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Predictable returns and asset allocation:

Should a skeptical investor time the market?

Abstract

Are excess returns predictable and if so, what does this mean for investors? Previous

literature has tended toward two polar viewpoints: that predictability is useful only if the

statistical evidence for it is incontrovertible, or that predictability should affect portfolio

choice, even if the evidence is weak according to conventional measures. This paper models an

intermediate view: that both data and theory are useful for decision-making. We investigate

optimal portfolio choice for an investor who is skeptical about the amount of predictability

in the data. Skepticism is modeled as an informative prior over the R2 of the predictive

regression. We find that the evidence is sufficient to convince even an investor with a highly

skeptical prior to vary his portfolio on the basis of the dividend-price ratio and the yield

spread. The resulting weights are less volatile and deliver superior out-of-sample performance

as compared to the weights implied by an entirely model-based or data-based view.



Introduction

Are excess returns predictable, and if so, what does this mean for investors? In classic studies

of rational valuation (e.g. Samuelson (1965, 1973), Shiller (1981)), risk premia are constant

over time and thus excess returns are unpredictable.1 However, an extensive empirical lit-

erature has found evidence for predictability in returns on stocks and bonds by scaled-price

ratios and interest rates.2

Confronted with this theory and evidence, the literature has focused on two polar view-

points. On the one hand, if models such as Samuelson (1965) are correct, investors should

maintain constant weights rather than form portfolios based on possibly spurious evidence

of predictability. On the other hand, if the empirical estimates capture population values,

then investors should time their allocations to a large extent, even in the presence of transac-

tion costs and parameter uncertainty.3 Between these extremes, however, lies an interesting

intermediate view: that both data and theory can be helpful in forming portfolio allocations.

This paper models this intermediate view in a Bayesian setting. We consider an investor

who has a prior belief about the R2 of the predictive regression. We implement this prior by

specifying a normal distribution for the regression coefficient on the predictor variable. As

the variance of this normal distribution approaches zero, the prior belief becomes dogmatic

that there is no predictability. As the variance approaches infinity, the prior is diffuse:

all levels of predictability are equally likely. In between, the distribution implies that the

1Examples of general-equilibrium models that imply excess returns that are largely unpredictable include

Abel (1990, 1999), Backus, Gregory, and Zin (1989), Campbell (1986), Cecchetti, Lam, and Mark (1993),

Kandel and Stambaugh (1991) and Mehra and Prescott (1985).
2See, for example, Fama and Schwert (1977), Keim and Stambaugh (1986), Campbell and Shiller (1988),

Fama and French (1989), Cochrane (1992), Goetzmann and Jorion (1993), Hodrick (1992), Kothari and

Shanken (1997), Lettau and Ludvigson (2001), Lewellen (2004), Ang and Bekaert (2006).
3See, for example, Brennan, Schwartz, and Lagnado (1997) and Campbell and Viceira (1999) for stocks

and Sangvinatsos and Wachter (2005) for long-term bonds. Balduzzi and Lynch (1999) show that predictabil-

ity remains important even in the presence of transaction costs, while Barberis (2000) and Xia (2001) show,

respectively, that predictability remains important in the presence of estimation risk and learning. An

exception is the case of buy-and-hold portfolios with horizons of many years (Barberis (2000), Cochrane

(1999), Stambaugh (1999)). Brennan and Xia (2005) construct a long-run measure of expected returns and

derive implications for optimal portfolios. They show that this long-run measure often implies a less extreme

response to predictability than regression-based measures.
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investor is skeptical about predictability: predictability is possible, but it is more likely that

predictability is “small” rather than “large”. By conditioning this normal distribution on

both the unexplained variance of returns and on the variance of the predictor variable, we

create a direct mapping from the investor’s prior beliefs on model parameters to a well-defined

prior over the R2.

In our empirical implementation, we consider returns on a stock index and on a long-term

bond. The predictor variables are the dividend-price ratio and the yield spread between

Treasuries of different maturities. We find that the evidence is sufficient to convince an

investor who is quite skeptical about predictability to vary his portfolio on the basis of

these variables. The resulting weights, however, are much less volatile than for an investor

who allocates his portfolio purely based on data. To see whether the skeptical prior would

have been helpful in the observed time series, we implement an out-of-sample analysis. We

show that weights based on skeptical priors deliver superior out-of-sample performance when

compared to diffuse priors, dogmatic priors, and to a simple regression-based approach.

Our study builds on previous work that has examined predictability from a Bayesian

investment perspective. Kandel and Stambaugh (1996) show in a Bayesian framework that

predictive relations that are weak in terms of standard statistical measures can nonetheless

have large impacts on portfolio choice.4 Avramov (2002) and Cremers (2002) show that

Bayesian inference can lead to superior model selection. Our paper is also related to recent

work by Shanken and Tamayo (2005), who jointly model time variation in risk and expected

return in a Bayesian setting. Shanken and Tamayo incorporate model-based intermediate

views on the relation between expected return and risk. In what follows, we compare the

prior beliefs we assume to those in each of these related studies.

Besides modeling priors over the R2, our study also incorporates the findings of Stam-

baugh (1999). Stambaugh shows that incorporating the first observation on the predictor

variable into the likelihood can make a substantial difference for portfolio choice; previous

4Subsequently, a large literature has examined the portfolio consequences of return predictability in a

Bayesian framework. Barberis (2000) considers the optimization problem of a long-horizon investor when

returns are predictable. Xia (2001) considers the effect of learning about the predictive relation. Brandt,

Goyal, Santa-Clara, and Stroud (2005) develop a simulation-based approach to consider learning about other

unknown parameters. Johannes, Polson, and Stroud (2002) model the mean and volatility of returns as latent

factors. In contrast to the present study, these papers assume diffuse priors.
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studies had conditioned on this observation. Moreover, the choice among “uninformative”

priors can make a difference as well: a prior that is uninformative in the sense of Jeffreys

(1961) has different properties than the uninformative priors that have been chosen previ-

ously in the portfolio choice literature. Building on the work of Stambaugh, this study also

incorporates information contained in the first observation on the predictor variable, and

makes use of Jeffreys priors. We show that Jeffreys invariance theory offers an independent

justification for defining the prior over the change in the R2. As the degree of skepticism

goes to zero, the prior satisfies the Jeffreys condition for invariance.

Our use of model-based informative priors has parallels in a literature that examines the

portfolio implications of the cross-section of stock returns. Motivated by the extreme weights

and poor out-of-sample performance of mean-variance efficient portfolios (Best and Grauer

(1991), Green and Hollifield (1992)), Black and Litterman (1972) propose using market

weights as a benchmark, in effect using both data and the capital asset pricing model to form

portfolios. Recently, Bayesian studies such as Pastor (2000) and Avramov (2004) construct

portfolios incorporating informative beliefs about cross-sectional asset pricing models.5 Like

the present study, these studies show that allowing models to influence portfolio selection

can be superior to using the data alone. While these studies focus on the cross-section of

returns, we apply these ideas to the time series.

The remainder of this paper is organized as follows. Section 1 describes the assumptions

on the likelihood and prior, the calculation of the posterior, and the optimization problem of

the investor. Section 2 applies these results to data on stock and bond returns, describes the

posterior distributions, the portfolio weights, and the out-of-sample performance across dif-

ferent choices of priors. These sections assume, for simplicity, that there is a single predictor

variable. Section 3 extends the methods to allow for multiple predictor variables. Section 4

concludes.

5Related approaches to improving performance of efficient portfolios include Bayesian shrinkage (Jobson

and Korkie (1980), Jorion (1985)) and portfolio constraints (Frost and Savarino (1988), Jagannathan and Ma

(2003)). Cvitanic, Lazrak, Martellini, and Zapatero (2006) incorporate analyst forecasts in a dynamic setting

with parameter uncertainty and learning; Garlappi, Uppal, and Wang (2007) take a multi-prior approach to

portfolio allocation that allows for ambiguity aversion. Unlike the present study, these papers assume that

the true distribution of returns is iid and focus therefore on the cross-section.
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1 Portfolio choice for a skeptical investor

Given observations on returns and a predictor variable, how should an investor allocate his

wealth? One approach would be to estimate the predictability relation, treat the point esti-

mates as known, and solve for the portfolio that maximizes utility. An alternative approach,

adopted in Bayesian studies, is to specify prior beliefs on the parameters. The prior repre-

sents the investor’s beliefs about the parameters before viewing data. After viewing data,

the prior is updated to form a posterior distribution; the parameters are then integrated out

to form a predictive distribution for returns, and utility is maximized with respect to this

distribution. This approach incorporates the uncertainty inherent in estimation into the de-

cision problem (see Klein and Bawa (1996), Bawa, Brown, and Klein (1979), Brown (1979)).

Rather than assuming that the investor knows the parameters, it assumes, realistically, that

the investor estimates the parameters from the data. Moreover, this approach allows for prior

information, perhaps motivated by economic models, to enter into the decision process. This

section describes the specifics of the likelihood function, the prior, and the posterior used in

this study.

1.1 Likelihood

This subsection constructs the likelihood function. Let rt+1 denote an N×1 vector of returns

on risky assets in excess of a riskless asset from time t to t + 1, and xt a scalar predictor

variable at time t. The investor observes data on returns r1, . . . , rT , and the predictor variable

x0, . . . , xT . Let

D ≡ {r1, . . . , rT , x0, x1, . . . , xT}

represent the total data available to the investor. Our initial assumption is that there is

a single predictor variable that has the potential to predict returns on (possibly) multiple

assets. Allowing multiple predictor variables complicates the problem without contributing

to the intuition. For this reason, we postpone the discussion of multiple predictor variables

until Section 3.

The data generating process is assumed to be

rt+1 = α + βxt + ut+1 (1)

xt+1 = θ0 + θ1xt + vt+1, (2)
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where




ut+1

vt+1



 | rt, . . . , r1, xt, . . . , x0 ∼ N (0,Σ) , (3)

α and β are N × 1 vectors and Σ is an (N + 1) × (N + 1) symmetric and positive definite

matrix. It is useful to partition Σ so that

Σ =





Σu Σuv

Σvu Σv



 ,

where Σu is the variance-covariance matrix of ut+1, σ
2
v = Σv is the variance of vt+1, Σuv is the

N×1 vector of covariances of vt+1 with each element of ut+1, and Σvu = Σ>
uv. This likelihood

is a multi-asset analogue of that assumed by Kandel and Stambaugh (1996), Campbell and

Viceira (1999), and many subsequent studies.

It is helpful to group the regression parameters in (1) and (2) into a matrix:

B =





α> θ0

β> θ1



 ,

and to define matrices of the observations on the the left hand side and right hand side

variables:

Y =









r>1 x1

...
...

r>T xT









, X =









1 x0

...
...

1 xT−1









.

