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Abstract

We empirically show across several broad asset classes that sectoral wealth

shares do not positively correlate with their risk premia—a first-order pre-

diction of canonical equilibrium models. We then analyze the roles mean-

variance and hedging demand play in accounting for sectoral shifts within a

two-sector production economy that features imperfect substitutability across

goods and demand shocks. With these two features, the model’s performance

improves, yet still unsatisfactorily accounts for sectoral shifts in wealth shares.

We argue that equilibrium models thus face a challenge to explain the cross-

sectional evolution of wealth shares and investors’ incentives to hold them

over time.
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I. INTRODUCTION

Consider a capital market investor’s asset demand equation:1

wt =
1

γ
Σ−1
t Et[Re] + HDt, (1)

where the chosen vector of wealth allocation, wt, depends on mean-variance con-
siderations, a product of the inverse covariance matrix of excess returns, Σ−1

t , and
the vector of expected excess returns, Et[Re]; and hedging demand, HDt, the co-
variance between assets’ excess returns and innovations of state variables which are
material to investors. Thus, wealth allocations are determined by the joint distribu-
tion of returns and state variables and not merely the first two moments of asset
returns.

In equilibrium, the vector wt equals the market capitalization shares of different
sectors or asset classes. If sectoral wealth rises for a particular sector, then this
sector’s asset demand has risen either due to a better mean-variance deal or from
an increase in hedging demand. These considerations in allocating assets emerge
in a large class of models, whether frictionless or not. Moreover, the first-order
channel, namely the trade off between assets’ means and variances, is at the center
of a multi-sector Lucas-tree economy, a workhorse in the asset pricing literature
and nested by canonical real business cycle theory.

In this paper, we begin by examining the first-order channel and find it to be pro-
foundly rejected by the data: a sector’s risk premium negatively covaries or does not
covary with its wealth share. These rejections are evident in the US across house-
holds’ portfolio allocations of stocks, bonds, and housing and within equity market

1This equation is derived in Duffie and Epstein (1992a); see their equation (17). It holds for N
assets and an arbitrary S-dimensional state vector, Xt. Using our notation, they show the optimal
N × 1 portfolio vector at time t takes the form

JWWEt[Re] + JWWΣtwtW
2 + ΩtJXWW = 0,

where J(·) is the agent’s continuation utility (subscripts denote derivatives), W is their wealth at
time t, and Ωt is theN×S covariance matrix of states and asset returns. Our equation solves for wt

by assuming only the homotheticity of utility, as they do, putting J(W,X) = j(X)W 1−γ/(1 − γ)
and defining HDt = Σ−1t ΩtJXW /(JWWW ). They further show that a similar optimality equation
holds even when allowing for non-traded assets, including labor income.
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portfolios. We discover, even more strikingly, that these deviations from mean-
variance allocations are long-lived, lasting longer than the duration of an average
five-year business cycle, and so potential explanations which rely on short-lived
frictions are unlikely to be true.

Given the disconnect between movements in wealth shares and mean-variance
dynamics, we next examine the role of hedging demands in accounting for sectoral
wealth share dynamics. To do so, one requires a more comprehensive model that
goes beyond simple mean-variance theory. We therefore build a two-sector produc-
tion economy, the simplest and clearest model generating endogenous movements
in wealth shares, risk premia, and hedging demand. The two dividend streams can
represent flows from any characteristic-based grouping of assets, or more generally
from broad asset classes like the value of corporations versus residential real estate.
Our economy specifies the two streams as imperfect substitutes; a relative price be-
tween the two goods then fluctuates endogenously, changing the distribution of risk
and return across assets. We also include shocks to demand which are independent
of the usual endowment or supply shocks, capturing the idea that preferences for
these two types of goods fluctuate over time.

In analyzing the model’s economics which govern sectoral risk premia and
wealth shares, we define the notion of an economy’s balancedness, basically the
degree to which demand is commensurate with supply for each sector across the
entire economy. By calibrating solely to observed fluctuations in supply, the model
cannot easily generate a negative relationship between a sector’s risk premium and
wealth share. The reason is that as an asset’s wealth shrinks, its contribution to ag-
gregate consumption falls, bringing shocks to its cash flows closer to being idiosyn-
cratic, and lowering its required return to the risk-free rate. Our extended economy
allows the possibility of having both a high level of demand and an expensive rela-
tive price meet a scarce supply, an economic state far from balancedness. Marginal
utility thus remains sensitive to a shrinking sector’s wealth, keeping risk premia
large. Thus in our calibration, we find that these two elements are necessary to
break the positive relationship between risk premia and wealth shares.

We then empirically examine some of our economy’s key implications by us-
ing historical data on households’ portfolio allocations and our model to best fit
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what the implicit process for demand shocks was by employing the model’s cross-
equation restrictions on its distributions of capital and wealth. Feeding the recov-
ered process into the policy functions and observing their dynamic behavior leads
us to identify two properties that we believe are important to understand.

First, we find that changes in hedging demand play the dominant role in driving
a sector’s wealth share dynamics. Hedging demand not only constitutes the majority
of an asset’s allocation on average but also plays the main role in explaining shifts
in its relative allocation over time. We therefore conjecture that any set of genuine
economic mechanisms or frictions which adequately describe a sector’s allocation
dynamics must first appeal to shifts in hedging demand.

Second, and equally significant, while our workhorse economy can replicate the
negative relationship between sectoral risk premia and wealth shares, it cannot do
this without violating a basic feature of the data. In particular, the model implic-
itly requires demand shocks that generate extreme movements in consumption ex-
penditure shares which are noticeably counterfactual to the modest shifts observed
empirically.2 Therefore, our evidence identifies a shortcoming of a large class of
models: even after generating significant levels of hedging demands, it is difficult
to adequately account for the joint distribution of sectoral wealth and risk premia.

The virtue of our analysis is that we allow few degrees of freedom in gener-
ating demand shocks, and this imposes discipline on hedging demand. While ar-
guably important for assets in positive net supply, like equities, it is unlikely that
hedging demands are the dominant influence; if they were, it would imply that the
value-weighted market return, with an equity premium near six percent, is held by
investors to hedge other income, such as income from labor or the non-traded cor-
porate sector. While a possibility, this is hard to imagine. In this respect, this puzzle
poses a great challenge to theories in modern macroeconomics and finance as many
of them share similar implications for aggregate and sectoral prices and quantities.

Our model is set in a perfect neoclassical world, free of collateral and fund-
ing requirements, information processing constraints, and transaction costs. While

2Piazzesi, Schneider and Tuzel (2007) and Kongsamut, Rebelo and Xie (2001) empirically docu-
ment the stability of expenditure shares across housing and non-housing wealth and across services,
agriculture, and manufacturing, respectively.
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done for tractability, these or other types of long-lived frictions could also play an
important role in breaking link between mean-variance considerations and wealth
shares. These nontrivial extensions are outside the scope of the paper. We therefore
view our study as providing a stepping stone for future work and as an estimate of
the quantitative hurdle faced by economists.

Our work overlaps with several strands of research. First, it builds on theoretical
work that attempts to link wealth shares to expected returns. A short list is Menzly,
Santos and Veronesi (2004), Cochrane, Longstaff and Santa-Clara (2008), Chien,
Cole and Lustig (2012), and Martin (2013). Our model, as in Eberly and Wang
(2011), is a multi-sector production model but allows for goods to be imperfect
substitutes and the preference for individual goods to vary over time. Much of
the earlier work is written in endowment economies and so not explore the puzzle
empirically or quantitatively.

Our paper relates to the classic literature on intertemporal portfolio allocation:
a partial list is Samuelson (1969), Merton (1971), Campbell (1993), and Campbell
and Viceira (2002). An important distinction of our work is that many of these
models are solved in partial equilibrium, often exogenously specifying assets’ re-
turns, while our setup is housed in a general equilibrium production economy. The
adjustment of capital can be particularly important for longer investment horizons
as sectoral realignments must take place.

