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Abstract

This article explains the high level and the countercyclical variation of the equity

premium in a consumption-based asset pricing model with low large-scale risk aversion.

Investors have gain-loss utility over consumption relative to slowly time-varying habit.

Stocks deliver low returns in recessions when consumption falls below habit; investors

therefore require a high premium for holding stocks. The model’s conditional moment

restrictions are tested on consumption and asset returns data. The empirical estimate

of large-scale risk aversion is low, whereas the estimate of loss aversion agrees with

prior experimental evidence.
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1 INTRODUCTION

The consumption-based asset pricing model (CCAPM) with power utility fails to explain

important facts about stock returns, including the high equity premium, the high volatility of

returns, and the countercyclical variation in the equity premium. (See Grossman and Shiller

1981; Shiller 1982; Mehra and Prescott 1985; Kandel and Stambaugh 1990) In response to

these failures, financial economists have considered alternative models of preferences. One

prominent approach is habit formation, in which utility depends on consumption relative to

a reference level of consumption. (See Sundaresan 1989; Abel 1990; Constantinides 1990;

Ferson and Constantinides 1991; Campbell and Cochrane 1999) Although habit-based asset

pricing models are able to quantitatively match the key empirical facts, these models must

ultimately appeal to high risk aversion to explain the high equity premium (Campbell and

Cochrane 1999, p. 243). A problem with high risk aversion is that it has unappealing

implications for large-scale risk (Kandel and Stambaugh 1991; Rabin 2000).

This article proposes a habit-based asset pricing model with low large-scale risk aver-

sion that explains the key empirical facts, namely the low real interest rate, the high equity

premium, and the countercyclical variation in the equity premium. The model is a stan-

dard identical-agent economy with external habit formation (e.g., Abel 1990; Campbell and

Cochrane 1999). The point of departure from previous work is a new utility function for

evaluating “gains and losses” in consumption relative to habit. Specifically, I embed habit

formation in the reference-dependent model of Kőszegi and Rabin (2006), which ties together

neoclassical consumption utility with the gain-loss utility of Kahneman and Tversky (1979).

The model offers a parsimonious framework to think about both large-scale risk aversion

and loss aversion. Risk aversion refers to the curvature of consumption utility, which deter-

mines the household’s behavior for large gambles. Loss aversion refers to the magnitude of

marginal utility for losses relative to gains, which determines the household’s behavior for

small gambles.

Previous work, notably Benartzi and Thaler (1995) and Barberis, Huang, and Santos
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(2001), has shown that loss aversion can explain asset pricing puzzles. A key feature of

these models is that households care about gains and losses in financial (rather than total)

wealth, which is partly motivated by narrow framing (Barberis and Huang 2007). In this

article, households care about gains and losses in consumption. One can debate which of the

two approaches model household preferences in a more realistic way, but more importantly,

the two models offer different answers to the key economic questions. Do small (relative to

stock returns) fluctuations in consumption affect household utility in a significant way? And

why is the equity premium so high? In Barberis, Huang, and Santos (2001), households have

power utility with low risk aversion, so small fluctuations in consumption do not significantly

affect utility. The high equity premium is explained by the fact that investors care about

fluctuations in financial wealth, which capture “feelings unrelated to consumption” (p. 6).

This article offers an alternative view that households are averse to losses in consumption

relative to habit, so that even small fluctuations in consumption affect utility. The high

equity premium is the reward that investors require for holding stocks, which deliver low

returns during recessions when consumption approaches or falls below habit.

The asset pricing model in this article is closely related to models based on the theory

of disappointment aversion (Gul 1991). Disappointment aversion generates a high equity

premium and a low risk-free rate (Epstein and Zin 1990, 2001; Bonomo and Garcia 1994) as

well as time-varying risk premia (Bekaert, Hodrick, and Marshall 1997). The key economic

mechanism is first-order risk aversion, which gives rise to risk premia that are proportional

to the standard deviation (rather than the variance) of consumption growth. Relative to

this literature, the model in this article has two distinct features. First, the reference level

is habit, which is a geometric average of past consumption. In disappointment aversion, the

reference level is the certainty equivalent of future utility. Second, preferences based on loss

aversion have the advantage of experimental evidence from psychology, which gives rise to

explicit guidance for calibration and estimation.

The rest of the article is organized as follows. Section 2 introduces a general class of
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reference-dependent preferences based on the work of Kőszegi and Rabin (2006). A method-

ological contribution of this section is to link together previously proposed functional forms

of reference dependence in a unifying framework. Both the ratio model (i.e., Abel 1990) and

the difference model (i.e., Constantinides 1990) are derived from standard gain-loss functions.

Section 3 derives equilibrium asset returns for a lognormal endowment economy un-

der habit formation and reference-dependent preferences. Whereas the formal test of the

reference-dependent model is through estimation, rather than calibration, the calculations

in this section provide insights into the relative contributions of loss aversion and habit

formation in explaining asset prices. Loss aversion is important for explaining the level of

the equity premium, whereas habit formation is important for explaining the time variation

in the equity premium. Although the risk-free rate is more volatile than it is in the power

utility model, persistence in the habit process within the reference-dependent framework can

mitigate excessive volatility of the risk-free rate.

Section 4 estimates and tests the reference-dependent model through its conditional mo-

ment restrictions. The empirical estimate of risk aversion is consistent with what economists

believe are reasonable predictions for large gambles, based on the thought experiments of

Kandel and Stambaugh (1991). The empirical estimate of loss aversion is consistent with

prior experimental evidence (Tversky and Kahneman 1992). The model successfully fits a

set of time series moments implied by the T-bill rate, the market return, and instruments

that predict returns. However, the model fails on a set of cross-sectional moments implied

by portfolios sorted by size and book-to-market equity.

Section 5 concludes. The appendixes contain descriptions of the data and derivations

omitted in the main text.
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2 A GENERAL CLASS OF REFERENCE-DEPENDENT

PREFERENCES

Let W (z) be a gain-loss function (Kahneman and Tversky 1979), which has the following

properties:

1. W (z) is continuous and strictly increasing for all z ∈ R, where W (0) = 0.

2. W (z) is twice differentiable for all z �= 0, W ′′(z) ≤ 0 for all z > 0, and W ′′(z) ≥ 0 for

all z < 0.

3. W (y)+W (−y) < W (z)+W (−z) for all y > z > 0, and limz↓0 W ′(−z)/W ′(z) = λ > 1.

Property 1 is monotonicity, that utility is strictly increasing in the magnitude of gain. Prop-

erty 2 is diminishing sensitivity, that the marginal effect of a gain or a loss diminishes with

its magnitude. Property 3 is loss aversion, that the impact of a loss is greater than that of

an equally sized gain. That the impact of an arbitrarily small loss is greater than that of

an arbitrarily small gain gives rise to a kink in the gain-loss function at z = 0 (Bowman,

Minehart, and Rabin 1999).