As shown in Barberis (2000) and Kandel and Stambaugh (1996), the likelihood conditional

on the first observation takes the same form as in a regression model with non-stochastic

regressors. Let p(D|B,Σ, x0) denote the likelihood function. From results in Zellner (1996),

it follows that

p(D|B,Σ, x0) = |2πΣ|−
T

2 exp

{

−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

, (4)

where tr(·) denotes the sum of the diagonal elements of a matrix.6

6Maximizing the conditional likelihood function (4) is equivalent to running a vector auto-regression.

Resulting estimates for β are biased (see Bekaert, Hodrick, and Marshall (1997), Nelson and Kim (1993)

and Stambaugh (1999)), and standard asymptotics provide a poor approximation to the distribution of test

statistics in small samples (Cavanagh, Elliott, and Stock (1995), Elliott and Stock (1994), Mankiw and

Shapiro (1986), Richardson and Stock (1989)). An active literature based in classical statistics focuses on

correcting for these problems (e.g. Amihud and Hurvich (2004), Campbell and Yogo (2006), Eliasz (2004),

Ferson, Sarkissian, and Simin (2003), Lewellen (2004), Torous, Valkanov, and Yan (2005)).
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The likelihood function (4) conditions on the first observation of the predictor variable,

x0. Stambaugh (1999) argues for treating x0 and x1, . . . , xT symmetrically: as random

draws from the data generating process. If the process for xt is stationary and has run for

a substantial period of time, then results in Hamilton (1994, p. 53) imply that x0 is a draw

from a normal distribution with mean

µx ≡ E [xt |B,Σ] =
θ0

1 − θ1

(5)

and variance

σ2
x ≡ E

[

(xt − µx)
2 |B,Σ

]

=
σ2

v

1 − θ2
1

. (6)

Combining the likelihood of the first observation with the likelihood of the remaining T

observations produces

p(D|B,Σ) = p(D|x0, B,Σ)p(x0|B,Σ)

=
(

2πσ2
x

)− 1

2 |2πΣ|−
T

2

× exp

{

−
1

2
σ−2

x (x0 − µx)
2 −

1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

.(7)

Equation (7) is the likelihood function used in our analysis. Following Box, Jenkins, and

Reinsel (1970), we refer to (7) as the exact likelihood, and to (4) as the conditional likelihood.

1.2 Prior beliefs

This subsection describes the prior. We specify a class of prior distributions that range from

being “uninformative” in a sense we will make precise, to “dogmatic”. The uninformative

priors imply that all amounts of predictability are equally likely, while the dogmatic priors

rule out predictability all together; the investor believes that returns are not predictable

regardless of what data are observed. Between these extremes lie priors that downweight

the return predictability. These informative priors imply that large values of the R2 from

predictive regressions are unlikely, but not impossible.

The most obvious parameter that determines the degree of predictability is β. Set β to

zero, and there is no predictability in the model. However, it is difficult to think of prior

beliefs about β in isolation from beliefs about other parameters. For example, a high variance

of xt might lower one’s prior on β, while a large residual variance of rt might raise it. Rather

than placing a prior on β directly, we instead place a prior on “normalized” β, that is β

6



adjusted for the variance of x and the variance of u. Let Cu be the Cholesky decomposition

of Σu, i.e. CuC
>
u = Σu. Then

η = C−1
u σxβ

is normalized β. We assume that prior beliefs on η are given by

η ∼ N(0, σ2
ηIN), (8)

where IN is the N × N identity matrix. We implement these prior beliefs by specifying a

hierarchical prior. The prior for β is conditional on the remaining parameters:

p(B,Σ) = p(β|α, θ0, θ1,Σ)p(α, θ0, θ1,Σ).

Then (8) implies

β|α, θ0, θ1,Σ ∼ N(0, σ2
ησ

−2
x Σu). (9)

Because σx is a function of θ1 and σv, the prior on β is also implicitly a function of these

parameters. The parameter ση indexes the degree to which the prior is informative. We

show that as ση → ∞, the prior over β becomes uninformative; all values of β are viewed as

equally likely. As ση → 0, the prior converges to a point mass at zero and the prior beliefs

assign a probability of 1 to no predictability.

Finite positive values of ση involve some skepticism about the amount of predictability

in the data. The dependence between β, σx, and Σu allow this skepticism to be expressed in

terms of the R2 from the regressions (1). This is easiest to see in the case of a single risky

asset. When there is a single risky asset, the population R2 is equal to

R2 = β2σ2
x

(

β2σ2
x + Σu

)−1
=

η2

η2 + 1

where Σu is now a scalar. Therefore a prior over η translates into a prior over the R2. When

there are N risky assets, the distribution on η implies a distribution for the R2 of each asset.

Moreover, it implies a distribution for the maximum R2 achievable on a portfolio of assets.

Let w be an N × 1 vector of asset weights. Then

max
w

R2 = max
w

w>ββ>σ2
x

w>ββ>wσ2
x + w>Σuw

=
η>η

η>η + 1
, (10)
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where the second line is shown in Appendix A.7

By formulating the prior for β in terms of σx and Σu, we put a prior on the R2 of the

predictability equation. For this to work, it is necessary to condition on both σx and Σu.

Consider, for example, two different state variables, one with a lower unconditional volatility

(σx) than the other. Our prior implies that the state variable with the lower unconditional

volatility puts more weight on large values of β, all else equal.8 The reason is that a lower σx

implies a lower R2 for any given level of β: an investor who is skeptical about predictability

would therefore be willing to consider larger values of β in the case of lower σx because these

would still be consistent with a low R2. In the limit as σx approaches zero, the prior on β

flattens because even an arbitrarily large β implies that returns are almost unpredictable.

Conditioning on Σu is also important. Consider for simplicity the case of a single risky

asset. If Σu is large, then even large values of β relative to σx translate into low amounts

of predictability because the “signal” βxt is overwhelmed by the noise ut+1. Large values of

β are still consistent with low values of the R2 when ut+1 is large. In the case of multiple

risky assets, conditioning on Σu plays an additional role: it implies that the investor does

not downweight predictability on specific assets per se, but on predictability on the system

of assets. It is not possible to obtain a high R2 by cleverly combining assets into a portfolio.

For the remaining parameters, we choose a prior that is uninformative in the sense of

Jeffreys (1961). Jeffreys argues that a reasonable property of a “no-information” prior is

that inference be invariant to one-to-one transformations of the parameter space. Given a

set of parameters µ, data D, and a log-likelihood l(µ;D), Jeffreys shows that invariance is

equivalent to specifying a prior as

p(µ) ∝

∣

∣

∣

∣

−E

(

∂2l

∂µ∂µ>

)∣

∣

∣

∣

1/2

. (11)

7This prior distribution could easily be modified to impose other restrictions on the coefficients β. In the

context of predicting equity returns, Campbell and Thompson (2007) suggest disregarding estimates of β

if the expected excess return is negative, or if β has an opposite sign to that suggested by theory. In our

model, these restrictions could be imposed by assigning zero prior weight to the appropriate regions of the

parameter space. One could also consider a non-zero mean for β, corresponding to a prior belief that favors

predictability of a particular sign. For simplicity, we focus on priors that apply to any predictor variable on

possibly multiple assets, and leave these extensions to future work.
8By “large” values of β, in this and the next paragraph we mean vectors β whose elements are large in

absolute value.
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Besides invariance, this formulation of the prior has other advantages such as minimizing

asymptotic bias and generating confidence sets that are similar to their classical counterparts

(see Phillips (1991)).9

We follow the approach of Stambaugh (1999) and Zellner (1996), and derive a limit-

ing Jeffreys prior as explained in Appendix C. This limiting prior is given by taking an

unconditional expectation in (11) and takes the form

p(α, θ0, θ1,Σ) ∝ σx|Σu|
1/2|Σ|−

N+4

2 , (12)

for θ1 ∈ (−1, 1), and zero otherwise. Therefore the joint prior is given by

p(B,Σ) = p(β|α, θ0, θ1,Σ)p(α, θ0, θ1,Σ)

∝ σN+1
x |Σ|−

N+4

2 exp

{

−
1

2
β>
(

σ2
ησ

−2
x Σu

)−1
β

}

(13)

(note that ση is a constant). Because Jeffreys priors involve the likelihood function, typically

they require “prior” knowledge of the data. An advantage of the limiting Jeffreys prior is

that it does not require this knowledge.

Jeffreys invariance theory provides an independent justification for modeling priors on β

as in (9). Appendix B shows that the limiting Jeffreys prior for B and Σ equals

p(B,Σ) ∝ |Σx|
N+1

2 |Σ|−
N+4

2 . (14)

This prior corresponds to (13) as ση approaches infinity. Modeling the prior for β as depend-

ing on σx not only has an interpretation in terms of the R2, but also implies that an infinite

prior variance represents ignorance as defined by Jeffreys (1961). Note that a prior on β

that is independent of σx would not have this property. Because the priors in (13) combine

9The notion of an uninformative prior in a time-series setting is a matter of debate. One approach is

to ignore the time-series aspect of (1) and (2), treating the right hand side variable as exogenous. This

implies a flat prior for α, β, θ0, and θ1. When applied in a setting with exogenous regressors, this approach

leads to Bayesian inference which is quite similar to classical inference (Zellner (1996)). However, Sims and

Uhlig (1991) show that applying the resulting priors in a time series setting leads to different inference than

classical procedures when xt is highly persistent. Phillips (1991) derives an exact Jeffreys (1961) prior and

shows that the inference with this prior leads to different conclusions than inference with a prior that is flat

for the regression coefficients. As a full investigation of these issues is outside the scope of this study, we

focus on the Jeffreys prior. Replacing the prior in (12) with one that is implied by exogenous regressors gives

results that are similar to our current ones; these are available from the authors.
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an informative (“skeptical”) prior on β with a Jeffreys prior on the remaining parameters,

we refer to these as skeptical Jeffreys priors.

Figure 1 depicts the distribution of the R2 implicit in our prior beliefs. The figure shows

the probability that the R2 exceeds some value k, P (R2 > k), as a function of k; it is

therefore one minus the cumulative distribution function for the R2. Note that for ση = 0,

the investor assigns zero probability to a positive R2; for this reason P (R2 > k) is equal to

one at zero and is zero elsewhere. As ση increases, the investor assigns non-zero probability

to positive values of the R2. For ση = .04, the probability that the R2 exceeds .02 is .0005.

For ση = .08, the probability that the R2 exceeds .02 is .075. Clearly these priors are quite

skeptical: we will see that they nonetheless imply a significant degree of market timing.

Finally when ση is large, approximately equal probabilities are assigned to all values of the

R2. This is the diffuse prior that assigns no skepticism to the data. In what follows, we will

consider the implications of these four priors for the individual’s investment decisions.

Comparison with related studies

In this section we have described one way of modeling prior information. We now compare

this approach to that used in other return predictability studies that make use of informative

priors. These include Kandel and Stambaugh (1996), Avramov (2002, 2004), Cremers (2002)

and Shanken and Tamayo (2005).10 With the exception of Shanken and Tamayo (2005),

these studies do not focus on informative priors over return predictability. Nonetheless, they

do make use of informative priors, so it is instructive to compare their approaches to the

approach that we take here.

