio insurance” policy

that will attain the upper bound of proposition 2 for any stochastic discount factor. The result

that seems however to not be true in general is that the “constant income” policy also attains the

upper bound of proposition 2.

These observations imply that many of the results of the paper would survive, even if one closed

the model in general equilibrium26. In that case, the prices of the guarantees and all the parametric

formulas would be altered. However, qualitatively the characterization of the upper bound and the

existence of at least a policy that attains it, would remain unchanged.

9 Conclusion

This paper presented an optimality theory on how to design a retirement system with the ability

to guarantee a minimum standard of living to retirees.

The key results of the paper can be summarized as follows:

First, there can be multiple optimal solutions to ensuring a minimum standard of living in

retirement. Two such solutions are a constant income policy and a portfolio insurance policy.

Second, the cost of a policy can be a misleading indicator of its implications for welfare. The

two solutions that were discussed in this paper have identical implications for welfare, yet their

costs are different in general.

Third, the paper showed that the presence of moral hazard will tend to increase the cost of

guarantees. The simple policy that delivers a constant income in retirement illustrates this best:

26Of course in general equilibrium care should be taken to make sure that it is feasible to keep retiree consumption

above any lower bound. If the aggregate endowment followed a lognormal process, this would only be possible if one

reformulated the constraint ct ≥ ξ so as to make ξ proportional to aggregate consumption.
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In order to safeguard that an agent’s consumption will not fall below a minimum amount (say a

dollar), more than one dollar needs to be given in retirement income.

Fourth, the model derives explicitly a minimum amount of assets that need to be available in

retirement so as to safeguard that consumption will not drop below a minimum level. Calibration

exercises indicate that this minimum level of assets is about 20 times the guaranteed consumption

level.

Several issues are unexplored by the present paper. A first question concerns unobserved prefer-

ence heterogeneity. If agents have different risk aversions, or discount factors, then the government

needs to offer menus of contracts in the spirit of discriminatory pricing. It appears straightforward

to extend the analysis to allow for this possibility. A particularly interesting question that would

emerge in such a setting is whether the need to enforce sorting into different types of contracts

would affect the optimal security design or not.

A second question concerns the implications of such guarantees for asset prices. Even though

the results of the paper go through for arbitrary stochastic discount factors, it is certain that

extensive coverage of retirees by these guarantees would affect the stochastic discount factor in

general equilibrium. Studying these two questions is left for future research.
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A Appendix

A.1 Proof of proposition 1

Proof. Subject to minor modifications, the proof of this proposition is identical to the first theorem of He

and Pages (1993) and is therefore omitted. However, it is possible to give a sketch of the main argument

behind Proposition 1.

The consumer needs to choose her optimal consumption/portfolio path taking the process for transfers

and the initial tax as given, while satisfying the constraint Wt ≥ 0. The first step is to note that for any
consumption / portfolio policy that satisfies (15)-(17), one can apply Ito’s Lemma to e−qtHtWt and then

integrate to obtain:Z t

0

e−qsHscsds+ e−qtHtWt =W0 −D0 +

Z t

0

e−qsHsdGs +

Z t

0

ψsdBs

for an appropriate process27 ψs that will depend on the agent’s portfolio choice. Intuitively, this is just the

dynamic budget constraint “integrated forward”. Since Wt ≥ 0, the above equation implies that:Z t

0

e−qsHscsds−
µ
W0 −D0 +

Z t

0

e−qsHsdGs +

Z t

0

ψsdBs

¶
≤ 0 for all t ≥ 0 (48)

For any non-increasing and positive process Xt (starting at X0 = 1) and any positive constant λ, equation

(48) implies:

λ

Z ∞
0

∙Z t

0

e−qsHscsds−
µ
W0 −D0 +

Z t

0

e−qsHsdGs +

Z t

0

ψsdBs

¶¸
dXt ≥ 0

since dXt is (weakly) decreasing.

Hence, for any consumption policy that satisfies the (15)-(17) it follows that:

E0

Z ∞
0

e−(ρ+q)s
c1−γs

1− γ
ds ≤ E0

Z ∞
0

e−(ρ+q)s
c1−γs

1− γ
ds (49)

+λE0

Z ∞
0

dXt

Z t

0

e−qsHscsds

−λE0
Z ∞
0

dXt

µ
W0 −D0 +

Z t

0

e−qsHsdGs +

Z t

0

ψsdBs

¶
Equation (49) suggests a natural interpretation for Xt as a process of (cumulative) Lagrange multipliers

associated with the requirement (48), which follows from28 Wt ≥ 0. For short, from now I will refer to Xt as

the process of Lagrange multipliers.

27This is an implication of the martingale representation theorem. See e.g. He and Pages (1993) for details.
28As one might expect, the inequality in (49) can only become an equality if (20) holds, i.e. if Xt decreases only

when Wt = 0 and remains otherwise constant.
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Applying integration by parts to the second and third line of equation (49) and noting that X(0) = 1,

limt→∞X(t) ≥ 0 and using (48) gives:

E0

Z ∞
0

e−(ρ+q)s
c1−γs

1− γ
ds ≤

≤ E0

µZ ∞
0

e−(ρ+q)s
c1−γs

1− γ
ds− λ

Z ∞
0

e−qsXsHscsds+ λ

Z ∞
0

e−qsHsXsdGs

¶
+λ (W0 −D0)

≤ E0

µZ ∞
0

e−(ρ+q)smax
c

µ
c1−γs

1− γ
− λeρsHsXscs

¶
ds+ λ

Z ∞
0

e−qsHsXsdGs

¶
(50)

+λ (W0 −D0)

Since this inequality holds for any decreasing, positive progressively measurable process Xt and any positive

constant λ, it must also hold for the process Xt that minimizes the right hand side of (50). By a similar

argument, since the above inequality holds for any choice of ct, πt that satisfies (15)-(17) it must also hold

for the optimal ct, πt. Hence:

V (W0) = max
cs,πs

E0

Z ∞
0

e−(ρ+q)s
c1−γs

1− γ
ds

≤ min
λ>0, Xs∈D

⎡⎢⎢⎢⎣
E
R∞
0

e−(ρ+q)smaxcs
³
c1−γs

1−γ − λeρsHsXscs

´
ds

+λE
R∞
0

e−qsHsXsdGs

+λ (W0 −D0)

⎤⎥⎥⎥⎦
These arguments establish that the right hand side of (18) provides an upper bound to the value function

of the consumer. Establishing that it also provides a lower bound is achieved by showing that there exists a

consumption / portfolio policy that satisfies (15)-(17) and attains this upper bound. This part of the proof

is contained in He and Pages (1993) and the reader is referred to that paper for details.