Let v(C) be a neoclassical utility function that is continuously differentiable, strictly

increasing, and concave for all C > 0. Following Kőszegi and Rabin (2006), consider a

general class of reference-dependent preferences given by

u(C,X) = αv(C) + (1 − α)W (v(C) − v(X)), (1)

where α ∈ [0, 1]. Reference-dependent utility (1) is a weighted sum of two parts. The first part

v(C) is consumption utility, that is, neoclassical utility derived from consumption C. The

second part W (v(C)− v(X)) is gain-loss utility, that is, utility derived from the deviation of

consumption utility v(C) from its reference level v(X). The variable X denotes the reference

level of consumption. The household derives positive (negative) gain-loss utility when C

5



exceeds (is exceeded by) X. Preferences that depend on a reference level of consumption

have psychological foundations in hedonic adaptation (see Frederick and Loewenstein 1999).

Let subscripts denote partial derivatives. Marginal utility with respect to consumption

and its reference level are given by

uC = v′(C)[α + (1 − α)W ′(v(C) − v(X))] > 0,

uX = −(1 − α)v′(X)W ′(v(C) − v(X)) ≤ 0,

whenever C �= X. In words, utility is strictly increasing in consumption and decreasing in

the reference level. Marginal utility is not well defined at C = X due to the kink in the

gain-loss function arising from loss aversion.

Suppose the gain-loss function satisfies a slightly stronger version of diminishing sensi-

tivity (Property 2):

2′. W (z) is twice differentiable for all z �= 0, W ′′(z) < 0 for all z > 0, W ′′(z) > 0 for all

z < 0, and limz→±∞ W ′(z) = 0.

Then limC−X→±∞ uC = αv′(C). That is, for large deviations in consumption from the refer-

ence level, the behavior of the household is the same as that with neoclassical consumption

utility. This large-risk behavior of reference-dependent utility agrees with the common view

that neoclassical utility is adequate for describing aversion to large risks, but not to small

risks (see Rabin 2000).

For the rest of the article, I make three parametric assumptions regarding reference-

dependent utility (1). First, I assume that the household has only gain-loss utility (i.e., α =

0). In consumption-based asset pricing models, identification of the preference parameters

occurs in the domain of small gambles because the volatility of aggregate consumption is low

(Kandel and Stambaugh 1991). For small gambles, gain-loss utility is much more important

than direct consumption utility, implying that the observed household behavior is similar

for all α < 1. (In econometric language, the parameter is nearly unidentified in the region
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α < 1.) Second, I assume that the household has power utility

v(C) =
C1−γ

1 − γ
(γ ≥ 0), (2)

where the special case γ = 1 is understood to be log utility v(C) = log C. Third, I assume

that the household has power gain-loss utility.

2.1 Power Gain-Loss Utility

The power gain-loss function (Tversky and Kahneman 1992) is specified as

WP (z) =

⎧⎪⎨
⎪⎩

z1−θ

1−θ
for z ≥ 0

−λ |z|1−θ

1−θ
for z < 0

(θ ∈ [0, 1), λ > 1). (3)

The parameter θ determines the degree of diminishing sensitivity, and the parameter λ

determines the degree of loss aversion. Using experimental data, Tversky and Kahneman

(1992) obtained the parameter estimates θ = 0.12 and λ = 2.25. When θ > 0, the power

gain-loss function satisfies the strong version of diminishing sensitivity (Property 2′). The

special case θ = 0 corresponds to the linear gain-loss function

WL(z) =

⎧⎪⎨
⎪⎩

z for z ≥ 0

λz for z < 0
(λ > 1). (4)

Power reference-dependent utility is defined as a special case of reference-dependent utility

with power consumption utility (2) and power gain-loss utility (3). The marginal utility of

consumption in this case is

uC =

⎧⎪⎨
⎪⎩

C−γ
(

C1−γ

1−γ
− X1−γ

1−γ

)−θ

for C > X

λC−γ
∣∣∣C1−γ

1−γ
− X1−γ

1−γ

∣∣∣−θ

for C < X
. (5)
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The marginal utility of consumption when C < X is higher than that when C > X by a

factor λ. The higher is the degree of loss aversion, the higher is the difference in marginal

utility between these two states of the world.

To motivate power reference-dependent utility, consider the special case when consump-

tion utility takes the linear utility form (i.e., γ = 0). Household utility simplifies to yield the

difference specification

u(C,X) =

⎧⎪⎨
⎪⎩

(C−X)1−θ

1−θ
for C ≥ X

λ |C−X|1−θ

1−θ
for C < X

. (6)

Utility function (6) differs from the usual specification of the difference model (i.e., Constan-

tinides 1990) in two important ways. First, the parameter θ ∈ [0, 1) has the interpretation of

diminishing sensitivity, rather than risk aversion. Second, utility is well defined even when

consumption falls below its reference level. The modeling convention that consumption never

falls below its reference level can be thought of as optimal behavior for a household that is

highly loss averse (i.e., λ � 1). Appendix A shows that the ratio model (i.e., Abel 1990)

can also be obtained as a special case of reference-dependent utility (1) when the gain-loss

function is exponential.

2.2 Implications of Reference-Dependent Utility for Small and

Large Gambles

Table 1 replicates a simple thought experiment in Kandel and Stambaugh (1991). Suppose

a household has initial wealth $75,000. In Panel A, the household faces a “small” gamble of

±$375 (0.5% of wealth) with equal probability. In Panel B, the household faces a “large”

gamble of ±$25,000 (33% of wealth) with equal probability. The table reports the amount of

a sure loss in wealth that makes the household indifferent to facing the gamble. Equivalently,

the household is willing to pay the amount reported in the table to avoid the gamble.
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Power utility, used in the canonical CCAPM, has difficulty explaining the household’s

behavior for both small and large gambles. When γ = 30, the household is willing to pay

$28.03 to avoid the small gamble, and $23,791 to avoid the large gamble. The amount that

the household is willing to pay to avoid the large gamble seems implausibly large. When

γ = 2, the household is willing to pay $1.88 to avoid the small gamble, and $8,333 to avoid

the large gamble. The amount that the household is willing to pay to avoid the large gamble

is more reasonable, but the amount paid to avoid the small gamble seems implausibly small.

This tension between small- and large-risk behavior arises from the fact that any concave

utility function implies approximate risk neutrality for sufficiently small gambles (Rabin

2000).

I now conduct the same thought experiment for reference-dependent utility at varying

degrees of diminishing sensitivity θ = {0, 0.12} and risk aversion γ ∈ [0, 30]. I fix the

degree of loss aversion at λ = 2.25, and the reference level of consumption at X = $75, 000.

In contrast to power utility, reference-dependent utility is able to explain the household’s

behavior for both small and large gambles with the same set of preference parameters. For

example, when θ = 0.12 and γ = 1, the household is willing to pay $87.99 to avoid the small

gamble, and $8,301 to avoid the large gamble. In general, the willingness to pay decreases in

θ due to the convexity of gain-loss utility for losses, and increases in γ due to the concavity

of consumption utility.