Kandel and Stambaugh (1996) derive posteriors assuming the investor has seen, in ad-

dition to the actual data, a “prior” sample of the data that has moments equal to those of

the actual sample except but without predictability.11 Avramov (2002, 2004) also takes this

approach. As this approach serves to reduce posterior estimates relative to sample estimates,

it has similar effects to introducing an informative prior as we do here. We do not to take this

10Goyal and Welch (2004) present an “encompassing forecast”, which, while not Bayesian, has similar

implications in that it downweights the predictability coefficient estimated from the data. Bayesian methods

can be seen as formalizing this approach.
11Kandel and Stambaugh discuss the appeal of holding the distribution of the R2 constant, and for this

reason, set the length of the prior sample to increase in the number of predictor variables.
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approach because constructing this prior sample requires knowledge of moments of the data

for the actual sample. It is therefore difficult to justify this procedure in decision-theoretic

terms, as it assumes that the investor knows moments of the future time series of the data.

Cremers (2002) specifies informative prior beliefs about the time series that highlight

the importance of the expected R2 in the predictability equation. Cremers’s priors assume

knowledge of sample moments of the predictor variable. In a setting where regressors were

exogenous this might not present a problem. However, when the regressor is stochastic

and correlated with returns, it is necessary to assume that the investor knows the sample

moments without having seen the predictor variable. This also is difficult to justify in

decision-theoretic terms.12 An advantage of our approach over these previous studies is that

our priors are parsimonious but do not require knowledge of future data.13

Another approach is adopted by Shanken and Tamayo (2005). Shanken and Tamayo

model time-variation in risk as well as in expected returns. Like our priors, the priors in

Shanken and Tamayo represent a model-based view that is intermediate between complete

faith in a model and complete faith in the data. However, their formulation of priors is less

parsimonious, requiring ten parameters in the case of a single asset (a broad stock market

portfolio) and predictor variable (the dividend-yield). The prior values are specific to these

variables and do not transfer easily to other assets or new predictor variables. The advantage

of our method is that it expresses the informativeness of the agent’s prior beliefs as a single

number which can be mapped into beliefs about the maximum R2. This is the case regardless

of the number of risky assets or the number and characteristics of the predictor variables.

Our priors are in fact reminiscent of the choice of prior on the intercepts in cross-sectional

studies. Pastor and Stambaugh (1999) and Pastor (2000) place an informative prior on the

vector of intercepts from regressions of returns on factors in the cross-section. Building on

ideas of MacKinlay (1995), these studies argue that failure to condition the intercepts on

12Data-based procedures for forming priors are often referred to as “empirical Bayes”. However, at least in

its classic applications, empirical Bayes implies either the the use of data that is known prior to the decision

problem at hand or data from the population from which the parameter of interest can be drawn (Robbins

(1964), Berger (1985)). For example, if one is forming a prior on a expected return for a particular security,

one might use the average expected return of securities for that industry (Pastor and Stambaugh (1999)).
13Generally Jeffreys priors do require knowledge of future data, because they involve taking derivatives of

the likelihood function. Our limiting Jeffreys priors, however, integrate out over the data and are therefore

not subject to this critique.
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the residual variance could lead to very high Sharpe ratios, because there would be nothing

to prevent a low residual variance draw from occurring simultaneously with a high intercept

draw. Bayesian portfolio choice studies (Baks, Metrick, and Wachter (2001), Jones and

Shanken (2005), Pastor and Stambaugh (2002)) place an informative prior on estimates of

mutual fund skill (intercepts from regressions of returns on factors), and argue based on

related ideas that this informative prior should be conditioned on the residual variance of

the fund. In the present study, β plays a role that is roughly analogous to the intercept

in these previous studies. β = 0 implies no predictability, and hence no “mispricing”. As

in these previous studies, conditioning β on volatility measures ensures that a high draw of

β could not coincide with a low draw of Σu. However, in the time-series setting, it is not

sufficient to condition β on Σu; β must also be conditioned on σx in order to produce a

well-defined distribution for quantities of interest.

1.3 Posterior

This section shows how the likelihood of Section 1.1 and the prior of Section 1.2 combine to

form the posterior distribution. From Bayes’ rule, it follows that the joint posterior for B,Σ

is given by

p(B,Σ|D) ∝ p(D|B,Σ)p(B,Σ),

where p(D|B,Σ) is the likelihood and p(B,Σ) is the prior. Substituting in the prior (13)

and the likelihood (7) produces

p(B,Σ|D) ∝ σN
x |Σ|−

T+N+4

2 exp

{

−
1

2
β>
(

σ2
ησ

−2
x Σu

)−2
β

}

exp

{

−
1

2
σ−2

x (x0 − µx)
2

}

exp

{

−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

(15)

as a posterior.

This posterior does not take the form of a standard density function because of the

presence of σ2
x in the prior and in the term in the likelihood involving x0 (note that σ2

x is

a nonlinear function of θ1 and σv). However, we can sample from the posterior using the
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Metropolis-Hastings algorithm (see Chib and Greenberg (1995)). Define column vectors

b = vec(B) = [α1, β1, · · · αN , βN , θ0, θ1]
>

b1 = [α1, β1, · · · αN , βN ]>

b2 = [θ0, θ1]
>
.

The Metropolis-Hastings algorithm is implemented “block-at-a-time”, by first sampling from

p(Σ|b,D), then p(b1|b2,Σ, D), and finally p(b2|b1,Σ, D). The proposal density for the con-

ditional probability of Σ is the inverted Wishart with T + 2 degrees of freedom and scale

factor of (Y −XB)(Y −XB)>. The accept-reject algorithm of Chib and Greenberg (1995,

Section 5) is used to sample from the target density, which takes the same form as (15). The

proposal densities for b1 and b2 are multivariate normal. For b1, the proposal and the target

are equivalent, while for b2, the accept-reject algorithm is used to sample from the target

density. Details are given in Appendix D. As described in Chib and Greenberg, drawing suc-

cessively from the conditional posteriors for Σ, b1, and b2 produces a density that converges

to the full posterior.

1.4 Predictive distribution and portfolio choice

This section describes how we determine optimal portfolio choice based on the posterior

distribution. Consider an investor who maximizes expected utility at time T +1 conditional

on information available at time T . The investor solves

maxET [U(WT+1)|D] (16)

where WT+1 = WT [w>
T rT+1 + rf,T ], wT are the weights in the N risky assets, and rf,T is the

total return on the riskless asset from time T to T + 1 (recall that rT+1 is a vector of excess

returns). The expectation in (16) is taken with respect to the predictive distribution

p(rT+1|D) =

∫

p(rT+1|xT , B,Σ)p(B,Σ|D) dB dΣ. (17)

Following previous single-period portfolio choice studies (see, e.g. Baks, Metrick, and

Wachter (2001) and Pastor (2000)), we assume that the investor has quadratic utility. The

advantage of quadratic utility is that it implies a straightforward mapping between the

moments of the predictive distribution of returns and portfolio choice. However, because
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our method produces an entire distribution function for returns, it can be applied to other

utility functions, and to buy-and-hold investors with horizons longer than one quarter.

Let Ẽ denote the expectation and Ṽ the variance-covariance matrix of the N assets

corresponding to the predictive distribution (17). For a quadratic-utility investor, optimal

weights w∗ in the N assets are given by

w∗ =
1

A
Ṽ −1Ẽ, (18)

where A is a parameter determining the investor’s risk aversion. The weight in the riskless

bond is equal to 1 −
∑N

i=1 w
∗
i . Note that our method makes no assumptions on the riskfree

rate as the level of the riskfree rate is not relevant for portfolio choice under our assumptions.

Given draws from the posterior distribution of the parameters αj, βj,Σj
u, and a value of

xt, a draw from the predictive distribution of asset returns is given by

rj = αj + βjxt + uj,

where uj ∼ N(0,Σj
u). The optimal portfolio is then the solution to (18), with the mean and

variance computed by simulating draws rj.

2 Results

We consider the problem of a quadratic utility investor who allocates wealth between a

riskless asset, a long-term bond, and a stock index. We estimate two versions of the system

given in (1)–(3), one with the dividend-price ratio as the predictor variable and one with the

yield spread. An appeal of these variables is that they are related to excess returns through

present value identities for bonds and stocks (see Campbell and Shiller (1988, 1991)).

2.1 Data

All data are obtained from the Center for Research on Security Prices (CRSP). Excess stock

and bond returns are formed by subtracting the quarterly return on the three-month Treasury

bond from the quarterly return on the value-weighted NYSE-AMEX-NASDAQ index and the

ten-year Treasury bond (from the CRSP indices file) respectively. The dividend-price ratio

is constructed from monthly return data on the stock index as the sum of the previous twelve
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months of dividends divided by the current price. The natural logarithm of the dividend-

price ratio is used as the predictor variable. The yield spread is equal to the continuously

compounded yield on the zero-coupon five year bond (from the Fama-Bliss data set) less the

continuously compounded yield on the three-month bond. Data on bond yields are available

from the second quarter of 1952. We therefore consider quarterly observations from the

second quarter of 1952 until the last quarter of 2004.

2.2 Posterior means, expected returns and portfolios conditional

on the full sample

This section quantitatively describes the posterior beliefs of an investor who views the entire

data set. For both predictor variables, one million draws from the posterior distribution are

simulated as described in Section 1.3. An initial 100,000 “burn-in” draws are discarded.

We first examine the posterior distribution over the maximum R2. Because our empirical

implementation assumes two assets, we compute the prior distribution of (10) assuming

N = 2. The left panel of Figure 2 reports the probability that the maximum R2 exceeds k,

as a function of k for both the prior with ση = .08 and for the posterior distribution implied

by this prior when the dividend-price ratio is the predictor variable. Below k = .02, the

posterior probability that the R2 exceeds k is above the prior probability. Above .02, the

posterior probability that the R2 exceeds k is lower for the posterior than for the prior. The

right panel of Figure 2 shows the probability density function of the posterior and of the

prior. While the prior density is decreasing in the R2 over this range, the posterior density

is hump-shaped with a maximum at about 0.02.

Figure 3 shows analogous results for the yield spread. In this case, the agent places more

weight on relatively high values of the R2 as compared with results for the dividend yield.

The probability that the R2 exceeds k is larger for the posterior than the prior across the

entire range that we consider. The posterior distribution for the R2 still peaks at about 0.02,

but falls off less quickly than in the case of the dividend yield.

Table 1 reports posterior means for values of ση equal to 0, .04, .08, and ∞. To emphasize

the economic significance of these priors, we report the corresponding probabilities that the

R2 exceeds .02: 0, .0005, .075, and .999.14 The predictor variable is the dividend-price ratio.

14These values are the marginal probability that the R2 for a single equation exceeds 0.02.
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Posterior standard deviations are reported in parentheses. The table also shows results from

estimation by ordinary least squares (OLS). For the OLS values, standard errors are reported

in parentheses.