A.2 Proof of Proposition 2

The proof of Proposition 2 is established in steps. The following Lemma will prove useful in establishing the

last part of the proposition.

Lemma 1 Take any λ ∈ (0, ξ−γ ] and any process Gt and define

bXt = arg min
Xt∈D

E

µZ ∞
0

e−(ρ+q)smax
cs

µ
c1−γs

1− γ
− λeρsHsXscs

¶
ds+ λ

Z ∞
0

e−qsHs (Xs − 1) dGs

¶
(51)

Then:

λE

µZ ∞
0

e−qsHs

³ bXs − 1
´
dGs

¶
= E

Z ∞
0

e−(ρ+q)s
³
eρsλHs

bXs

´1− 1
γ

µ
1− 1bXs

¶
ds (52)
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Proof of Lemma 1. Let:

Λt ≡ 1− 1bXt

(53)

Applying Ito’s Lemma to Λt we obtain:

dΛt ≡ d bXt³ bXt

´2 (54)

Hence Λt changes when and only bXt changes. By Theorem 1 of He and Pages (1993):Z ∞
0

∙
Et

µZ ∞
t

bXse
−qsHsdGs

¶
−Et

µZ ∞
t

bXse
−qsHscsds

¶¸
d bXt = 0 (55)

where cs is given explicitly by:

cs = (e
ρsλHsXs)

− 1
γ (56)

Plugging (56) into (55) and then using (54) and observing that Λt changes when and only bXt changes

implies that:Z ∞
0

µ
Et

Z ∞
t

bXse
−qsHsdGs −Et

Z ∞
t

bXse
−qsHs

³
eρsλHs

bXs

´− 1
γ

ds

¶
dΛt = 0

Then, for any admissible Gt and bXt given by (51):

λE

µZ ∞
0

e−qsHs

³ bXs − 1
´
dGs

¶
=

λE

∙Z ∞
0

e−qsHs

³ bXs − 1
´
dGs −

Z ∞
0

µ
Et

Z ∞
t

bXse
−qsHsdGs

¶
dΛt

¸
(57)

+λE

½Z ∞
0

Et

∙Z ∞
t

bXse
−qsHs

³
eρsλHs

bXs

´− 1
γ

ds

¸
dΛt

¾
Next consider the martingale:

Mt = Et

Z ∞
0

bXse
−qsHsdGs =

Z t

0

bXse
−qsHsdGs +Et

Z ∞
t

bXse
−qsHsdGs (58)

According to the martingale representation theorem, there exists a square integrable eψs such that:
Mt =M0 +

Z t

0

eψsdBs (59)

Combining (58) and (59) gives:

d

µ
Et

Z ∞
t

bXse
−qsHsdGs

¶
= dMt − bXte

−qtHtdGt

= eψtdBt − bXte
−qtHtdGt
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Now, fixing an arbitrary ε > 0, letting τε be the first time t such that |Λt| ≥ 1
ε , applying integration by

parts and using the fact that Λ0 = 0, gives:

−E
Z T∧τε

0

µ
Et

Z ∞
t

bXse
−qsHsdGs

¶
dΛt = −E

Z T∧τε

0

Λs bXse
−qsHsdGs

+E

Z T∧τε

0

ΛseψsdBs

−E
∙
ΛT∧τε

µ
ET∧τε

Z ∞
T∧τε

bXse
−qsHsdGs

¶¸
Since ψs is square integrable and |Λs| is bounded in

£
0, 1ε

¤
the second term on the right hand side of the

above expression is 0. We also note that:

−E
∙
ΛT∧τε

µ
ET∧τε

Z ∞
T∧τε

bXse
−qsHsdGs

¶¸
= −E

h bXT∧τεΛT∧τεJ
i

(60)

where

J =

Ã
ET∧τε

Z ∞
T∧τε

bXsbXT∧τε
e−qsHsdGs

!
≤ ET∧τε

Z ∞
T∧τε

e−qsHsdGs (61)

since bXt is non-increasing. Combining (61) with (60) and noting that 0 < bXt ≤ 1

−E
h bXT∧τεΛT∧τεJ

i
= E

h³
1− bXT∧τε

´
J
i
≤ ET∧τε

Z ∞
T∧τε

e−qsHsdGs (62)

Given that:

E

Z ∞
0

e−qsHsdGs <∞

it follows that:

ET∧τε
Z ∞
T∧τε

e−qsHsdGs → 0 (63)

as ε→ 0, T →∞. This leads to the inequalities:

−E
Z ∞
0

µ
Et

Z ∞
t

bXse
−qsHsdGs

¶
dΛt ≥ −E

Z T∧τε

0

µ
Et

Z ∞
t

bXse
−qsHsdGs

¶
dΛt

≥ −E
Z T∧τε

0

Λs bXse
−qsHsdGs

Letting ε→ 0, T →∞, using the monotone convergence theorem, and using (62) and (63), gives

−
Z ∞
0

µ
Et

Z ∞
t

bXse
−qsHsdGs

¶
dΛt = −E

Z ∞
0

Λs bXse
−qsHsdGs (64)

Using (64) and the definition of Λt gives:

λE

∙Z ∞
0

e−qsHs

³ bXs − 1
´
dGs −

Z ∞
0

µ
Et

Z ∞
t

bXse
−qsHsdGs

¶
dΛt

¸
=
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= E

∙
λ

Z ∞
0

e−qsHs

³ bXs − 1
´
dGs − λ

Z ∞
0

e−qsHs
bXsΛsdGs

¸
= 0

Returning now to (57) and using the above equation yields:

λE

µZ ∞
0

e−qsHs

³ bXs − 1
´
dGs

¶
= λE

½Z ∞
0

Et

∙Z ∞
t

bXse
−qsHs

³
eρsλHs

bXs

´− 1
γ

ds

¸
dΛt

¾
(65)

= E

∙Z ∞
0

e−(ρ+q)t
³
eρtλHt

bXs

´1− 1
γ

Λtdt

¸
(66)

where (66) follows from a similar integration by parts argument as the one in equations (58)-(64).

The next Lemma uses Lemma 1 to prove (30).