For small gambles in Panel A, the household’s willingness to pay does not vary much in

γ. In other words, gain-loss utility (parameterized by θ and λ) plays a more prominent role

in explaining the household’s behavior for small gambles. For large gambles in Panel B, the

household’s willingness to pay varies significantly in γ. In other words, consumption utility

(parameterized by γ) plays a more prominent role in describing the household’s behavior for

large gambles. For this reason, I will refer to the parameter γ as large-scale risk aversion, to

give it a name that is appropriate for its economic role. When γ ≥ 10, the amount that the

household is willing to pay to avoid the large gamble is implausibly large.
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The fact that observed behavior does not vary much in γ for small gambles presents a

problem for the identification of the parameter. In experimental studies, test subjects can

only be subject to small gambles for ethical reasons. Therefore, measurements of γ will

be confounded by the effect of loss aversion, which dominates behavior in the domain of

small gambles. In estimating preference parameters from macroeconomic data, Kandel and

Stambaugh (1991) emphasized that identification occurs in the domain of small gambles

because aggregate consumption has low volatility. This is not to say that macroeconomic

risks faced by households are small, but rather that observed consumption is an equilibrium

outcome of an optimizing household that smooths consumption in the presence of risk. It is

therefore important to have a model that accurately describes household behavior not only

for large gambles, but also for small gambles.

3 ASSET PRICES UNDER REFERENCE-DEPENDENT

PREFERENCES

3.1 An Economy with External Habit Formation

To study the asset pricing implications of reference-dependent preferences, I consider a simple

endowment economy with external habit formation, following Abel (1990) and Campbell

and Cochrane (1999). The economy is composed of identical households, indexed by h, that

maximize the expected discounted sum of future utility flows

E0

∞∑
t=0

βtu(Cht, Xt). (7)

The parameter β > 0 is the household’s subjective discount factor, and Cht is its consumption

in period t.

Each household’s utility depends on a common reference level of consumption, referred

to as external habit Xt. External habit has an economic interpretation as the “subsistence
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level” or “standard of living.” Specifically, external habit has the dynamics

Xt+1 = exp{δ}Xφ
t C1−φ

t , (8)

where Ct is per capita consumption in period t and φ ∈ [0, 1). Habit is a geometric average

of past consumption, rather than an arithmetic average as in Constantinides (1990). The

model of habit in Ferson and Constantinides (1991) is a special case where φ = 0.

Let Gt+1 = Ct+1/Ct denote consumption growth, and let Yt = Ct/Xt denote the consumption-

habit ratio. Also let lowercase letters denote the log of the corresponding uppercase variables.

Then the log consumption-habit ratio can be expressed as

yt+1 = −δ + φyt + gt+1. (9)

In words, the consumption-habit ratio is an AR(1) with consumption growth as its innova-

tion. Consumption and habit are cointegrated in this model, with the parameter φ capturing

the degree of persistence in the deviation of consumption from habit. Model (9) is simpler

than the model of habit in Campbell and Cochrane (1999), but has the same economic

mechanisms. Additional complications are unnecessary because the reference-dependent

preferences in this article are well defined even when consumption falls below habit (i.e.,

yt < 0).

Because households in this economy are identical, Cht = Ct in equilibrium. I will therefore

drop the subscript h to simplify notation. Under power reference-dependent utility (5), the

intertemporal marginal rate of substitution (IMRS) takes the form

Mt+1 = βG−γ
t+1

w(Yt+1)

w(Yt)
, (10)
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where

w(Yt) =

⎧⎪⎨
⎪⎩

(
C1−γ

t

1−γ
− X1−γ

t

1−γ

)−θ

for Yt > 1

λ
∣∣∣C1−γ

t

1−γ
− X1−γ

t

1−γ

∣∣∣−θ

for Yt < 1
. (11)

Under linear reference-dependent utility, which is the special case θ = 0, this simplifies to

wL(Yt) =

⎧⎪⎨
⎪⎩

1 for Yt > 1

λ for Yt < 1
. (12)

Let Ri,t+1 be the gross return on an asset i from period t to t + 1. The household’s

first-order conditions and the envelope theorem imply the Euler equation

Et[Mt+1Ri,t+1] = 1. (13)

Because of convexity in the domain of losses Yt < 1, (13) is necessary, but not sufficient, for

an interior optimum. An interior optimum is guaranteed if the curvature of power utility is

large relative to the degree of diminishing sensitivity. More precisely, the sufficient condition

is satisfied if γ > θ/|1 − Y γ−1
t | for Yt < 1, which is trivially satisfied for the linear gain-loss

function (i.e., θ = 0).

The rest of Section 3 focuses on the asset pricing implications of the Euler equation for

linear reference-dependent utility (12). I focus on this special case because I can calculate

closed-form expressions for asset returns, which provide basic intuition for the effects of loss

aversion and habit formation on asset prices. In Section 4, I estimate the Euler equation for

the general case based on power reference-dependent utility (11).

3.2 Asset Prices in a Lognormal Endowment Economy

Suppose households have linear reference-dependent utility, and consumption is conditionally

lognormal. That is, gt+1 ∼ N(µt, σ
2
t ), where I drop the subscript t in the moments of
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consumption growth to simplify notation. Then equilibrium asset returns, specifically the

risk-free rate and the maximum Sharpe ratio, can be calculated explicitly as functions of the

preference parameters and the moments of consumption growth.

3.2.1 Risk-Free Rate

Let Rft be the gross return on a conditionally risk-free asset in period t, and let F (z) =

Pr(Z < z) denote the cumulative distribution function of a standard normal random variable

Z. The following proposition is proved in Appendix B.

Proposition 1. Suppose gt+1 ∼ N(µ, σ2), and the IMRS is given by (10) and (12). Then a

conditionally risk-free asset has the return

Rf,t+1 =

[
β exp

{
−γµ +

γ2σ2

2

}
At(γ, λ)

]−1

, (14)

where

At(γ, λ) =

⎧⎪⎨
⎪⎩

1 + (λ − 1)F
(
γσ + δ−µ−φyt

σ

)
for yt > 0

1/λ + (1 − 1/λ)F
(
γσ + δ−µ−φyt

σ

)
for yt < 0

. (15)

The function At(γ, λ) has the following properties:

1. ∂At(γ, λ)/∂λ ≷ 0 if yt ≷ 0.

2. ∂At(γ, λ)/∂yt < 0 if φ > 0.

When λ = 1, which corresponds to the power utility model, At(γ, 1) = 1. The risk-free

rate then simplifies to the familiar expression

Rf,t+1 = β−1 exp

{
γµ − γ2σ2

2

}
. (16)

The first term inside the exponential function represents intertemporal substitution, and the
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second term represents precautionary savings. The higher is risk aversion γ, the stronger is

the intertemporal motive to borrow, and the stronger is the precautionary motive to save.

