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Abstract

I calculate exact expressions for risk premia, term premia, and the
premium on levered equity in a framework that includes habit forma-
tion, keeping/catching up with the Joneses, and possible departures
from rational expectations. Closed-form expressions for the �rst and
second moments of returns and for the R2 of a regression of stock
returns on the dividend-price ratio are derived under lognormality for
the case that includes keeping/catching up with the Joneses. Linear
approximations illustrate how these moments of returns are a¤ected
by parameter values and illustrate quantitatively how well the model
can account for values of the equity premium, the term premium, and
the standard deviations of the riskless return and the rate of return on
levered equity. For empirically relevant parameter values, the linear
approximations yield values of the various moments that are close to
those obtained from the exact solutions.

�The paper was prepared as a chapter in Rajnish Mehra and Edward Prescott (eds.),
Handbook of Investments: Equity Risk Premium. It previously circulated under the title
�Equity Premia with Benchmark Levels of Consumption, Leverage, Imperfect Correlation
of Consumption and Dividends, and Distorted Beliefs: Closed-Form Results.� I thank
Martin Lettau, Sydney Ludvigson, Raj Mehra, Jessica Wachter, Amir Yaron, Jianfeng
Yu, participants in the Finance Seminar at the Stern School, the European Summer Sym-
posium in Financial Markets, Gerzensee, Switzerland and the Penn Macro Lunch Group
for helpful comments.



Mehra and Prescott (1985) showed that over a period of almost a cen-
tury, the equity premium�the excess of the rate of return on stocks over the
rate of return on riskless bills�averaged 6.18% per year. They then cali-
brated a general equilibrium asset-pricing model of the sort introduced by
Lucas (1978) and showed that such a model, with conventional values of
the coe¢ cient of relative risk aversion, cannot come close to accounting for
the historically observed equity premium. In the two decades since Mehra
and Prescott proclaimed an equity premium puzzle, a large body of research
has been devoted to closing the gap between theoretical asset-pricing mod-
els and empirically observed asset returns. The seminal study by Mehra
and Prescott used a simple general equilibrium model with a representative
consumer with constant relative risk aversion transacting in frictionless as-
set markets to determine the prices of unlevered equity and riskless bills.
Subsequent research has extended this simple model to allow for hetero-
geneous consumers, trading frictions, more general preferences, leverage, a
richer time-series of the endowment of consumption, and departures from
rational expectations. Since the equity premium puzzle is a quantitative
puzzle, many of these studies provide numerical solutions rather closed-form
solutions for equilibrium prices and rates of return.
In this chapter, I will provide closed-form solutions for the equilibrium

price and rate of return on a canonical asset. The canonical asset is general
enough to include riskless bills and risky stocks, and thus allows analysis of
the equity premium. I will extend the basic framework used by Mehra and
Prescott to allow for preferences that display habit formation and a speci�c
form of externalities. I will also allow for leverage so that I can examine the
return on levered equity. Finally, I will allow for departures from rational
expectations, though I will set up the framework so that rational expectations
is a special�indeed focal�case. Instead of enriching the time-series structure
used by Mehra and Prescott, I will simplify it by restricting attention to
growth rates of consumption and dividends that are i.i.d. over time, though
unlike Mehra and Prescott, I will allow consumption and dividends to di¤er
from each other. As in Mehra and Prescott, I will assume that there is a
representative consumer who transacts in frictionless markets.
An advantage of closed-form solutions is that they provide a precise de-

scription of how equilibrium rates of return depend on various parameters.
Though this description is precise, it is not always transparent. To help
understand the e¤ects of various parameters on the equilibrium rates of re-
turn, I will provide linear approximations to the closed-form solutions. I will
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show that, for empirically relevant parameter values, these linear approxima-
tions tend to be very close to the values obtained by evaluating the exact
closed-form expressions.
In this chapter, the major departure from the standard model1 is the

speci�cation of preferences to include a benchmark level of consumption that
captures habit formation and consumption externalities that are sometimes
called �keeping up with the Joneses�or �catching up with the Joneses.� I
will introduce this more general speci�cation of preferences in Section 1. In
Section 2, I introduce the canonical asset and compute its equilibrium price
and rate of return. The expression for the rate of return on the canonical
asset can be used to determine rates of return on riskless bills, levered equity,
and a claim on a single dividend to be received one period in the future.
In Section 3, I use these rates of return to de�ne and compute the risk
premium, term premium, and equity premium. Beginning in Section 4, I
restrict attention to lognormally distributed growth rates. In Section 4, I
provide identities that will be helpful in computing expected returns under
lognormality. Beginning in Section 5, I generally restrict attention to the
case without habit formation, though I allow consumption externalities of
the keeping/catching up with the Joneses variety. I compute closed-form
expressions for risk, term, and equity premia in Section 5, and in Section 6, I
compute linear approximations to these expressions. In Section 7, I compute
exact closed-form expressions for the variances of the rates of return, and then
I compute linear approximations to these expressions. Although the vector of
exogenous growth rates of consumption and dividends is independently and
identically distributed over time, the rate of return on stocks is predictable,
if preferences display the catching up with the Joneses feature. In fact,
the dividend-price ratio can be used to predict the rate of return on stocks,
and in Section 8, I compute the R2 of a regression of stock returns on the
dividend-price ratio. In Section 9, I examine various special cases of the
model and focus on the quantitative predictions for the equity premium,
the term premium, the standard deviations of the riskless rate and the rate
of return on stock, and the R2 of the regression of stock returns on the
dividend-price ratio. The quantitative implications in Section 9 are based
on the approximations of these features of assets, so I show in Section 10 that

1In this context, the standard model is the Lucas (1978) fruit-tree model, generalized
by Mehra and Prescott (1985) to be stationary in growth rates of consumption. The
standard model has a representative agent with time-separable utility who can trade assets
frictionlessly without restrictions, such as short sale constraints.

2



the approximations are, in fact, close to the values obtained by evaluating
the exact closed-form solutions.

1 Preferences

Consider a discrete-time economy with a continuum of identical in�nitely-
lived consumers. Each period the economy receives an endowment of a
homogeneous nonstorable good. Because the good is nonstorable, in equi-
librium all of it is consumed in the period in which it arrives. The quantity
of this good is exogenous and stochastic.
The representative consumer maximizes a utility function that di¤ers in

two important ways from the standard time-separable isoelastic utility func-
tion commonly used in asset-pricing models. First, the utility �ow in each
period depends on a benchmark level of consumption that evolves endoge-
nously over time. Second, the representative consumer does not necessarily
have rational expectations and thus may not use the objective distributions
of random variables when evaluating lifetime utility. For the sake of obtain-
ing closed-form solutions for asset prices, I specify a simple parametric utility
function that embodies these two departures from standard preferences. At
time t, an individual consumer maximizes

Ut = E
�
t

( 1X
j=0

�
1

1 + �

�j
1

1� �

�
ct+j
�
t+j

�1��)
, (1)

where ct+j is the individual�s own consumption in period t + j, �t+j is the
benchmark level of consumption that I will specify in equation (2), 0 � 
 � 1,
the operator E�t fg is the conditional expectation based on the consumer�s
subjective distribution of exogenous stochastic variables as of time t, � � 0
is the rate of time preference, and � > 0 is a curvature parameter.
Beginning in Section 5, I will con�ne attention to cases in which the

benchmark de�ned in equation (2) does not depend on a consumer�s own past
consumption; in these cases, � is the coe¢ cient of relative risk aversion. In
the special case in which 
 = 0 and in which the subjective distributions equal
the true objective distributions, the utility function in equation (1) is the
standard time-separable isoelastic utility function with rational expectations.
The parameter 
 measures the extent to which utility �ow in period t de-

pends on ct
�t
, the ratio of the consumer�s own consumption to the benchmark
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level of consumption �t. Speci�cally, utility �ow in period t is an isoelastic

function of ct
�
t
, which can be written as an isoelastic function of c1�
t

�
ct
�t

�

.

Thus, utility �ow in period t is an isoelastic function of a weighted geometric
average of ct, the consumer�s own consumption in period t, and ct

�t
, the ratio

of the consumer�s own consumption to the benchmark level of consumption.
In the extreme case in which 
 = 1, utility �ow in period t depends only
on the ratio of the consumer�s own consumption to the benchmark level of
consumption.2 ;3

Suppose that the benchmark level of consumption in period t is

�t � cDt�1
�
C�0t C

�1
t�1G

t
�1�D

, (2)

where ct�1 is the individual�s own consumption in the previous period, Ct
is the average consumption per person in the current period, Ct�1 is the
average consumption per person in the previous period, 0 � D � 1, �0 � 0,
�1 � 0, �0 + �1 � 1, and G � 1. The assumption that G � 1 allows for the
possibility that the benchmark level of consumption can grow exogenously.
In equilibrium in this representative consumer economy, the individual�s own
consumption in period t, ct, equals the average consumption per person in
period t, Ct. While an individual consumer treats own consumption, ct,
as a choice variable, the average consumption per person, Ct, is exogenous
to the individual, and thus is treated as a parameter in the individual�s
decision problem. If D = 1, then the benchmark is simply �t � ct�1,

2The benchmark, �t, a¤ects utility �ow in period t in the �ratio form� ct
�
t
, rather than

in the �di¤erence form�ct � �
t as in Constantinides (1990) and Campbell and Cochrane
(1999). The ratio form facilitates the �nding of closed-form expressions for equilibrium
asset prices and returns. As Campbell and Cochane point out, the di¤erence form of the
speci�cation allows the coe¢ cient of relative risk aversion to vary over time, whereas the
ratio form does not allow this variation. However, the di¤erence form requires that the
current level of consumption never falls below the current benchmark level, which requires
additional restrictions on the processes generating consumption and the benchmark.

3In an economy with production and capital accumulation (Abel (2005)), I rule out
the case in which 
 = 1. If 
 = 1, consumers would be indi¤erent between a given
sequence of consumption and benchmarks fc�t ; ��t g

1
t=�1 and, for instance, a sequence

f2c�t ; 2��t g
1
t=�1 in which all consumptions and benchmarks are twice as high. That is, if


 = 1, consumers are indi¤erent to the scale of the economy. In a production economy
with capital accumulation, the scale of the economy is endogenous, and the indi¤erence to
scale would create a problem for a benevolent social planner. However, such a problem
does not arise in the endowment economy I study here because the scale of the economy
is exogenous.
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which is an example of habit formation. In this case, an individual�s own
consumption in period t directly a¤ects utility �ow in period t and also a¤ects
the benchmark level of consumption in period t + 1. (I will use the term
�habit formation�to indicate that the benchmark depends on that person�s
own past consumption. Campbell and Cochrane (1999) have extended this
terminology to include cases in which the benchmark in a person�s utility
function depends on past levels of aggregate consumption per capita, but
not directly on past levels of the person�s own consumption. They recognize
that this terminology is unusual and so refer to such preferences as displaying
�external habit formation.� I will reserve the term habit formation for cases
in which the benchmark depends on the consumer�s own past consumption.
I will use the term �consumption externalities� to refer to what Campbell
and Cochrane call external habit formation.)4

The case without habit formation, but with consumption externalities,
is represented by D = 0, so that the benchmark is �t � C�0t C

�1
t�1G

t, which
is exogenous to an individual consumer. The term C�0t C

�1
t�1 captures the

notion that the benchmark level of consumption depends on the current
and/or recent level of consumption per person in the economy. For in-
stance, if �0 + �1 = 1 and G = 1, the benchmark level of consumption is
�t = C

�0
t C

1��0
t�1 , which is simply a weighted geometric average of current and

lagged consumption per person. Within this restricted class of benchmark
functions, if �0 = 1, so that �1 = 0, the benchmark level of consumption is
simply �t = Ct as in Gali (1994). Alternatively, if �1 = 1, so that �0 = 0,
then the benchmark level of consumption is �t = Ct�1, as in the speci�cation
of the �catching up with the Joneses�preferences in Abel (1990).5

As a step toward calculating the pricing kernel, which is the equilibrium

4See also the usage in the chapter by George Constantinides in this volume, where he
distinguishes between �internal�and �external�habit.