Lemma 2 For all admissible processes Gt ∈ G:

max
Gt∈G

V (W0) ≤ min
λ∈(0,ξ−γ ]

"
E

ÃZ ∞
0

e−(ρ+q)s
(λeρsHsX

∗
s )
1− 1

γ

1− γ
ds− λ

Z ∞
0

e−qsHs (λe
ρsHsX

∗
s )
− 1
γ ds+ λW0

!#
(67)

Proof. Proposition 1 along with Lemma 1 implies that for any admissible process Gt there exists a

λG > 0 and a decreasing process XG
t ∈ D that minimize (18) such that:

V (W0) = E

µZ ∞
0

e−(ρ+q)smax
cs

µ
c1−γs

1− γ
− λGeρsHsX

G
s cs

¶
ds+ λG

Z ∞
0

e−qsHs

¡
XG
s − 1

¢
dGs

¶
+ λGW0

= E

Z ∞
0

e−(ρ+q)s

⎛⎜⎝
³
eρsλGHsX

G
s

´1− 1
γ

1− γ
− λGeρsHs

³
eρsλGHsX

G
s

´− 1
γ

⎞⎟⎠ ds+ λGW0 (68)

Moreover, since the process Gt enforces ct ≥ ξ, equation (19) implies that λG ≤ ξ−γ . Next take an arbitrary

λ > 0. Since

ct =
³
eρtλGHtX

G
t

´− 1
γ

is an optimal consumption process, it exhausts the “budget constraint” of the consumer so that:

E

Z ∞
0

e−(ρ+q)seρsHs

³
eρsλGHsX

G
s

´− 1
γ

ds =W0 −D0 +E

Z ∞
0

e−qsHsdGs

Using (13), this implies that:

E

Z ∞
0

e−(ρ+q)seρsHs

³
eρsλGHsX

G
s

´− 1
γ

=W0

This furthermore implies that (68) can be rewritten as:

V (W0) = E

Z ∞
0

e−(ρ+q)s

⎛⎜⎝
³
eρsλGHsX

G
s

´1− 1
γ

1− γ
− λeρsHs

³
eρsλGHsX

G
s

´− 1
γ

⎞⎟⎠ ds+ λW0 (69)
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Next define X∗t as in equation (27), and let the process Nt be given as:

Nt =
λG

λ

XG
t

X∗t

Using Nt one can rewrite equation (69) as

V (W0) = E

Z ∞
0

e−(ρ+q)s
Ã
(eρsλHsX

∗
sNs)

1− 1
γ

1− γ
− λeρsHs (e

ρsλHsX
∗
sNs)

− 1
γ

!
ds+ λW0 (70)

Since λGXG
t is a decreasing process that starts at λG and always stays below ξ−γ , the Skorohod equation29

implies that there exists another decreasing process λGX∗Gt that also starts at λG and stays below ξ−γ , with

the property

λGXG
t ≤ λGX∗Gt (71)

This process is given by:

X∗Gt = min

"
1,

ξ−γ/λG

max0≤s≤t (eρsHs)

#

Note that X∗Gt is identical to X∗t with the exception that λ replaces λ
G. Using (71) and the definition of Nt

yields:

Nt =
λG

λ

XG
t

X∗t
≤ λG

λ

X∗Gt
X∗t

(72)

Using (72) and (70) leads to:

V (W0) ≤ E

Z ∞
0

e−(ρ+q)sA(s)ds+ λW0 (73)

where:

A (s) = max
Ns≤Qs

³ eA (s)´ (74)

and eA (s) is defined as
eA (s) = (eρsλHsX

∗
sNs)

1− 1
γ

1− γ
− λeρsHs (e

ρsλHsX
∗
sNs)

− 1
γ

and

Qs = max

"
1,
λG

λ

X∗Gs
X∗s

#

To study the maximization problem of equation (74) it is useful to compute the derivative of eAs with respect

to Ns. Performing this computation and combining terms gives:

∂ eAs

∂Ns
= − 1

γ
(eρsλHsX

∗
sNs)

1− 1
γ N−1s

µ
1− 1

NsX∗s

¶
(75)

29For the Skorohod equation see Karatzas and Shreve (1991).
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At this stage it is useful to consider two cases separately. The first case is λ > λG. In this case, it is

straightforward to show that:

Qs = 1

Hence in maximizing eA(s), one can constrain attention to values of Ns ≤ 1. An examination of (75) reveals
that ∂A(s)

∂Ns
≥ 0 for all Ns ≤ 1 and all X∗s , since X∗s ≤ 1. Hence the solution to (74) is Ns = 1 when λ > λG.

In the case where λ < λG it is also true that the optimal Ns in (74) is equal to one. To see this, observe

that:

Qs =

½ λG

λ
X∗Gs
X∗s

when X∗s = 1
1 when X∗s < 1

Using this observation in (75) reveals that the optimal choice for Ns is always equal to 1.30

The above reasoning shows that the optimal solution of (74) is given by Ns = 1. Returning to (73), this

implies that:

V (W0) ≤ E

Z ∞
0

e−(ρ+q)s
Ã
(eρsλHsX

∗
s )
1− 1

γ

1− γ
ds− λeρsHs (e

ρsλHsX
∗
s )
− 1
γ ds

!
+ λW0

Since this bound holds for arbitrary λ ∈ (0, ξ−γ ] and arbitrary Gt ∈ G, it also holds for the λ ∈ (0, ξ−γ ] that
minimizes the right hand side of the above equation and the Gt ∈ G that maximizes the right hand side.
Hence (67) follows.

The next part of the proof is to show that equation (28) holds. A first step is to show that (28) provides

an upper bound to J (W0) :

Lemma 3 The value function of problem 2 is bounded above by:

J (W0) ≤

min
λ∈(0,ξ−γ ]

"
E

ÃZ ∞
0

e−(ρ+q)s
(λeρsHsX

∗
s )
1− 1

γ

1− γ
ds− λ

Z ∞
0

e−qsHs (λe
ρsHsX

∗
s )
− 1
γ ds+ λW0

!#
(76)

Proof. The proof of this Lemma follows identical steps to the proof of the previous Lemma. To see this,

take an arbitrary triplet < bλ,Xt, ct > that satisfies equations (24)-(26) of Problem 2. Then for any λ > 0

one obtains:

J (W0) ≤ E

⎛⎜⎝Z ∞
0

e−(ρ+q)s

³bλeρsHsXs

´1− 1
γ

1− γ
− λ

Z ∞
0

e−qsHs

³bλeρsHsXs

´− 1
γ

+ λW0

⎞⎟⎠
30To see this distinguish cases. When X∗s = 1, then solving

∂A(s)
∂Ns

= 0 gives Ns = 1 ≤ Qs. Hence Ns is the unique

interior solution. When X∗s < 1, then ∂A(s)
∂Ns

> 0 for all Ns ≤ Qs = 1. Hence the solution is given by the corner

Ns = Qs = 1.
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Notice that this equation is identical to equation (69), with the exception that λG is replaced by bλ and XG
t is

replaced by Xt. Since the equations following (69) hold for any λ
G,XG

t they also hold for bλ,Xt. Accordingly,

by repeating the same steps, one can arrive at (76).