The issue of the optimal allocation of wealth across different sectors is also im-
portant from the perspective of production-based multi-sector models. A salient
margin in these economies connects holdings of sectoral wealth and the return dis-
tribution. For example, Long and Plosser (1983) and Boldrin, Christiano and Fisher
(2001) consider multi-sector models but do not explore the connection between sec-
toral wealth and returns. Investors in these economies hold sectoral wealth largely
along the mean and variance dimension, and thus the empirical puzzle we highlight
in this paper provides an important challenge for this literature as well.

Our paper is written as follows. In Section II, we first document the puzzle
in the data. In Section III, we present the setup of our model. In Section IV, we
calibrate and analyze the model, drawing attention to the effects of demand shocks.
In Section V, we infer the historical process of a demand shock implied by the
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model’s state variables and use it to estimate empirically the magnitude of hedging
demand. We then conclude.

II. THE EMPIRICAL PUZZLE

We evaluate the puzzle by examining the joint time series behavior of risk premia
and wealth shares for several groups of assets. From these series’ behaviors over
time, we infer the importance of mean-variance and hedging demand in accounting
for portfolio allocations.

A concern with the approach is that we require estimating risk premia. We
therefore also study the temporal patterns of Tobin’s Q and wealth shares. To the
extent that an increase in an asset’s risk premium lowers its Tobin’s Q, then these
patterns provide additional evidence of the puzzle that sidesteps estimation.

We first look at mean-variance theory’s cross-sectional predictions, where an
asset’s wealth share should correlate with its expected return period by period. We
then turn to looking at the puzzle intertemporally, as we further describe below. We
present the empirical frameworks before discussing results.

A. THE PUZZLE IN THE CROSS-SECTION

We look across markets from the perspective of US households’ collective invest-
ments in three major asset classes: debt, equity, and housing. We construct re-
turns from market values of the three assets in the Federal Reserve’s Flow of Funds
and from investment income (interest, dividends and rental) earned by households
recorded in the Bureau of Economic Analysis. Appendix A describes their con-
struction in detail.3

To strengthen empirical findings, we also assess the puzzle within US equity
markets. In this environment it is more plausible that investors face the same re-
strictions, if any. We separately study five industry and five book-to-market port-
folios, both from Ken French’s website. Industry portfolios allow us to cleanly

3Our framework described below is set in a neoclassical world which serves as a benchmark
but abstracts from some potentially important economic frictions, such as collateral constraints or
rational inattention, that could be driving the empirical results.
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measure Tobin’s Q, but are not rebalanced overtime. Book-to-market portfolios are
rebalanced every June but complicate the calculation and interpretation of Tobin’s
Q, and so we ignore this statistic for these portfolios.

A concise way to gauge the size of the empirical puzzle in expected excess
returns and wealth shares is to scatter plot, period by period, risk premia implied
by a mean-variance investor’s equilibrium allocations on risk premia estimated in
the data. We then look for departures from the 45-degree line, which would hold
true when hedging demand is unimportant and only mean-variance considerations
matter.

More specifically, for every t we compare

Et[Re] = γΣwt with Et[Re] = â+ b̂×Dt/Pt.

We calculate theoretical share-implied risk premia as the vector of current wealth
shares, wt, pre-multiplied by a value of risk aversion, γ, and the constant covari-
ance matrix of portfolio excess returns, Σ. We also calculate empirically valuation-

implied risk premia as fitted values of a regression of future annual cumulative
excess returns,

∑4
h=1Rt+h − Rf

t+h, on the current cash flow yield, Dt/Pt, and a
constant. Both the covariance matrix and regression coefficients are estimated from
the full data sample, whose total length depends on the asset class in question.

B. THE PUZZLE AT LONG HORIZONS

In addition to analyzing cross-sectional predictions, we also examine the relation-
ship between current wealth shares and future excess returns over long horizons. In
particular, for each asset in a particular portfolio we look at regressions of the form

1

H

H∑
h=1

Rt+h −Rf
t+h = aH + bH × wt + εt+H , for all t, (2)

where the variable H indexes the horizon over which future excess returns are cu-
mulated. The slope coefficient bH measures the effect of a one percent increase in
an asset’s wealth share on its excess return per period over the next H periods.

Evidence of mean-variance allocations would be present if slope coefficients
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were positive and statistically different from zero for all horizons. If short-lived
frictions exist that prevent the immediate alignment of wealth shares with mean-
variance allocations but diminish at longer horizons, then slope coefficients would
be initially zero yet would rise and become positive and significant as H became
large. If deviations from mean-variance theory were long-lived, then coefficients
would be zero or negative at both short and long horizons.

C. RESULTS

Our cross-sectional results are depicted in Figure 1. The top two panels plot the
return-based empirical puzzle for the two sets of equity portfolios. The bottom-left
panel repeats the exercise for households’ three broad asset classes.4 The bottom-
right panel plots changes in Tobin’s Q on changes in wealth shares for the industry
portfolios. We relegate the empirical relation between Q and shares for the broad
asset classes to Section IV, though results are consistent with what is presented
here.

All figures suggest the same phenomenon and the pattern seems robust: there
is a significant departure from the mean-variance portfolio allocation. In fact, all
expected return patterns suggest that mean-variance demand explains very little,
as each portfolio’s share-implied risk premia are effectively flat with respect to
valuation-implied risk premia. The upward slopes for each industry’s Tobin’s Q
relative to their wealth shares, moreover, corroborate the empirical fact that risk
premia, all else equal, seem to decline in wealth.

We view the empirical puzzle as ubiquitous.5 These facts are challenging for
models at the nexus of financial markets and the real economy. In standard mod-
els, risk premia generally increase in wealth shares. As the output share of a sec-

4The valuation-implied expected excess return on debt may seem high. This derives from our
data sample. Basically, cash flows from debt are high during the 1980s at the same time that values
of bonds are low, implying high expected excess returns over this period. We nevertheless leave the
debt return variable unaltered as it is consistent with our portfolio construction from the perspective
of US households.

5In other work, Bansal, Fang and Yaron (2008) document a similar negative relationship between
wealth shares and both expected returns and Sharpe ratios for the Fama-French 12 industry portfo-
lios. There they find that considering volatility does not affect the general conclusion, so we focus
on the first moment of returns here.
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tor grows, its output contributes more to aggregate consumption, and therefore the
systematic risk of the sector increases, along with its risk premium. In a standard
multi-sector production economy, a sector’s Tobin’sQwould fall after it invests and
increases its wealth share because the marginal product of capital would decline, all
else equal. Neither of these common predictions are evident in the data.

We now turn to our results over long horizons and depict them in Figure 2. For
each industry portfolio and the three household assets, we plot the 95 percent con-
fidence intervals obtained in (2) over a 10-year horizon. Every asset over the entire
horizon displays estimates that either do not differ from zero or else are negative.
All results provide evidence that is contradictory to mean-variance theory. These
deviations, furthermore, are long-lived. It is striking that equity and housing shares
are negatively related to future excess returns even up to 10 years out.

Thus, not only is the puzzle ubiquitous, it is economically large and persistent.
Any coherent explanation would need to address the long duration of these devia-
tions from mean-variance theory. For example, a potential explanation which ap-
pealed to financial or informational frictions to explain household allocations would
need these frictions to last much longer than the duration of average five-year busi-
ness cycle.

To understand the empirical results, we need to go beyond simple mean-variance
theory. Therefore, we proceed to theoretically develop and analyze a multi-sector
production economy featuring real frictions in the form of capital adjustment costs.
Our theory contains insights of the Lucas-tree asset pricing model and macroeco-
nomic real business cycle theory, yet it extends these canonical paradigms to in-
clude imperfectly substitutable goods and demand shocks. For reasons related to
the tractability of our production-based model, we focus on a two-sector economy,
which we now describe in detail.

III. MODEL

Our depiction of the economy is shown in Figure 3. Our study centers around the
portfolio choice of US households and we treat them as the owners of residential
housing and the business sector, whose ownership encompasses the debt and equity
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of both financial and nonfinancial sectors. Each sector has capital (at market values)
of qK and is financed by debt and equity (with subscripts denoting sectors when
necessary). The nonfinancial sector is financed in part by bank loans L and bonds
issued directly to households BNF , whereas the financial sector’s debt is all funded
through depositsD or bond issuesBF . Borrowing from the financial sector through
mortgages M or bank loans is thus netted out in our data calculations as described
in Appendix A.