To understand how loss aversion affects the risk-free rate, it is helpful to first consider

the special case φ = 0. Define a “boom” as a period in which consumption exceeds habit

(i.e., yt > 0), and a “recession” as a period in which consumption is exceeded by habit (i.e.,

yt < 0). (Both the mean and variance of consumption growth are assumed to be constant in

the discussion that follows.) Compared to the constant level in the power utility benchmark,

the risk-free rate (14) is lower in a boom and higher in a recession. Intuitively, marginal

utility is low in a boom, so the household is motivated to save the marginal dollar for the

possibility of a recession tomorrow, driving down the equilibrium interest rate. On the other

hand, marginal utility is high in a recession, so the household is motivated to borrow, driving

up the equilibrium interest rate. This “precautionary motive” induced by loss aversion is

proportional to σ [because F (γσ + (δ − µ)/σ) is of order σ]. This is in contrast to the

precautionary motive induced by risk aversion, which is proportional to σ2. In that sense,

linear reference-dependent utility exhibits first-order risk aversion (Segal and Spivak 1990).

For a sufficiently high degree of loss aversion, the risk-free rate can be excessively coun-

tercyclical in the special case φ = 0. This is where persistence in habit, parameterized as

φ > 0, plays a key economic role in inducing the right amount of precautionary motive to

save. Intuitively, marginal utility is low in a boom, but the household is unmotivated to

save the marginal dollar because consumption is expected to remain high relative to habit

tomorrow. Conversely, marginal utility is high in a recession, but the household is unmoti-

vated to borrow because consumption is expected to remain low relative to habit tomorrow.

On the one hand, persistence in habit reduces the volatility of the risk-free rate that arises

from movements in the consumption-habit ratio across the two regimes, yt > 0 and yt < 0.

On the other hand, persistence in habit increases the volatility of the risk-free rate within

each regime. If the former is a relatively strong source of volatility, persistence in habit can

help lower the overall volatility of the risk-free rate.
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3.2.2 Maximum Sharpe Ratio

Let Ret = Rit −Rjt (i �= j) be a generic excess return in period t. The following proposition

is proved in Appendix B.

Proposition 2. Suppose gt+1 ∼ N(µ, σ2), and the IMRS is given by (10) and (12). Then

the Sharpe ratio for any excess return has the bound

Et[Re,t+1]

σt(Re,t+1)
≤ [exp{γ2σ2}Bt(γ, λ) − 1]1/2, (17)

where

Bt(γ, λ) =
1 + (λ2 − 1)F (2γσ + (δ − µ − φyt)/σ)

[1 + (λ − 1)F (γσ + (δ − µ − φyt)/σ)]2
. (18)

The function Bt(γ, λ) has the following properties:

1. Bt(γ, λ) ≥ 1 and ∂Bt(γ, λ)/∂λ > 0.

2. ∂Bt(0, λ)/∂yt < 0 if φ > 0 and

yt >
σ

φ

[
δ − µ

σ
− F−1

(
1

λ + 1

)]
. (19)

When λ = 1, which corresponds to the power utility model, Bt(γ, 1) = 1. The maximum

Sharpe ratio then simplifies to the familiar expression

Et[Re,t+1]

σt(Re,t+1)
≤ [exp{γ2σ2} − 1]1/2 ≈ γσ. (20)

The higher is risk aversion γ, the higher is the premium for holding risky assets.

Compared to the level in the power utility benchmark, the maximum Sharpe ratio (17)

is strictly greater and monotonically increasing in λ. Simply put, the higher is the degree of

loss aversion, the greater is the reward that households demand for bearing risk. Due to loss
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aversion, the Sharpe ratio is proportional to
√

σ [because F (2γσ + (δ − µ)/σ) is of order σ].

This is in contrast to the Sharpe ratio based on risk aversion alone, which is proportional to

σ. In that sense, linear reference-dependent utility exhibits first-order risk aversion, which

can explain the high historical equity premium (Epstein and Zin 1990).

When φ > 0, the consumption-habit ratio yt is a state variable that induces time variation

in the maximum Sharpe ratio. For the special case γ = 0, Proposition 2 states that the

Sharpe ratio falls in the consumption-habit ratio at sufficiently high levels of yt. Intuitively,

the IMRS is most volatile, and consequently, the Sharpe ratio is highest near the kink in

the utility function (i.e., yt ≈ 0). For the Sharpe ratio to be countercyclical, consumption

must stay well above habit in booms and come close to (or fall slightly below) habit only in

recessions. Section 4 estimates the dynamics of habit and verifies that it has this empirical

property.

Barberis, Huang, and Santos (2001) raised an important critique of habit-based asset

pricing models. Because movements in expected returns are ultimately driven by consump-

tion, consumption growth and stock returns are highly correlated. To the extent that the

empirical correlation between consumption growth and stock returns is low, this prediction

is a failure of this class of models. However, the correlation between consumption growth

and returns is notoriously difficult to measure, so the low correlation may not be a robust

feature of the data that all models must match. For example, Parker (2001) found signif-

icantly higher correlation between consumption growth and stock returns when measured

over longer horizons.

3.3 Equity Premium Puzzle

Table 2 reports descriptive statistics for consumption and asset returns in the quarterly

sample 1947–2004. (See Appendix C for a complete description of the data.) Log real

consumption growth has mean 0.50% and standard deviation 0.54%. The real (ex post)

T-bill rate has mean 0.36% and standard deviation 0.75%. The table reports descriptive
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statistics for real excess returns on three portfolios: the value-weighted market portfolio, the

SMB (Small Minus Big stock) portfolio, and the HML (High Minus Low book-to-market)

portfolio. The equity, size, and value premia in this sample are 1.99%, 0.61%, and 1.04%,

respectively. As is well known, the high Sharpe ratio of 0.25 for excess stock returns is

difficult to reconcile with the low volatility of consumption growth in standard asset pricing

models (Mehra and Prescott 1985).

To illustrate this well-known failure, suppose log consumption growth is normal with

µ = 0.50% and σ = 0.54%. Assume that households have power utility with β = 0.99 and

γ = 1. Then the risk-free rate implied by (16) is 1.51%, which is somewhat higher but

comparable to the historical mean of the T-bill rate. However, the Sharpe ratio implied

by (20) is merely 0.005, which is two orders of magnitude lower than the historical Sharpe

ratio for equity 0.25. A higher risk aversion of γ = 20 raises the Sharpe ratio to 0.11, but

at the cost of raising the risk-free rate to 10.98%. Therefore, a “resolution” of the equity

premium puzzle through higher risk aversion results in a risk-free rate puzzle (Weil 1989).

Aside from this problem, high risk aversion in itself is problematic because of its implications

for large-scale risk (as shown in Table 1).

Now consider linear reference-dependent utility with the parameters β = 0.99, γ = 1, and

λ = 2.25. Assume for now that δ = φ = 0, so that habit has the simple dynamics Xt+1 = Ct.

Then the average risk-free rate implied by (14) is 1.37%, which is comparable to that implied

by the power utility model. The Sharpe ratio implied by (17) is 0.40, which is of the same

order of magnitude as the historical Sharpe ratio for excess stock returns. Therefore, the

reference-dependent model can simultaneously explain the high equity premium and the low

average T-bill rate.