As Table 1 shows, the dividend-price ratio predicts stock returns but not bond returns.

The posterior mean for the β for bond returns is negative and small in magnitude. The

posterior mean for the β for stock returns is positive for all of the priors we consider and for

the OLS estimate. For the diffuse prior, the posterior mean of β equals to 1.46, below the OLS

estimate of 2.72. As the prior becomes more informative, the posterior mean for β becomes

smaller: for P (R2 > .02) = .075, the estimate is 1.41, while for P (R2 > .02) = .0005, it is

0.69.

Even though all of the priors are uninformative with respect to the autoregressive coeffi-

cient θ1, the posterior mean of θ1 nonetheless increases as the priors become more informative

over β. The reason is the negative correlation between draws for θ1 and draws for β. As

Stambaugh (1999) shows, the negative correlation between shocks to returns and shocks to

the predictor variable implies that when β is below its OLS value, θ1 tends to be above its

OLS value. The reason is that if β is below its OLS value, it must be that the lagged predic-

tor variable and returns have an unusually high covariance in the sample (because the OLS

value is “too high”). When this occurs, the predictor variable tends to have an unusually

low autocorrelation; thus the OLS estimate for θ1 is too low and the posterior mean will be

above the OLS value. Therefore, placing a prior that weights the posterior mean of β toward

zero raises the posterior mean of θ1.
15

Table 1 also reports posterior means and standard deviations for the means of the predic-

tor variable and of stock returns. For example, for returns the table reportsE [E[rt+1|B,Σ]|D] =

E
[

α + β θ0

1−θ1
|D
]

and
(

Var
[

α+ β θ0

1−θ1
|D
])1/2

. The OLS mean is set equal to α̂ + β̂ θ̂0

1−θ̂1

,

whereˆdenotes the OLS estimate of a parameter. The unconditional means are of interest

because they help determine the average level of the portfolio allocation. The Bayesian ap-

proach implies about the same unconditional mean for the dividend-price ratio, regardless of

the prior. This is close to -3.50, the mean in the data. However, the mean implied by OLS

is -3.72. The reason that the Bayesian approach is able to identify this mean is the presence

of the unconditional distribution term in the likelihood.

15The value for β under the diffuse prior is also substantially below the OLS value, and the value for θ1 is

higher. The reason is that, relative to the flat prior, the Jeffreys prior favors higher values of θ1.
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These differences in the mean of x translate into differences in the unconditional means

for returns. Table 1 shows that for the stock index, the posterior mean equals 1.17%, while

the OLS value is 1.09% per quarter. The sample mean for stocks in this time period was

1.67%. The difference between the OLS and the sample mean arises mechanically from the

difference between θ̂0

1−θ̂1

(equal to -3.72), and the sample mean of the dividend-price ratio

(equal to -3.50). The difference between the sample and the Bayesian mean occurs for a

more interesting reason. Because the dividend-price ratio in 1952 is above its conditional

maximum likelihood estimate (-3.72), it follows that shocks to the dividend-price ratio were

unusually negative during the time period. Because of the negative correlation between

the stock return and the dividend-price ratio, shocks to stock returns must be unusually

positive. The exact likelihood function therefore implies a posterior mean that is below the

sample mean. Similar reasoning holds for bond returns, though here, the effect is much

smaller because of the low correlation between the dividend-price ratio and bond returns.

This effect is not connected with the ability of the dividend-price ratio to predict returns, as

it operates equally for all values of the prior.

Table 2 repeats this analysis when the yield spread is the predictor variable. The yield

spread predicts both bond and stock returns with a positive sign. As the prior becomes more

diffuse, the posterior mean of the β coefficients go from from 0 to the OLS estimate. As in

the case of the dividend-price ratio, both the posterior mean of long-run expected returns

and the long-run mean of xt are nearly the same across the range of prior distributions.

We now examine the consequences of these posterior means for the predictive distribution

of returns and for portfolio choice. Figure 4 plots expected excess returns (top two plots) and

optimal portfolio holdings (bottom two plots) as functions of the log dividend-price ratio.

Graphs are centered at the sample mean. Diamonds denote plus and minus one and two

sample standard deviations of the dividend-price ratio. We report results for the four prior

beliefs discussed above; to save notation we let P.02 = P (R2 > .02).

The linear form of (1) implies that expected returns are linear in the predictor variables,

conditional on the past data. The slope of the relation between the conditional return and

xt equals the posterior mean of β. Figure 4 shows large deviations in the expected return

on the stock on the basis of the dividend-price ratio. As the dividend-price ratio varies from

-2 standard deviations to +2 standard deviations, the expected return varies from 0% per

quarter to 2% per quarter. On the other hand, the dividend-price ratio has virtually no
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predictive power for returns on the long-term bond.

The bottom panel of Figure 4 shows that the weight on the stock index also increases

in the dividend-price ratio. Bond weights decrease in the dividend-price ratio because bond

and stock returns are positively correlated, so an increase in the mean of the stock return,

without a corresponding increase in the bond return, results in an optimal portfolio that

puts less weight on the bond.

For the diffuse prior, weights on the stock index vary substantially, from -30% when the

dividend-price ratio is two standard deviations below its mean to 100% when the dividend-

price ratio is two standard deviations above its mean. As the prior becomes more informative,

expected returns and weights both vary less. However, this change happens quite slowly.

Conditional expected returns under a prior that assigns only a .075 chance of an R2 greater

than 2% are nearly identical to conditional expected returns with a diffuse prior. There is

sufficient evidence to convince even this skeptical investor to vary her portfolio to nearly

the same degree as an investor with no skepticism at all. For a more skeptical prior with

P.02 = .0005, differences emerge: the slope of the relation between expected returns and the

dividend-price ratio is about half of what it was with a diffuse prior.

Figure 5 displays analogous plots for the yield spread. Both the conditional expected

bond return and the stock return increase substantially in the yield spread. For bonds, these

expected returns vary between -2% and 2% per quarter as the yield spread varies between

-2 and +2 standard deviations. For stocks, expected returns vary between 0% and 3%,

similar to the variation with respect to the dividend-price ratio. These large variations in

expected returns lead to similarly large variation in weights for the diffuse prior: for bonds,

the weights vary between -200% and 200% as the yield spread varies between -2 and +2

standard deviations from the mean. For the stock, the weights vary between 0 and 75%.

The variation in the weights on the stock appears less than the variation in expected returns

on the stock; this is due to the positive correlation in return innovations between stocks and

bonds.

Figure 5 also shows that the more informative the prior, the less variable the weights.

However, when the predictor variable is the yield spread, inference based on a skeptical prior

with P.02 = .075% differs noticeably from inference based on a diffuse prior. Nonetheless,

even the investors with skeptical priors choose portfolios that vary with the yield spread.

This section has shown that an investor who is skeptical about predictability, when
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confronted with historical data, does indeed choose to time the market. The next two

sections show the consequences of this for the time series of portfolio weights and for out-of-

sample performance.

2.3 Posterior means and asset allocation over the post-war period

We next describe the implications of various prior beliefs for optimal weights over the post-

war period. Starting in 1972, we compute the posterior distribution conditional on having

observed data up to and including that year. We start in 1972 because this allows for twenty

years of data for the first observation; this seems reasonable given the persistence in the

data and the fact that there are 12 parameters to be estimated. Starting the analysis in

1982 with thirty years of data leads to very similar results.16 The posterior is computed by

simulating 200,000 draws and dropping the first 50,000. Each quarter, the investor updates

the portfolio weights using that quarter’s observation of the predictor variable. The assets

are the stock, the long-term bond, and a riskless asset.

Figure 6 displays the de-meaned dividend-price ratio and the weights in the long-term

bond and the stock for the most diffuse prior. For most of the sample, the weights in

the stock are highly positively correlated with the dividend-price ratio. Less correlation is

apparent for bond returns. From the mid-90’s, on, this correlation is reduced for both assets:

despite the continued decline in the dividend-price ratio, the allocation to stocks levels off

and the allocation to bonds rises. As Figure 6 shows, under diffuse priors, portfolio weights

are highly variable and often extreme.

Figure 7 offers another perspective on the relation between the predictor variable and the

allocation. The top panel of the figure shows the posterior mean of β for the stock index.

The posterior means are shown for priors ranging from dogmatic to diffuse (P.02 ranging

from 0 to 1) and for the point estimates of β from OLS. The top panel shows that the OLS

beta lies above the posterior mean for the entire sample. The OLS estimates, the posterior

mean when P.02 = .999, and the posterior mean when P.02 = 0.075 decline around 1995, and

16We update the posterior distribution yearly rather than quarterly to save on computation time, which

is a particular concern when we assess the significance of our results using a Monte Carlo procedure. The

results from updating quarterly are very close to those from updating yearly and are available from the

authors upon request.
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then rise again around 2000.17

The posterior mean for P.02 = 0.075 lies above the posterior mean for the diffuse prior

after 2000. This may seem surprising, as the role of the prior is to shrink the βs toward zero.

However, the prior shrinks the total amount of predictability as measured by the R2. This

can be accomplished not only by shrinking β, but also by shrinking the persistence relative

to the diffuse prior. In contrast to the posterior means for the less informative priors, the

posterior mean for P.02 = .0005 remains steady throughout the sample and actually increases

after 2000.

The bottom panel of Figure 7 shows holdings in the stock for a range of beliefs about

predictability. Also displayed are holdings resulting from OLS estimation. Volatility in

holdings for the stock decline substantially as the prior becomes more dogmatic. For the

fully dogmatic prior, the weight on the stock index displays some initial volatility, and then

stays at about 40% after about 1976. The prior that is close to dogmatic, P.02 = .0005,

implies some market timing for the stock portfolio based on the dividend-price ratio. In the

early part of the sample the weight in the stock index implied by this prior is about 50%,

declining to zero at the end of the sample. Of course, P.02 = .075 and the diffuse prior imply

greater amounts of market timing. These priors imply time-varying weights that fluctuate

both at a very slow frequency, and at a higher frequency. However, the weights that display

the most volatility are those arising from ordinary least squares regression.

Figure 8 shows corresponding results for the bond. The top panel shows that for most

of the sample, the dividend yield predicts bond returns with a positive sign, just as it does

with stock returns. Starting in the late-90s, this predictability begins to decline. Volatility in

bond holdings also decline substantially as the prior becomes more dogmatic. Corresponding

figures for the yield spread (Figures 9–11) share these features.

Figure 7 demonstrates that using predictive variables in portfolio allocations need not

lead to extreme weights. Combining the sample evidence with priors that are skeptical

about return predictability leads to a moderate amount of market timing. We now turn to

the out-of-sample performance of these strategies.

17This plot is suggestive of parameter instability in the postwar sample; indeed evidence of such instability

is found by Lettau and VanNieuwerburgh (2006), Paye and Timmermann (2005), and Viceira (1996).
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2.4 Out-of-sample performance

The previous sections show how skeptical priors can inform portfolio selection. The results in-

dicate that investors who are highly skeptical about return predictability nonetheless choose

time-varying weights, but that these weights are less variable and extreme than the weights

for investors with diffuse priors. In this section, we assess out-of-sample performance of these

priors.18 The goal is not to find out which prior is “best”. Rather, the purpose of this section

is to relate our findings to those in papers that critique the evidence for predictability based

on out-of-sample performance (Bossaerts and Hillion (1999), Goyal and Welch (2004)).