We abstract from financial market imperfections and so in this Modigliani and
Miller economy household leverage and collateral considerations do not play a role.
We correspondingly view our exercise as a neoclassical benchmark, whose predic-
tions should provide an assessment of the quantitative ability of frictionless models
to address this puzzle.

A. PREFERENCES

The representative investor in the economy has continuation utility

Jt = Et
[∫ ∞

t

f(Cs, Js)ds

]
, (3)

where C denotes aggregate consumption is a CES composite over two sectors’ div-
idend streams Dn, n = 1, 2,6

Ct =
(

Θ
1
ε
t D

ε−1
ε

1t + (1−Θt)
1
εD

ε−1
ε

2t

) ε
ε−1

. (4)

6All investor wealth is assumed to be tradable. Human wealth, the expected discounted value of
future labor earnings, could of course affect portfolio choice. In an important paper, Bodie, Merton
and Samuelson (1992) show that if labor income is riskless, then human wealth is equivalent to
an investment in the riskless asset and the investor should tilt their portfolio towards risky assets
holdings relative to an investor who owns only tradable assets. Campbell and Viceira (2002) further
show that no matter how idiosyncratically risky labor income is, then all investors should still tilt
their portfolios towards risky assets. If labor income is positively correlated with the risky asset,
however, then investors should tilt their portfolios away from the risky asset. All of these results,
however, apply only to one risky asset, and not a choice of how to allocate wealth across risky assets
that is studied here. How assumptions of labor income affect allocations within the set of risky assets
is left for future work.
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The aggregator takes the usual Duffie and Epstein (1992b) form

f(C, J) =
ρ

1− 1/ψ

C1−1/ψ − ((1− γ)J)
1−1/ψ
1−γ

((1− γ)J)
γ−1/ψ
1−γ

, (5)

where we interpret ρ > 0 as the rate of time preference, ψ > 0 as measuring the
intertemporal elasticity of substitution, and γ ≥ 1 as the coefficient of relative risk
aversion.

The optimal consumption choice for each sector at time t is given by

D1t =

(
p1t

pt

)−ε
CtΘt and D2t =

(
p2t

pt

)−ε
Ct(1−Θt). (6)

where intratemporal elasticity of substitution is ε ∈ (1,∞), the good’s relative price
is pn, and the ideal price index is p =

(
p1−ε

1 Θ + p1−ε
2 (1−Θ)

) 1
1−ε ; with this defini-

tion we have
∑

n pnDn = pC.7 We normalize p ≡ 1 for all t, granting each sector’s
good a time-varying relative price to the numeraire of aggregate consumption.

We specify Θt as a stochastic process and interpret it as a (relative) demand
shock for sector one’s good.8 Because we focus on a two-sector economy, we let
Θt take M possible values in 0 < Θ1 < Θ2 < . . . < ΘM < 1, where the collection
of points form a fine grid on the unit interval. The generator matrix is Π = [πθθ′ ]

for θ, θ′ ∈ {Θm}Mm=1, whose elements can simply be thought of as the probability

7If ε → ∞ goods become perfect substitutes and goods’ prices always equal one. If ε → 1,
aggregate consumption becomes Cobb-Douglas in both goods. The expenditure share

ent =
pntDnt

Ct

moves with the relative quantity of good-i consumption (∂en/∂Dn > 0) and against its relative
price (∂en/∂pn < 0) if ε > 1—Piazzesi et al. (2007) provide evidence that housing and nonhousing
expenditure are substitutes. Related, the true price elasticity of demand varies with the sector’s
expenditure share because we do not have a continuum of goods:

−∂ lnDn

∂ ln pn
= ε+ (1− ε)en,

which goes to ε when en gets small, and goes to one when en gets large.
8Pavlova and Rigobon (2007) show that demand shocks can be alternatively interpreted as pure

sentiment, catching up with the Joneses, or, under a special case in a multiple agent economy, as
density processes reflecting heterogeneous beliefs.
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of Θt moving from state θ to θ′ within time ∆ is approximately πθθ′∆. The process
can be equivalently represented as a sum of Poisson processes:

dΘt =
∑

θ′ 6=Θt−

qθ′(Θt−)dN
(Θt− ,θ

′)
t , (7)

where qθ′(θ) = θ′ − θ and N (θ,θ′) are independent Poisson processes with intensity
parameters πθθ′ with each jump in Θt corresponding to a change of state for the
Markov chain.

There are two advantages for the process for demand shocks in this way. First, it
makes the solution tractable, replacing a partial differential equation with a system
of ordinary differential equations. Second, arbitrary autocorrelations and variances
of the demand shock can be set via the generator matrix, allowing us to study how
the autocorrelation in demand affects returns and outcomes in the real economy.

B. TECHNOLOGY

A sector’s firm produces differentiated output with a linear technology possessing
constant productivity An > 0 and capital Kn

Ynt = AnKnt. (8)

Capital is accumulated via

dKnt = Φn(Int, Knt)dt+ σnKntdBnt, (9)

where Φn(·) is the sector’s Penrose-Uzawa installation technology that measures
the sector’s efficiency in converting investment goods into capital goods and σn > 0

scales the variability of this efficiency which evolves with a Brownian shock Bnt.
The shocks could be correlated with degree ϕ ∈ (−1, 1).

The installation technology is homogeneous of degree one in investment and
capital

Φn(Int, Knt) = φn(int)Knt, (10)
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where in = In/Kn is the investment rate and φ′(·) > 0 and φ′′(·) ≤ 0. In particular,
we specify adjustment costs as

φn(int) = int − δn −
κn
2

(int − δn)2. (11)

When κn > 0 becomes negligibly small, the economy approaches a frictionless
economy in the spirit of Cox, Ingersoll and Ross (1985). When κn gets large,
capital becomes illiquid and fixed as in the endowment economies of Cochrane et
al. (2008) and Martin (2013). In steady state when in = δn, adjustment costs are
zero.

All produced goods are either consumed or invested in one or any combina-
tion of the other sectors; that is, goods can be reallocated from one sector to the
other. While attaining a maximally diversified economy is ideal to the representa-
tive investor, the act of reallocation consumes resources. This reallocation cost thus
generates a tradeoff between diversification and growth (Eberly and Wang (2011)).
Production also allows our agent to alter the future distribution of capital and risk
in the economy, which is a potentially important consideration for our long-lived
investor. In addition, the presence of adjustment costs allows us to relate demand
shocks to Tobin’s Q.

Each sector’s firm takes the equilibrium stochastic discount factor as given and
maximizes firm value. Each sector’s dividends are Dn = Yn − In and their market
values, in their own units, are the product of their capital stock and marginal q:

Pnt = qntKnt and qnt =
1

φ′n(int)
=

1

1− κn(int − δn)
. (12)

Following Hall (2001), we can interpret κ for sector n as a doubling time. If,
for example, the sector’s q doubles from one to two, then i exceeds δ by 1/(2κ);
if this investment rate continues for an interval of time of length 2κ, then capital is
expected to double if φ(i) ≈ i− δ, when adjustment costs are small. This doubling
time interpretation allows us to parameterize adjustment costs by using data only
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net investment rates:

κn ≈
log(2)

2(i∗n − δn)
. (13)

C. SOLUTION

The investor owns complete financial market claims to each sector’s dividend.9

Complete markets allow us to highlight that our results are not generated by fi-
nancial market imperfections or from some notion of background risk that is un-
tradable. All risks can be completely hedged with portfolios of state contingent
claims. The second welfare theorem then allows us to solve a Planner’s problem
to get allocations and then to decentralize it using prices to examine the behavior
of assets. By the principle of optimality, we have a nested system of M ordinary
differential equations

0 = max
I1,I2

{
f(C, J(K1, K2, θ)) +

∑
θ′ 6=θ

πθθ′ (J(K1, K2, θ
′)− J(K1, K2, θ))

+
2∑

n=1

(
Jn(K1, K2, θ)Φn(In, Kn) +

1

2
Jnn(K1, K2, θ)σ

2
nK

2
n

)
+ J12(K1, K2, θ)ϕσ1K1σ2K2

}
, for θ ∈ {Θm}Mm=1 (14)

where Jn, Jnn, and J12 denote the value function’s first, second, and cross-partial
derivatives with respect to sector n’s capital holding θ fixed.