5In Abel (1990) I used the term �catching up with the Joneses�to describe the case in
which �t = Ct�1, because the benchmark level of consumption depends on lagged rather
than current consumption. With this terminology, one might describe the case in which
�t = Ct as a case of �keeping up with the Joneses,� because the benchmark level of
consumption depends on the contemporaneous consumption of others. Dupor and Liu
(2002) re�ne the terminology for various features of consumption externalities. If utility
�ow is u (c; b), where c is the individual�s own consumption and b is a benchmark that
equals the average level of consumption by others, they de�ne jealousy as @u=@b < 0 and
keeping up with the Joneses as @2u=@c@b > 0. The utility function in equation (1) displays
jealousy. It also displays keeping up with the Joneses for the case in which the curvature
parameter �, introduced in equation (1), is greater than one.
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value of the representative consumer�s marginal rate of substitution between
current consumption, ct, and next period�s consumption, ct+1, di¤erentiate
equation (1) with respect to ct to obtain

@Ut
@ct

=
1

ct
E�t

(�
ct
�
t

�1��
� 
D 1

1 + �

�
ct+1
�
t+1

�1��)
: (3)

Because all consumers are identical, ct = Ct in equilibrium. Let xt+1 �
Ct+1
Ct

= ct+1
ct
be the (gross) growth rate of consumption from period t to period

t+1, and use this de�nition of xt+1 and the de�nition of the benchmark level
of consumption in equation (2) to rewrite equation (3) as

@Ut
@ct

= c��t �

(��1)
t Ht, (4)

where
Ht � 1�D
�E�t

�
x1��t+1

	
x�t ; (5)

and6

� � 1

1 + �
G(1�D)
(��1) (6)

� � �+ �0 (1�D) 
 (1� �) > 0 (7)

� � 
 (�� 1) [D + �1 (1�D)] > �1. (8)

Note that the factor � can be larger than one. However, � cannot be so
large that certain series fail to converge. I will provide a more speci�c upper
bound for � in Section 2.1.
The pricing kernel is the intertemporal marginal rate of substitution,

Mt+1 �
1

1 + �

@Ut+1=@ct+1
@Ut=@ct

. (9)

6The inequalities in equations (7) and (8) are derived as follows. Rewrite � as � =
[1� �0 (1�D) 
]�+[�0 (1�D) 
]. The assumptions that �0 � 0, �1 � 0, and �0+�1 � 1
imply that 0 � �0 � 1 and 0 � �1 � 1. Also, since 0 � D � 1 and 0 � 
 � 1, both of the
terms in square brackets in the expression for � are non-negative, and since the terms in
square brackets sum to one, at least one of them must be positive. Since � > 0, it follows
that � > 0.
Rewrite � as � = �
 [D + �1 (1�D)] � 
 [D + �1 (1�D)], so that � + 1 =

f�
 [D + �1 (1�D)]g + f1� 
 [D + �1 (1�D)] :g Since 0 � D � 1, 0 � 
 � 1, and
0 � �1 � 1, it follows that 0 � 
 [D + �1 (1�D)] � 1. Therefore, since � > 0, both of
the terms in curly brackets in the expression for � + 1 are non-negative and at least one
of them is positive. Therefore, � + 1 > 0, so � > �1:
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Use equation (4) and the de�nition of the benchmark in equation (2) to
rewrite equation (9) as

Mt+1 = �x
�
t x

��
t+1

Ht+1
Ht

: (10)

In the standard case of time-separable isoelastic utility, which is repre-
sented by 
 = 0, we have � = 1

1+�
, � = �, � = 0, and Ht � 1. Therefore,

the marginal rate of substitution in equation (10) is simply

Mt+1 = �x
��
t+1, if 
 = 0: (11)

If we introduce a benchmark level of consumption into the utility function
(
 > 0), but con�ne attention to the case with D = 0, so that there may
be consumption externalities but no habit formation, the marginal rate of
substitution in equation (10) is

Mt+1 = �x
�
t x

��
t+1; if D = 0 (12)

since Ht � 1 when D = 0. If the growth rate of consumption, xt, is
independently distributed over time, then in the standard isoelastic case,
Mt+1 = �x

��
t+1 is also independently distributed over time. However, with a

benchmark level of consumption, the pricing kernel Mt in equation (12) is,
in general, not independently distributed over time. In fact, since � > 0,
the serial correlation of Mt has the opposite sign of �, which can be positive,
negative or zero. Under rational expectations, Backus, Gregory, and Zin
(1989) have shown that the term premium has the opposite sign of the serial
correlation of the pricing kernel. Therefore, the term premium has the
same sign as �, as I will show under lognormality of xt (and without habit
formation) in Section 5. In the standard case of time-separable utility,
� = 0 so the term premium is zero if the growth rate of consumption, xt, is
independently distributed over time.
In the case considered by Gali (1994) (�1 = 0 = D, so that � = 0; and

G = 1), the marginal rate of substitution in equation (12) becomes Mt+1 =
�x��t+1, which is the pricing kernel for standard time-separable isoelastic utility
in which the coe¢ cient of relative risk aversion is constant and equal to
�. Gali points out an interesting special case in which 
 = 1 = �0, so
that the benchmark is simply �t = Ct and, as in Abel (1990), consumers
care only about the ratio of their own consumption to the benchmark. In
this special case, � = 1 so that regardless of the value of the curvature
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parameter �, the pricing kernel is Mt+1 = �x
�1
t+1, which is the marginal rate

of substitution for a standard logarithmic utility function without benchmark
levels of consumption (� = 1 and 
 = 0). Thus, asset prices in this special
case of Gali�s speci�caiton would be identical to asset prices that would
arise in the simple case of logarithmic utility without benchmark levels of
consumption.
The speci�cation of the utility function has seven fundamental parame-

ters: the curvature paramater �, the rate of time preference �, the impor-
tance of the consumption-benchmark ratio as measured by 
, the relative
weight D of the consumer�s own past consumption in the benchmark, the
weights �0 and �1 on contemporaneous and lagged aggregate consumption in
the benchmark, and the exogenous growth rate G in the benchmark. Be-
ginning in Section 5, I generally restrict attention to the case without habit
formation, though I allow consumption externalities of the keeping/catching
up with the Joneses variety. In this case, D = 0, which implies Ht � 1.
With Ht � 1, equation (10) shows that the pricing kernel depends on only
the three �derived�preference parameters �, �, and � in equations (6), (7),
and (8), respectively. Thus, one could not recover the seven fundamental
parameters by observing data on asset returns. The reason for starting with
seven fundamental parameters is to illustrate that many di¤erent represen-
tations of preferences can be captured by the three derived parameters �, �,
and �. These parameters are de�ned precisely in equations (6), (7), and (8),
respectively. Loosely speaking, � is an adjusted time-preference discount fac-
tor, � is a curvature parameter related to risk aversion, and � is a parameter
re�ecting the role of past (aggregate or individual) consumption. Table 1
summarizes the relationships among the fundamental preference parameters
and the derived preference parameters in interesting special cases.
To see how the marginal rate of substitution determines asset prices and

rates of return, letRt+1 be the one-period gross rate of return on an asset from
period t to period t+ 1. Consider a consumer who reduces consumption in
period t by one unit and purchases one unit of the asset in period t. In period
t + 1, the consumer collects any payo¤ (for instance, dividends or coupons)
and then sells the asset and uses the proceeds to increase consumption in
period t + 1. Since the payo¤ plus the proceeds from the sale of the asset
equal Rt+1 units of consumption, the consumer can increase ct+1 by Rt+1.
Optimality from the consumer�s point of view in period t requires that the
subjective expected reduction in utility from reducing ct by one unit equals
the subjective expected increase in utility from increasing ct+1 by Rt+1 units,
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Time Habit Keeping Up Catching Up
Separable Formation with the Joneses with the Joneses

Fundamental Preference Parameters

 0 0 < 
 � 1 0 < 
 � 1 0 < 
 � 1
� � 0 � 0 � 0 � 0
� > 0 > 0 > 0 > 0
G � � � 1 � 1
D � 1 0 0
�0 � � 1 0
�1 � � 0 1

Derived Preference Parameters and Pricing Kernel
� 1

1+�
1
1+�

1
1+�
G
(��1) 1

1+�
G
(��1)

� � � �+ 
 (1� �) �
� 0 
 (�� 1) 0 
 (�� 1)
Ht 1 1� �
E�t

�
x1��t+1

	
x

(��1)
t 1 1

Mt+1 �x��t+1 �x

(��1)
t x��t+1

Ht+1
Ht

�x
���
(1��)
t+1 �x


(��1)
t x��t+1

Special Case in which 
 = 1
Ht � 1� �E�t

�
x1��t+1

	
x��1t 1 1

Mt+1 � �x��1t x��t+1
Ht+1
Ht

�x�1t+1 �x��1t x��t+1

Table 1: Preference Parameters and Pricing Kernel in Various Cases
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so that
@Ut
@ct

= E�t

�
Rt+1

1

1 + �

@Ut+1
@ct+1

�
: (13)

The �rst-order condition in equation (13) can be rewritten using the de�ni-
tion of the marginal rate of substitution in equation (9) as

E�t fMt+1Rt+1g = 1: (14)

Equation (14) is the familiar fundamental condition of asset pricing: the
product of the marginal rate of subsitution and the gross rate of return on any
frictionlessly traded asset has a conditional expectation equal to one. The
only unfamiliar aspect of equation (14) is that the conditional expectation is
based on the consumer�s subjective distribution, which may di¤er from the
objective distribution. Using the marginal rate of substitution in equation
(10), the fundamental condition of asset pricing can be written as

�x�t
Ht
E�t
�
x��t+1Ht+1Rt+1

	
= 1: (15)

In the next section, I will de�ne a canonical asset and will use equation
(15) to determine the equilibrium price of this asset.

2 The Canonical Asset

The fundamental condition for asset pricing in equation (15) can be used
to determine the price of any frictionlessly traded asset in the absence of
borrowing constraints and other restrictions such as short sale constraints.
To avoid the need for separate derivations for the equilibrium prices of, for
instance, riskless bills and stocks, I will calculate the equilibrium price of a
canonical asset, introduced in Abel (1999), that is general enough to include
these assets as special cases.
The canonical asset is an n-period asset, where n may be in�nite. In

period t, the canonical asset is a claim to a stream of n payo¤s an�1y�t+1,
an�2y

�
t+2,...,a0y

�
t+n, where a0 > 0, aj � 0, j = 1; :::; n�1 are constants, yt+j >

0 is a random variable, and � � 1 is a constant. The (gross) growth rate of
the random variable yt is zt+1 � yt+1

yt
. Recall that xt+1 is the (gross) growth

rate of consumption per capita. I will assume that the vector (xt+1; zt+1)
is i.i.d. over time and that even when the subjective distributions di¤er
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from the corresponding objective distributions, the subjective distributions
incorporate the fact that (xt+1; zt+1) is i.i.d. over time. The de�nition of Ht
in equation (5) and the assumption that (xt+1; zt+1) is i.i.d. over time imply
that (xt+1; zt+1; Ht+1) is i.i.d. over time.
When � = 0, the canonical asset is a �xed-income security, with a deter-

ministic stream of payo¤s an�j in period t+ j, for j = 1; :::; n. For instance,
a coupon bond with face value F , maturity n, and coupon d is represented
by a0 = d + F and aj = d, for j = 1; :::; n � 1. A pure discount bond is
represented by d = 0. A consol that pays a constant coupon d forever is
represented by aj = d, for j = 1; 2; 3; :::.
Securities with risky payo¤s are represented by � 6= 0. For instance,

in Lucas (1978), unlevered equity pays a dividend per capita in each period
that equals consumption per capita. Thus the payo¤ in period t + j is
Ct+j, so unlevered equity can be represented by the canonical asset with
� = 1, n = 1, aj = 1, and yt+j � Ct+j, for j = 1; 2; 3; :::. As explained in
Abel (1999), levered equity is represented by � > 1.7 This formulation of
levered equity has been adopted by, for example, Bansal and Yaron (2003)
and Lettau, Ludvigson, and Wachter (2004).