In its most basic implementation, the reference-dependent model fails in an important

way, predicting an excessively volatile risk-free rate. The risk-free rate implied by (14) is

−17.02% when yt > 0 and 86.71% when yt < 0, so the standard deviation of the risk-free rate

in the model is an order of magnitude higher than that of the T-bill rate. As discussed above,

17



this failure is partly remedied through a habit process that is persistently time varying (i.e.,

φ > 0). Suppose φ = 0.68, which is the structural estimate obtained in the next section.

Given this parameter, the standard deviation of the log consumption-habit ratio is 0.74%.

For a one-standard-deviation shock around yt = 0, the risk-free rate is −2.43% (40.26%) when

yt = 0.74% (yt = −0.74%). For a two-standard-deviation shock around yt = 0, the risk-free

rate is 1.17% (12.45%) when yt = 1.47% (yt = −1.47%). These calculations show that the

risk-free rate is less volatile compared to the case with no persistence in the habit process.

The next section examines more carefully the extent to which the reference-dependent model

is able to explain these asset pricing puzzles.

4 ESTIMATION OF THE REFERENCE-DEPENDENT

MODEL

This section estimates the asset pricing model based on power reference-dependent utility,

whose IMRS is given by equations (10) and (11). Previous empirical tests of habit-based

asset pricing models include Ferson and Constantinides (1991), Heaton (1995), Garcia, Re-

nault, and Semenov (2002), and Chen and Ludvigson (2004). Relative to this literature,

the preferences in this article have the advantage of explicit behavioral foundations (Kőszegi

and Rabin 2006), so that the parameters can be interpreted in light of experimental evidence

from psychology.

4.1 Empirical Methodology

The Euler equation (13) implies the moment restriction

E[(Mt+1Ri,t+1 − 1)zt] = 0, (21)
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where zt is a vector of instrumental variables known at time t. The reference-dependent

model is tested, and its structural parameters are estimated through this moment restriction

(Hansen and Singleton 1982). Estimation is by continuous updating generalized method of

moments (GMM) (Hansen, Heaton, and Yaron 1996). Newey and Smith (2004) showed that

this estimator has desirable higher-order asymptotic properties, implying better performance

than two-step GMM (Hansen 1982) in finite samples.

In the benchmark estimates, I fix the parameter γ = 1 (i.e., log utility) for two reasons.

First, the model is scale invariant when γ = 1, that is, it does not depend on the units

at which consumption is measured. Second, the parameter γ has a strong effect on the

household’s aversion for large gambles, but only a weak effect for small gambles (as discussed

in Section 2). Because identification occurs in the domain of small gambles, the parameter is

nearly unidentified. (Figure 2 shows that GMM objective function is flat in the direction γ.)

As reported in Table 1, the household’s behavior for large-scale risk is perfectly reasonable

when γ = 1.

The initial value of the log consumption-habit ratio is set to its unconditional mean,

y0 = (µ − δ)/(1 − φ). The results are not sensitive to reasonable variation in this initial

value. All instruments are lagged two quarters to avoid problems with time aggregation in

consumption data (Hall 1988).

4.2 Estimation with Time Series Moments

4.2.1 Estimates of Preference Parameters

In the columns labeled “Moment Set 1” in Table 3, the test assets are the three-month T-bill

rate and the excess market return. The instruments are log real consumption growth, log

nominal market return, and a constant. (See Appendix C for further details on the data.)

These assets and instruments are chosen to capture the low real interest rate, the high

equity premium, and the predictability of stock returns. The volatility of the real interest

rate, however, is not directly tested by these moment restrictions. The first column reports
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estimates of the unrestricted reference-dependent model, and the second column reports

estimates of the model under the parameter restriction λ = 1.

In the unrestricted model, the estimates of the gain-loss utility parameters are θ = 0.15

and λ = 3.06. These estimates agree with prior experimental estimates of θ = 0.12 and

λ = 2.25 (Tversky and Kahneman 1992). The estimate of the subjective discount factor

is β = 0.88, which is lower than estimates that are typical for the power utility model.

Because loss aversion implies a strong precautionary motive to save, the household must be

fairly impatient in order to fit the average T-bill rate. The degree of persistence in the log

consumption-habit ratio is φ = 0.68. The estimate of δ is reported as 0.00, but its actual

value is of the order 10−6. The J-test has a p-value of 21%, so the model is not rejected at

conventional significance levels.

The J-test rejects the restricted model with a p-value of 3%. Without loss aversion, the

only way in which the model can generate volatility in the IMRS, necessary for explaining

the high equity premium, is through the parameter θ. To prevent the GMM estimator from

converging at arbitrarily large values of θ, I constrain the parameter space to θ ≤ 0.24. A

large value of θ is problematic in itself because it is not supported by experimental evidence

for diminishing sensitivity.

In the columns labeled “Moment Set 2” in Table 3, the test assets and instruments are

the same as moment set 1, except that the log dividend-price ratio replaces the log market

return as an instrument. The dividend-price ratio is chosen to capture the countercyclical

variation in the equity premium. The estimates of the preference parameters are essentially

the same. The J-test has a p-value of 9%, so the model is not rejected at the conventional

5% level.

Figure 1 reports the log consumption-habit ratio and the IMRS, implied by the estimates

of the reference-dependent model. The consumption-habit ratio is procyclical, rising in

booms and falling in recessions. In deep recessions, consumption falls slightly below habit;

the three most recent episodes are 1973–1975, 1980–1982, and 1990–1991. The IMRS has
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mean slightly less than 1, which is required for explaining the low real interest rate. The

defining feature of the IMRS is conditional heteroscedasticity. The IMRS is most volatile in

recessions when consumption is close to habit. Because the equity premium is proportional to

the volatility of the IMRS, the countercyclical volatility of the IMRS leads to a countercylical

equity premium.

For moment set 2, the standard error for λ is 5.12, which is large relative to the point

estimate 2.73. This can be explained by an econometric problem known as “weak identifi-

cation.” Because the magnitude of loss aversion is identified from recessions, and recessions

are (fortunately) rare events, the parameter is difficult to estimate precisely in finite sam-

ples. When there is weak identification, conventional inference based on point estimates and

standard errors can be invalid. Fortunately, there are valid econometric methods for con-

structing confidence intervals that are robust to finite-sample problems. One such method is

the S-statistic of Stock and Wright (2000). (See Appendix D for a more complete discussion

of weak identification.)

Panel (a) of Figure 2 is a plot of the GMM objective function, concentrated in the

parameters γ and λ. The height of the concentrated objective function corresponds to the

S-statistic, which has an asymptotic χ2 distribution under the null. Therefore, the shape of

the objective function is useful for inferring economically relevant values of the parameters.