In Appendix B, we describe features of the solution as well as steps to simplify
it that exploit the model’s homogeneity. Definitions to know for what follows are
the parameter η ≡ (ε− 1)/ε and the variables weighted capital K ≡ (Kη

1 +Kη
2 )1/η

and the first sector’s capital share k ≡ (K1/K)η, an important continuous state
variable that summarizes the distribution of capital in the economy.

9To complete markets, we assume that the agent can trade a third asset whose return is linearly
independent of the other two assets and that is held in zero net supply.
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D. SOURCES OF RISK

The stochastic discount factor (SDF), which is the present value of an extra unit of
aggregate consumption (the numeraire) at time t, takes the form given by Duffie
and Skiadas (1994):

Λt = exp

{∫ t

0

fJ(Cs, Js)ds

}
fC(Ct, Jt)

= exp

{∫ t

0

ρ

1− 1/ψ

[(
c(ks,Θs)

v(ks,Θs)

)1−1/ψ

(1/ψ − γ)− (1− γ)

]
ds

}
ρK−γt eζ(kt,Θt),

(15)

where ζ(k, θ) = (1/ψ−γ) log v(k, θ)−1/ψ log c(k, θ) is a function of v(·) and c(·),
which are respectively continuation utility and consumption per unit of weighted
capital and defined in Appendix B. Ito’s lemma then implies that our pricing factor
inherits the following dynamics:

dΛ

Λ
= −r(k, θ)dt− λ1(k, θ)σ1dB1 − λ2(k, θ)σ2dB2

+
∑
θ′ 6=θ

(
eζ(k,θ

′)

eζ(k,θ)
− 1

)(
dN (θ,θ′) − πθθ′dt

)
. (16)

The risk-free rate r in the numeraire’s units is given in Appendix B and responds
to the usual features of expected growth and precautionary savings. There are three
sources of risk. The first two are diffusive supply shocks:

λ1(k, θ) = γk − ∂ζ(k, θ)

∂k
ηk(1− k),

λ2(k, θ) = γ(1− k) +
∂ζ(k, θ)

∂k
ηk(1− k). (17)

Looking at the first sector’s price of risk, λ1σ1, the first piece increases linearly with
k from 0 to γσ1 as k goes from zero to one. The sign of the second piece depends
on ζ(k, θ) and η. In our calibration, the first piece dominates and the first sector’s
price of risk effectively increases monotonically with k. A similar description holds
for the second supply shock.
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This monotonicity lies behind the counterfactual result of standard two-sector
economies producing a positive relationship between risk premia and wealth shares
(Cochrane et al. (2008)). Calibrations which feature supply shock volatility near
3 percent, an empirically reasonable value, face difficulty in matching the negative
pattern observed in the data.

The third source of risk arises from demand shocks and equals the growth rate
of ζ(·) while holding k fixed. These shocks alter the pricing kernel through their
effects on the growth rates of consumption and continuation utility. Our calibra-
tion sets the price of risk on continuation utility (γ − 1/ψ > 0) greater than on
consumption (1/ψ), implying that our agent cares more about the smoothness of
continuation utility (the long-run path of consumption) than the variability of cur-
rent consumption.

There is a benefit of specifying demand shocks θ to be orthogonal to supply
shocks: specifically, demand shocks allow the model to generate great variation in
marginal utility through ζ(k, θ) even when k is small. This important margin helps
the model reconcile the key patterns that we see in the data.

With our pricing kernel in hand, we can now study the risk and return properties
of the assets and distinguish the sources of asset demand.

E. RISK PREMIA AND PORTFOLIO CHOICE

For what follows, it is convenient to define a sector’s Tobin’s Q in units of the
numeraire as Qn ≡ pnqn. The return on a stock with price Pn in units of the
numeraire is then

dRn =
d(pnPn)

pnPn
+
Dn

Pn
dt =

dQn

Qn

+
dKn

Kn

+
Dn

Pn
dt+ second-order terms

+
∑
θ′ 6=θ

(
Qn(k, θ′)

Qn(k, θ)
− 1

)
dN (θ,θ′). (18)

The dividend yield, Dn/Pn = (An − in)/qn, is unit-free, but the expected capital
gains component depends on the quantity and value of capital. Holding fixed a
sector’s capital stock, a demand shock affects its return through Tobin’s Q.

The risk premium is a function of a sector’s capital share and the relative de-
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mand for its good. For the first sector, it takes the form(
1

dt
Et[dR1]− r

)
= − 1

dt
Et
[
dΛ

Λ
dR1

]
= λ1σ1

(
∂Q1/∂k

Q1

ηk(1− k)(σ1 − ϕσ2) + σ1

)
︸ ︷︷ ︸

≡β11

+ λ2σ2

(
∂Q1/∂k

Q1

ηk(1− k)(ϕσ1 − σ2) + ϕσ1

)
︸ ︷︷ ︸

≡β12

+
∑
θ′ 6=θ

πθθ′

(
eζ(k,θ

′)

eζ(k,θ)
− 1

)
︸ ︷︷ ︸
≡λDemand

(
1− Q1(k, θ′)

Q1(k, θ)

)
︸ ︷︷ ︸

≡β1Demand

,

(19)

where for betas the first subscript indexes the sector and the second indexes the risk
source. The second sector’s premium has a similar representation and is omitted for
brevity. If a demand shock occurs whereby marginal utility rises while a sector’s
Q falls, then the agent will require positive risk compensation to hold that sector.
Furthermore, if marginal utility could potentially rise especially high when a sec-
tor’s capital share is small, then the small sector could command high risk premia,
a pattern that is consistent with the data.

Next, the first sector’s wealth share is

w =
p1q1K1

p1q1K1 + p2q2K2

, (20)

leaving the other sector with share 1 − w of total wealth W =
∑

n pnqnKn. We
collect these wealth shares in the vector, w = [w, 1 − w]′, and define the agent’s
mean-variance portfolio demand as

MV =
1

γ
×

(
vart(dR1) covt(dR1, dR2)

covt(dR1, dR2) vart(dR2)

)−1 [
Et[dR1]− rdt
Et[dR2]− rdt

]
. (21)

We compute hedging demands as the difference between wealth shares w and the
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mean-variance demands10

HD = w −MV. (22)

Hedging demand measures how much the agent holds of the sector’s market value
in excess of its myopic mean-variance tradeoff. An investor with a long horizon is
averse to news that future returns will be lower, because their wealth or consumption
will be. The investor will therefore bid up the prices of stocks that do well on such
news, hedging this risk. Thus, equilibrium expected returns will depend not only
on covariation with the current market return, but also on covariation with the news
of future returns.