7To illustrate levered equity most simply, consider a heuristic example with one-period
levered equity. De�ne q � y�B, where y is the payo¤ to owners of equity before making
any payment to bondholders, and 0 � B < E fyg is the payment promised to bondholders.
The payo¤ to one-period levered equity is max [q; 0]. If the probability of default is small
enough to allow us to ignore default, the payo¤ to levered equity is simply q, with mean
E fqg = E fyg �B; standard deviation sd fqg = sd fyg, and coe¢ cient of variation equal
to sdfyg

Efyg�B = � sdfygEfyg , where � �
1

1� B
Efyg

� 1. That is, the coe¢ cient of variation of the

levered payo¤ (ignoring bankruptcy) is � times as large as the coe¢ cient of variation of
the unlevered payo¤ y. If y is lognormally distributed, then the coe¢ cient of variation of
y� is approximately � times as large as the coe¢ cient of variation of y, so y� with � > 1
re�ects the fact that leverage increases the coe¢ cient of variation of the payo¤ to equity.
If we interpret B

Efyg as the leverage ratio, then � is an increasing function of the leverage
ratio. Note that without leverage, i.e., with B = 0, � = 1. This description is heuristic
and, importantly, has ignored the role of default. In Abel (1999), I take explicit account
of bankruptcy, and show that for a broad range of values of the leverage ratio B

Efyg , the

rate of return on a one-period asset paying y� is very close to the rate of return on a
one-period asset paying max [y �B; 0].
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2.1 The Price of the Canonical Asset

Let pt (n; �) be the ex-payment (e.g., ex-dividend for equity, ex-coupon for
bonds) price of the canonical asset in period t. The price also depends on
the sequence of the constants aj, j = 0; :::; n � 1, and on the properties of
the stochastic process for yt, but, to reduce clutter, I have not included this
dependence in the notation. A consumer can buy a unit of the canonical
asset at price pt (n; �) in period t and then in period t+1 can collect the payo¤
an�1y

�
t+1 and sell the asset at price pt+1 (n� 1; �) when the asset becomes an

(n� 1)-period asset. Therefore, the gross rate of return on the asset from
period t to period t+ 1 is

Rt+1 (n; �) =
an�1y

�
t+1 + pt+1 (n� 1; �)
pt (n; �)

. (16)

Substituting the rate of return on the canonical asset from equation (16)
into the fundamental condition of asset pricing in equation (15), recognizing
that pt (n; �) is known at time t, and multiplying both sides by pt (n; �) yields
a recursive expression for the price of the canonical asset

pt (n; �) =
�x�t
Ht
E�t
�
x��t+1Ht+1

�
an�1y

�
t+1 + pt+1 (n� 1; �)

�	
: (17)

I will hypothesize that the price of the canonical asset, which must satisfy
equation (17), is

pt (n; �) = ! (n; �)
x�t y

�
t

Ht
; (18)

where ! (n; �) is a function to be determined. As a step toward determining
the function ! (n; �), substitute equation (18) into equation (17) and use the
facts that an�1 and ! (n� 1; �) are nonstochastic and that (xt; zt) is i.i.d.
(so that the unconditional means of x���t+1 z

�
t+1 and x

��
t+1Ht+1z

�
t+1 equal the

means of the corresponding conditional distributions at time t) to simplify
and obtain

! (n; �) = A (�)! (n� 1; �) +B (�) an�1, for n � 1; (19)

where
A (�) � �E�

�
x���t+1 z

�
t+1

	
> 0 (20)

and
B (�) � �E�

�
x��t+1Ht+1z

�
t+1

	
> 0. (21)
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Equation (19) is a �rst-order linear di¤erence equation. In order to guarantee
that this di¤erence equation converges as n grows without bound, I will
assume that � and the subjective distribution of (xt+1; zt+1) are such that
A (�) < 1. This assumption is equivalent to � <

�
E�
�
x���t+1 z

�
t+1

	��1
, which

allows � to exceed one to the extent to the E�
�
x���t+1 z

�
t+1

	
is less than one.

Equation (19) has a simple boundary condition associated with it. After
an asset has paid its last payment, it is formally a zero-period asset, and its
price is zero. That is, pt (0; �) = 0 so ! (0; �) = 0. Using this boundary
condition, evaluate the di¤erence equation in equation (19) for n = 1 to
obtain

! (1; �) = B (�) a0. (22)

For arbitrary n, the solution to the di¤erence equation in equation (19)
that satis�es the boundary condition in equation (22) is

! (n; �) = B (�)
nX
i=1

ai�1 [A (�)]
n�i : (23)

The function ! (n; �) can be increasing or decreasing in the maturity n. For
a pure discount bond with face value F , a0 = F and aj = 0 for j = 1; :::; n�1.
In this case, ! (n; �) = B (�) [A (�)]n�1 F , which is strictly decreasing in n
because A (�) < 1. For a security with a level stream of payo¤ coe¢ cients
aj = d for j = 0; :::; n � 1, we have ! (n; �) = B (�) 1�[A(�)]

n

1�A(�) d, which is
increasing in the maturity n. A coupon bond is a composite of a discount
bond with a face value of F and a security that promises a level stream of
payments d, so a0 = d + F and aj = d, for j = 1; :::; n � 1. Therefore,

for an n-period coupon bond, ! (n; �) = B (�)
n
[A (�)]n�1 F + 1�[A(�)]n

1�A(�) d
o
,

which is increasing in n if d=F > 1�A(�)
A(�)

, decreasing in n if d=F < 1�A(�)
A(�)

,

and invariant to n if d=F = 1�A(�)
A(�)

. That is, if the coupon is small relative
to the face value, the coupon bond is more like a discount bond in which
! (n; �) is decreasing in n. If the coupon is large relative to the face value,
the coupon bond is more like a security with a �at stream of payo¤s, and
! (n; �) is increasing in maturity n.
The expression for ! (n; �) in equation (23) completes the solution of the

equilibrium price of the canonical asset for arbitrary values of n and �. The
functions A (�) and B (�) are unconditional moments of the subjective distri-
butions of exogenous random variables. Given the subjective distributions
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of the exogenous random variables, equations (20) and (21) give the values
of A (�) and B (�), which can be used along with the sequence of payo¤ co-
e¢ cients aj, j = 0; :::; n� 1 in equation (23) to obtain the value of ! (n; �).
Substituting this value of ! (n; �) into equation (18), and using the de�nition
of Ht in equation (5) gives the price of the canonical asset for any n and �.

2.2 The Rate of Return on the Canonical Asset

To calculate the rate of return on the canonical asset, substitute the expres-
sion for the price of the canonical asset from equation (18) into the expression
for the rate of return in equation (16) to obtain

Rt+1 (n; �) =
an�1 + ! (n� 1; �)

x�t+1
Ht+1

! (n; �)
Htx

��
t z

�
t+1. (24)

It will be convenient to rewrite the rate of return on the canonical asset
in equation (24) as

Rt+1 (n; �) = J (xt+1; zt+1; Ht+1;n; �)�K (xt; Ht) , (25)

where

J (xt+1; zt+1; Ht+1;n; �) �
an�1
! (n; �)

z�t+1 +
! (n� 1; �)
! (n; �)

x�t+1z
�
t+1

Ht+1
(26)

and
K (xt; Ht) � x��t Ht. (27)

Equation (25) expresses the rate of return on the canonical asset as the
product of J (xt+1; zt+1; Ht+1;n; �) and K (xt; Ht), which are independent of
each other because the vector of exogenous random variables (xt; zt; Ht) is
independently distributed over time.
I will con�ne attention to assets for which aj = 1, for j = 0; 1; 2; :::; n� 1.

In this case, equation (23) implies that

1

! (n; �)
=

1

B (�)

1� A (�)
1� [A (�)]n , (28)

which implies that
! (n� 1; �)
! (n; �)

=
1� [A (�)]n�1

1� [A (�)]n . (29)
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Substitute equations (28) and (29) into the de�nition of J (xt+1; zt+1; Ht+1;n; �)
in equation (26), set an�1 = 1, and rearrange to obtain

J (xt+1; zt+1; Ht+1;n; �) (30)

=
1

1� [A (�)]n
�
1� A (�)
B (�)

z�t+1 +
�
1� [A (�)]n�1

�
x�t+1z

�
t+1H

�1
t+1

�
.

Because (xt; zt; Ht) is i.i.d. over time, J (xt+1; zt+1; Ht+1;n; �) is i.i.d. over
time. Therefore, the objective conditional expectation of J (xt+1; zt+1; Ht+1;n; �)
equals the objective unconditional expectation of J (xt+1; zt+1; Ht+1;n; �).
Now de�ne

	(�) �
E
�
H�1x�z�

	
E fz�g

B (�)

A (�)
, (31)

where the operator E fg (without an asterisk) denotes the expectation using
the objective distribution of the relevant random variables. I have suppressed
the time subscripts from the variables inside the expectation operator, with
the understanding that any variables inside the operator (such as H and x)
are contemporaneous with each other (i.e, Ht and xt). I will show later that
	(�) helps determine the term premium.
Use equation (31) to rewrite equation (30) as

J (xt+1; zt+1; Ht+1;n; �) =
1

1� [A (�)]n
E
�
z�
	

B (�)
(32)

�
�
[1� A (�)]

z�t+1
E fz�g +

�
1� [A (�)]n�1

�
	(�)A (�)

x�t+1z
�
t+1H

�1
t+1

E fx�z�H�1g

�
.

Now compute the objective unconditional expectations of both sides of
equation (32) to obtain

E fJ (xt+1; zt+1; Ht+1;n; �)g =
"
1 + A (�) [	 (�)� 1] 1� [A (�)]

n�1

1� [A (�)]n

#
E
�
z�
	

B (�)
.

(33)
The expectation of K (xt; Ht) is calculated directly from the de�nition in
equation (27) to obtain

E fK (xt; Ht)g � E
�
x��H

	
. (34)

Finally, calculate the expected value of Rt+1 (n; �) in equation (25) using
the independence of J (xt+1; zt+1; Ht+1;n; �) and K (xt; Ht) and equations
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(33) and (34) to obtain

E fRt+1 (n; �)g =
"
1 + A (�) [	 (�)� 1] 1� [A (�)]

n�1

1� [A (�)]n

#
E
�
z�
	

B (�)
E
�
x��H

	
.

(35)
Equation (35) gives the unconditional expected rate of return on a canon-

ical asset with arbitary � and arbitrary n, provided that a0 = ::: = an�1 = 1.
This expression simpli�es considerably for one-period canonical assets. With
n = 1,

E fRt+1 (1; �)g =
E
�
z�
	

B (�)
E
�
x��H

	
. (36)

The expected rates of return in equations (35) and (36) are expectations
based on the objective distributions of equilibrium rates of return. In the
case in which subjective distributions di¤er from objective distributions, the
subjective distributions guide behavior, and equilibrium rates of return de-
pend on subjective distributions. However, in a long time series of observa-
tions on equilibrium rates of return, the sample average will correspond to
the objective expectations of these rates of return (which depend on subjec-
tive distributions through A (�), B (�), and 	(�) in equations (20), (21), and
(31), respectively) as in equations (35) and (36). I will use these equations
to calculate risk, term, and equity premia, which I will de�ne in Section 3.