To assess out-of-sample performance in a way that controls for risk, we adopt a cer-

tainty equivalent approach. The certainty equivalent return (CER) answers the question:

“what riskless rate would the investor be willing to accept in exchange for not following this

strategy?” That is

CER = E[rp] − A
1

2
Var[rp], (19)

where A is the appropriate risk-aversion parameter (see, e.g., Brennan and Xia (2001)).

In this analysis, the mean and variance in (19) are computed using the sample mean and

variance that result from following strategies associated with a given prior belief. That is,

for each quarter, we apply the weights described in the previous section to the actual returns

realized over the next quarter. This gives us a time series of 120 quarterly returns to use

in computing the means and variances. In reporting the certainty equivalent returns, we

multiply by 400 to express the return as an annual percentage. Results are reported for

values of A equal to 2 and 5. As an additional metric, we also report out-of-sample Sharpe

ratios. These are equal to the sample mean of excess returns, divided by the sample standard

deviation. Excess returns are quarterly and constructed as described above. In reporting

Sharpe ratios, we multiply by 2 to annualize.

18Avramov (2004) also highlights how informative non-dogmatic priors can improve ex post performance

of portfolios. Avramov’s results pertain to the cross-section: he shows that shrinking a broad cross-section

of returns toward what would be implied by the Fama and French (1993) 3-factor model can lead to better

ex post performance. This can occur both with and without return predictability by the term and default

spread. Avramov also examines the effects of introducing a “prior” sample with no predictability and no

mispricing relative to the 3-factor model. When there is such a sample, performance is often better than

when there is no such prior sample. However, it is not clear whether these results are due to the lack of

predictability or the lack of mispricing.
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Table 3 reports CERs and Sharpe ratios when the dividend-price ratio is the predic-

tor variable. For both metrics, the weights implied by ordinary least squares deliver worse

performance than the weights implied by the dogmatic prior, which implies no market tim-

ing. A similar result is found by Goyal and Welch (2004), who argue against the use of

predictability in portfolio allocation. We find, however, that market timing can increase

out-of-sample performance, if the investor treats the evidence with some skepticism. The

intermediate prior with P.02 = .0005 has the best out-of-sample performance regardless of

the level of risk aversion and whether the CER or Sharpe ratio metric is used. While ignoring

the predictability evidence results in better performance than applying a diffuse prior, simply

looking at these two extreme positions hides the better performance that can be achieved

by taking the intermediate view.

Table 4 reports analogous results for the yield spread as the predictor variable. For the

certainty equivalent return metric, OLS again performs the worst, while the diffuse and

dogmatic priors perform somewhat better. However, skeptical priors perform better still.19

The differences can be large. When the risk aversion parameter equals 2, for example, a

diffuse prior results in a CER of 5.47% per annum, while a dogmatic prior results in a CER

of 5.61%. However, for the intermediate prior of P.02 = .0005, the CER is 7.58% per annum;

for the prior with P.02 = .075, the CER is 9.19% per annum. These results show that

priors indicating skepticism about the degree of predictability lead to superior out-of-sample

performance over the postwar period, as well as to less extreme portfolio allocations, and to

more stable parameter estimates.

We next evaluate the classical statistical significance and robustness of our out-of-sample

results. The analysis in the previous sections indicates that a Bayesian investor, even one

who is skeptical about return predictability, would time the market. There is sufficient

evidence to convince this investor that market timing is worthwhile. Here however we ask

a different question. Suppose that returns are in fact unpredictable. In repeated samples,

what is the probability that our strategies would have led to (presumably spurious) superior

performance?

To answer this question, we use a Monte Carlo procedure to correctly capture the depen-

dencies inherent in our out-of-sample return observations (even though the shocks to returns

19For the Sharpe ratio metric, OLS and the diffuse priors also outperform the most dogmatic prior.
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and the predictor variable may be independent across time, portfolio returns depend on the

investor’s posterior, and therefore in principle on all previous observations). We simulate

100 samples of data designed so that means, variances, and covariances of returns and of

the state variable, and the autocorrelation of the state variable are the same as in the data.

However, in simulated data, returns are unpredictable. We then calculate out-of-sample

performance, exactly repeating the procedure we used to calculate performance in actual

data.20

Table 5 shows the results of this exercise for the dividend-price ratio. The first row of

Panel A reports the difference between the CER of each skeptical prior (and the regression

estimate) and that of the dogmatic prior seen in the data for a risk aversion of 2. These

differences are a measure of the ex-post gains from market timing. The next two rows report

the 5th and the 95th percentile of the Monte-Carlo-generated statistic. The results show

that the outperformance of the prior P.02 = .0005 could have occurred by chance with at

most a 10% probability using a two-tailed test (because computation costs force us to limit

the Monte Carlo to 100 draws, critical values corresponding to higher levels of significance

would be unreliable). In the data, outperformance is 69 basis points per year while the 95th

percentile is 61 basis points. Panel B reports the results of a similar exercise for the Sharpe

ratio. The difference in the data between the skeptical and the dogmatic prior is 0.025; the

95th percentile is only 0.007.

Table 6 reports analogous results for the yield spread. Both skeptical priors (P.02 = .0005

and P.02 = .075) outperform the dogmatic prior. This outperformance is far above the 95th

percentile for the Monte Carlo draws for both the CER and the Sharpe ratio measure. For

example, when risk aversion is 2, P.02 = .075 implies a performance differential of 3.58%.

The 95th percentile is 1.57%. When risk aversion is 5, this prior implies a performance

differential of 1.46%; the 95th percentile is 0.63%. Taken together, our Monte Carlo results

suggest that it is quite unlikely that the superior performance of the skeptical priors could

have occurred by chance.

20We consider only 100 draws because of the heavy computational requirements. While sampling from

the posterior distribution for a given dataset takes under an hour, obtaining out-of-sample statistics requires

that this procedure be repeated 32 times (once for every sample year since 1972). The whole procedure then

needs to be repeated 100 times for the Monte Carlo. The entire set of Monte Carlo results (for two predictor

variables and four priors) requires about a month of computation time on a 10-node Beowulf cluster.
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Finally, we examine the performance of our strategies over subperiods of the data. The

results above use data from 1952 to 2004. Here, we repeat the analysis with data ending

in 1984 and 1994. The results for the dividend-price ratio are shown in Table 7. For

each subsample, OLS continues to give the worst performance as measured by certainty

equivalent returns. However, skeptical priors deliver superior performance relative to the

dogmatic prior. Similar results hold when the yield spread is the predictor variable, as

shown in Table 8. In both subsamples, and across all measures of performance, the skeptical

priors outperform the dogmatic prior.

To conclude, we find that market timing strategies implied by OLS underperform strate-

gies implied by a no-predictability view, confirming results in other recent papers. However,

we also find that taking an intermediate view, that some predictability might exist, leads to

better performance relative to either extreme.

3 Extensions to multiple predictor variables

This section extends the results in Section 1 to the case of multiple predictor variables. We

continue to assume (1) and (2), except that xt is now allowed to be K × 1, β is N ×K, θ0

is K × 1, and θ1 is K ×K. Define

B =





α> θ>0

β> θ>1





The multivariate analogues of (5) and (6) are

µx = E [xt |B,Σ] = (IK − θ1)
−1
θ0, (20)

and

vec(Σx) = (IK2 − (θ1 ⊗ θ1))
−1 vec(Σv), (21)

where Σx = E
[

(xt − x0)(xt − x0)
>
]

(see Hamilton (1994, p. 265)).

As in Section 1, we specify a prior over normalized β. Let Cx be a lower triangular matrix

such that CxC
>
x = Σx, and

η = C−1
u βCx (22)

(recall that Cu is such that CuC
>
u = Σu). Assume prior beliefs on η are given by

vec(η) ∼ N(0, σ2
ηINK).
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Then (22) implies

vec(η) =
(

C>
x ⊗ C−1

u

)

vec(β)

and therefore,

vec(β) |α, θ0, θ1,Σ ∼ N
(

0, σ2
η

(

Σ−1
x ⊗ Σu

))

. (23)

Appendix C shows that the Jeffreys prior on (α, θ0, θ1,Σ) takes the form

p(α, θ0, θ1Σ) ∝ |Σ|−
N+2K+2

2 |Σu|
K/2|Σx|

K/2. (24)

Because

vec(β)>
(

Σu ⊗ Σ−1
x

)−1
vec(β) = vec(β)>

(

Σ−1
u ⊗ Σx

)

vec(β)

= tr
(

β>ΣxβΣ−1
u

)

,

the joint prior is given by

p(B,Σ) ∝ |Σx|
N+K

2 |Σ|−
N+2K+2

2 exp

{

−
1

2
σ−2

η tr
(

β>ΣxβΣ−1
u

)

}

. (25)

As ση approaches zero, p(B,Σ) approaches a dogmatic, no-predictability prior. Appendix B

shows that p(B,Σ) approaches a Jeffreys prior as ση approaches infinity. Intermediate levels

of ση allow for skepticism about the level of predictability by placing an informative prior on

the maximum R2 implied by the equations (1) and (2). The generalization of the equation

for the maximum R2 is

max
w

R2 = max
w

w>βΣxβ
>

w>βΣxβ>w + w>Σuw

=
η>η

η>η + 1
(26)

as shown in Appendix A.

The computations for the likelihood and the posterior closely follow those in Section 1.

Define

Y =









r>1 x>1
...

...

r>T x>T









, X =









1 x>0
...

...

1 x>T−1









.

The exact likelihood is given by

p(D|B,Σ) = |2πΣx|
− 1

2 |2πΣ|−
T

2

exp

{

−
1

2
(x0 − µx)

> Σ−1
x (x0 − µx) −

1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

. (27)
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Applying Bayes rule to (25) and (27) leads to the posterior

p(B,Σ|D) ∝ |Σx|
N+K−1

2 |Σ|−
T+N+2K+2

2 exp

{

−
1

2
(x0 − µx)

>Σ−1
x (x0 − µx)

}

exp

{

−
1

2
σ−2

η tr
(

β>ΣxβΣ−1
u

)

−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

. (28)

The procedure for sampling from this posterior is very similar to that described in Section 1.3.

The Metropolis-Hastings algorithm is used to draw blocks of parameters at a time. First,

Σ is drawn from p(Σ|B,D) using the inverted Wishart distribution with T +K + 1 degrees

of freedom. Second, α and β are drawn from p(α, β|θ0, θ1, D), and finally θ0 and θ1 are

drawn from p(θ0, θ1|α, β,Σ, D). The computation of the conditional posteriors for (α, β),

and (θ0, θ1) is exactly as in Section 1.3.