IV. CALIBRATION AND ANALYSIS

Our chosen parameters are in Table I. We begin by choosing household tastes that
are consistent with prior literature in production economies with recursive prefer-
ences (Croce (2014) and Kung and Schmid (2015)) and also empirical literature

10Further analytical progress on the determinants of hedging demand is unobtainable in our jump-
diffusion setup. To understand why, the evolution of wealth can be written as

dW = W

(
2∑

n=1

wn(dRn − rdt)

)
− Cdt+ rWdt,

where the wealth shares are defined according to (20). The optimal portfolio choice for a solution
J(W ) requires the joint solution of a two-equation system,

0 = WJ ′(W )

(
1

dt
Et[dRcn]− r

)
+ J ′′(W )W 2 1

dt
(wnvart(dRn) + wm 6=ncovt(dRn, dRm))

+
∑
θ′ 6=θ

πθθ′J
′

(
W

2∑
n=1

wn
Qn(θ′)

Qn(θ)

)
W, for n = 1, 2,

where dRcn is the continuous part of the return process in (18). The last term makes the problem
nonlinear and unable to be solved in closed-form except in special cases (Ait-Sahalia, Cacho-Diaz
and Hurd (2009)). While the closed-form could be in essence achieved by specifying a Brownian-
driven continuous-time process that approximates our discrete jump process for demand shocks—we
thank Harjoat Bhamra for this suggestion—we leave these calculations for other work. Instead, we
proceed to intuitively relate systematic risk, risk premia, and hedging demand with depictions of the
solution to the calibrated model.
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on estimates of the value of intertemporal elasticity of substitution for stockhold-
ers (Attanasio and Vissing-Jorgenson (2003)): Risk aversion is γ = 10 and IES is
ψ = 1.1. The rate of time preference is set to ρ = 0.02. For the important parame-
ter ε that determines the magnitude of relative price variation and the importance of
demand shocks, we choose a value of ε = 3, which is within the range of estimates
given by Ogaki and Reinhart (1998), who find ε ∈ (2.9, 4.0) across nondurable and
durable goods when using a cointegration approach on long series of annual data
(1929-1990), and Ravn, Schmitt-Grohé and Uribe (2006), who estimate the value
ε ∈ (2.5, 5.3) in their deep habits model.

We then calibrate the economy’s technologies that drive the capital state vari-
ables to fit the data. Specifically, we take observed investment, depreciation, and
real growth rates of capital stocks from the BEA’s long data sample and use them to
pin down parameters corresponding to average investment and depreciation rates,
supply shock volatility, and the curvature of the adjustment cost function. We de-
fine k to measure the share of business sector’s capital stock in the economy, leaving
1− k for housing’s.

For what follows, we refer respectively to the business sector first and the hous-
ing sector second. Average depreciation rates δ are calculated and simply set to 7.5
and 2 percent. The volatilities σ are equated to the data’s estimate of the volatility
of the growth rate: 3.2 and 3.4 percent; the shocks are left uncorrelated as is com-
mon in the literature for clarity, ϕ = 0. We set adjustment cost parameters based
on net investment rates via (13), putting κ at 12 and 14 for business and housing,
reflecting a doubling time of about 24 and 28 years. These parameters are close
to the average estimates obtained by directly calculating the doubling times using
overlapping data of the real capital stocks, which suggest κ should be 10 and 12.
Finally, we calibrate productivityA to 0.15 and 0.1 to match the average investment
rates of each sector in their respective one-sector economies via (B8).

To calibrate the transition matrix and values of the demand shock, we use the
quadrature method of Tauchen and Hussey (1991) to approximate an annual AR(1)
with a mean of 0.5, an unconditional standard deviation of 0.1, and a persistence of
0.9. We chose the mean of 0.5 for symmetry and because we do not have a strong
prior for the long-run average share of household expenditure on the housing sector
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relative to the business sector. The unconditional standard deviation was chosen so
that {Θm} is contained in the unit interval. The choice of persistence pins then down
the conditional volatility of the shock, 0.1 ×

√
1− 0.92 = 4.36 percent per year,

which is about one percentage point higher than the average supply shock volatility.
We convert the discrete-time Markov chain to continuous time using Jarrow, Lando
and Turnbull’s (1997) approximation that is based on assumption of more than one
change of state is close to zero within the period. We tabulate the state space of Π

and its ergodic distribution in Table II.

A. OUTLINE OF ANALYSIS

We split the analysis into three parts. In the first part, we discuss the intuition
of the model, in particular the trade-off between growth and the investor’s desire to
achieve a balance in the economy. We next examine risk premia and Tobin’sQ at the
sector level, drawing a contrast between a model with both types of shocks and one
with only supply shocks, the literature’s usual benchmark. We finally decompose
risk premia, highlighting the demand shocks’s contribution and the role hedging
demand plays in reconciling the main empirical patterns that we see in the data.

We plot several of the model’s policy functions below with k on the horizontal
axis. Because k and θ are orthogonal, holding θ fixed, a shift along a policy function
changes only the distribution of capital; holding k fixed, a shift in demand is a shift
across policy functions. Of course, an economy that only has supply shocks will
feature different policy functions than the ones below because it would exclude risk
premia and all the general equilibrium effects attributed to demand shocks.

To complement the theory’s qualitative predictions in our analysis, we do the
following. We simulate the model 5,000 times for 480 quarters each, burning in
the first half and leaving 60 years of quarterly data, a length comparable to our data
sample. Based on these simulations we compute statistics which allow us to quan-
titatively evaluate the model. Summary statistics on commonly-studied macroeco-
nomic and financial variables are tabulated in Table III.

Adding demand shocks, in short, helps the model generate dynamics that are
consistent with the data. Without them, cash flow volatility is basically equal capital
stock volatility, in stark contrast to the data. Demand shocks add variation to goods’
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relative prices while keeping the supply side of the economy unchanged. Of course,
adding another shock raises the average excess return and return volatility of each
sector, but the introduction of demand shocks, as we will discuss, adds more than
simply including another otherwise identical supply shock.11

One restriction faced when choosing ε and a process for demand shocks is that
consumption volatility increases as relative prices become more volatile. As is
standard in production-based models, it is hard to accurately model both aggregate
consumption volatility and sectors’ dividend volatilities. Since we are primarily
interested in sectoral movements, we choose to focus on the dynamics of sectoral
cash flows.

A data measure theoretically close to what our “retired investor” would consume
would be cash flows earned from the housing and business sectors (C = p1D1 +

p2D2). To calculate the growth rate of this measure in the data, we simply construct
a time series of dC/C = d(p1D1)/(p1D1)× s+ d(p2D2)/(p2D2)× (1− s), where
s = p1D1/(p1D1+p2D2) is the business sector’s cash flow share of total cash flows,
which is calculated period by period. The volatility of this empirical consumption
growth rate is 6.8 percent, whereas the model produces a volatility of 5 percent.12

Within the model’s 99 percent confidence interval of (2.8, 7.8), moreover, the
model’s standard deviation of consumption falls in line with the usual measure of
consumption based on services and nondurables expenditure, estimated to be 2.9
percent annually over the period from 1929 until 2015. Taken together, we believe
our current calibration does not substantially overstate consumption volatility.

11Note that the high average return and Sharpe ratio of the business sector is due to two effects.
First, the portfolio’s return is a market-weighted average of debt and equity. Second, we take the
data as is from the BEA for interest income and from the Flow of Funds for market values. The
average cash flow yields over our sample on debt and equity are 11 and 5 percent, respectively.

12Related, Vissing-Jorgensen (2002) estimates the volatility of the consumption expenditure
growth of stockholders to be between 4 and 10 percent using data based on the US Consumer
Expenditure Survey. Additionally, our model aggregates consumption expenditure from both busi-
ness goods and services and housing services. Part of this expenditure would therefore be spent on
durable goods, not only on nondurables and services. Gomes, Kogan and Yogo (2009) report that
the volatility of durable goods ranges from 8 to 17 percent.
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B. BALANCEDNESS

The representative agent faces a trade off between growth and the desire to achieve
a balanced economy.13 A balanced economy occurs when a sector has a capital
share that is close in size to the demand for its good; for the first (business) sector
for example, when kt ≈ Θt. For brevity we’ll refer to this property simply as bal-

ancedness. The economy features unbalancedness when either a small capital share
produces to meet a high demand, or vice versa, or more generally when there sim-
ply exists a sectoral imbalance of supply and demand. Furthermore, the economics
differ when demand is high and supply is low for a sector than from when demand
is low and supply is high, so asymmetries exist.

When the economy is balanced, the market risk premium, market volatility,
and the demand for precautionary savings reach local lows, leading the agent to
consume a lot out of wealth. Figure 4 plots these variables on the business sector’s
capital share k for three levels of demand for the sector’s good, θ ∈ {Θ1,Θ5,Θ9}.
Each (k, θ) pair has a maximal point of balancedness. The three minima of the
market risk premium across k for each θ align closely with these points.