3 Risk, Term, and Equity Premia

I will de�ne the risk premium for the set of canonical assets with a given value
of � as the excess of the expected rate of return on the one-period version
of the canonical asset with that value of � relative to the rate of return on
a one-period riskless bill. Speci�cally, I will de�ne the unconditional risk
premium RP (�) as

RP (�) � E fRt+1 (1; �)g
E fRt+1 (1; 0)g

� 1: (37)

Use the expression for the expected rate of return on one-period canonical
assets from equation (36) to rewrite the risk premium in equation (37) as

RP (�) =
B (0)

B (�)
E
�
z�
	
� 1: (38)
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Equation (38) can be rewritten by using the de�nition of B (�) in equation
(21) to obtain

RP (�) =
E� fx��HgE

�
z�
	

E� fx��Hz�g � 1: (39)

To interpret the sources of the risk premium in equation (39), rewrite this
equation as

1 +RP (�) =
E� fx��HgE�

�
z�
	

E� fx��Hz�g �
E
�
z�
	

E� fz�g : (40)

This risk premium�more precisely, 1+RP (�)�is the product of two ratios on
the right hand side of equation (40). The �rst ratio di¤ers from one to the
extent that there is a nonzero subjective covariance between the risky payo¤
in period t+1, z�t+1, and the part of the pricing kernel in equation (10) that is
unpredictable one period in advance, x��t+1Ht+1. If z

�
t+1 is (subjectively) un-

correlated with x��t+1Ht+1, this component of 1+RP (�) equals one, and thus
it does not contribute to the risk premium. If z�t+1 is negatively correlated
with x��t+1Ht+1 under the subjective distribution, so that the risky payo¤ is
high when the marginal utility of consumption is low, then the risk premium
is positive. Under rational expectations, the second ratio on the right hand
side of equation (40) equals one, and this term does not contribute to the
risk premium. However, if the representative consumer is pessimistic, in
the sense that the subjective expectation E�

�
z�
	
is less than the objective

expectation E
�
z�
	
, this ratio exceeds one, which contributes to a positive

risk premium. Pessimistic consumers will underprice the risky asset, leading
to an increase in the realized rate of return on this asset. Equivalently, with
E
�
z�
	
> E�

�
z�
	
, the realized rate of return on the risky asset is higher

than the representative consumer expects.
For any given value of �, I will de�ne the term premium as the excess

of the expected rate of return on a security with maturity n > 1 relative to
the expected rate of return on a security with the same value of � and with
a maturity of one period. Speci�cally, I will de�ne the unconditional term
premium TP (n; �) as

TP (n; �) � E fRt+1 (n; �)g
E fRt+1 (1; �)g

� 1: (41)

Substituting the expected rate of return on the canonical asset from equa-
tion (35) into the de�nition of the term premium in equation (41) and using
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equation (36) yields

TP (n; �) = A (�) [	 (�)� 1] 1� [A (�)]
n�1

1� [A (�)]n : (42)

The sign of the term premium is the same as the sign of 	(�)� 1. The
magnitude of the term premium is increasing in maturity n. For an in�nite-
maturity asset, such as a stock or a consol, the term premium is computed
by taking the limit as n!1 to obtain

TP (1; �) = A (�) [	 (�)� 1] . (43)

I will de�ne the equity premium as the excess of the expected rate of
return on the canonical asset with n = 1 and � > 0 relative to the rate of
return on a one-period riskless bill (n = 1, � = 0). Speci�cally, I will de�ne
the unconditional equity premium EP (�) as

EP (�) � E fRt+1 (1; �)g
E fRt+1 (1; 0)g

� 1. (44)

The de�nitions of the risk premium in equation (37) and the term pre-
mium in equation (41) imply that

EP (�) = (1 +RP (�)) (1 + TP (1; �))� 1. (45)

Substitute the risk premium from equation (39) and the term premium from
equation (43) into equation (45) to obtain

EP (�) = [1� A (�) + 	 (�)A (�)]
E� fx��HgE

�
z�
	

E� fx��Hz�g � 1. (46)

I have de�ned the risk, term, and equity premia as ratios of unconditional
expectations of rates of return on various assets. The values of these premia
would be unchanged if they were de�ned as ratios of conditional expecta-
tions of the same rates of return. Speci�cally, equation (25) and the fact
that (xt; zt; Ht) is i.i.d. over time imply that for any two canonical assets
characterized by (n1; �1) and (n2; �2), respectively,

Et fRt+1 (n1; �1)g
Et fRt+1 (n2; �2)g

=
Et fJ (xt+1; zt+1; Ht+1;n1; �1)g
Et fJ (xt+1; zt+1; Ht+1;n2; �2)g

=
E fRt+1 (n1; �1)g
E fRt+1 (n2; �2)g

:

(47)
Thus, for instance, the conditional equity premium, EtfRt+1(1;�)g

EtfRt+1(1;0)g � 1, equals
the unconditional equity premium de�ned in equation (44). Similarly, the
conditional risk and term premia equal the respective unconditional risk and
term premia de�ned in equations (37) and (41).
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4 Lognormality

Suppose that the objective distribution of the vector (lnx; ln z)0 is N (�;�)

where � = (�x; �z)
0 and � =

�
�2x �xz
�xz �2z

�
. It is straightforward to show

that for constants a, b, and �,

E fxagE
�
z�
	

E fxbz�g = exp
�
(a� b)�x + 0:5

�
a2 � b2

�
�2x � b��xz

�
(48)

and
E
�
xaz�

	
E
�
xbz�

	
E fxa+bz�gE fz�g = exp

�
�ab�2x

�
. (49)

Suppose that the subjective distribution of the vector (lnx; ln z)0 isN (��;��)

where �� = (��x; �
�
z)
0 and �� =

�
��2x ��xz
��xz ��2z

�
. Let �x � ��x � �x and

�z � ��z � �z, so � �
�
�x �z

�0
is the amount by which the mean of the

subjective distribution, ��, exceeds the mean of the objective distribution,

�. Let
�

xx 
xz

xz 
zz

�
� 
 � �� � � be the amount by which the variance-

covariance matrix of the subjective distribution exceeds that of the objective
distribution. It is straightforward to show that

E�
�
xaz�

	
E fxaz�g = exp

��
a �

�
� + 0:5

�
a �

�



�
a
�

��
: (50)

I will use equations (48), (49), and (50) to derive simple expressions for
the risk, term, and equity premia under lognormality.

5 Risk, Term, and Equity Premia Under Log-
normality with Consumption Externalities
and without Habit Formation

Equation (35) is an analytic expression for the unconditional objective ex-
pectation of the rate of return on the canonical asset for arbitrary n and �.
Given the values of various moments of the objective and subjective distri-
butions of the exogenous stochastic variables xt, zt, and Ht, it is a simple
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matter to compute A (�), B (�), and 	(�) (from equations (20), (21), and
(31), respectively) and substitute the values into equation (35) to obtain the
unconditional objective expectation of the rate of return on the canonical
asset. Similarly, it is a simple matter to compute the risk premium RP (�)
in equation (39) and the term premium TP (1; �) in equation (43). In
order to derive easily interpreted expressions for the expected rate of return,
the risk premium, the term premium, and the equity premium expressed as
functions of the parameters of the distributions of the exogenous stochastic
variables, henceforth I will restrict attention to cases in which (1) the exoge-
nous growth rates xt and zt are jointly lognormal (and, as before, i.i.d. over
time) and (2) D = 0, so that preferences do not depend on the individual�s
own lagged consumption, though, of course, they may depend on current or
lagged aggregate consumption. With D = 0, we have Ht � 1.
To calculate the risk premium under lognormality with D = 0, rearrange

equation (39) and set H � 1 to obtain

RP (�) =
E fx��gE

�
z�
	

E fx��z�g
E� fx��g
E fx��g

E
�
x��z�

	
E� fx��z�g � 1. (51)

Now use equations (48) and (50) to calculate the ratios of moments in equa-
tion (51) to obtain

RP (�) = exp
�
���xz � ��z + ��
xz � 0:5�2
zz

�
� 1. (52)

As a step toward calculating the term premium, I will calculate 	(�)
under lognormality and the assumption that D = 0. Substitute A (�) from
equation (20) and B (�) from equation (21) into the expression for 	(�) in
equation (31), and use the fact that Ht � 1 when D = 0 to obtain

	(�) =
E
�
x�z�

	
E
�
x��z�

	
E fz�gE fx���z�g �

E
�
x���z�

	
E� fx���z�g �

E�
�
x��z�

	
E fx��z�g . (53)

The expression for 	(�) in equation (53) is the product of three factors.
The �rst factor is a ratio in which the numerator is the product of two
expectations and the denominator is the product of two expectations. If the
variables x and z were deterministic, the numerator and the denominator
of this ratio would be equal and this factor would equal one. The second
factor is the ratio of the objective expectation of a random variable to the
subjective expectation of the same variable. The third factor is the ratio
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of the subjective expectation of a di¤erent random variable to the objective
expectation of that variable. Under rational expectations, in which the
subjective expectations of variables equal the objective expectations of those
variables, the second and third factors are both equal to one.
Under the assumption of lognormality, the �rst factor on the right hand

side of equation (53) can be calculated using equation (49) and the second
and third factors on the right hand side of equation (53) can be calculated
using equation (50) to obtain

	(�) = exp
�
���2x � ��x + � [� � 0:5�] 
xx � ��
xz

�
. (54)

	(�) is one component of the term premium in equation (43). The other
component of the term premium is A (�), which is de�ned in equation (20).
Under lognormality, A (�) is given by

A (�) = � exp

�
(� � �)��x + ���z + 0:5

�
� � � �

�
��
�
� � �
�

��
. (55)

Note that under lognormality with D = 0, so that Ht � 1, the de�nition of
B (�) in equation (21) implies that

B (�) = � exp
�
����x + ���z + 0:5

�
�2��2x + �

2��2z � 2����xz
��
. (56)

Substituting 	(�) from equation (54) into the expression for the term pre-
mium in equation (43) gives a closed-form expression for the term premium
of an in�nite-maturity canonical asset in terms of the parameters of the sub-
jective and objective lognormal distributions,

TP (1; �) = A (�)
�
exp

�
���2x � ��x + � [� � 0:5�] 
xx � ��
xz

�
� 1
�
,
(57)

where A (�) is given by equation (55). Under rational expectations, � = 0
and
 = 0, so the term premium is simply TP (1; �) = A (�) [exp (���2x)� 1],
which has the same sign as ���2x. Since ��

2
x > 0, the term premium has the

same sign as �. Under standard time-separable preferences, 
 = 0 so that
� = 0 and the term premium is zero. With a benchmark level of consump-
tion, 
 > 0, so that � and the term premium have the same sign as � � 1,
which can be positive, zero, or negative.
To compute the equity premium under lognormality without habit for-

mation, i.e., with D = 0, set Ht � 1 and apply equations (48) and (50) to
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equation (46) to obtain

EP (�) = [1� A (�) + 	 (�)A (�)] exp
�
���xz � ��z + ��
xz � 0:5�2
zz

�
�1,
(58)

where A (�) is given by equation (55) and 	(�) is given by equation (54).