4 Conclusions

How much evidence on predictability is enough to influence portfolio choice? One view

is that predictability should be taken into account only if the statistical evidence for it is

incontrovertible. An opposite view is that investors should time their allocations to a large

extent, even if the evidence for predictability is weak according to conventional measures.

The first view states that investors should be extremely skeptical when viewing data showing

evidence of predictability, while the second view states that no skepticism is necessary at all.

In this paper, we modeled the portfolio choice problem of an investor who has prior

beliefs on the amount of predictability in the data. These prior beliefs put “skepticism”

about predictability on a sound decision-theoretic basis. The skeptical investor believes

that, while predictability is possible, large values of the R2 are unlikely.

We applied our method to post-war data on bond and stock returns, with the yield

spread and the dividend-price ratio as predictor variables. We found that even investors

with a high degree of prior skepticism still vary their allocations to long-term bonds and

stocks based on both of these variables. Thus the amount of predictability in the data is

sufficient to influence investment, even if the investor is skeptical about the strength of this

predictability.

To see the implications of various prior beliefs for portfolio allocations over the postwar

period, we implemented an out-of-sample analysis. For each quarter starting in 1972, the
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posterior and optimal portfolio weights were determined based on previous data. Parameter

estimates implied by skeptical priors were more stable than those implied by the diffuse prior

and by ordinary least squares regression. Moreover, the resulting weights are less volatile

and deliver superior out-of-sample performance as compared to the weights implied by an

entirely model-based or data-based view.

This study provides a method for rigorously implementing an intermediate view on pre-

dictability. The resulting portfolio weights are more reasonable, and in fact perform better

out of sample than either extreme view. The question remains as to why the skeptical prior

outperforms. Skepticism can be motivated by a theory of rational markets (see Samuelson

(1965)). Our results suggest that there may be value to this theory even if it does not

hold exactly. More broadly, this study supports the idea that using models to downweight

unreasonable regions of the parameter space may improve decision making.
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Appendix

A Derivation of the maximum R2

This section derives equation (10) and (26). Because (10) is a special case of (26), we derive

this latter equation. The maximum R2 satisfies

maxR2 = max
w

w>βΣxβ
>w

w>βΣxβ>w + w>Σuw
, (29)

where w is an N × 1 nonzero vector (it is not necessary that the elements of w sum to 1).

Define

w̄ = C>
u w

where CuC
>
u = Σu. Rewrite (29) as

maxR2 = max
w̄

w̄>C−1
u βΣxβ

> (C−1
u )

>
w̄

w̄>C−1
u βΣxβ> (C−1

u )> w̄ + w̄>w̄

= max
w̄

w̄>ηη>w̄

w̄>ηη>w̄ + w̄>w̄

= max
w

w>ηη>w

w>ηη>w + w>w
,

where the last line follows from a change of notation for the maximizing variable. Finally,

we note that

argmaxw

w>ηη>w

wηη>w + w>w
= argmaxw

w>ηη>w
w>w

wηη>w
w>w

+ 1
= argmaxw

w>ηη>w

w>w
.

because the argument in the former two expressions is an increasing function of the last

expression. By the Cauchy-Schwartz inequality,

w>ηη>w

w>w
≤ η>η

for all nonzero vectors w, and therefore

η = argmaxw

w>ηη>w

wηη>w + w>w
.

This proves (26).
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B Jeffreys prior on B,Σ

Our derivation for the limiting Jeffreys prior on B,Σ follows Stambaugh (1999). Zellner

(1996, pp. 216-220) derives a limiting Jeffreys prior by applying (11) to the likelihood (7)

and retaining terms of the highest order in T . Stambaugh shows that Zellner’s approach is

equivalent to applying (11) to the conditional likelihood (4), and taking the expectation in

(11) assuming that x0 is multivariate normal with mean (20) and variance (21) (or mean (5)

and variance (6) in the K = 1 case). We adopt this approach.

We derive the prior density for p(B,Σ−1) and then transform this into the density for

p(B,Σ) using the Jacobian. Let b = vec(B), and

ζ = (σ11, σ12, . . . , σ1,N+K , σ22, σ23, . . . , σ2,N+K , . . . , σN+K,N+K),

where σij denotes element (i, j) of Σ−1. Let l(B,Σ;D) = log p(D|B,Σ, x0) denote the natural

log of the conditional likelihood. The definition of the Jeffreys prior requires

p(B,Σ−1) ∝

∣

∣

∣

∣

∣

∣

−E









∂2l
∂b∂b>

∂2l
∂b∂ζ>

∂2l
∂ζ∂b>

∂2l
∂ζ∂ζ>









∣

∣

∣

∣

∣

∣

1/2

(30)

Computing the expectation on the right hand side of (30) yields

p(B,Σ−1) ∝

∣

∣

∣

∣

∣

∣

Σ−1 ⊗ Ψ 0

0 ∂2 log |Σ|
∂ζ∂ζ>

∣

∣

∣

∣

∣

∣

1/2

, (31)

where

Ψ =





1 µ>
x

µx µxµ
>
x + Σx



 .

Note that Ψ is (K + 1) × (K + 1). From the formula for the determinant of a partitioned

matrix (Green (1997, p. 33)), it follows that |Ψ| = Σx.

Box and Tiao (1973, pp. 474–475) show that
∣

∣

∣

∣

∂2 log |Σ|

∂ζ∂ζ>

∣

∣

∣

∣

1/2

= |Σ|
N+K+1

2 (32)

(recall that Σ is (N +K) × (N +K)). It then follows from (31) that

p(B,Σ−1) ∝ |Σ−1 ⊗ Ψ|1/2|Σ|
N+K+1

2

=
(

|Σ|−(K+1)|Ψ|N+K
)1/2

|Σ|
N+K+1

2

= |Ψ|
N+K

2 |Σ|N/2

= |Σx|
N+K

2 |Σ|N/2.
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From results in Zellner (1996, p. 226), it follows that Jacobian of the transformation from

Σ−1 to Σ is |Σ|−(N+K+1). Therefore

p(B,Σ) ∝ |Σx|
N+1

2 |Σ|−
N+2K+2

2 . (33)

C Jeffreys prior on α, θ0, θ1,Σ

We calculate the prior for (α, θ0, θ1,Σ
−1), and use the determinant of the Jacobian to trans-

form this into a prior for (α, θ0, θ1,Σ). Define blocks of Σ−1 as

Σ−1 =





(Σ−1)11 (Σ−1)12

(Σ−1)21 (Σ−1)22



 .

Here, (Σ−1)11 is N ×N , (Σ−1)12 is N ×K, (Σ−1)21 = (Σ−1)
>
12, and (Σ−1)22 is K ×K.

The starting point for the calculation is the information matrix (11) for B,Σ−1 given

in Appendix B. The information matrix for α, θ0, θ1,Σ
−1 can be obtained by removing the

rows and columns corresponding to derivatives with respect to βij from (31). Without loss

of generality, the rows and columns of (31) can be re-ordered so that

p(B,Σ−1) ∝

∣

∣

∣

∣

∣

∣

Ψ ⊗ Σ−1 0

0 ∂2 log |Σ|
∂ζ∂ζ>

∣

∣

∣

∣

∣

∣

1/2

.

This corresponds to taking second derivatives of l with respect to vec(B>) rather than

vec(B). Because vec(B>) = (α>, θ>0 , vec(β)>, vec(θ1)
>)>, removing the rows and columns

corresponding to vec(β) leads to

p(α, θ0, θ1,Σ
−1) ∝

∣

∣

∣

∣

∣

∣

Φ 0

0 ∂2 log |Σ|
∂ζ∂ζ>

∣

∣

∣

∣

∣

∣

1/2

, (34)

where

Φ =











Σ−1 µ>
x ⊗





(Σ−1)12

(Σ−1)22





µx ⊗ [(Σ−1)21 , (Σ
−1)22]

(

Σx + µxµ
>
x

)

⊗ (Σ−1)22











.

From the formula for the determinant of a partitioned matrix, it follows that

|Φ| =
∣

∣Σ−1
∣

∣

∣

∣

∣

∣

∣

∣

(

Σx + µxµ
>
x

)

⊗
(

Σ−1
)

22
−
(

µx ⊗
[(

Σ−1
)

21
,
(

Σ−1
)

22

])

Σ



µ>
x ⊗





(Σ−1)12

(Σ−1)22









∣

∣

∣

∣

∣

∣

.
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Because

Σ





(Σ−1)12

(Σ−1)22



 =





0N×K

IK



 ,

it follows that

|Φ| =
∣

∣Σ−1
∣

∣

∣

∣

(

Σx + µxµ
>
x

)

⊗
(

Σ−1
)

22
− µxµ

>
x ⊗

(

Σ−1
)

22

∣

∣

=
∣

∣Σ−1
∣

∣

∣

∣Σx ⊗
(

Σ−1
)

22

∣

∣

= |Σ|−1|Σx|
K |
(

Σ−1
)

22
|K .

Applying the formula for the determinant of a partitioned matrix to Σ produces

|Σ| = |Σu|
∣

∣Σv − ΣvuΣ
−1
u Σuv

∣

∣ .

By the formula for the inverse of a partitioned matrix (Green (1997, p. 33)),

|
(

Σ−1
)

22
| =

∣

∣Σv − ΣvuΣ
−1
u Σuv

∣

∣

−1
.

Therefore,

|Φ| = |Σ|−(K+1)|Σ|K |
(

Σ−1
)

22
|K |Σx|

K

= |Σ|−(K+1)|Σu|
K |Σx|

K .

Finally, from (32) and (34),

p(α, θ0, θ1,Σ
−1) ∝ |Φ|1/2|Σ|

N+K+1

2

= |Σ|N |Σu|
K/2|Σx|

K/2.

which, by the Jacobian of the transformation from Σ−1 to Σ (see Appendix B) completes

the proof of (24).

D Sampling from the posterior

The conditional density p(Σ|B,D) has an expression identical to (15). The proposal density

is the inverted Wishart with T + 2 degrees of freedom (Zellner (1996, p. 395)):

f(Σ|B,D) ∝ |Σ|−
T+N+2

2 exp

{

−
1

2
tr
[

(Y −XB)>(Y −XB)Σ−1
]

}

.

31



Because the target density takes the form

p(Σ|B,D) ∝ ψ(Σ) × proposal,

we can use the results in Chib and Greenberg (1995, Section 5) to sample from the posterior.

The density for p(B|Σ, D) is sampled from in two steps: first we sample from p(b1|b2,Σ, D),

and next we sample from p(b2|b1,Σ, D). For the first of these steps, we can sample directly

from the true density, without using the accept-reject algorithm. Note that

tr
[

(Y −XB)>(Y −XB)Σ−1
]

= (b− b̂)>(Σ−1 ⊗X>X)(b− b̂) + terms independent of B

where b̂ = vec(B̂), and B̂ = (X>X)−1X>Y . Let V =
(

Σ−1 ⊗X>X
)−1

, and partition V so

that

V =





V11 V12

V21 V22



 ,

where V11 is 2N × 2N , V12 is 2N × 2, and V22 is 2 × 2. Then

(b− b̂)>(Σ−1 ⊗X>X)(b− b̂) =
(

b1 − b̂1 − V >
21V

−1
22 (b2 − b̂2)

)>
(

V11 − V >
21V

−1
22 V21

)−1
(

b1 − b̂1 − V >
21V

−1
22 (b2 − b̂2)

)

+ terms independent of b1.