Our representative agent is long-lived and has recursive utility, so the consumption-
wealth ratio depends on the expected discounted value of all future market returns.
Because our calibration has ψ > 1, the substitution effect dominates the wealth ef-
fect, leading the agent to prefer postponing consumption for investment when future
market returns are expected to be high. During these high market return periods,
then to a first-order the consumption-wealth ratio is low.

The agent prefers a balanced economy and can invest to attain this in our pro-
duction economy. But adjustment is costly as a sector’s output is diverted to invest-

13This desire originates from the consumption-to-weighted capital ratio c(k, θ) in (B4). Loosely
speaking, when kt and Θt are high, then i1t would be chosen to be low, making the dividend-to-
capital ratio, (A1 − i1t), large. (In our two-sector economy this is equivalent to 1 − kt and 1 − Θt

being both small, so analogous arguments hold for the other sector.) This choice has two effects.
First, c(k, θ) would be high because a sector with abundant capital produces a good in high demand.
Second, the volatility of consumption would be low because the Cobb-Douglas function of Θt and
(A1 − i1t) would feature small marginal “products”, reducing the volatility of these components.
These are therefore good times. In contrast, if kt were high but Θt low, then a small dividend-to-
capital ratio would be chosen and similar arguments would imply a low c(k, θ) and a high volatility
of dC/C.
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ment at an increasing marginal cost. There is therefore a tradeoff between growth
and restoring balancedness, exemplified by the drift of the business sector’s capital
share, E[dk]. It is either positive or negative parabola, or a sine curve, depending
on the level of demand. The economy is therefore mean-reverting and in the long-
run features a nondegenerate ergodic distribution. When demand for the business
good increases, the agent chooses to consume more of it at the expense of invest-
ing in production, eventually forcing E[dk] negative and k towards zero, thereby
unbalancing the economy even further.

The bottom-right panel shows that when demand increases for the business sec-
tor, its wealth share increases relative to its capital share; a similar pattern holds for
housing. This plot shows a sector’s wealth share closely tracks its capital share but
diverges depending on the level of demand.

To preview the asymmetry in the model, contrast how an increase in business
demand (Θ rises) were to affect the economy conditional on initially there being
excess supply (Θt < kt) versus excess demand (Θt > kt): in the former, the agent
would choose to consume relatively more out of wealth than before, as demand
catches up with supply, balancedness is restored, and aggregate volatility declines;
the latter would lower relative consumption, as the agent would prefer to invest to
restore balancedness. These two cases differentially affect the consumption-savings
decision, marginal utility, and the pricing of risky assets in the economy, as we’ll
now discuss.

C. RISK PREMIA AND TOBIN’S Q

Demand shocks not only affect the marginal utility by altering the consumption-
savings decision, they also affect Tobin’s Q by shifting a sector’s relative price p
and marginal value q. Figure 5 shows that holding θ fixed, a sector’s Tobin’s Q
decreases with its capital share, simply because a marginal unit of capital is valued
less as the sector’s capital base grows. With only supply shocks, then, it is likely
there is always a negative relationship between a sector’s Q and its wealth share, a
fact at odds with the positive empirical relation.

On the other hand, when fixing supply and varying demand, Tobin’s Q will re-
flect shifts in risk premia. A change in demand has different effects on risk premia
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and Q depending on the economy’s distribution of capital. When a sector is small,
an increase in demand further imbalances the economy and lowers Q as the sec-
tor’s risk premium rapidly rises; when it’s large, increasing demand could restore
balancedness, lowering the risk premium while raising Q.

We’ll decompose the SDF, risk exposures, and risk premia in the next section to
shed more light on the economics underlying the patterns, but for now it suffices to
know that demand shocks could resolve the two main empirical facts. To quantify
this, we simulate our model and, as in the data, run time series regressions of a
sector’s excess returns or Q on its wealth share. Specifically, in each simulation we
run the regressions of

(i.) 1
dt
Et[dRnt]− rt = an + bn × wnt + εnt, for all t; and

(ii.) Qnt = an + bn × wnt + εnt, for all t,

for each sector n. We also run regressions on the variables’ first-differences. Fur-
thermore, to isolate the effects of demand demand, we also run these regressions
when the model is simulated only with supply shocks. We tabulate the distribution
of slope coefficients in Table IV and compare them to point estimates from the data.

As expected, for regressions of Q on wealth, supply shocks alone always gener-
ate a negative relation. Demand shocks are required to match the data. The model
generates this by having a small level of demand catch up with a large supply of
the asset. When a sector has a large capital share, an increase in demand for that
good is good news for the agent, lowering macroeconomic risk and the required
risk premium. A falling risk premium pushes up Q.

A model featuring only supply shocks also cannot replicate the negative data
pattern between risk premia and wealth. The reason is that as an asset’s wealth
shrinks its contribution to aggregate consumption falls, bringing shocks to its cash
flows closer to being idiosyncratic and lowering its required return to the risk-free
rate. Therefore a positive relationship holds.14

14Martin (2013) is able to break this monotonicity in a CRRA endowment economy with a mix of
high risk aversion (γ ≥ 5) and high exogenous dividend volatility (10 percent). Our model does not
generate the same effect because we calibrate to only supply shock and not cash flow volatility, so the
amount of total risk in the economy is small. There are, however, two problems with this intuition
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This idiosyncratic cash flow effect is still present in a model with demand
shocks, but introducing the possibility of imbalance between supply and demand
creates a new source of risk to the economy over and above additional shock volatil-
ity. More specifically, demand shocks matter more, and affect marginal utility and
risk premia more, when supply is scarce, and the level of risk premia reflect this
heightened sensitivity. Imbalance can thus generate high risk premia at low k, and
if supply then chases demand, one would see a negative relationship between risk
premia and wealth shares which is observed in the data.

In summary, supply shocks alone generate counterfactuals with respect to the
two main regressions because systematic risk premia shrink as a sector becomes
small. Demand shocks break this counterfactual by ensuring marginal utility stays
sensitive to even a small sector’s output. Further, our regression results suggest that
the magnitude of our demand shocks, given our specification of preferences and
technology, are capable of generating a distribution of regression coefficients that
are comparable with what we observe in the data. We now turn to decomposing risk
premia.

D. DECOMPOSING RISK PREMIA

Since in our calibration both sectors’ Q’s and risk premia largely have the same
graphs with respect to k or 1 − k, we decompose only the first (business) sector’s
risk premium for brevity. We begin by looking separately at the pieces of the prices
of risk and betas defined in (19) in Figure 6. To plot the pieces related to demand
we take expectations conditional the current (k, θ) pair; that is, E[λDemand|k, θ] =∑

θ′ 6=θ πθθ′
(
eζ(k,θ

′)

eζ(k,θ)
− 1
)

and E[β1Demand|k, θ] =
∑

θ′ 6=θ πθθ′
(

1− Q1(k,θ′)
Q1(k,θ)

)
. The

product of these expectations is not the demand shock’s risk premium, but are com-
puted and displayed for intuition.

The market prices of risk, λ1σ1 and λ2σ2, effectively increase linearly with k

and result holding up in a more general model. First, a low IES combined with a reasonable dividend
growth volatility induces counterfactually large variation in the risk-free rate. Second, when moving
from an endowment to a production economy, a small asset that has a high price-dividend ratio
would also have a high Tobin’s Q, indicating profitable investment. If investment were allowed, it
would reduce the sector’s valuation, its potential for comovement with the market, and therefore its
risk premium.
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and (1− k), respectively, according to (17). The pattern on betas for each of these
shocks is also straightforward. The business asset’s exposure to the first shock β11

increases in both k and θ, all else equal, as the asset’s return becomes more and
more exposed to the sector’s fortunes as it grows in wealth. The beta on the second
sector β12 declines in both k and θ for a similar reasoning. Both of these effects
are present in the perfect substitutes models of Cochrane et al. (2008) and Martin
(2013).