6 Linear Approximations to Risk, Term, and
Equity Premia

I have derived exact expressions for the risk premium, term premium, and
equity premium under lognormality and D = 0. These expressions are very
easy to implement, but they are cumbersome to interpet. To understand
the e¤ects of various parameters on these premia, I will linearize the exact
expressions as functions of the parameters. Speci�cally, I will treat each
of these premia as functions of �, �, �, �, 
, and I will linearize each of
these premia around � = 1, � = � = 0 and � = 
 = 0. De�ne � �
(�; �x; �z; �

2
x; �xz; �

2
z; �x; �z;
xx;
xz;
zz) as a vector containing the e¤ective

discount factor �, the parameters of the objective lognormal distribution, and
the di¤erence between the parameter values of the subjective and objective
lognormal distributions. Let �0 = (1; 0; :::; 0) be the value of � around which
I linearize the risk premium, term premium, and equity premium. Equations
(54), (55), and (56) imply that

	(�;�0) = A (�;�0) = B (�;�0) = 1: (59)

Linearizing the risk premium in equation (52) yields

RP (�) �= ���xz � ��z + ��
xz � 0:5�2
zz. (60)

Under rational expectations, � = 0 and 
 = 0, and the linearized risk pre-
mium is simply ���xz, which is (up to a logarithmic approximation) the
negative of the conditional covariance of the pricing kernel (in which x��t+1 is
unpredictable one period in advance) and the growth rate, z�t+1, of the risky
payo¤.
I will indicate that the term premium on an in�nite-maturity canonical

asset depends on the parameter vector � by rewriting equation (43) as

TP (1; �;�) = (	 (�;�)� 1)A (�;�) . (61)
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Recall from equation (59) that 	(�;�0) = A (�;�0) = 1. Therefore,
TP (1; �;�0) = 0 and the �rst-order linear approximation of the term pre-
mium is

TP (1; �;�) �=
@	(�;�0)

@�
(�� �0) . (62)

Linearizing the expression for 	(�) in equation (54) yields the following
linear approximation to the term premium on an in�nite-maturity asset

TP (1; �;�) �= ���2x � ��x + � [� � 0:5�] 
xx � ��
xz. (63)

Under rational expectations, � = 0 and 
 = 0, so the linearized term pre-
mium is simply ���2x.
Equation (45) implies that the linear approximation to the equity pre-

mium is the sum of the linear approximations to the risk premium and to
the term premium on an in�nite-maturity asset. Therefore, equations (60)
and (63) imply

EP (�) �= ���xz + ���
2
x � ��x � ��z (64)

+� (� � 0:5�) 
xx + (� � �)�
xz � 0:5�2
zz.

Under rational expectations, � = 0 and 
 = 0, so the linearized equity
premium is simply ���xz + ���2x.

7 Second Moments

In this section I calculate the variances of the conditional and unconditional
objective distributions of the rate of return on the canonical asset under
lognormality and without habit formation, so that D = 0. Since Ht � 1
when D = 0, equation (25) implies

Rt+1 (n; �) = J (xt+1; zt+1; 1;n; �)K (xt; 1) . (65)

The objective variance of Rt+1 (n; �) conditional on information available at
date t is

V art fRt+1 (n; �)g = [K (xt; 1)]2 V ar fJ (xt+1; zt+1; 1;n; �)g . (66)

The variance of J (xt+1; zt+1; 1;n; �) on the right hand side of equation (66)
is an unconditional variance because J (xt+1; zt+1; 1;n; �) is i.i.d., so its con-
ditional and unconditional variances are identical.
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I will con�ne attention to two special cases of equation (66), corresponding
to riskless one-period bills and to equity. In the case of riskless one-period
bills, n = 1 and � = 0, so equation (32) reveals that J (xt+1; zt+1; 1; 1; 0) is
constant. Thus the conditional variance of the riskless one-period return is
zero. Indeed, this conditional variance must be zero in order for the bill to
be (conditionally) riskless. In the case of equity, n =1 and the conditional
variance of the rate of return depends on the (unconditional) variance of
J (xt+1; zt+1; 1;1; �), since Ht � 1 when there is no habit formation (i.e.,
when D = 0). Setting n =1 and Ht = 1 in equation (32) yields

J (xt+1; zt+1; 1;1; �) (67)

=
E
�
z�
	

B (�)

�
(1� A (�))

z�t+1
E fz�g +	(�)A (�)

x�t+1z
�
t+1

E fx�z�g

�
:

Therefore,

E fJ (xt+1; zt+1; 1;1; �)g =
E
�
z�
	

B (�)
[1� A (�) + 	 (�)A (�)] , (68)

which is consistent with equation (33) with n =1. Use the facts that

E

(�
z�

E fz�g

�2)
= exp

�
�2�2z

�
; (69)

E

(�
x�z�

E fx�z�g

�2)
= exp

�
�2�2x + �

2�2z + 2���xz
�
, (70)

and

E

��
z�

E fz�g

��
x�z�

E fx�z�g

��
= exp

�
�2�2z + ���xz

�
(71)

along with equation (67) to obtain

E
�
[J (xt+1; zt+1; 1;1; �)]2

	
(72)

=

"
E
�
z�
	

B (�)

#2 24 (1� A (�))2 exp
�
�2�2z

�
+ [	 (�)A (�)]2 exp

�
�2�2z + �

2�2x + 2���xz
�

+2 (1� A (�))	 (�)A (�) exp
�
�2�2z + ���xz

�
35 .
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Use equations (68) and (72) along with the fact that V ar fug = E fu2g �
[E fug]2 to obtain

V ar fJ (xt+1; zt+1; 1;1; �)g =
"
E
�
z�
	

B (�)

#2
V (�) (73)

where

V (�) � (1� A (�))2
�
exp

�
�2�2z

�
� 1
�

(74)

+ [	 (�)A (�)]2
�
exp

�
�2�2z + �

2�2x + 2���xz
�
� 1
�

+2 (1� A (�))	 (�)A (�)
�
exp

�
�2�2z + ���xz

�
� 1
�
:

Therefore, equations (66) and (73) and the fact thatK (xt; 1) = x��t imply
that the conditional variance of the rate of return on an in�nite-maturity
asset, such as equity, is

V art fRt+1 (1; �)g =
"
E
�
z�
	

B (�)
x��t

#2
V (�) : (75)

In order to calculate the unconditional variance of the rate of return on
the canonical asset in equation (25), I will use the following identity for inde-
pendent random variables K (which is abbreviated notation for K (xt; Ht) in
equation (27)) and J (which is abbreviated notation for J (xt+1; zt+1; Ht+1;n; �)
in equation (26))

V ar fK � Jg = E
�
K2
	
E
�
J2
	
� [E fKg]2 [E fJg]2 : (76)

Rearrange equation (76) and use the fact that Rt+1 (1; �) = K�J to obtain

V ar fRt+1 (1; �)g = V ar fKgV ar fJg+[E fKg]2 V ar fJg+[E fJg]2 V ar fKg :
(77)

Equation (27) implies that when D = 0, K (xt; Ht) = x��t , which is i.i.d.
Under lognormality with D = 0;

E fK (xt; 1)g = exp
�
���x + 0:5�2�2x

�
(78)

and
V ar fK (xt; 1)g =

�
exp

�
�2�2x

�
� 1
�
exp

�
�2��x + �2�2x

�
: (79)
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To summarize, the objective unconditional variance of the rate of return
on equity under lognormality with D = 0 is given by equation (77), where
E fKg is given by equation (78), V ar fKg is given by equation (79), E fJg
is given by equation (68), and V ar fJg is given by equation (73).
For riskless one-period bills (n = 1; � = 0), the unconditional variance is

particularly simple. Equation (22) together with a0 = 1 implies ! (1; 0) =
B (0), so that equation (24) implies

Rt+1 (1; 0) =
1

B (0)
x��t (80)

when D = 0, so that Ht � 1. Therefore, the unconditional variance of the
rate of return on the one-period riskless asset is

V ar fRt+1 (1; 0)g = [B (0)]�2
�
exp

�
�2�2x

�
� 1
�
exp

�
�2��x + �2�2x

�
: (81)

7.1 Linear Approximations to Second Moments

I will linearize the conditional and unconditional variances of the rate of re-
turn on the canonical asset around the point � = �0, where, as in Section
6, � � (�; �x; �z; �

2
x; �xz; �

2
z; �x; �z;
xx;
xz;
zz) and �0 = (1; 0; :::; 0). For

in�nite-maturity assets, such as stocks or consols, the linear approximation to
the conditional variance is obtained by �rst linearizing V ar fJ (xt+1; zt+1; 1;1; �)g
in equation (73), using equation (59), to obtain

V ar fJ (xt+1; zt+1; 1;1; �)g �= gV ar fJg � �2�2x + �2�2z + 2���xz: (82)

Substituting equation (82) into equation (66), and using the fact thatK (xt; 1) =
x��t yields the linearized conditional variance

V art fRt+1 (1; �)g �= x�2�t

�
�2�2x + �

2�2z + 2���xz
�
. (83)

As a step toward linearizing the unconditional variance of the return on
an in�nite-maturity canonical asset, observe from equation (78) that

E fK (xt; 1;�0)g = 1. (84)

Using equation (59), equation (68) implies that

E fJ (xt+1; zt+1; 1;1; �;�0)g = 1. (85)
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Equations (73) and (79) imply that

V ar fJ (xt+1; zt+1; 1;1; �;�0)g = V ar fK (xt; 1;�0)g = 0. (86)

Linearizing equation (77) around � = �0, and using equations (84), (85),
and (86) yields

V ar fRt+1 (1; �)g �= gV ar fJg+ gV ar fKg , (87)

where gV ar fJg is the linearized variance of J (xt+1; zt+1; 1;1; �) in equation
(82), and gV ar fKg � �2�2x is the linearized variance of K (xt; 1), obtained
by linearizing equation (79). Therefore,

V ar fRt+1 (1; �)g �= 2�2�2x + �2�2z + 2���xz. (88)

The linearized unconditional variance of the one-period riskless rate is
calculated by linearizing equation (81) to obtain

V ar fRt+1 (1; 0)g �= �2�2x. (89)

Notice that the linearized variances (conditional and unconditional) of the
riskless rate and the rate of return on equity depend on the moments of the
objective distributions, but do not depend on any deviation of the moments
of the subjective distributions from the corresponding moments of the ob-
jective distributions. Of course, the linearizations are expansions around
� = �0 where the means and second moments of the objective and subjective
distributions are both equal to zero.

8 Correlation of dividend-price ratio and the
rate of return on stock

Let 't (�) �
y�t

pt(1;�) be the dividend-price ratio of an in�nite-maturity asset,
such as equity, for which aj = 1 for all j. Equation (18), the limit as n!1
of equation (28), and the de�nition of K (xt; Ht) in equation (27) imply

't (�) =
1� A (�)
B (�)

K (xt; Ht) . (90)

Recall from equation (25) that, with n = 1, the rate of return on stock is
Rt+1 (1; �) = J (xt+1; zt+1; Ht+1;1; �)K (xt; Ht), where J (xt+1; zt+1; Ht+1;1; �)
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and K (xt; Ht) are independent of each other. To the extent that K (xt; Ht)
exhibits variation, the dividend-price ratio will vary, and this variation will
help predict the rate of return on stock. To measure the correlation be-
tween the dividend-price ratio and the rate of return on stock, I will use the
following lemma.

Lemma 1 Let X and Y be independent random variables and let a 6= 0 be
an arbitrary constant. Let �X � V arfXg

[EfXg]2 be the square of the coe¢ cient of

variation of X and let �Y � V arfY g
[EfY g]2 be the square of the coe¢ cient of variation

of Y . Then the square of the correlation of aX and XY is R2 = �X
�X�Y +�X+�Y

.

Proof. R2 = [EfaX2Y g�EfaXgEfXY g]2
V arfaXgV arfXY g . Since X and Y are independent,

R2 = [EfY g]2[V arfXg]2
V arfXgV arfXY g =

[EfY g]2V arfXg
V arfXY g . Use the identity for independent vari-

ables in equation (77) to obtain an expression for V ar fXY g, and rewrite R2

as R2 = [EfY g]2V arfXg
V arfXgV arfY g+[EfY g]2V arfXg+[EfXg]2V arfY g . Divide the numerator and

denominator by [E fXg]2 [E fY g]2 and use the de�nition of the coe¢ cient of
variation to obtain R2 = �X

�X�Y +�X+�Y
.