(see Green (1997, Chapter 3.1)). Then under the prior (13),

p(b1 | b2,Σ, D) ∝ exp

{

−
1

2
β>
(

σ2
ησ

−2
x Σu

)−1
β

}

exp

{

−
1

2

(

b1 − b̂1 − V >
21V

−1
22 (b2 − b̂2)

)>
(

V11 − V >
21V

−1
22 V21

)−1
(

b1 − b̂1 − V >
21V

−1
22 (b2 − b̂2)

)

}

.

We now complete the square to derive the distribution for b1. Let

Ω = Σ−1
u ⊗





0 0

0
(

σ2
ησ

−2
x

)−1



 . (35)

The posterior distribution for b1 conditional on b2 and Σ is normal with variance

V ∗
11 =

(

Ω + (V11 − V12V
−1
22 V12)

−1
)−1

and mean

b∗1 = V ∗
11(V11 − V12V

−1
22 V12)

−1
(

b̂1 + V >
21V

−1
22 (b2 − b̂2)

)

.
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Similar reasoning can be used to draw from the posterior for b2 = [θ0, θ1] conditional on

the other parameters, Applying the results of Green (1997, Chapter 3.1),

(b− b̂)>(Σ−1 ⊗X>X)(b− b̂) =
(

b2 − b̂2 − V >
12V

−1
11 (b1 − b̂1)

)>
(

V22 − V >
12V

−1
11 V12

)−1
(

b2 − b̂2 − V >
12V

−1
11 (b1 − b̂1)

)

+ terms independent of b2.

The density is sampled from using an accept-reject algorithm. The proposal density is normal

with mean b̂2 + V >
12V

−1
11 (b1 − b̂1) and variance V22 − V >

12V
−1
11 V12. The target density is

p(b2|b1,Σ, D) ∝ σN
x exp

{

−
1

2
β>
(

σ2
ησ

−2
x Σu

)−1
β −

1

2
σ−2

x (x0 − µx)
2

}

× proposal.

for θ1 ∈ (0, 1) and zero otherwise.21

21For the case of multiple predictor variables, the procedure for simulating from the posterior is very

similar. In this case, V11 is NK × NK and

Ω = Σ−1

u ⊗





0 0

0 σ−2

η Σx



 .

The proposal density for Σ is an inverted Wishart with T + K + 1 degrees of freedom.
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Table 1: Posterior Means: Dividend-Price Ratio

P (R2 > 2%)

Parameter 0 0.0005 0.075 0.999 Reg.

βbond 0.00 0.02 -0.00 -0.18 -0.10

(0.00) (0.22) (0.43) (0.72) (0.73)

βstock 0.00 0.69 1.41 1.46 2.72

(0.00) (0.62) (0.97) (1.09) (1.52)

θ1 0.997 0.993 0.988 0.989 0.976

(0.002) (0.006) (0.009) (0.010) (0.015)

E
[

rbond|B,Σ
]

0.18 0.18 0.18 0.17 0.23

(0.27) (0.30) (0.34) (1.07)

E
[

rstock|B,Σ
]

1.16 1.17 1.17 1.17 1.09

(0.29) (0.24) (0.28) (0.72)

E[x|B,Σ] -3.49 -3.50 -3.50 -3.50 -3.72

(1.48) (0.99) (0.76) (1.35)

Notes: Posterior means for the predictive coefficients β, the autoregressive coefficient on

the predictor variable θ1, and unconditional posterior means for returns and the predictor

variable. Posterior standard deviations are in parentheses. The assets are the ten-year bond

and the stock index; the log dividend-price ratio is the predictor variable. Prior beliefs are

indexed by P (R2 > 2%), the probability that the R2 from the predictive regression exceeds

2%. P (R2 > 2%) = 0 corresponds to the dogmatic prior; P (R2 > 2%) = 0.999 corre-

sponds to the diffuse prior. The last column gives results implied by parameters estimated

by ordinary least squares regression. For regression estimates, standard errors are in paren-

theses. E [r|B,Σ] = α + β θ0

1−θ1
and denotes the frequentist expectation of excess returns.

E [x|B,Σ] = θ0

1−θ1
and denotes the frequentist expectation of the predictor variable. Data

are quarterly from 1952 to 2004.



Table 2: Posterior Means: Yield spread

P (R2 > 2%)

Parameter 0 0.0005 0.075 0.999 Reg.

βbond 0.00 0.20 0.46 0.81 0.80

(0.00) (0.14) (0.20) (0.26) (0.26)

βstock 0.00 0.22 0.51 0.89 0.89

(0.00) (0.28) (0.42) (0.55) (0.56)

θ1 0.74 0.73 0.74 0.75 0.74

(0.05) (0.05) (0.05) (0.05) (0.05)

E
[

rbond|B,Σ
]

0.21 0.21 0.21 0.21 0.23

(0.28) (0.28) (0.29) (0.33)

E
[

rstock|B,Σ
]

1.67 1.67 1.67 1.67 1.69

(0.58) (0.59) (0.60) (0.63)

E[x|B,Σ] 0.97 0.97 0.97 0.97 0.99

(0.19) (0.19) (0.19) (0.21)

Notes: Posterior means for the predictive coefficients β, the autoregressive coefficient on

the predictor variable θ1, and unconditional posterior means for returns and the predictor

variable. Posterior standard deviations are in parentheses. The assets are the ten-year bond

and the stock index; the yield spread is the predictor variable. Prior beliefs are indexed

by P (R2 > 2%), the probability that the R2 from the predictive regression exceeds 2%.

P (R2 > 2%) = 0 corresponds to the dogmatic prior; P (R2 > 2%) = 0.999 corresponds to the

diffuse prior. The last column gives results implied by parameters estimated by ordinary least

squares regression. For regression estimates, standard errors are in parentheses. E [r|B,Σ] =

α + β θ0

1−θ1
and denotes the frequentist expectation of excess returns. E [x|B,Σ] = θ0

1−θ1
and

denotes the frequentist expectation of the predictor variable. Data are quarterly from 1952

to 2004.



Table 3: Out-of-Sample Results: Dividend-Price Ratio

P (R2 > 2%)

A 0 0.0005 0.075 0.999 Reg.

Panel A: Certainty Equivalent Returns

2 6.98 7.66 6.76 5.25 -2.63

5 6.78 7.05 6.66 6.03 2.86

Panel B: Sharpe Ratios

0.19 0.22 0.19 0.15 0.16

Notes: Certainty equivalent returns (Panel A) and Sharpe ratios (Panel B) when the

dividend-price ratio is the predictor variable and the assets are the stock index and the

ten-year bond. For each year beginning in 1972, the predictive distribution for returns is

computed using all data up to that year. Optimal portfolios are then computed quarterly to

maximize a mean-variance utility function with risk aversion parameter A = 2, 5; these are

combined with actual returns over the following quarter to create out-of-sample returns on

the investment strategy. Certainty equivalent returns (CERs) are defined as E[rp]−
A
2
Var[rp],

where rp is the return on the investment strategy and the mean and variance are computed

using the sample. Sharpe ratios are the average excess returns on the investment strat-

egy divided by the standard deviation and do not depend on A. Prior beliefs are indexed

by P (R2 > 2%), the probability that the R2 from the predictive regression exceeds 2%.

P (R2 > 2%) = 0 corresponds to the dogmatic prior; P (R2 > 2%) = 0.999 corresponds to

the diffuse prior. Reg. denotes results obtained from ordinary least squares regression. Data

are from 1952 to 2004. CERs are in annualized percentages (×400), and Sharpe ratios are

annualized (×2).



Table 4: Out-of-Sample Results: Yield Spread

P (R2 > 2%)

A 0 0.0005 0.075 0.999 Reg.

Panel A: Certainty Equivalent Returns

2 5.61 7.58 9.19 5.47 0.65

5 6.26 7.06 7.72 6.25 4.35

Panel B: Sharpe Ratios

0.19 0.28 0.37 0.43 0.39

Notes: Certainty equivalent returns (Panel A) and Sharpe ratios (Panel B) when the yield

spread is the predictor variable and the assets are the stock index and the ten-year bond.

For each year beginning in 1972, the predictive distribution for returns is computed using all

data up to that year. Optimal portfolios are then computed quarterly to maximize a mean-

variance utility function with risk aversion parameter A = 2, 5; these are combined with

actual returns over the following quarter to create out-of-sample returns on the investment

strategy. Certainty equivalent returns (CERs) are defined as E[rp] −
A
2
Var[rp], where rp is

the return on the investment strategy and the mean and variance are computed using the

sample. Sharpe ratios are the average excess returns on the investment strategy divided by

the standard deviation and do not depend on A. Prior beliefs are indexed by P (R2 > 2%),

the probability that the R2 from the predictive regression exceeds 2%. P (R2 > 2%) = 0

corresponds to the dogmatic prior; P (R2 > 2%) = 0.999 corresponds to the diffuse prior.

Reg. denotes results obtained from ordinary least squares regression. Data are from 1952 to

2004. CERs are in annualized percentages (×400), and Sharpe ratios are annualized (×2).



Table 5: Monte Carlo Results: Dividend-Price Ratio

P (R2 > 2%)

A Statistic 0.0005 0.075 0.999 Reg.

Panel A: Certainty Equivalent Returns

2 Data 0.69 -0.21 -1.72 -9.61

5th percentile -0.61 -1.84 -5.49 -9.30

95th percentile 0.61 1.45 1.67 1.21

5 Data 0.26 -0.13 -0.75 -3.92

5th percentile -0.24 -0.73 -2.20 -3.72

95th percentile 0.25 0.58 0.67 0.48

Panel B: Sharpe Ratios

Data 0.025 -0.009 -0.046 -0.029

5th percentile -0.002 -0.009 -0.040 -0.046

95th percentile 0.007 0.021 0.014 0.022

Notes: Differences between the out-of-sample performance of skeptical priors (and of the

regression estimates) and that of the dogmatic prior. See Table 3 for the description of the

performance measures. “Data” denotes the performance difference in the data. The analysis

is repeated in samples of simulated data with no predictability. The table displays the 5th

and 95th percentiles of the performance difference. Prior beliefs are indexed by P (R2 > 2%),

the probability that the R2 from the predictive regression exceeds 2%. P (R2 > 2%) = 0

corresponds to the dogmatic prior; P (R2 > 2%) = 0.999 corresponds to the diffuse prior.

Reg. denotes results from ordinary least squares regression. A is the risk-aversion parameter.