What is new in our paper can be seen in the bottom two subpanels that dis-
play the approximations to the price and quantity of demand risk. For over a large
range of k and for extreme values of θ (when θ is either near 0 or 1), λDemand is
negative—it has a negative price of risk. The interpretation is that when the econ-
omy is unbalanced at either low k and high θ or high k and low θ, marginal utility
is expected to fall, arising from the demand shock being mean-reverting and restor-
ing balancedness. It is thus natural to think about demand shocks’ economics as
how they affect balancedness and not simply as a positive or negative realization in
absolute terms.

Fixing θ = Θ9, as k shrinks, the economy becomes more unbalanced and the
risk of a demand shock requires greater compensation, increasing the magnitude of
λDemand. As k rises, the magnitude of λDemand shrinks and eventually crosses zero
and becomes positive. It becomes positive because when the first sector has a large
wealth share and is basically the whole economy, a decline in demand for the good
would increase marginal utility because effectively consumption C ≈ p1D1 has
fallen. Similar to this, when θ = Θ5, then the price of risk is positive as the agent
needs to be compensated for exposure to this additional risk source as in standard
models.

The first asset’s exposure to the demand shock is also a novel finding: again for
a large range of k and for extreme values of θ, β1Demand is negative, implying that
the asset is held to hedge the demand shock. If a high demand is expected to fall at
low k, then Q rises as the market risk premium falls. Thus, a small asset is held as
protection against a future decline in the investment opportunity set, as proxied by
the level of the market risk premium. Conversely, if a low demand is expected to
increase at high k, then Q rises again as the market risk premium falls, so hedging
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is not confined to the small asset. As unbalancedness in general gets worse, this
hedge-beta gets larger in magnitude. On the other hand, when k increases enough,
then the economy becomes more balanced and the beta of the asset crosses zero and
becomes positive.

The presence of these large hedge betas naturally leads to a hedging-demand in-
terpretation that we discuss in the next section. But first, the product of the negative
beta and the negative price of risk suggests that demand shocks increase the de-
manded risk premia in the economy. To understand how important demand shocks
are, we decompose the three sources of risk premia in Figure 7.

The figure shows several things. First, by far demand shocks account for the ma-
jority of the variation in risk premia, even when θ = Θ5. Nonetheless, at k = Θ5,
that is, when the economy is at balance, the magnitude of the risk premium at-
tributed to demand shocks is small (as shown in the two bottom subpanels of Figure
6). Generally, as the economy becomes more unbalanced, demand’s contribution to
risk premia grows even more and ultimately dwarfs supply’s contribution. Finally,
from the lens of our production economy featuring constant returns to scale, the
variation in Tobin’s Q should then be primarily driven by demand shocks and hedg-
ing considerations attributed to them. Therefore, our results suggest that hedging
demand is potentially important to consider when trying to understand the dynamics
of investment.

E. SOURCES OF ASSET DEMAND

An ICAPM argument would say that an average investor would bid up the price
of an asset that acts as a hedge against adverse realizations of state variables. A
long-lived investor would be averse to news that future returns are lower, because
their long-term wealth or consumption will be lower. Assets that pay off when the
path of the expected market return falls (or the path of market volatility is expected
to increase) would therefore act as hedges against a deterioration in the (future) in-
vestment opportunity set. The average investor would therefore bid up these assets’
prices, lowering the share of their market values attributed to myopic demand while
raising hedging demand’s share.

Figure 8 plots each sector’s mean-variance demand and hedging demand as a
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function of its wealth w. The two dashed black lines are the zero line and the 45-
degree line. By construction, the sum of each sector’s mean-variance demand and
hedging demand equals the sector’s wealth share. When the economy is balanced,
hedging demand is close to zero and for each θ reaches a local minima across k.
Moving away from these minima in general increases hedging demand.

To understand why, consider a case of excess demand (kt < Θt) for the business

good. During this period, the agent holds housing increasingly as a hedge. Why?
Eventually balancedness will occur, from either a rising kt or a falling Θt, and
when it does the expected return on wealth will be low; ie, future returns face
reinvestment risk. Housing pays off in either scenario: when Θt falls, the relative
price of housing rises simply because the demand for it, (1 − Θt), does; when kt
rises, the relative supply of housing falls, again raising its relative price for a given
demand—it is simply a good hedge against the looming reinvestment risk. A similar
story analogously holds for the excess supply case in our two-sector economy.

Because the economy features unbalancedness the level of hedging demand is
magnitudes more than in a model that only has supply shocks. For example as
Figure 8 shows, near a 40 percent wealth share and θ = Θ1, the level of business
sector wealth is entirely attributed to hedging demand. To emphasize that demand
shocks create these phenomena, we record the level of hedging demand for each
sector during our simulations and compare them with those obtained in a simulated
supply-shock-only economy (we resolve the model holding Θ = 0.5). As seen in
Figure 9, the inclusion of demand shocks, and the potential for imbalance of supply
and demand, generate a markedly different pattern of the magnitude of hedging de-
mand. In contrast, the model that only has supply shocks generates a small amount
of hedging demand on the order of plus-minus 8 percent.

The analysis in the previous two sections suggests that demand shocks, risk
premia, Tobin’s Q and hedging demand all intertwine and thus jointly modeling
their dynamics is the key to understanding the empirical puzzle. In the next section,
we now try to figure out these important economic variables in our particular data
sample.
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V. APPLICATION: INVERTING DEMAND SHOCKS

As a final analysis, we use the model framework to infer the level of demand Θt

from our observed data. We do this in the following steps:

1. We take our data series for both the business sector’s capital share {kt} and
wealth share {wt} over the period 1951Q4 until 2015Q4.

• The capital share is the real stock of nonresidential fixed assets over
itself plus the real stock of residential fixed assets, taken from BEA
data.

• The wealth share is the business sector’s market capitalization share of
total household wealth, taken from Flow of Funds data.

2. For every quarter in the data we map exactly the data’s kt into the model’s
k.15

3. Given kt, we then, for each quarter, infer Θt by matching the data’s wt as
close to our model’s policy function w(kt,Θt) by minimizing the distance
between the two measures.

Thus, the model’s choice of Θt is restricted by first exactly fitting the capital
distribution k and then best fitting the wealth distribution w. With our bivariate time
series of {kt,Θt}, we can then plot salient model objects over time. The output is
depicted in Figure 10. The top panel shows the time series of {kt}. As constructed,
the model matches the data exactly quarter by quarter. The bottom panel plots the
business sector’s wealth share {wt} on the left axis and the implied level of demand
for the business sector’s good {Θt} on the right axis.

Here the model cannot match the wealth series exactly because it does not gener-
ate enough variation in wealth shares separately from variation in the capital shares
(see the discussion regarding the bottom-right panel of Figure 4). Decreasing the

15The theoretically correct share is p1K1/(p1K1 + p2K2), not simply k. We chose k because it
sidesteps the need for relative prices and the effects of demand shocks, thereby allowing for a direct
mapping to supply side of the economy. Moreover, given the modest fluctuation of kt in the data,
the discrepancy between the theoretically correct share and simply k is small.
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elasticity across goods ε would shrink the gap between data and model, as relative
price shifts would be amplified, but would come at the cost of increasing consump-
tion volatility above what a typical calibration would target.

More importantly, the required movements in demand shocks vastly overstate
variation in consumption expenditure shares seen in the data which are largely sta-
ble (compare the model’s restrictions in (6), which are discussed further in footnote
4, with the evidence in Piazzesi et al. (2007) and Kongsamut et al. (2001)). We
conclude that although the introduction of demand shocks significantly improves
the model implications, it still falls short of truly reconciling the movements ob-
served in the data. Nevertheless, we proceed to analyze other model quantities and
prices in hope of identifying potential important features to consider in future work.

Given our time series of {kt,Θt} we plot other model functions in Figure 11.
The top and middle plots track Tobin’s Q and the risk premium for the business
sector, and the bottom plot shows both sectors’ hedging demand as a percentage
of each sector’s wealth. All model series are smoothed with a 12-quarter moving
average for clarity.