The next step in the proof of the proposition is to show that the inequality in (76) holds with equality

for the optimal policy. The following Lemma presents a step in this direction:

Lemma 4 Let F (λ) be given by:

F (λ) = E

ÃZ ∞
0

e−(ρ+q)s
(λeρsHsX

∗
s )
1− 1

γ

1− γ
ds− λ

Z ∞
0

e−qsHs (λe
ρsHsX

∗
s )
− 1
γ ds

!
(77)

Then

F (λ) = − Kξ1−γ

γφ (φ− 1)
µ

λ

ξ−γ

¶φ
+K

γ

1− γ
λ1−

1
γ (78)

Assume moreover that (8) is met. Then

min
λ∈(0,ξ−γ ]

[F (λ) + λW0] = min
λ>0

[F (λ) + λW0] (79)

and (76) can be rewritten as:

J (W0) ≤ min
λ>0

[F (λ) + λW0]

Moreover, letting λ∗ be given as:

λ∗ = argmin
λ>0

[F (λ) + λW0]

implies that:

E0

∙Z ∞
0

e−qsHs (λ
∗eρsHsX

∗
s )
− 1
γ

¸
=W0

and accordingly c∗s = (λ
∗eρsHsX

∗
s )
− 1
γ is a feasible consumption to the central planner of problem 2.

Proof. To save notation, let

Zt = λeρtHtX
∗
t (80)

and note that Z0 = λ, and that Zt ∈ (0, ξ−γ ] by the definition of X∗t in equation (27). Equation (77) can
now be rewritten as:

F (λ) = E

⎡⎣Z ∞
0

e−(ρ+q)s
1

1− γ
(Zs)

1− 1
γ ds−

Z ∞
0

e−(ρ+q)s
Z
1− 1

γ
s

X∗s
ds

⎤⎦ (81)
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It will be convenient to compute the two terms inside equation (81) separately. Define first:

G (Zt) = E

∙Z ∞
t

e−(ρ+q)(s−t)
1

1− γ
(Zs)

1− 1
γ ds|Zt

¸
(82)

To compute G (Zt), it is easiest to let τ be the first hitting time of Zt to the level ε > 0 :

τ = inf
s≥t
{Zs = ε}

and then compute the expression:

Gε (Zt) = E

∙Z τ

t

e−(ρ+q)s
1

1− γ
(Zs)

1− 1
γ ds|Zt

¸
(83)

To compute (83) apply first Ito’s Lemma to (80) to obtain:

dZt
Zt

= (ρ− r) dt− κdBt +
dX∗t
X∗t

Next, I shall construct a function Gε(Z) that satisfies the ODE:

κ2

2
Gε
ZZZ

2 +Gε
ZZ (ρ− r)− (ρ+ q)Gε +

1

1− γ
(Z)1−

1
γ = 0 (84)

subject to the boundary conditions:

Gε
Z

¡
ξ−γ

¢
= 0 (85)

Gε(ε) = 0 (86)

(84) is a linear ordinary differential equation with general solution:

Gε (Z) = C1Z
χ + C2Z

φ +K
1

1− γ
Z1−

1
γ

where C1, C2 are arbitrary constants, K is given in equation (10), φ > 0 in (9), and χ is given by:

χ =
−
³
ρ− r − κ2

2

´
−
q¡

ρ− r − κ2

2

¢2
+ 2 (ρ+ q)κ2

κ2
< 0 (87)

To satisfy (85), (86) C1 and C2 must be chosen so that:

χC1
¡
ξ−γ

¢χ
+ φC2

¡
ξ−γ

¢φ − 1
γ
K
¡
ξ−γ

¢1− 1
γ = 0

C1ε
χ + C2ε

φ +K
1

1− γ
ε1−

1
γ = 0

Solving this system yields:

C2 =
K
h
1
γχ

¡
ξ−γ

¢1− 1
γ−χ εχ + 1

1−γ ε
1− 1

γ

i
φ
χ

¡
ξ−γ

¢φ−χ
εχ − εφ
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and

C1 = −C2εφ−χ −K
1

1− γ
ε1−

1
γ−χ

It remains now to verify that Gε (Zt) satisfies (83). To this end, apply Ito’s Lemma to e−(ρ+q)tGε(Zt)

to obtain for any time T ∧ τ :

e−(ρ+q)TGε(ZT∧τ )− e−(ρ+q)tGε(Zt) =

Z T∧τ

t

µ
κ2

2
Gε
ZZZ

2
s +Gε

ZZs (ρ− r)− (ρ+ q)Gε

¶
e−(ρ+q)sds

−
Z T∧τ

t

e−(ρ+q)sκGε
ZZsdBs

+

Z T∧τ

t

e−(ρ+q)sGε
Z

¡
ξ−γ

¢
ξ−γ

dX∗s
X∗s

Using (84) in the first line of the above equation along with (85) in the third line, letting T →∞ along

with (86) and using the monotone convergence theorem gives:

Gε(Zt) = Et

∙Z τ

t

e−(ρ+q)(s−t)
1

1− γ
(Zs)

1− 1
γ ds+

Z τ

t

e−(ρ+q)(s−t)κGε
ZZsdBs

¸
(88)

Since Gε
ZZ is bounded between t and τ , the second term in the above expression is a martingale and hence

obtain (110). Next, letting ε→ 0, it is straightforward to show that:

C2 =
K
h
1
γχ

¡
ξ−γ

¢1− 1
γ−χ − 1

1−γ ε
1− 1

γ−χ
i

φ
χ

¡
ξ−γ

¢φ−χ − εφ−χ
→ K

1

γφ

¡
ξ−γ

¢1− 1
γ−φ

since εφ−χ → 0 and ε1−
1
γ−χ → 0. By a similar argument it is easy to show that C1 → 0 and hence:

lim
ε→0

Gε(Z) = G(Z) =
1

φ

1

γ
Kξ1−γ

µ
Z

ξ−γ

¶φ
+K

1

1− γ
Z1−

1
γ (89)

Now (82) is a consequence of the monotone convergence theorem.