For a fixed value of γ, the objective function is at its highest point when λ = 1, and flattens

when λ is between 2 and 3. Panel (b) is a contour plot of the objective function reported in

Panel (a), which can also be interpreted as the joint confidence interval for the parameters

γ and λ. The hypothesis λ < 1.8 is rejected at the 10% level. In other words, loss aversion

is necessary for explaining asset prices.
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4.2.2 Pricing Errors

Suppose the T-bill rate is unconditionally riskless, that is, Cov(Mt+1, Rf,t+1) = 0. Then its

return satisfies the trivial equality

E[Mt+1Rf,t+1 − 1]

E[Mt+1]
= E[Rf,t+1] − 1

E[Mt+1]
. (22)

Since (22) must equal zero in population, its sample analog can be used to assess the magni-

tude of the pricing error for the T-bill rate. Similarly, any excess return satisfies the trivial

equality

E[Mt+1Re,t+1]

E[Mt+1]
= E[Re,t+1] − Cov

( −Mt+1

E[Mt+1]
, Re,t+1

)
. (23)

Since (23) must equal zero in population, its sample analog can be used to assess the mag-

nitude of the pricing error for the excess market return.

The pricing error for the T-bill rate is 0.43%, and the pricing error for the excess mar-

ket return is −0.25%. In other words, the unconditional pricing errors for the reference-

dependent model are small. This finding is in contrast to previous empirical tests of habit-

based asset pricing models, which have found large pricing errors for the unconditional equity

premium (see Ferson and Constantinides 1991; Chen and Ludvigson 2004). The intuition for

this result is illustrated by the lognormal endowment economy in Section 3. Habit formation

is important for explaining the time variation in the equity premium (i.e., fitting conditional

moments), but loss aversion is necessary for explaining the high level of the equity premium

(i.e., fitting unconditional moments).
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4.3 Estimation with Cross-Sectional Moments

4.3.1 Estimates of Preference Parameters

In the columns labeled “Moment Set 3” in Table 3, the test assets are the three-month T-bill

rate and excess returns on the 25 Fama-French portfolios sorted by size and book-to-market

equity. (See Appendix C for further details on the data.) These assets capture economically

important cross-sectional variation in expected stock returns. The parameter estimates are

essentially similar to those estimated from the time series moments. One exception is the

estimated discount factor, which is somewhat larger at β = 0.98. The J-test strongly rejects

the model, which indicates that the reference-dependent model is unable to explain the size

and value premia.

4.3.2 Pricing Errors

Panel A of Table 4 reports the average excess returns for the 25 Fama-French portfolios

sorted by size and book-to-market equity. Reading down the columns of the panel, average

returns decrease in size for a given book-to-market equity quintile. The only exception is for

low book-to-market stocks, whose average returns roughly increase in size. Reading across

the rows of the panel, average returns increase in book-to-market equity for a given size

quintile.

Panel B reports the pricing errors for each of the Fama-French portfolios, computed

through (23). (The pricing error for the T-bill rate is 0.22%.) Estimation of the reference-

dependent model is by GMM with the identity weighting matrix, in the spirit of conventional

cross-sectional asset pricing tests (e.g., Fama and French 1993). These parameter estimates

are not reported because they are close to those reported in Table 3. The pricing errors

clearly display a value anomaly; they are negative for growth stocks and positive for value

stocks. This is evidence against the reference-dependent model if the value premium is indeed

compensation for risk, rather than mispricing. The lesson to be learned from this exercise is
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that the value premium does not appear to be simply compensation for greater volatility in

the IMRS during recessions (see Figure 1).

5 CONCLUSION

The idea that fluctuations in consumption, rather than wealth, is the relevant measure of

risk has a long tradition in economics, rooted in the permanent income hypothesis. The

CCAPM has therefore been the canonical economic model of risk and return, despite its

many empirical failures. More recent work has shown that habit formation can explain

many features of asset prices (e.g., Abel 1999; Campbell and Cochrane 1999). To explain

the high equity premium, however, habit-based asset pricing models must ultimately appeal

to high risk aversion, which has unappealing implications for large-scale risk.

In contrast, behavioral finance has focused on fluctuations in financial wealth, rather

than consumption, as the relevant measure of risk (e.g., Benartzi and Thaler 1995; Barberis,

Huang, and Santos 2001). Empirically, consumption and wealth are cointegrated, and the

variance of wealth falls to that of consumption in the long run (see Cochrane 1994; Lettau

and Ludvigson 2001). Therefore, a measure of risk based on wealth requires that investors

care about transitory shocks to wealth above and beyond permanent shocks to consumption.

Although the view that investors care about gains and losses in wealth may ultimately be

right, it is incompatible with fundamental notions and measures of economic risk. Yet the

advantage of the behavioral approach is clear. By using preferences with realistic predictions

in the domain of small gambles, behavioral models can explain the equity premium with

reasonable levels of large-scale risk aversion.

Relative to this literature, the contribution of this article is to show that the high equity

premium can be explained without appealing to high risk aversion or having preferences

over wealth. By doing so, this article introduces an alternative view that investors perceive

even small fluctuations in consumption as risky, even though large-scale risk aversion is
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low. Essentially, the model developed in this article relies on consumption as the relevant

measure of risk, but uses behaviorally realistic preferences. Investors are averse to losses in

consumption relative to time-varying habit, and the fear of losses generates the high level

and countercyclical variation of the equity premium.
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Appendix A EXPONENTIAL GAIN-LOSS UTILITY

The exponential gain-loss function (Köbberling and Wakker 2005) is specified as

WE(z) =

⎧⎪⎨
⎪⎩

1−exp{−θz}
θ

for z ≥ 0

λ exp{θz}−1
θ

for z < 0
(θ ≥ 0, λ > 1). (24)

The parameter θ determines the degree of diminishing sensitivity, and the parameter λ

determines the degree of loss aversion. When θ > 0, the exponential gain-loss function

satisfies the strong version of diminishing sensitivity (Property 2′). The special case θ = 0

is understood to be the linear gain-loss function (4).

Exponential reference-dependent utility is defined as a special case of reference-dependent

utility with power consumption utility (2) and exponential gain-loss utility (24). The

marginal utility of consumption in this case is

uC =

⎧⎪⎨
⎪⎩

C−γ exp
{
−θ

(
C1−γ

1−γ
− X1−γ

1−γ

)}
for C > X

λC−γ exp
{

θ
(

C1−γ

1−γ
− X1−γ

1−γ

)}
for C < X

. (25)

When consumption is close to its reference level, marginal utility can be approximated as

uC ≈

⎧⎪⎨
⎪⎩

C−γ for C > X

λC−γ for C < X
. (26)

In this approximation, the marginal utility of consumption is the same as that of standard

power utility when C > X. When C < X, however, marginal utility is higher than that of

power utility due to loss aversion. The higher is the degree of loss aversion, the higher is

marginal utility when consumption is below its reference level.