Let �K be the square of the coe¢ cient of variation of K (xt; Ht) and
�J be the square of the coe¢ cient of variation of J (xt+1; zt+1; Ht+1;1; �).
Applying Lemma 1 with X = K (xt; Ht), Y = J (xt+1; zt+1; Ht+1;1; �), and
a = 1�A(�)

B(�)
, so that 't (�) = aX andRt+1 (1; �) = XY , theR2 of a regression

of the rate of return on equity on the dividend-price ratio is

R2 =
�K

�K�J + �K + �J
: (91)

The expression for R2 in equation (91) is an exact expression and holds for
the case with habit formation (so that Ht is endogenous) as well as for the
case in which Ht � 1. Now, as in Sections 5, 6, and 7, I will con�ne attention
to the case with lognormality and without habit formation so that Ht � 1.
When Ht � 1, K (xt; Ht) = x��t , so that under lognormality, the squared

coe¢ cient of variation of K (xt; Ht) is

�K = exp
�
�2�2x

�
� 1: (92)

Substituting equation (92) into equation (91) yields

R2 =
exp (�2�2x)� 1

(�J + 1) exp (�2�2x)� 1
: (93)
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In the case of standard preferences without a benchmark level of consump-
tion, 
 = 0, which implies that � = 0, so that R2 in equation (93) is zero.
That is, the dividend-price ratio has no predictive power for the risky rate
of return in the case with standard preferences. However, the introduction
of a benchmark level of consumption allows � to di¤er from zero and thus
enables the dividend-price ratio to predict the rate of return on stock.
Now use the expression for the mean of J (xt+1; zt+1; 1;1; �) in equation

(68) and the variance of J (xt+1; zt+1; 1;1; �) in equations (73) and (74) to
obtain

(�J + 1) exp
�
�2�2x

�
=

�(�)

[1� A (�) + 	 (�)A (�)]2
; (94)

where

�(�) �
(1� A (�))2 exp

�
�2�2x + �

2�2z
�

+ [	 (�)A (�)]2 exp
�
�2�2z + 2�

2�2x + 2���xz
�

+2 (1� A (�))	 (�)A (�) exp
�
�2�2x + �

2�2z + ���xz
� . (95)

Finally, substitute equation (95) into equation (93) and multiply the numera-
tor and denominator of the resulting expression by [1� A (�) + 	 (�)A (�)]2
to obtain

R2 =
[1� A (�) + 	 (�)A (�)]2 [exp (�2�2x)� 1]

� (�)� [1� A (�) + 	 (�)A (�)]2
: (96)

I will approximate R2 around � = �0 by taking the ratio of the linearized
numerator of equation (96) to the linearized denominator of equation (96) to
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obtain8

R2 �=
�2�2x

�2�2z + 2�
2�2x + 2���xz

: (97)

As with the approximate variances of the riskless rate and the rate of return
on equity, the approximate value of R2 in equation (97) depends on the
objective moments of the distribution of (xt; zt) but does not depend on the
subjective moments of the distribution of (xt; zt).

8.1 Correlation of dividend-price ratio and the excess
rate of return on stock

I have shown that the dividend-price ratio at time t can be used to predict
the rate of return on stock from period t to period t + 1. The ability to
forecast the rate of return on stock in this model does not re�ect any ability
to forecast dividend growth because dividend growth, z�t+1, is i.i.d. Instead,
the predictability of the rate of return on stock is the direct result of the
predictability of the intertemporal marginal rate of substitution in the case
in which � 6= 0. The predictable component of the intertemporal marginal
rate of substitution is captured by K (xt; Ht) � x��t Ht. Since, as shown
in equation (90), the dividend-price ratio is proportional to K (xt; Ht), and
since, as shown in equation (25), the rate of return on the canonical asset is
proportional to K (xt; Ht), variation in K (xt; Ht) allows the dividend-price
ratio to predict the rate of return on any asset that is a special case of the

8Rewrite equation (96) as

R2 =
R2N
R2D

where
R2N = [1�A (�) + 	 (�)A (�)]

2 �
exp

�
�2�2x

�
� 1
�

is the numerator of R2 and

R2D = �(�)� [1�A (�) + 	 (�)A (�)]
2

is the denominator of R2. When � = �0, R
2
N = 0 and R2D = 0. Linearizing R2N

around � = �0 yields R
2
N
�= �2�2x and linearizing R

2
D around � = �0 yields R

2
D
�=

2e	+2 eA+�2�2z+2�2�2x+2���xz�2 eA�2�� eA+ e	+ eA� where e	 is the linearized value
of 	(�) and eA is the linearized value of A (�). Therefore, R2D �= �2�2z +2�2�2x +2���xz.
Taking the ratio of the approximate value of R2N to the approximate value of R2D yields
equation (97) in the text.
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canonical asset. For instance, the dividend-price ratio can predict the rate of
return on stock and the rate of return on one-period riskless bills. However,
the dividend-price ratio cannot predict the excess rate of return on stock
relative to one-period riskless bills, when the excess rate of return is de�ned
as the ratio of the gross rates of return on the two assets. Speci�cally, using
equation (25), the excess rate of return on stocks, expressed in ratio form, is

Rt+1 (1; �)
Rt+1 (1; 0)

=
J (xt+1; zt+1; Ht+1;1; �)
J (xt+1; zt+1; Ht+1; 1; 0)

; (98)

which is i.i.d., and hence is unpredictable. Indeed, the fact that the ratio of
returns in equation (98) is i.i.d. accounts for the fact that conditional and
unconditional premia are equal in this model.
An alternative formulation of the excess rate of return is the arithmetic

di¤erence between the rates of return on stocks and one-period riskless bills.
De�ne JSt+1 � J (xt+1; zt+1; Ht+1;1; �), J bt+1 � J (xt+1; zt+1; Ht+1; 1; 0), and
JEt+1 � JSt+1 � J bt+1, so that the rate of return on stock is JSt+1 �K (xt; Ht),
the rate of return on one-period riskless bills is J bt+1 � K (xt; Ht), and the
arithmetic excess rate of return on stocks is

Rt+1 (1; �)�Rt+1 (1; 0) = JEt+1 �K (xt; Ht) : (99)

The excess rate of return in equation (99) is proportional to K (xt; Ht) and
thus is predictable by the dividend-price ratio, which is also proportional to
K (xt; Ht). However, for empirically plausible values, theR2 of the regression
of the arithmetic excess return in equation (99) on the dividend-price ratio
is extremely small. Applying equation (91), the R2 of the regression of the
arithmetic excess stock return on the dividend-price ratio is

R2 =
�K

�K�JE + �K + �JE
; (100)

where is �JE is the square of the coe¢ cient of variation of JEt+1. Since J
b
t+1 �

J (xt+1; zt+1; Ht+1; 1; 0) =
a0

!(1;0)
is constant, V ar

�
JEt+1

	
= V ar

�
JSt+1

	
, so

�JE =
V ar

�
JSt+1

	�
E
�
JSt+1

	
� E

�
J bt+1

	�2 : (101)

Rearrange the right hand side of equation (101) using the facts thatE fRt+1 (1; �)g =
E
�
JSt+1

	
E fK (xt; Ht)g and E fRt+1 (1; 0)g = E

�
J bt+1

	
E fK (xt; Ht)g to

obtain
�JE = �JSQ; (102)
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where Q �
h

EfRt+1(1;�)g
EfRt+1(1;�)g�EfRt+1(1;0)g

i2
and �JS is the squared coe¢ cient of

variation of JSt+1. Equations (100) and (102) and the fact that �K�JE � 0
imply that

R2 � �K
�K + �JE

=
1

1 +
�
JS

�K
Q
: (103)

To get a sense of the size of the upper bound on R2 on the right hand
side of equation (103), consider an average (gross) rate of return on stocks,
E fRt+1 (1; �)g, of 1.0698 per year and an average equity premium, E fRt+1 (1; �)g
� E fRt+1 (1; 0)g, of 0.0618 per year, as in Mehra and Prescott (1985). In
this case, Q = 300. Empirically, the ratio �

JS

�K
is greater than one. If �JS

�K

were as low as one, the upper bound on R2 would be 1
1+300

= 0:003. In
calibrations reported later in this chapter, �JS

�K
is greater than 5, so the upper

bound on R2 is smaller than 1
1+1500

= 0:00067:

9 Special Cases

In this section, I will examine the characteristics of rates of return in various
special cases. I will adopt the normalization that the variance of ln z equals
the variance of lnx, i.e., that �z � �x. With this normalization, � captures
any di¤erence in the standard deviations of the �un-normalized� values of
ln z and lnx. Also, with this normalization, the covariance �xz = ��2x, where
�1 � � � 1 is the correlation of lnx and ln z.

9.1 Rational Expectations

Under rational expectations (RE), subjective distributions are identical to
the corresponding objective distributions, so that � = 0 and 
 = 0. In this
case, the approximate equity premium in equation (64) simpli�es to

EP (�) �= (��+ �) ��2x, under RE, (104)

which is the sum of the approximate risk premium from equation (60)

RP (�) �= ����2x, under RE, (105)

and the approximate term premium from equation (63)

TP (1; �) �= ���2x, under RE. (106)
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The approximate unconditional variance of the rate of return on equity in
equation (88) simpli�es to

V ar fRt+1 (1; �)g �=
�
2�2 + �2 + 2���

�
�2x, under RE. (107)

The approximate unconditional variance of the one-period riskless rate under
rational expectations is the same as in equation (89).
Finally, the approximate value of R2 in equation (97) simpli�es to

R2 �=
�2

�2 + 2�2 + 2���
, under RE. (108)

The value of R2 in equation (108) applies to a regression of the equity rate
of return (rather than the excess equity rate of return) on the dividend-price
ratio. As emphasized in subsection 8.1, excess returns are not predictable
in the model presented here, so the model cannot account for the empirically
observed predictability of excess returns. Nevertheless, the model can ac-
count for predictability of equity returns, and in the calculations throughout
this section I will focus on the R2 of the regressions of the equity rate of
return on the dividend-price ratio.

9.1.1 Perfectly Correlated lnx and ln z

In the original Lucas (1978) model of asset pricing in an exchange economy,
equilibrium consumption per capita, Ct, is identically equal to the dividend
per capita on risky stock, y�t . In the current framework, the identity of
consumption per capita and dividend per capita is represented by Ct � yt
and � = 1. Because Ct � yt, the growth rates of consumption and dividends
are identically equal. That is, xt � zt, so � = 1. In this subsection, I will
maintain the assumption that � = 1, but I will allow � to di¤er from one to
take account of levered equity.
In the remainder of this subsection on asset returns under rational ex-

pectations, I will examine values of the risk premium, term premium, equity
premium, standard deviations of rates of return on one-period riskless bills
and levered equity, and the R2 of regressions of the equity rate of return on
the dividend-price ratio. Table 2 presents the approximate values of these
six features of asset returns for �ve particular cases. The �nal column of
Table 2, labelled �Data� presents the empirical values of these features of
the data.
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With � = 1, the approximate equity premium in equation (104) simpli�es
to

EP (�) �= (�+ �) ��2x, under RE, if � = 1, (109)

which is the sum of the approximate risk premium from equation (105)

RP (�) �= ���2x, under RE, if � = 1, (110)

and the approximate term premium from equation (106), which is invariant
to �. The expression for the approximate unconditional variance of the rate
of return on equity in equation (107) simpli�es to

V ar fRt+1 (1; �)g �=
�
(� + �)2 + �2

�
�2x, under RE, if � = 1, (111)

and equation (108) implies that the R2 of a regression of the rate of return
on equity, Rt+1 (1; �), on the dividend-price ratio, 't (�), is approximately

R2 �=
�2

(�+ �)2 + �2
, under RE, if � = 1. (112)

Standard Utility Function and No Leverage With a standard utility
function that does not include benchmark levels of consumption, 
 = 0,
which implies � = 0 and � = �, where � is the coe¢ cient of relative risk
aversion. The seminal papers of Lucas (1978) and Mehra and Prescott
(1985) analyze unlevered equity, which is represented here by the canonical
asset with n =1 and � = 1. In this case, the approximate equity premium
in equation (109) simpli�es to

EP (�) �= ��2x; under RE, if � = 1; 
 = 0; and � = 1: (113)

In this case, since � = 0, the term premium is zero, and the equity premium
is composed entirely of the risk premium. Equation (113) is the essence of
the Mehra-Prescott equity premium puzzle. Over the time period examined
by Mehra and Prescott, 1889-1978, the average value of the equity premium
was 0.0618 per year and the annual standard deviation of the growth rate
of consumption per capita, measured here by �x, was 0.0357. Thus, if the
coe¢ cient of relative risk aversion, �, equals 10, which is a very high value
in the judgment of Mehra and Prescott, the equity premium would be only
(10) (0:0357)2 = 0:0127, i.e., 1.27% per year. In order for the model to
match the historical equity premium of 0.0618, the coe¢ cient of relative risk
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aversion, �, would need to equal 0:0618= (0:0357)2 = 48:5, which is far higher
than the upper bound of 10 imposed by Mehra and Prescott on the value of
�.9

Note from equation (112) that with standard preferences, which imply
� = 0, the approximate value of R2 is zero. Indeed, when � = 0, the
exact expression for R2 in equation (96) is also equal to zero. Therefore,
the dividend-price ratio cannot help predict the rate of return on equity in
a linear regression. In addition, with � = 0, the rate of return on one-
period riskless bills is constant, which is indicated by a value of zero for
s.d.fRrisklessg in column (1) of Table 2.