It remains to compute the expression

N (Zt,X
∗
t ) = Et

⎛⎝Z ∞
t

e−(ρ+q)(s−t)
Z
1− 1

γ
s

X∗s
ds

⎞⎠
Using a similar logic as above, the next step is to search for a function N that satisfies:

κ2

2
NZZZ

2 +NZZ (ρ− r)− (ρ+ q)N +
(Z)1−

1
γ

X∗
= 0

NZ

¡
ξ−γ ,X∗

¢ ξ−γ
X∗

+NX

¡
ξ−γ ,X∗

¢
= 0

One can check that such a function exists and is given by:

N(Z,X∗) =
1

(φ− 1)
1

γ

K
¡
ξ−γ

¢1− 1
γ

X∗

µ
Z

ξ−γ

¶φ
+K

Z1−
1
γ

X∗
(90)
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One can now use the same steps as for the function G(Zt) to verify that:

N (Zt,X
∗
t ) = Et

⎛⎝Z ∞
t

e−(ρ+q)(s−t)
Z
1− 1

γ
s

X∗s
ds

⎞⎠ (91)

It is now possible to compute F (λ) which is given by:

F (λ) = G(λ)−N (λ, 1) =

= − Kξ1−γ

γφ (φ− 1)
µ

λ

ξ−γ

¶φ
+K

γ

1− γ
λ1−

1
γ (92)

To show the second part of the proposition, observe that (91), (80) and (90) imply that

N (λ, 1)

λ
=

1

λ
E0

⎛⎝Z ∞
0

e−(ρ+q)s
Z
1− 1

γ
s

X∗s
ds

⎞⎠ = E0

µZ ∞
0

e−qsHs (λe
ρsHsX

∗
s )
− 1
γ ds

¶
=

=
Kξ1−γ

(φ− 1)
1

γ

µ
λ

ξ−γ

¶φ
1

λ
+Kλ−

1
γ (93)

Moreover, computing F 0(λ) in (92) yields:

F 0(λ) = −Kξ1−γ

(φ− 1)
1

γ

µ
λ

ξ−γ

¶φ
1

λ
−Kλ−

1
γ (94)

Combining (93) and (94) yields:

F 0(λ) = −N (λ, 1)
λ

=

= −E0
µZ ∞

0

e−qsHs (λe
ρsHsX

∗
s )
− 1
γ ds

¶
(95)

Using the formula for F (λ), equation (76) can be expressed as:

min
λ∈(0,ξ−γ ]

{F (λ) + λW0}

which leads to the first order condition for the minimizing λ∗ :

F 0 (λ∗) = −W0 (96)

Using (95) leads to:

W0 = E0

µZ ∞
0

e−qsHs (λ
∗eρsHsX

∗
s )
− 1
γ ds

¶
= E0

µZ ∞
0

e−qsHsc
∗
sds

¶
This last equation implies that λ∗,X∗t and the associated consumption process c

∗
t = (λ∗eρtHtX

∗
t )
− 1
γ

satisfy (24) and (26). To show that the choice hλ∗,X∗t , c∗t i constitutes a feasible triplet, it remains to show
that it also satisfies (25). By construction of X∗t this will be the case as long as λ

∗ < ξ−γ . This will indeed
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be the case as long as W0 satisfies (8). To see this, note that ξ
−γ is the unique solution of (96) when W0 is

given by

W0 =

1
γ + φ− 1
φ− 1 Kξ

Moreover, equation (94) implies that:

F 00(λ) = −K ¡
ξ−γ

¢1− 1
γ
1

γ

µ
1

ξ−γ

¶φ
λφ−2 +

1

γ
Kλ−

1
γ−1

=
1

γ
Kλ−

1
γ−1

"
1−

µ
λ

ξ−γ

¶φ+ 1
γ−1

#
> 0 (97)

The above equation shows that F
0
(λ) is an increasing function of λ for 0 < λ < ξ−γ and hence the solution

λ∗ of equation (96) is a decreasing function of W0. Hence, as long as W0 satisfies (8), then λ∗ < ξ−γ . Since

the interior solution λ∗ is smaller than ξ−γ , equation (79) follows.

Combining the above Lemma with (76) implies that:

J(W0) ≤ min
λ>0

[F (λ) + λW0] = F (λ∗) + λ∗W0 =

= E

⎛⎜⎝Z ∞
0

e−(ρ+q)s

³
(λ∗eρsHsX

∗
s )
− 1
γ

´1−γ
1− γ

ds

⎞⎟⎠
= E

ÃZ ∞
0

e−(ρ+q)s
(c∗s)

1−γ

1− γ
ds

!
≤ J (W0)

The last inequality follows because c∗s = (λ
∗eρsHsX

∗
s )
− 1
γ is a feasible consumption process for problem for

problem 2 and J (W0) is the value function of the problem. The above three lines imply that equation (76)

holds with equality as long as one chooses the optimal solution in the statement of the proposition. This

concludes the proof of Proposition 2.

B Remaining Proofs

Proof of Proposition 3. The proof of this Proposition is just a special case of Section 6 in He and Pages

(1993) and hence I give only a sketch and refer the reader to He and Pages (1993) for details.

To start define:

eV (λ) = min
Xs∈D

E

∙Z ∞
0

e−(ρ+q)smax
cs

µ
c1−γs

1− γ
− λeρsHsXscs

¶
ds+ λ

Z ∞
0

e−qsHsXsy0ds

¸
(98)

By equation (13) and equation (18) of Proposition 1

V (W0) = min
λ>0

∙eV (λ) + λ

µ
W0 − y0

r + q

¶¸
(99)
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since

y0E

Z ∞
0

Hsds =
y0
r

Next, for an arbitrary decreasing process Xt let Zt be defined as:

Zt = λeρsHsXs

Note that Z0 = λ. Applying Ito’s Lemma to Zt gives:

dZt
Zt

= (ρ− r) dt− κdBt +
dXt

Xt
(100)

With this definition of Zt one can solve the maximization problem inside (98) and rewrite eV (λ) as
eV (Z0) = min

Xs∈D
E

∙Z ∞
0

e−(ρ+q)s
µ

γ

1− γ
Z
1− 1

γ
s + y0Zs

¶
ds

¸
(101)

From this point on, one can use similar arguments to He and Pages (1993) and treat (101) as a singular

stochastic control problem over the set of decreasing processesXt. As He and Pages (1993) show, the optimal

solution is to always decrease Xt appropriately, so as to keep Zt in the interval (0, Z]. Z is a free boundary

that is determined next.