To motivate exponential reference-dependent utility, consider the special case when con-

sumption utility takes the log utility form (i.e., γ = 1). Household utility simplifies to yield
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the ratio specification

u(C,X) =

⎧⎪⎨
⎪⎩

1−(C/X)−θ

θ
for C ≥ X

λ (C/X)θ−1
θ

for C < X
. (27)

This specification has appeared in applications by Garcia, Renault, and Semenov (2002) and

Kyle, Ou-Yang, and Xiong (2006).

Appendix B PROOFS OF PROPOSITIONS

B.1 Proof of Proposition 1

The proof is essentially an application of the following lemma.

Lemma 1. If g ∼ N(µ, σ2),

E[eg|g > x] = exp

{
µ +

σ2

2

}
F (−(x − µ − σ2)/σ)

F (−(x − µ)/σ)
,

E[eg|g < x] = exp

{
µ +

σ2

2

}
F ((x − µ − σ2)/σ)

F ((x − µ)/σ)
,

where F (·) is the cumulative distribution function of the standard normal.

Let xt+1 = xt+1 − ct = δ − φyt. The IMRS can be written as

Mt+1 =

⎧⎪⎨
⎪⎩

β exp{−γgt+1}
wL(yt)

for gt+1 > xt+1

λβ exp{−γgt+1}
wL(yt)

for gt+1 < xt+1

,

where

wL(yt) =

⎧⎪⎨
⎪⎩

1 for yt > 0

λ for yt < 0
.
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For any n > 0,

Et[M
n
t+1] =

(
β

wL(yt)

)n {
F

(
−xt+1 − µ

σ

)
Et[e

−nγgt+1|gt+1 > xt+1]

+λnF

(
xt+1 − µ

σ

)
Et[e

−nγgt+1|gt+1 < xt+1]

}
.

By Lemma 1,

Et[e
−nγgt+1|gt+1 > xt+1] = exp

{
−nγµ +

(nγσ)2

2

}
F (−nγσ − (xt+1 − µ)/σ))

F (−(xt+1 − µ)/σ)
,

Et[e
−nγgt+1|gt+1 < xt+1] = exp

{
−nγµ +

(nγσ)2

2

}
F (nγσ + (xt+1 − µ)/σ)

F ((xt+1 − µ)/σ)
.

Therefore,

Et[M
n
t+1] =

(
β

wL(yt)

)n

exp

{
−nγµ +

(nγσ)2

2

} [
1 + (λn − 1)F

(
nγσ +

xt+1 − µ

σ

)]
. (28)

For a conditionally risk-free asset, the Euler equation (13) can be written as

Rf,t+1 = Et[Mt+1]
−1. (29)

This equation, together with (28) for n = 1, implies (14).

B.2 Proof of Proposition 2

The Euler equation for an excess return is Et[Mt+1Re,t+1] = 0. As shown by Shiller (1982)

and Hansen and Jagannathan (1991),

Et[Re,t+1]

σt(Re,t+1)
≤ σt(Mt+1)

Et[Mt+1]
=

(
Et[M

2
t+1]

Et[Mt+1]2
− 1

)1/2

. (30)

This equation, together with (28) for n = 1, 2, implies (17).
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By differentiation of (18),

∂Bt(γ, λ)

∂λ
=

2Ct(γ, λ)

[1 + (λ − 1)F (γσ + (δ − µ − φyt)/σ)]3
,

where

Ct(γ, λ) = λF

(
2γσ +

δ − µ − φyt

σ

)[
1 − F

(
γσ +

δ − µ − φyt

σ

)]

−F

(
γσ +

δ − µ − φyt

σ

)[
1 − F

(
2γσ +

δ − µ − φyt

σ

)]
.

If Ct(γ, λ) > 0, ∂Bt(γ, λ)/∂λ > 0. Property 1 therefore follows from the fact that

Ct(γ, λ) > (λ − 1)F

(
γσ +

δ − µ − φyt

σ

)[
1 − F

(
γσ +

δ − µ − φyt

σ

)]
> 0.

By differentiation of (18),

∂Bt(γ, λ)

∂yt

= − φ(λ − 1)Dt(γ, λ)

σ[1 + (λ − 1)F (γσ + (δ − µ − φyt)/σ)]3
,

where

Dt(γ, λ) = F ′
(

2γσ +
δ − µ − φyt

σ

)[
1 + λ + (λ2 − 1)F

(
γσ +

δ − µ − φyt

σ

)]

−2F ′
(

γσ +
δ − µ − φyt

σ

)[
1 + (λ2 − 1)F

(
2γσ +

δ − µ − φyt

σ

)]
.

If Dt(0, λ) > 0, ∂Bt(0, λ)/∂yt < 0. Property 2 therefore follows from the fact that

Dt(0, λ) = (λ − 1)F ′
(

δ − µ − φyt

σ

)[
1 − (λ + 1)F

(
δ − µ − φyt

σ

)]
> 0

if inequality (19) holds.
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Appendix C CONSUMPTION AND ASSET RETURNS

DATA

C.1 Consumption

Quarterly consumption data for the sample period 1947–2004 is from the U.S. national

accounts. Following convention, consumption is measured as the (chain-weighted) sum of

real personal consumption expenditures (PCE) on nondurable goods and services, divided

by the population. In matching consumption to returns data, I use “beginning of the period”

timing convention, following Campbell (2003). In other words, the reported consumption

for each period t is assumed to be the flow on the first (rather than the last) day of period t.

C.2 Asset Returns

The three Fama-French factors are excess returns on the market portfolio, returns on the

SMB portfolio, and returns on the HML portfolio. The excess market return is the return on

a value-weighted portfolio of NYSE, AMEX, and Nasdaq stocks minus the one-month T-bill

rate. The SMB and HML portfolios are based on the six Fama-French benchmark portfolios

sorted by size (breakpoint at the median) and book-to-market equity (breakpoints at the

30th and 70th percentiles). The SMB return is the difference in average returns between

three small and three big stock portfolios. The HML return is the difference in average

returns between two high and two low book-to-market portfolios.

The 25 Fama-French portfolios are constructed from an independent sort of all NYSE,

AMEX, and Nasdaq stocks into quintiles based on size (i.e., market equity) and book-to-

market equity. Data on the Fama-French factors and portfolios are obtained from Kenneth

French’s webpage. See Fama and French (1993) for further details on the construction of the

factors and portfolios.

The three-month T-bill rate is from the Center for Research in Security Prices (CRSP)
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Indices database. The three-month T-bill is used as the empirical proxy for the risk-rate,

except in constructing the excess market return as discussed previously. All nominal returns

are deflated by the price index for PCE on nondurable goods and services.

The dividend-price ratio is constructed as the dividend over the past year divided by the

current price for the CRSP value-weighted portfolio. The dividend-price ratio is related, by

a present-value relationship, to the expectation of future returns and dividend growth and

therefore predicts returns (Campbell and Shiller 1988).