Table 6: Monte Carlo Results: Yield Spread

P (R2 > 2%)

A Statistic 0.0005 0.075 0.999 Reg.

Panel A: Certainty Equivalent Returns

2 Data 1.97 3.58 -0.15 -4.97

5th percentile -0.64 -2.02 -6.67 -7.28

95th percentile 0.74 1.57 1.93 1.79

5 Data 0.80 1.46 -0.01 -1.90

5th percentile -0.25 -0.81 -2.67 -2.91

95th percentile 0.30 0.63 0.77 0.72

Panel B: Sharpe Ratios

Data 0.089 0.182 0.242 0.200

5th percentile -0.005 -0.031 -0.117 -0.119

95th percentile 0.001 -0.009 -0.055 -0.055

Notes: Differences between the out-of-sample performance of skeptical priors (and of the

regression estimates) and that of the dogmatic prior. See Table 4 for the description of the

performance measures. “Data” denotes the performance difference in the data. The analysis

is repeated in samples of simulated data with no predictability. The table displays the 5th

and 95th percentiles of the performance difference. Prior beliefs are indexed by P (R2 > 2%),

the probability that the R2 from the predictive regression exceeds 2%. P (R2 > 2%) = 0

corresponds to the dogmatic prior; P (R2 > 2%) = 0.999 corresponds to the diffuse prior.

Reg. denotes results from ordinary least squares regression. A is the risk-aversion parameter.



Table 7: Subperiod Out-of-Sample Results: Dividend-Price Ratio

P (R2 > 2%)

End Date A 0 0.0005 0.075 0.999 Reg.

Panel A: Certainty Equivalent Returns

1984 2 6.64 7.99 11.05 11.42 -3.14

5 8.08 8.62 9.86 9.97 4.23

1994 2 6.35 7.27 9.34 9.03 2.60

5 7.21 7.58 8.40 8.24 5.69

Panel B: Sharpe Ratios

1984 0.08 0.16 0.33 0.37 0.38

1994 0.10 0.15 0.28 0.29 0.34

Notes: Certainty equivalent returns (CERs) and Sharpe ratios are computed as in Table 3

with 1984 and 1994 as end dates rather than 2004. A is the risk aversion parameter. Prior

beliefs are indexed by P (R2 > 2%), the probability that the R2 from the predictive regression

exceeds 2%. P (R2 > 2%) = 0 corresponds to the dogmatic prior; P (R2 > 2%) = 0.999

corresponds to the diffuse prior. Reg. denotes out-of-sample results obtained from ordinary

least squares regression. CERs are in annualized percentages (×400), and Sharpe ratios are

annualized (×2).



Table 8: Subperiod Out-of-Sample Results: Yield Spread

P (R2 > 2%)

End Date A 0 0.0005 0.075 0.999 Reg.

Panel A: Certainty Equivalent Returns

1984 2 3.11 4.74 4.83 -9.24 -21.91

5 6.67 7.36 7.44 1.92 -3.07

1994 2 4.55 6.44 7.63 0.79 -6.26

5 6.50 7.28 7.78 5.09 2.31

Panel B: Sharpe Ratios

1984 0.01 0.09 0.20 0.32 0.27

1994 0.08 0.18 0.29 0.38 0.34

Notes: Certainty equivalent returns (CERs) and Sharpe ratios are computed as in Table 4

with 1984 and 1994 as end dates rather than 2004. A is the risk aversion parameter. Prior

beliefs are indexed by P (R2 > 2%), the probability that the R2 from the predictive regression

exceeds 2%. P (R2 > 2%) = 0 corresponds to the dogmatic prior; P (R2 > 2%) = 0.999

corresponds to the diffuse prior. Reg. denotes results from ordinary least squares regression.

CERs are in annualized percentages (×400), and Sharpe ratios are annualized (×2).



Figure 1: Prior on the R2 of the Predictive Regression
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Notes: The prior probability that the R2 exceeds a value k, for k ranging from 0 to 0.025

implied by skeptical Jeffreys priors. Prior beliefs are indexed by ση, the prior standard

deviation of the normalized coefficient on the predictor variable. The dogmatic prior is given

by ση = 0; the diffuse prior by ση = ∞. Intermediate priors express some skepticism over

return predictability.



Figure 2: Posterior Distribution on the Maximum R2 when the Dividend-Price Ratio Predicts

Returns
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Notes: The left panel shows the prior and the posterior probability that the maximum R2

over two assets exceeds a value k. The right panel shows the probability density function

for the prior and the posterior of the maximum R2. The prior volatility of normalized β,

ση, is set equal to 0.08. The assets are a stock index and a long-term bond. The predictor

variable is the dividend-price ratio and the data are quarterly from 1952 to 2004.



Figure 3: Posterior Distribution on the MaximumR2 when the Yield Spread Predicts Returns
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Notes: The left panel shows the prior and the posterior probability that the maximum R2

over two assets exceeds a value k. The right panel shows the probability density function

for the prior and the posterior of the maximum R2. The prior volatility of normalized β,

ση, is set equal to 0.08. The assets are a stock index and a long-term bond. The predictor

variable is the yield spread and the data are quarterly from 1952 to 2004.



Figure 4: Conditional Expected Returns and Holdings when the Dividend-Price Ratio Pre-

dicts Returns
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Notes: Conditional expected returns (top two plots) and portfolio holdings (bottom two

plots) as functions of the log dividend-price ratio. Conditional expected returns are calcu-

lated using the predictive distribution. Given the predictive distribution, portfolios maximize

mean-variance utility for risk aversion parameter A = 5. Assets are a stock index, a long-term

bond, and the riskfree asset (not shown). Prior beliefs are indexed by P.02, the probability

that the R2 from the predictive regression exceeds 2%. P.02 = 0 corresponds to the dogmatic

prior; P.02 = 0.999 corresponds to the diffuse prior. Diamonds correspond to the sample

mean and plus and minus one and two sample standard deviations of the predictor variable.

Data are quarterly from 1952 to 2004.



Figure 5: Conditional Expected Returns and Holdings when the Yield Spread Predicts

Returns
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Notes: Conditional expected returns (top two plots) and portfolio holdings (bottom two

plots) as functions of the yield spread. Conditional expected returns are calculated using

the predictive distribution. Given the predictive distribution, portfolios maximize mean-

variance utility for risk aversion parameter A = 5. Assets are a stock index, a long-term

bond, and the riskfree asset (not shown). Prior beliefs are indexed by P.02, the probability

that the R2 from the predictive regression exceeds 2%. P.02 = 0 corresponds to the dogmatic

prior; P.02 = 0.999 corresponds to the diffuse prior. Diamonds correspond to the sample

mean and plus and minus one and two sample standard deviations of the predictor variable.

Data are quarterly from 1952 to 2004.



Figure 6: Time Series of the Dividend-Price Ratio and Portfolio Holdings for the Diffuse

Prior
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Notes: Time series of optimal portfolio holdings in the long-term (10-year) bond and in

the stock index and the de-meaned log dividend-price ratio. Not shown are holdings in

the riskfree asset. For each year beginning in 1972, the predictive distribution for returns

is computed using the data up to that year assuming that the dividend-price ratio is the

predictor variable. Given the predictive distribution, the portfolio maximizes mean-variance

utility for risk aversion parameter A = 5. Data are from 1952 to 2004.



Figure 7: Time Series of Posterior Means and Stock Holdings when the Dividend-Price Ratio

Predicts Returns

Panel A: Betas for Stock Returns
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Panel B: Stock Holdings
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Notes: Panel A shows the posterior mean of β (the coefficient on the predictor variable

for stock returns); Panel B shows the portfolio holdings in the stock index. For each year

beginning in 1972, the posterior distribution is computed using the data up to that year.

Optimal portfolios for the mean-variance investor are computed quarterly for risk aversion

A = 5. Prior beliefs are indexed by P.02, the probability that the R2 from the predictive

regression exceeds 2%. P.02 = 0 corresponds to the dogmatic prior; P.02 = 0.999 corresponds

to the diffuse prior. Also shown are results from ordinary least squares regression (Reg).

Data are quarterly from 1952 to 2004.



Figure 8: Time Series of Posterior Means and Bond Holdings when the Dividend-Price Ratio

Predicts Returns

Panel A: Betas for Bond Returns
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Panel B: Bond Holdings
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Notes: Panel A shows the posterior mean of β (the coefficient on the predictor variable for

long-term bond returns); Panel B shows the portfolio holdings in the long-term bond. For

each year beginning in 1972, the posterior distribution is computed using the data up to

that year. Optimal portfolios for the mean-variance investor are computed quarterly for

risk aversion A = 5. Prior beliefs are indexed by P.02, the probability that the R2 from the

predictive regression exceeds 2%. P.02 = 0 corresponds to the dogmatic prior; P.02 = 0.999

corresponds to the diffuse prior. Also shown are results from ordinary least squares regression

(Reg). Data are quarterly from 1952 to 2004.



Figure 9: Time Series of the Yield Spread and Portfolio Holdings for the Diffuse Prior
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Notes: Time series of optimal portfolio holdings in the long-term (10-year) bond and in the

stock index and the de-meaned yield spread. Not shown are holdings in the riskfree asset.

For each year beginning in 1972, the predictive distribution for returns is computed using

the data up to that year assuming that the yield spread is the predictor variable. Given

the predictive distribution, the portfolio maximizes mean-variance utility for risk aversion

parameter A = 5. Data are from 1952 to 2004.



Figure 10: Time Series of Posterior Means and Stock Holdings when the Yield Spread

Predicts Returns

Panel A: Betas for Stock Returns
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Panel B: Stock Holdings
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Notes: Panel A shows the posterior mean of β (the coefficient on the predictor variable

for stock returns); Panel B shows the portfolio holdings in the stock index. For each year

beginning in 1972, the posterior distribution is computed using the data up to that year.

Optimal portfolios for the mean-variance investor are computed quarterly for risk aversion

A = 5. Prior beliefs are indexed by P.02, the probability that the R2 from the predictive

regression exceeds 2%. P.02 = 0 corresponds to the dogmatic prior; P.02 = 0.999 corresponds

to the diffuse prior. Also shown are results from ordinary least squares regression (Reg).

Data are quarterly from 1952 to 2004.



Figure 11: Time Series of Posterior Means and Bond Holdings when the Yield Spread Pre-

dicts Returns

Panel A: Betas for Bond Returns
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Panel B: Bond Holdings
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Notes: Panel A shows the posterior mean of β (the coefficient on the predictor variable for

long-term bond returns); Panel B shows the portfolio holdings in the long-term bond. For

each year beginning in 1972, the posterior distribution is computed using the data up to

that year. Optimal portfolios for the mean-variance investor are computed quarterly for

risk aversion A = 5. Prior beliefs are indexed by P.02, the probability that the R2 from the

predictive regression exceeds 2%. P.02 = 0 corresponds to the dogmatic prior; P.02 = 0.999

corresponds to the diffuse prior. Also shown are results from ordinary least squares regression

(Reg). Data are quarterly from 1952 to 2004.