Using this conjecture for the optimal policy one can now proceed as He and Pages (1993) to establish

that eV (Z) satisfies the ordinary differential equation:
κ2

2
eVZZZ2 + (ρ− r) eVZZ − (ρ+ q)eV + γ

1− γ
Z1−

1
γ + y0Z = 0 for all Z ∈ (0, Z]

The general solution to this equation is:

eV (Z) = C1Z
φ + C2Z

χ +K
γ

1− γ
Z1−

1
γ +

y0
r + q

Z (102)

where K is given in (10), φ in (9) and χ in (87) and C1, C2 are arbitrary constants. As in He and Pages

(1993) one can set C2 = 0 (since χ < 0). Hence it remains to determine C1 and the free boundary Z. As

most singular stochastic control problems, one can employ a “smooth pasting” and “high contact” principle,

namely by determining C1 and Z so that:

eVZ ¡Z¢ = 0 (103)eVZZ ¡Z¢ = 0 (104)

Using the general solution in (102) along with C2 = 0 and plugging into the equations (103) and (104) gives

the system of equations

φC1Z
φ−1 −KZ

− 1
γ +

y0
r + q

= 0

φ (φ− 1)C1Zφ−2
+
1

γ
KZ

− 1
γ−1 = 0
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Solving this system for C1 and Z gives:

Z
− 1
γ =

1

K

y0
r + q

Ã
φ− 1

1
γ + φ− 1

!
(105)

C1 = −
1
γ

y0
r+q

φZ
φ−1 h 1

γ + φ− 1
i (106)

The next steps to verify that the conjectured policy is indeed optimal are identical to He and Pages (1993)

and are left out.

To conclude the proof , note that sofar the calculations were true for an arbitrary y0. To determine the

y0 that will safeguard that ct ≥ ξ observe that:

ct = Z−
1
γ

by equation (19). Since the optimal policy is to control Xt so as to “keep” Zt in the interval (0, Z] it follows

that the minimum level of consumption is given by Z
− 1
γ . Hence, in order to guarantee condition ct ≥ ξ it

suffices to determine y0 so that:

ξ = Z
− 1
γ =

1

K

y0
r + q

Ã
φ− 1

1
γ + φ− 1

!
Solving for y0 gives:

y0 = ξ(r + q)K

1
γ + φ− 1
φ− 1

One can now substitute that level of y0 into (106), (105) and use the resulting expressions to obtain from

(102) the following expression for eV (Z) :
eV (Z) = − Kξ1−γ

γφ (φ− 1)
µ

Z

ξ−γ

¶φ
+K

γ

1− γ
Z1−

1
γ +

y0
r + q

Z

Evaluating this expression at Z0 = λ and using equation (99) gives the value function of the agent as

V (W0) = min
λ>0

∙eV (λ) + λ

µ
W0 − y0

r + q

¶¸
=

= min
λ>0

"
− Kξ1−γ

γφ (φ− 1)
µ

λ

ξ−γ

¶φ
+K

γ

1− γ
λ1−

1
γ + λW0

#
This last equation is precisely equation (29) of proposition 2, which shows that the “constant income” policy

of the current proposition attains the upper bound of proposition 2.

Proof of Proposition 4. The proof of this proposition proceeds in steps. The first two Lemmas estab-

lish that the proposed transfer policy will make it possible for an agent who follows the optimal consumption

process of proposition 4 to satisfy the intertemporal budget constraint. The proof then continues to show
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that the wealth process associated with the optimal consumption process of proposition 4 along with the

portfolio process (36) will lead to non-negative levels of wealth at all times. Finally, it is shown that the

consumption policy of proposition 4 along with the portfolio choice (36) are optimal for an agent who is

faced with transfers given by (35) and attain the upper bound of proposition 2.

Lemma 5 Let K and φ be given by (10) and (9) and for any 0 < λ < ξ−γ let:

Zt = λeρsHsX
∗
s

Then: Z ∞
0

Et

µZ ∞
t

e−q(s−t)HsX
∗
sdGs −

Z ∞
t

e−q(s−t)HsX
∗
sZ
− 1
γ

s ds

¶
dX∗t = 0 (107)

Proof of Lemma 5. It will simplify notation to let:

η = −Kξ

µ
φ− 1 + 1

γ

¶
(108)

The first step is to compute

Et

R∞
t

e−qsHsX
∗
sdGs

e−qtHtX∗t
= η

Et

R∞
t

e−qsHsdX
∗
s

e−qtHtX∗t
(109)

Applying integration by parts and using the definition of Zt gives:

Et

µZ ∞
t

e−qsHsdX
∗
s

¶
=
1

λ

∙
−e−(ρ+q)tZt +Et

µZ ∞
t

(r + q) e−(ρ+q)sZsds
¶¸

(110)

Using (110) in equation (109) gives:

Et

R∞
t

e−qsHsX
∗
sdGs

e−qtHtX∗t
= η

"
(r + q)

Et

¡R∞
t

e−(ρ+q)(s−t)Zsds
¢

Zt
− 1
#

(111)

By using a logic similar to equations (84)-(88) it can be shown that:

Et

µZ ∞
t

e−(ρ+q)(s−t)Zsds
¶
= − 1

φ

ξ−γ

r + q

µ
Zt

ξ−γ

¶φ
+

1

r + q
Zt (112)

where φ is defined in equation (9). Plugging back (112) into (111) gives:

Et

R∞
t

e−qsHsX
∗
sdGs

e−qtHtX∗t
= −η

φ

µ
Zt

ξ−γ

¶φ−1
(113)

To conclude the proof, note that equations (82) and (89) imply that:

Et

µR∞
t

e−qsHsX
∗
sZ
− 1
γ

s ds

¶
e−qtHtX∗t

=

Et

µR∞
t

e−(ρ+q)(s−t)Z
1− 1

γ
s ds

¶
Zt

=

1
φ
1−γ
γ Kξ1−γ

³
Zt
ξ−γ

´φ
+KZ

1− 1
γ

t

Zt
(114)
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Combining (114) with (113) gives:

Et

µR∞
t

e−qsHsX
∗
sdGs −

R∞
t

e−qsHsX
∗
sZ
− 1
γ

s ds

¶
e−qtHtX∗t

=

= −η
φ

µ
Zt

ξ−γ

¶φ−1
−

1
φ
1−γ
γ Kξ1−γ

³
Zt
ξ−γ

´φ
+KZ

1− 1
γ

t

Zt

Since dX∗t 6= 0 when and only when Zt = ξ−γ , equation (107) amounts to checking that:

−η
φ
−
µ
1

φ

1− γ

γ
+ 1

¶
Kξ = 0

which follows easily from the definition of η.