Appendix D GMM TEST ROBUST TO WEAK IDEN-

TIFICATION

Let θ be an N -dimensional parameter vector in the interior of a compact parameter space

Θ. The true parameter θ0 is assumed to satisfy M conditional moment restrictions

Et−1[h(yt, θ0)] = 0. (31)

Let zt−1 be a vector of I instrumental variables known at t − 1, and define the moment

function

gt(θ) = h(yt, θ) ⊗ zt−1. (32)

The continuous updating GMM estimator minimizes the objective function

S(θ) = Tg(θ)′Ω(θ)−1g(θ), (33)
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where

g(θ) =
1

T

T∑
t=1

gt(θ),

Ω(θ) =
1

T

T∑
t=1

gt(θ)gt(θ)
′.

Weak identification occurs when the population objective function E[gt(θ)] is close to

zero for a large set of θ �= θ0. When gt(θ) is linear in θ (i.e., linear instrumental variables

regression model), weak identification is more commonly referred to as “weak instruments.”

When there is weak identification, conventional GMM tests may be invalid, that is, reject

the null hypothesis too frequently, even in large samples. For a survey of weak identification

in GMM, see Stock, Wright, and Yogo (2002). For its empirical relevance in estimating

asset pricing moment restrictions, see Stock and Wright (2000), Neely, Roy, and Whiteman

(2001), and Yogo (2004).

Following Stock and Wright (2000), partition the parameter vector as θ = (θ′W , θ′S)′. θW is

an NW -dimensional subvector of weakly identified parameters, and θS is an NS-dimensional

subvector of strongly identified parameters. Therefore, θW denotes the dimensions of θ for

which the population objective function is close to zero for a large set of θW �= θW0.

Stock and Wright (2000) proposed a test for θW , based on the continuous updating GMM

objective function, that is valid even when there is weak identification. For a given θW , let

θ̂S(θW ) = arg min
θS∈ΘS

S(θ) (34)

be the estimate of θS that minimizes the objective function. Let θ̂W = (θ′W , θ̂S(θW )′)′. Under

the null θW = θW0, the statistic S(θ̂W ) has the asymptotic distribution χ2
MI−NS

(Stock and

Wright 2000, thm. 3).
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Table 1: Certainty equivalent of small and large gambles under reference-dependent utility

Reference-Dependent Utility
γ Power Utility θ = 0 θ = 0.12

Panel A: Small Gambles (±$375)
0.0 0.00 104.17 87.48
0.5 0.47 104.47 87.74
1.0 0.94 104.78 87.99
2.0 1.88 105.38 88.51
5.0 4.69 107.19 90.06

10.0 9.38 110.18 92.65
30.0 28.03 121.91 102.92
Panel B: Large Gambles (±$25,000)
0.0 0 6,944 5,831
0.5 2,145 8,359 7,066
1.0 4,289 9,720 8,301
2.0 8,333 12,209 10,685
5.0 16,434 17,424 16,244

10.0 21,009 21,088 20,501
30.0 23,791 23,791 23,623

NOTE: Panel A (Panel B) reports the sure loss in wealth that equates utility to a gamble of
±$375 (±$25,000) with equal probability. The household’s initial wealth and its reference
level of consumption are $75,000. The table reports outcomes for power reference-dependent
utility at varying degrees of diminishing sensitivity (θ) and risk aversion (γ). The degree of
loss aversion is fixed at λ = 2.25.
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Table 2: Descriptive statistics for consumption and asset returns

Variable Mean (%) S.D. (%) Sharpe Ratio
Consumption Growth 0.50 0.54
T-bill Rate 0.36 0.75
Market Return 1.99 8.04 0.25
SMB Return 0.61 5.42 0.11
HML Return 1.04 5.63 0.19

NOTE: The table reports the mean and standard deviation of consumption growth, three-
month T-bill rate, excess market return, SMB return, and HML return. The Sharpe ratio
is the mean excess return divided by its standard deviation. All returns are deflated by the
price index for consumption and are reported in percent per quarter. The sample period is
quarterly 1947–2004.
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Table 3: Parameters of the reference-dependent model

Moment Set 1 Moment Set 2 Moment Set 3
Parameter Unrestricted λ = 1 Unrestricted λ = 1 Unrestricted λ = 1

β 0.88 0.94 0.87 0.96 0.98 1.00
(0.05) (0.05) (0.06) (0.06) (0.05) (0.02)

θ 0.15 0.24 0.13 0.24 0.16 0.16
(0.47) (0.48) (0.56) (0.64) (0.30) (0.36)

λ 3.06 2.73 3.43
(3.12) (5.12) (1.63)

δ 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

φ 0.68 0.68 0.69 0.68 0.69 0.78
(0.14) (0.07) (0.00) (0.47) (0.00) (0.24)

J-test 1.54 4.66 2.86 11.40 73.90 74.84
(0.21) (0.03) (0.09) (0.00) (0.00) (0.00)

NOTE: In moment set 1, the test assets are the three-month T-bill rate and the excess market
return. The instruments are log real consumption growth, log nominal market return, and
a constant. Moment set 2 is the same as moment set 1, except that the log dividend-price
ratio replaces the log market return as an instrument. In moment set 3, the test assets are
the three-month T-bill rate and excess returns on the 25 Fama-French portfolios. For each
set of moments, the table reports estimates of the unrestricted and restricted (i.e., λ = 1)
reference-dependent model. Estimation is by continuous updating GMM. Standard errors
and p-values for the J-test (i.e., test of overidentifying restrictions) in parentheses.
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Table 4: Pricing errors for the Fama-French portfolios

Book-to-Market Equity
Size Low 2 3 4 High

Panel A: Average Excess Return (%)
Small 1.16 2.55 2.65 3.25 3.74

2 1.46 2.33 2.84 2.97 3.47
3 1.75 2.38 2.41 2.83 3.17
4 1.93 1.91 2.65 2.60 2.94

Big 1.72 1.74 2.07 2.05 2.21
Panel B: Pricing Errors (%)
Small -2.17 -0.36 0.05 0.70 1.03

2 -1.59 -0.38 0.29 0.72 0.96
3 -0.98 0.07 0.12 0.62 0.86
4 -0.31 -0.18 0.57 0.45 0.73

Big -0.16 -0.03 0.93 0.27 0.50

NOTE: Panel A reports average excess returns (percent per quarter) on the 25 Fama-French
portfolios sorted by size and book-to-market equity. Panel B reports pricing errors from
estimation of the reference-dependent model. The test assets are the three-month T-bill rate
and excess returns on the Fama-French portfolios. Estimation is by GMM with the identity
weighting matrix.
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Figure 1: Consumption-habit ratio and the IMRS. Panel (a) is a plot of the log consumption-
habit ratio. Panel (b) is a plot of the IMRS implied by estimates of the reference-dependent
model using moment set 2, reported in Table 3.
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Figure 2: GMM objective function for the reference-dependent model. Panel (a) is a plot of
the GMM objective function for the reference-dependent model, concentrated in the parame-
ters γ and λ. Panel (b) is a contour plot of the objective function reported in Panel (a). The
contours are labeled as 1 minus the p-value of the corresponding GMM objective function
test.
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