Consumption Externalities and No Leverage Consumption external-
ities, by allowing � to be positive, can increase the equity premium associated
with any given value of �, introduce variability in the one-period riskless rate
of return and a positive term premium, and help account for the ability of
the dividend-price ratio to predict equity returns, though as discussed in
subsection 8.1, they cannot account for the predictability of excess returns.
In the absence of leverage, � = 1. Therefore, in this case, the approximate

equity premium in equation (109) becomes

EP (�) �= (1 + �) ��2x, under RE, if � = 1 and � = 1: (114)

Thus, for given values of � and �2x, the equity premium implied by the model
increases by a factor 1+�. Therefore, the introduction of a positive � allows
the model to match the historical value of the equity premium with a smaller
value of �. For instance, if � = 10 (which would arise if, for instance, � = 10
and �0 = 0), the model will deliver an approximate equity premium equal
to its historical average value if (1 + �) = EP (�)

10�2x
= 0.0618/

�
10 (0:0357)2

�
= 4.85, or equivalently, if � = 3.85, as in column (2) of Table 2. In Abel
(1990), I suggested that this formulation of utility might help account for the
historically observed equity premium, but I acknowledged that the implied
variability of the riskless rate was far larger than the historical variability
of the riskless rate. Equation (89) implies that the approximate standard
deviation of the one-period riskless rate is j�j�x, which equals (3.85)(0.0357)
= 13.74%. However, the historical standard deviation of the riskless rate
reported by Mehra and Prescott (1985) is only 5.67% per year.

9Kandel and Stambaugh (1991) provide a compelling challenge to arguments that the
coe¢ cient of relative risk aversion is no larger than 10.
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The fact that � can di¤er from zero when utility depends on a bench-
mark level of consumption implies that benchmark utility introduces a term
premium and also allows the dividend-price ratio to help predict the rate of
return on equity. Substituting � = 3:85 into equation (106) yields a term
premium of (3:85) (10) (0:0357)2 = 0:0491, or 4.91%, which is much higher
than the empirical value. For instance, in Abel (1999) I report, based on
data from Ibbotson Associates (1994, Exhibit 9, p. 31), that over the pe-
riod 1926-1993 the term premium on long-term government bonds relative
to short-term riskless bills was about 170 basis points per year, or 0.0170.
The term premium in the model is for in�nite-maturity assets with risky
payo¤s, whereas the data apply to �nite-maturity riskless claims. However,
I have argued in Abel (1999), that these di¤erences in maturity and risk may
increase the term premium in the model, but by only a small fraction of one
percent per year. Thus, the 491 basis point term premium produced by the
model in this case is too high compared to the empirical term premium.
Finally, substituting � = 3:85 into equation (112), with � = 1, shows

that a linear regression of the rate of return on equity on the dividend-price
ratio has an approximate R2 of 0:387, which is much higher than typical
values of R2 in such regressions. For instance, using annual real returns on
the value-weighted NYSE portfolio, Fama and French (1988, Table 3) report
R2 = 0:09 for the period 1941-1986.
Thus, consumption externalities without leverage can account for the

observed equity premium with a value of � = 10: However, the implied
value of �, 3.85, leads to too much variability in the one-period riskless rate
of return, to too high a term premium, and to too high a value of R2 in a
regression of the equity rate of return on the dividend-price ratio. The next
challenge is to account for the observed value of the equity premium with a
lower value of �:

Consumption Externalities with Leverage Adding leverage to the
model with consumption externalities allows the model to match the his-
torical equity premium with a lower value of �. The lower value of � reduces
the variability of the riskless rate, the term premium, and the value of R2 in
the model toward more realistic values.
The standard deviation of the growth rate of dividends, z�t+1, is approx-

imately � times the standard deviation of zt+1. Since zt+1 � xt+1, the
standard deviation of the growth rate of dividends is approximately � times
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�x, the standard deviation of the growth rate of consumption. Using data
from Table 2, p. 402, of Cecchetti, Lam, and Mark (1990), the standard devi-
ation of dividend growth is 3.6 times the standard deviation of consumption
growth, so I will set � = 3.6. With � = 3:6, the approximate equity pre-
mium in equation (109) will equal the historical value of 0.0618 with � = 10
and �x = 0:0357, if � = 0:0618=

�
10 (0:0357)2

�
� 3:6 = 1:25. Because the

introduction of leverage permits a reduction in the value of �, it also re-
duces the variability of the one-period riskless rate, the term premium, and
the value of R2. As shown in column (3) of Table 2, with � = 1:25, the
approximate standard deviation of the one-period riskless rate in equation
(89) is (1:25) (0:0357) = 0:0446, which is much closer to its historical value
of 5.67%, as reported by Mehra and Prescott (1985). Also, with � = 1:25,
the approximate term premium is (1:25) (10) (0:0357)2 = 0:0159, which is
much closer to the empirical value of the term premium of 0.0170 mentioned
earlier. With � = 3:6 and � = 1:25 equation (112) implies that the R2

of a regression of the rate of return on equity on the dividend-price ratio is
approximately 0.062, which is more in line with the values reported by Fama
and French (1988). Finally, from equation (111), the approximate uncondi-
tional standard deviation of the rate of return on equity when � = 3:6 and
� = 1:25 is 0.1788, which is not far from the value of 16.54% reported by
Mehra and Prescott (1985).

9.1.2 Imperfectly Correlated lnx and ln z

I have shown that with � = 10, � = 1:25, and � = 3:6, the rational ex-
pectations solution of the model with � = 1 generates realistic values for
�ve features of returns: the equity premium, the term premium, the un-
conditional standard deviation of the risky rate of return, the unconditional
standard deviation of the riskless rate of return, and the R2 of the regres-
sion of the equity rate of return on the dividend-price ratio. However, with
� = 1, consumption growth and dividend growth are perfectly correlated. I
will show that reducing the value of � to a more realistic value reduces the
ability of the model to match the equity premium, unless the value of � is
allowed to be greater than 10.
Campbell and Cochrane (1999) argue that the correlation between con-

sumption growth and dividend growth is di¢ cult to estimate accurately and
ultimately settle on a value of 0.2 to use in their calculations. I will fol-
low their lead and set � = 0:2. Since the equity premium under rational
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expectations approximately equals (��+ �) ��2x, reducing the correlation �
to 0:2 from 1:0 substantially reduces the equity premium when � = 3:6 and
� = 1:25. In fact, when these values of �, �, and � are combined with
� = 10 and �x = 0:0357, the approximate equity premium is only 0:0251,
which is less than half of the historical average equity premium. As shown
in column (4) of Table 2, the other four features of the returns implied by
these parameter values are not as far from empirical values. Speci�cally,
the approximate standard deviation of the rate of return on stocks is 0.1510,
and the approximate R2 of the regression of the equity rate of return on
the dividend-price ratio is 0.087. The approximate term premium and the
approximate standard deviation of the riskless rate are invariant to the cor-
relation �, and hence these features are the same in column (4) as in column
(3).
Doubling the value of the curvature parameter � to 20 and increasing the

value of � slightly to 1:7, while keeping � = 3:6, � = 0:2 and �x = 0:0357,
allows the model to match the empirical value of the equity premium and
produces standard deviations of the riskless rate and the rate of return on
equity that are close to their empirical values. Speci�cally, as shown in
column (5) of Table 2, these parameter values lead to an equity premium of
0.0617, a standard deviation of the riskless rate of 0.0607, and a standard
deviation of the rate of return on equity of 0.1643. However, these parameter
values lead to a value of the term premium of 0.0433, which is too high
compared to the data, and an R2 of 0.136, which is a bit high.

9.2 Distorted Beliefs

In order to focus on the role of distorted beliefs on rates of return, I will
restrict attention to the case in which xt � zt, so that �2x = �xz = �2z . I
assume that the subjective distributions take account of the fact that xt � zt,
so that �x = �z and 
xx = 
xz = 
zz. In this case, the approximate equity
premium in equation (64) simpli�es to

EP (�) �= (� + �)
�
��2x � �x + [� � 0:5 (� + �)] 
xx

�
, if xt � zt. (115)

Note that � + � > 0 because � > �1 (equation (8)) and � � 1. Although
the distortion of beliefs, represented here by nonzero values of �x and 
xx,
a¤ects the approximate equity premium, equations (89), (88), and (97) show,
as mentioned earlier, that the distortion of beliefs does not a¤ect the approx-
imate unconditional variances of the riskless and risky rates of return, nor
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does it a¤ect the approximate R2 of a regression of the risky rate of return
on the dividend-price ratio.

9.2.1 Standard Utility Function and No Leverage

In the case with standard utility (
 = 0, so � = 0) and no leverage (� = 1),
the approximate equity premium in equation (115) simpli�es to

EP (1) �= �
�
�2x + 
xx

�
� (�x + 0:5
xx) , if xt � zt; 
 = 0, and � = 1:

(116)
In Abel (2002), I have used the term pessimism to describe a situation

in which the subjective distribution of the growth rate is �rst-order stochas-
tically dominated by the objective distribution of the growth rate. When
the growth rate is lognormal, I measure the amount of pessimism about the
growth rate by �1, where �1 satis�es E� fxg = e��1E fxg, which implies

�1 = � (�x + 0:5
xx) : (117)

Substituting equation (117) into equation (116) yields

EP (1) �= �
�
�2x + 
xx

�
+�1, if xt � zt,
 = 0, and � = 1: (118)

It is evident from equation (118) that pessimism, measured by �1, increases
the equity premium. The economic reason for this e¤ect is that pessimism
reduces the price of the risky asset, which increases the rate of return to
anyone who buys this asset. On average, the realized rate of return is higher
than the amount required by consumers to compensate them for the risk
of holding equity because the realized rate of return on equity is higher, on
average, than consumers expect. Indeed, in the special case with standard
utility (
 = 0) and no leverage (� = 0), an increase in pessimism about the
expected growth rate causes an equal-sized increase in the objective average
equity premium.
In Abel (2002), I have used the term doubt to describe a situation in

which the subjective distribution of the growth rate is a mean-preserving
spread of the objective distribution of the growth rate. When the growth
rate is lognormal, an increase in doubt is represented by an increase in 
xx �
��2x � �2x, holding constant �x + 0:5
xx = ��1. Equation (118) shows that
an increase in doubt increases the equity premium. The economic reason is
that an increase in doubt increases the perceived riskiness of equity and thus
increases the equity premium that consumers require in order to hold equity.
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9.2.2 Consumption Externalities with Leverage

In the presence of consumption externalities and/or leverage, we can inter-
pret the e¤ects on the equity premium of distorted beliefs by generalizing the
measure of pessimism. Instead of comparing subjective and objective distri-
butions of the growth rate xt+1, I will compare the subjective and objective
distributions of x�+�t+1 (which, in the special case with standard utility (� = 0)
and no leverage (� = 1), is simply the growth rate xt+1). Now when the
growth rate is lognormal, I will measure the amount of pessimism about x�+�t+1

by ��+�, where ��+� satis�es E�
�
x�+�

	
= e���+�E

�
x�+�

	
, which implies

��+� = � (� + �) �x � 0:5 (� + �)2
xx: (119)

Substituting equation (119) into equation (115) yields

EP (�) �= (� + �) �
�
�2x + 
xx

�
+��+�, if xt � zt; (120)

which has the same form and interpretation as equation (118). Again, an
increase in pessimism ��+� increases the equity premium, and an increase
in doubt, represented as an increase in 
xx holding ��+� constant, increases
the equity premium.