Lemma 6 Let Zs be as in the statement of the proposition 4 and let Gt be as in (35). Then the consumption

policy:

c∗s = (Zs)
− 1
γ (115)

satisfies:

E

Z ∞
0

e−qsHsX
∗
s c
∗
sds =W0 +

Z ∞
0

e−qsHs (X
∗
s − 1) dGs (116)

Proof of Lemma 6. Taking any λ ∈ ( 0, ξ−γ ], using the definition of X∗t , and equation (107), the
same reasoning behind (57) leads to:

E

µZ ∞
0

e−(ρ+q)smax
cs

µ
c1−γs

1− γ
− λeρsHsX

∗
s cs

¶
ds+ λ

Z ∞
0

e−qsHs (X
∗
s − 1) dGs

¶
+ λW0 = (117)

= E

∙Z ∞
0

e−(ρ+q)s
γ

1− γ
(eρsλHsX

∗
s )

γ−1
γ ds+

Z ∞
0

e−(ρ+q)s (eρsλHsX
∗
s )
1− 1

γ

µ
1− 1

X∗s

¶
ds

¸
+λW0 (118)

Hence the λ∗ that minimizes (29) (and hence minimizes [118]) also minimizes (117). But since λ minimizes

(117), the same argument as in He and Pages (1993) (Proof of Theorem 1) leads to (116).

Proof of Proposition 4 continued. Lemma 6 has demonstrated that the consumption policy (115)

satisfies the intertemporal budget constraint (116). It remains to show that this consumption policy along

with the portfolio policy (36) will lead to a process for financial wealth that satisfies Wt ≥ 0. To that end
let η be given as in (108) and define:

W ∗ (Zt) = −K
¡
ξ−γ

¢− 1
γ

µ
Zt

ξ−γ

¶φ−1
+KZ

− 1
γ

t (119)

It is straightforward to verify the following facts about W ∗ (Zt) :

κ2

2
Z2W ∗ZZ +

¡
ρ− r + κ2

¢
ZW ∗Z − (r + q)W + (Z)

− 1
γ = 0 (120)
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W ∗
¡
ξ−γ

¢
= 0,W ∗ (Z) ≥ 0 for all Z ∈ (0, ξ−γ ] (121)

W ∗Z
¡
ξ−γ

¢
= −Kξ

µ
φ− 1 + 1

γ

¶¡
ξ−γ

¢−1
=

η

ξ−γ
(122)

The next step is to verify that W ∗ (Zt) is the stochastic process for the financial wealth of the agent. To see

this, use the definition of c∗s (equation [115]) along with the definitions of dGt,W
∗
t (equations [35] and [119]

respectively) and apply Ito’s Lemma to obtain:

d

µZ t

0

c∗sds−
Z t

0

dGs +W ∗t

¶
=

= c∗tdt− η
dX∗t
X∗t

+W ∗ZdZt +
κ2

2
W ∗ZZZ

2
t dt

=

µ
c∗t − Z

− 1
γ

t

¶
dt+

£
W ∗Z

¡
ξ−γ

¢
ξ−γ − η

¤ dX∗t
X∗t

+ (r + q)W ∗t dt− κ2ZtW
∗
Zdt− κW ∗ZZtdBt =

= (r + q)W ∗t dt− κ2ZtW
∗
Zdt−

κ

σ
W ∗ZZt

µ
dPt
Pt
− µdt

¶
= (r + q)W ∗t dt− κ2ZtW

∗
Zdt−

κ

σ
W ∗ZZt

µ
dPt
Pt
− (µ− r) dt− rdt

¶
=

= qW ∗t dt+ r
³
W ∗t +

κ

σ
W ∗ZZt

´
dt− κ

σ
W ∗ZZt

dPt
Pt

=

= qW ∗t dt+ r (W ∗t − π∗t ) dt+ π∗t
dPt
Pt

Integrating givesZ t

0

c∗sds+W ∗t =W0 −D0 +

Z t

0

dGs +

Z t

0

qW ∗s dt+
Z t

0

r (W ∗t − π∗t ) dt+
Z t

0

π∗t
dPt
Pt

Hence the process W ∗t satisfies the equation (15) for an agent who chooses a consumption policy given by

(115) and a portfolio policy given by (36). Accordingly, it is the financial wealth process that is associated

with that policy pair. Moreover, by equation (121) the financial wealth process is non-negative. Accordingly,

the policies given by (115) and (36) are feasible for an agent who is faced with the transfer process (35).

Verifying the optimality of the stated policy pair is straightforward. According to proposition 1:

V (W0) = min
λ>0, Xs∈D

⎡⎣ E
³R∞

0
e−(ρ+q)smaxcs

³
c1−γs

1−γ − λeρsHsXscs

´
ds+ λ

R∞
0

e−qsHsXsdGs

´
+λ (W0 −D0)

⎤⎦ ≤ Q(W0)

where:

Q(W0) = min
λ>0

⎡⎣ E
³R∞

0
e−(ρ+q)smaxcs

³
c1−γs

1−γ − λeρsHsX
∗
s cs

´
ds+ λ

R∞
0

e−qsHsX
∗
s dGs

´
+λ (W0 −D0)

⎤⎦
One can use now Lemma 6 to illustrate that the consumption policy (115) leads to a payoff for the agent

equal to Q(W0) which is an upper bound to the value function of the agent V (W0). Since the consumption
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policy (115) is also feasible, the payoff associated with that policy also provides a lower bound to the value

function V (W0). Hence this policy must be optimal, since the payoff associated with it is equal to the value

function.

Finally, the easiest way to show that

D0 = Kξ

1
γ + φ− 1
φ− 1

µ
λ∗

ξ−γ

¶φ−1
is to observe that the intertemporal budget constraint implies that:

Eτ0

µZ ∞
τ0

e−q(s−τ0)
Hs

Hτ0

c∗sds
¶
= Eτ0

µZ ∞
τ0

e−q(s−τ0)
Hs

Hτ0

dGs

¶
where τ0 is the first time that Xτ0 ≥ 1 (or equivalently the first time that Wτ0 = 0 and λ∗eρτ0Hτ0 = ξ−γ) .