10 Accuracy of Approximations

I have conducted the analysis in two distinct parts. First, I set up the
model and derived exact solutions for the equilibrium price and expected
rate of return on the canonical asset. Because the canonical asset is suf-
�ciently general, I used it to calculate rates of return on various assets,
including one-period riskless bills and in�nite-horizon levered equity. To
obtain closed-form expressions for these exact solutions, I restricted atten-
tion to the case without habit formation (but with consumption externalities
including keeping/catching up with the Joneses) and with lognormally dis-
tributed growth rates of consumption and dividends. The second part of the
analysis started with the exact solutions derived in the �rst part, and derived
linear approximations to various moments of asset returns. The rationale
for approximating these expressions was to help interpret closed-form solu-
tions, in particular, to understand the e¤ects of various parameters on the
means and variances of returns. In Section 9.1, I examined some quantita-
tive features of the model under rational expectations. For clarity, I used the
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approximate expressions for the moments of asset returns. In this section,
I will brie�y explore the accuracy of these approximations by comparing the
values obtained by evaluating the approximate expressions with the values
obtained by evaluating the corresponding exact expressions.
Before comparing the approximate and exact solutions, I need to address

an issue regarding the parameter values. As discussed in Section 1, the
primitive speci�cation of preferences includes seven parameters: the cur-
vature paramater �, the rate of time preference �, the importance of the
consumption-benchmark ratio as measured by 
, the relative weight D of
the consumer�s own past consumption in the benchmark, the weights �0 and
�1 on contemporaneous and lagged aggregate consumption in the benchmark,
and the exogenous growth rate G in the benchmark. For the purposes of
asset pricing in the absence of habit formation (i.e., with D = 0), these seven
preference parameters can be summarized by the three parameters �, �, and
� de�ned in equations (6), (7), and (8), respectively. The approximate ex-
pressions for the equity premium, the term premium, the variances of the
riskless rate of return and the rate of return on stocks, and the value of R2

are invariant to �. Thus in Section 9.1 I did not specify a value for �. How-
ever, the exact expressions for these features of asset returns depend on �.
Thus, to compare the exact and approximate expressions, I need to specify
a value for �.
I will choose a value for � by calibrating the model to the exact expression

for the riskless rate of return under rational expectations. In the case without
habit formation D = 0, which implies Ht � 1, so setting � = 0 in equation
(36) implies that the average one-period riskless rate is

E fRt+1 (1; 0)g =
E fx��g
B (0)

: (121)

Setting � = 0 in equation (21) to obtain B (0), imposing rational expecta-
tions, and substituting the result into equation (121) yields

E fRt+1 (1; 0)g =
E fx��g
�E fx��g . (122)

Let Rf be the empirical average value of the one-period riskless rate.
The model will yield an expected one-period riskless rate equal to Rf if �
is chosen to set the right hand side of equation (122) equal to Rf . Under
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lognormality, the value of the � that will allow the model to match this value
of the expected riskless rate is

� =
exp [(� � �)�x + 0:5 (�2 � �2)�2x]

Rf
: (123)

In the case with consumption externalities and leverage under rational
expectations with perfectly correlated consumption growth and dividend
growth in Section 9.1.1, I have set �x = 0:018, �x = 0:0357, � = 10, and
� = 1:25. Mehra and Prescott (1985) report Rf = 1:0080. Substituting
these values into equation (123) yields � = 1:09. At �rst blush, a value of
� greater than one might lead to two concerns. One concern is that � > 1
might imply that the rate of time preference � is negative. However, the
de�nition of � in equation (6) shows that � can exceed one with a posi-
tive rate of time preference �, if G > 1 and (1�D) 
 (�� 1) > 0. The
second concern is that some important in�nite sums will fail to converge.
However, as shown by Mehra (1988, Appendix) and Kocherlakota (1990),
� can be slightly greater than one in a growing economy without causing
this problem. However, for the particular parameter values in this example,
including � = 3:6, the value of A (�) exceeds one when � = 1:09. In order
to make A (�) less than one, so that the di¤erence equation in equation (19)
will converge, I will set � = 1:075.10 Of course, reducing the value of � is
equivalent to increasing the rate of time preference, and as a result of the
increased rate of time preference, the (net) expected riskless rate increases
to 0:0227, or 2:27% per year. Having chosen a value for �, I can compute
the exact as well as the approximate values of the equity premium, the stan-
dard deviations of the riskless rate of return and the rate of return on stock,
and the value of R2 in a regression of stock returns on the dividend-price
ratio. As illustrated in column (1) of Table 3, the approximations are quite
close to the exact values for the equity premium, the standard deviation of
the riskless rate, and the value of R2. The approximation for the standard
deviation of the risky rate of return is not as good, but is within 10% of the
value obtained from the exact expression.

10The values of derived preference parameters �, �, and � are consistent with various
combinations of the seven fundamental preference parameters. If, for example, � = 0:01,
G = 1:01279, D = 0, � = 14, 
 = 0:4979, �0 = 0:618, and �1 = 0:193, then the values of
the three derived parameters are � = 1:075, � = 10, and � = 1:25, as in column (1) in
Table 3. If, for example, � = 0:01, G = 1:0076, D = 0, � = 25, 
 = 0:3759, �0 = 0:554,
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Exact and Approximate Moments of Returns
(1) (2)

Preference Parameters
� 1.075 1.060
� 1.25 1.70
� 10 20
Leverage Parameter, � 3.6 3.6
Growth Rate Parameters
�x = �z 0.018 0.018
�x = �z 0.0357 0.0357
� 1.0 0.2
Moments of Returns from Model exact approx. exact approx.
Equity Premium 6.37% 6.18% 6.36% 6.17%
s.d.fRrisklessg 4.57% 4.46% 6.19% 6.07%
s.d.fRriskyg 19.59% 17.88% 17.91% 16.43%
R2 6.1% 6.2% 13.5% 13.6%
Expected (net) riskless rate 2.27% 1.82%

Table 3: Exact and Approximate Moments of Returns
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Table 3 also reports approximate and exact values for the case with con-
sumption externalities and leverage under rational expectations with less
than perfectly correlated consumption growth and dividend growth. As in
Section 9.1.2, I have set the correlation � = 0:2. As I discussed earlier, the
model is better able to deliver empirically realistic values if � is increased
to 20 and if � is increased to 1:7. In order for A (�) to be smaller than
one, as required for the di¤erence equation in equation (19) to converge, I
have reduced � to 1:060. Despite this reduction in �, relative to its value
in column (1), the expected riskless rate is only 1.82% per year, which is
lower than its value in column (1). Again, the approximate values of the
equity premium, the standard deviation of riskless rate, and the value of R2

are very close to the values obtained from the exact expressions. And the
approximate value of the standard deviation of the risky rate is within 10%
of the value obtained from the exact expression.

11 Summary

I have derived exact expressions for the price and rate of return on a canoni-
cal asset in a framework that extends the standard utility function to include
habit formation, keeping/catching up with the Joneses, and possible depar-
tures from rational expectations. The canonical asset is general enough
to include one-period assets and in�nite-maturity levered equity, and thus
can be used to calculate risk premia, term premia, and equity premia. To
calculate exact closed-form expressions for the �rst and second moments of
returns, I have restricted attention to the case that excludes habit forma-
tion, but includes keeping/catching up with the Joneses, and I have assumed
that the growth rates of consumption and dividends are jointly i.i.d. lognor-
mal. After deriving the exact expressions for the �rst and second moments
of returns, I have derived linear approximations to these expressions to show
clearly how these moments of returns are a¤ected by various parameters. I
have used these linear approximations to show, quantitatively, how well the
model can account for the empirical values of the equity premium, the term
premium, the standard deviations of the riskless return and the rate of return
on levered equity, and the value of R2 of a regression of stock returns on the
dividend-price ratio. Finally, I showed that the approximations yield values

and �1 = 0:188, then the values of the three derived parameters are � = 1:060, � = 20,
and � = 1:70, as in column (2) of Table 3.
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of these moments that are close to those obtained from the exact solutions,
for empirically relevant parameter values.

46



References

[1] Abel, Andrew B., �Asset Prices under Habit Formation and Catching
up with the Joneses,� American Economic Review, 80, 2 (May 1990),
38-42.

[2] Abel, Andrew B., �Risk Premia and Term Premia in General Equilib-
rium,�Journal of Monetary Economics, 43, (February 1999), 3-33.

[3] Abel, Andrew B., �An Exploration of the Ef-
fects of Pessimism and Doubt on Asset Returns,�
Journal of Economic Dynamics and Control,� 26, 7-8 (July 2002),
1075-1092.

[4] Abel, Andrew B., �Optimal Taxation When Consumers
Have Endogenous Benchmark Levels of Consumption,�
The Review of Economic Studies, 72, 1 (January 2005), 21-42.

[5] Backus, David K., Allan W. Gregory and Stanley E. Zin, �Risk Pre-
miums in the Term Structure: Evidence from Arti�cial Economies,�
Journal of Monetary Economics, 24, 3 (November 1989), 371-399.

[6] Bansal, Ravi and Amir Yaron, �Risks for the Long Run: A Potential
Resolution of Asset Pricing Puzzles,�Journal of Finance, 59, 4 (August
2004), 1481-1509.

[7] Campbell, John Y. and John H. Cochrane, �By Force of Habit: A
Consumption-Based Explanation of Aggregate Stock Market Behavior,�
Journal of Political Economy, 107, 2 (April 1999), 205-251.

[8] Cecchetti, Stephen, Pok-sang Lam and Nelson Mark, �Mean Reversion
in Equilibrium Asset Prices,�American Economic Review, 80, 3 (June
1990), 398-418.

[9] Constantinides, George M., �Habit Formation: A Resolution of the Eq-
uity Premium Puzzle,�Journal of Political Economy, 98, 3 (June 1990),
519-543.

[10] Fama, Eugene F. and Kenneth R. French, �Dividend Yields and Ex-
pected Stock Returns,�Journal of Financial Economics 22, 1 (October
1988), 3-25.

47



[11] Gali, Jordi, �Keeping up with the Joneses: Consump-
tion Externalities, Portfolio Choice, and Asset Prices,�
Journal of Money, Credit and Banking, 26, 1 (February 1994), 1-
8.

[12] Ibbotson Associates, Stocks, Bonds, Bills, In�ation, 1994 Yearbook, Ib-
botson Associates, Chicago, 1994.

[13] Kandel, Shmuel and Robert F. Stambaugh, �Asset Returns and In-
tertemporal Preferences,� Journal of Monetary Economics, 27,1 (Feb-
ruary 1991) 39-71.

[14] Kocherlakota, Narayana R., �On the �Discount� Factor in Growth
Economies,�Journal of Monetary Economics, 25, 1 (January 1990), 43-
47.

[15] Lettau, Martin, Sydney C. Ludvigson and Jessica A. Wachter, �The
Declining Equity Premium: What Role Does Macroeconomic Risk
Play?� April 2004.

[16] Lucas, Robert E., Jr., �Asset Prices in an Exchange Economy,�
Econometrica, 46, 6 (November 1978), 1429-1445.

[17] Mehra, Rajnish, �On the Existence and Representation of Equilib-
rium in an Economy with Growth and Nonstationary Consumption,�
International Economic Review, 29, 1 (February 1988), 131-135.

[18] Mehra, Rajnish and Edward C. Prescott, �The Equity Premium: A
Puzzle,�Journal of Monetary Economics, 15, 2 (March 1985), 145-161.

48