A few manipulations can be used to show that

Eτ0

µZ ∞
τ0

e−q(s−τ0)
Hs

Hτ0

c∗sds
¶
=

N
¡
ξ−γ , 1

¢
ξ−γ

= Kξ

1
γ + φ− 1
φ− 1

where N is defined and computed in (90) and (91). Finally, since there are no transfers between 0 and τ0 :

D0 = E
¡
e−qτ0Hτ0

¢
Kξ

1
γ + φ− 1
φ− 1 =

1

λ∗
E
³
e−(ρ+q)τ0λ∗eρτ0Hτ0

´
Kξ

1
γ + φ− 1
φ− 1 =

=
ξ−γ

λ∗
E
³
e−(ρ+q)τ0

´
Kξ

1
γ + φ− 1
φ− 1 =

µ
λ∗

ξ−γ

¶φ−1
Kξ

1
γ + φ− 1
φ− 1

where the proof of E
¡
e−(ρ+q)τ0

¢
=
³

λ∗
ξ−γ

´φ
is identical to the one given in Oksendal (1998), Chapter 10.

Proof of Proposition 5. . Take any transfer process Gt such that the resulting consumption process

of the agent satisfies ct ≥ ξ. Proposition 1 implies then that there exists a cumulative multiplier process XG
t

and a constant λG such that:

ct =
³
λGeρtHtX

G
t

´− 1
γ ≥ ξ

Letting:

X∗t = min

"
1,

ξ−γ/λG

max0≤s≤t (eρsHs)

#

and:

P = E

µZ ∞
0

e−qsHscsds

¶
gives:

P = E

µZ ∞
0

e−qsHs

³
λGeρsHsX

G
s

´− 1
γ

ds

¶
≥ E

µZ ∞
0

e−qsHs

³
λGeρsHsX

∗
s

´− 1
γ

ds

¶
(123)
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since31 X∗s
³
λG
´
≥ XG

s . Equation (93) implies that:

E

µZ ∞
0

e−qsHs

³
λGeρsHsX

∗
s

´− 1
γ

ds

¶
=

Kξ1−γ

(φ− 1)
1

γ

Ã
λG

ξ−γ

!φ
1

λG
+K

³
λG
´− 1

γ

Combining (95) and (97) implies that the right hand side of the above equation is decreasing in λG whenever

λG ≤ ξ−γ . Since c0 =
³
λG
´− 1

γ ≥ ξ this implies furthermore:

E

µZ ∞
0

e−qsHs

³
λGeρsHsX

∗
s

´− 1
γ

ds

¶
≥ Kξ1−γ

(φ− 1)
1

γ

1

ξ−γ
+Kξ = Kξ

µ
1 +

1

φ− 1
1

γ

¶
(124)

= Kξ

Ã
1
γ + φ− 1
φ− 1

!

Combining (123) and (124) yields the conclusion of the theorem.

Proof of Proposition 6. First note that a marginal increase in the tax rate χ in each period prior to

retirement can raise the agents’ minimum assets by:

ω = Y

Z 0

−T
e−(r+q)sds = Y

e(r+q)T − 1
r + q

By an argument similar to Proposition 1, the agent’s value function at birth (time −T ) can be rewritten as:

F = min
Xs,λ>0

E(−T )

⎡⎣ R 0
−T e−(ρ+q)(s+T )maxcs

³
c1−γs

1−γ − λeρ(s+T ) eXs
Hs

H(−T)
cs

´
ds

+λ(1− χ)Y
R 0
−T e−q(s+T ) Hs

H(−T )
eXsds+maxW0+≥0

³
e−(ρ+q)TJ(W0+ + χω)− λ eX0e

−qT H0

H(−T)
W0+

´
⎤⎦

(125)

where J (W0+ + χω) is given in proposition 2 and eXs is a decreasing process starting at eX(−T ) = 1. Let

the expected value of the expression inside the square brackets be denoted as U( eXs,λ), so that:

F (χ) = min
Xs,λ

U( eXs,λ;χ)

Differentiating U( eXs,λ;χ) with respect to χ gives:

Uχ = E(−T )

"
1

λX0
H0

H(−T)
<ξ−γ

e−(ρ+q)TJ 0(W0+ + χω)ω − λY

Z 0

−T
e−q(s+T )

Hs

H(−T )
eXsds

#
(126)

Whenever λ eX0
H0

H(−T)
≥ ξ−γ , so that the constraint W0+ ≥ 0 does not bind, one can use the first order

condition from the second maximization problem inside the square brackets of (125) to obtain

J 0(W0+ + χω) = λ eX0e
ρT H0

H(−T )

31This is an implication of the Skorohod equation. See Karatzas and Shreve (1991).
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This allows one to rewrite expression (126) as

Uχ = E(−T )

"Ã
1

λX0
H0

H(−T)
<ξ−γ

λ eX0e
−qT H0

H(−T )
ω − λY

Z 0

−T
e−q(s+T )

Hs

H(−T )
eXsds

!#

≤ E(−T )

∙µ
λ eX0e

−qT H0

H(−T )
ω − λY

Z 0

−T
e−q(s+T )

Hs

H(−T )
eXsds

¶¸
= λδe−qTω − λδE(−T )

ÃZ 0

−T
e−q(s+T )Y

Hs

H(−T )

eXs

δ
ds

!
(127)

where:

δ = E(−T )

µ eX0
H0

H(−T )

¶
Furthermore,

E(−T )

ÃZ 0

−T
e−q(s+T )Y

Hs

H(−T )

eXs

δ
ds

!
=

Z 0

−T
e−q(s+T )Y

E(−T )
³
Hs

eXs

´
E(−T )

³
H0

eX0

´ds =
= erT

Z 0

−T
e−(r+q)(s+T )Y

E(−T )
³
er(s+T ) Hs

H(−T)
eXs

´
E(−T )

³
erT H0

H(−T)
eX0

´ ds

≥ Y erT
Z 0

−T
e−(r+q)(s+T )ds = ωe−qT (128)

where the inequality follows from the fact that ersHs is a martingale while eXs is a decreasing process,

so that eXs ≥ eX0 for all s ∈ [−T, 0] . Combining (127) and (128) leads to Uχ ≤ 0.
Hence, letting χmin denote the minimum tax rate that will satisfy (8) as given by (44), it follows that

U( eXs,λ;χ
min) > U( eXs,λ;χ) for all χ ∈

¡
χmin, 1

¢
. This furthermore implies that:

F (χ
min) = U( eXχmin

s , λχ
min

;χmin) ≥ U( eXχmin

s , λχ
min

;χ) ≥ U( eXχ
s , λ

χ;χ) = F (χ)

where eXχ
s , λ

χ denote the minimizers of U given χ and similar for eXχmin

s , λχ
min

. Hence it is never optimal to

set the tax rate above χmin.
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