During the 1970s the model captures the decline in the business sector’s wealth
share with a fall in demand for its good. The economy becomes unbalanced and
risk premia rise, lowering Tobin’s Q. Anticipating a reversion in demand, the busi-
ness sector becomes the primary hedge asset, where its share of hedging demand
to its wealth more than doubles from 40 to 100 percent. Driven by a expansion
in demand, the recovery of business’s wealth share during the 1990s restores the
supply-demand balance and the dot-com bubble manifests itself as a boom in Q
with a compression of risk premia. During this episode, housing becomes the pri-
mary hedge asset—it is expected to pay off when business demand falls in the
future.

The bottom panel depicts the model’s requirement for hedging demand fluctu-
ations in the time series. It makes up to about 73 percent and 75 percent of the
business and housing sector’s wealth allocations on average. At times, each sec-
tor’s hedging demand contributes effectively 100 percent to the sector’s wealth. The
massive empirical literature that studies only asset returns and variances is therefore
focusing on a relatively small fraction of the determinant of investor asset demand.
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The majority of a sector’s wealth is held for hedging, not for mean-variance consid-
erations. We conjecture that any set of genuine economic mechanisms or frictions
which adequately describe the dynamics of wealth shares must first appeal to shifts
in hedging demand.

VI. CONCLUSION

A large class of economic models, whether frictionless or not, squarely place the
trade off between assets’ means and variances at the heart of an investor’s asset allo-
cation decision. Investors should be compensated to hold an expanding asset’s share
by receiving some combination of a greater expected excess return or a smaller vari-
ance. In this paper, we find this first-order implication to be profoundly rejected by
the data, where sectors’ wealth shares negatively relate to their risk premia but pos-
itively correlate with their Tobin’s Qs. These patterns emerge both within equity
markets and across households’ broad asset allocations, and, even more strikingly,
these mean-variance deviations appear to be long-lived, lasting longer than the du-
ration of an average business cycle.

As a first step towards understanding this, we develop a multi-sector produc-
tion model that partially reconciles these patterns by subjecting imperfectly substi-
tutable goods to demand shocks. This extension creates the possibility of marginal
utility remaining sensitive to demand shocks when supply is scarce, and therefore
it generates variation in risk premia and Tobin’s Q unrelated to the distribution of
capital.

But our honest modeling attempt at a reconciliation falls short of truly recon-
ciling the joint fluctuations of wealth shares and risk premia that we see in the
data. This is because the model requires demand shocks that generate extreme
movements in expenditure shares which are counterfactual to the modest changes
observed empirically. Thus, we believe that this empirical finding on the negative
relationship between a sector’s wealth and risk premia is a great challenges to the-
ories in modern macroeconomics and finance.

A nontrivial extension of the frictionless neoclassical economy we consider is
outside the scope of this paper and we therefore view our study as providing a
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stepping stone for future work. In particular, our analysis suggests that any set of
economic mechanisms which can adequately describe these fluctuations will need
to first quantitatively appeal to changes in hedging demand. In our sample, we find
that on average 73 and 75 percent of business and housing wealth, respectively,
arises from the demand to hedge. Shifts in hedging demand, moreover, account
primarily for the changes in these allocations over time.

We are left with questions. From where does hedging demand originate? And
what exactly does a particular asset hedge? The ICAPM predicts that it arises from
investors’ desires to hedge marginal utility against changes in state variables. If an
asset’s return is good for bad realizations of a state variable, this raises the desir-
ability and thus overall allocation to the asset. People will prefer to own stocks if
they pay off when housing falls. Some of these state variables are omitted here.
Investor-specific risk ranges from holding a job to running a small business. Work-
ers in business-cycle sensitive industries will prefer to hold assets that do well in
recessions. Entrepreneurs, for some reason, retain large fractions of their wealth
in their own enterprises, bear a great deal of idiosyncratic risk, and hold largely
undiversified portfolios.

In sum, macrofinancial theories should examine in more detail the nature of
hedging demand; in particular, delineating which assets are held to hedge against
what risks and why and how these time-series and cross-sectional patterns relate.
Microempirical work needs to uncover how these shocks to state variables deter-
mine an individual or institutional investor’s portfolio decisions and to what extent
market imperfections play a role. We leave these important topics to future work.
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A. DATA CONSTRUCTION

Our main household data are from the Federal Reserve’s Flow of Funds and cover
the period from 1951Q4 until 2015Q4 for household wealth data, although we use
the CPI from the Bureau of Labor Statistics to deflate the cash flows constructed
below. We supplement this data with a long annual time series from 1929 until
2015 from the Bureau of Economic Analysis when calculating statistics of macroe-
conomic aggregates: output and consumption are deflated by their appropriate price
indices and fixed assets, at current cost, are made real by their corresponding invest-
ment price deflators. When computing Tobin’s Q we linearly interpolate the annual
fixed asset values to a quarterly series. In addition, the equity portfolio data—
returns, dividend yields, and market values—are downloaded from Ken French’s
webpage and cover the period 1928Q1 until 2015Q4.

Households and nonprofit organizations have about 70 percent of total assets in
business capital and 30 percent in nonbusiness capital, which includes housing. Be-
cause we are interested in modeling households’ portfolio decisions we focus on a
subset of total assets that would be more likely held as a result of an active allocation
decision, one where the investor is free to make marginal changes to their invest-
ment portfolio to optimize over an Euler equation. In particular, we exclude pension
entitlements (about 20 percent of total assets), equity in noncorporate business (10
percent), consumer durable goods (5 percent), and other small asset classes, leaving
our coverage at about 63 percent of households’ total asset universe as of 2015Q4.

Business capital is the sum of debt and equity capital across the nonfinancial and
financial sectors. Debt includes currency and deposits including money market fund
shares, debt securities, loans, and shares of bond mutual funds. Equity comprises
directly- and indirectly-held securities, such as those held through life insurance
companies, pension plans, retirement funds. To avoid double-counting mortgages
we calculate total business wealth as

Business Capital = qNFKNF + qFKF = D +BNF +BF + EF + ENF −M.

We view this sector’s capital stock as the fixed, private, nonresidential capital
stock (BEA Table 1.1, Line 4) that produces goods and services unrelated to hous-
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ing. Our measure of Tobin’s Q is therefore household’s business wealth over the
total nonresidential capital stock.

Cash flows from business capital are the sum of interest earned (BEA Table 2.1,
Line 14) and dividends received (BEA Table 2.1, Line 15) by households. For each
quarter, this cash flow then subtracts the total change in equity for nonfinancial and
financial corporations multiplied by household’s share of total equity to get a dollar
amount for total issuance or repurchases absorbed or earned by households.

Household’s ownership of housing is for all rented and owner-occupied real
estate, including vacant land and mobile homes at market value (Flow of Funds
LM115035035.Q and LM155035015.Q), and in our model this simply represents
qHKH . The stock of housing is the private, residential fixed assets dwelled in by
households (BEA Table 5.1, Line 7).

The flow of rental income (BEA Table 2.1, Line 12) consists of rental income
of tenants and the imputed income of owners’ housing services, which is net of
“space rent” less expenses such as depreciation, maintenance, property taxes, and
mortgage interest and is consistent with our treatment of mortgages being held by
the financial sector.

B. DETAILS OF SOLUTION

It is convenient to write η = (ε− 1)/ε, which ranges between zero when the goods
are Cobb-Douglas substitutes and one when they are perfect substitutes. Weighted

capital is defined as

K ≡ (Kη
1 +Kη

2 )1/η (B1)

and the first sector’s capital share is

k ≡ Kη
1

Kη
1 +Kη

2

. (B2)
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Applying Ito’s lemma to (B2), we obtain the dynamics for this process

dk = k(1− k)η

[
φ1(i1) +

1

2
((η − 1)− 2ηk)σ2

1

− φ2(i2)− 1

2
((η − 1)− 2η(1− k))σ2

2 + η(2k − 1)ϕσ1σ2

]
dt

+ k(1− k)η [σ1dB1 − σ2dB2] . (B3)

If the installation technologies were symmetric and σ1 = σ2, the drift would be
shaped like a sine-curve that equals zero when k equals 0, 1/2, or 1. When 0 <

k < 1/2 there would be a positive drift; when 1/2 < k < 1, a negative drift; it
therefore would mean-revert to k = 1/2. It contrast to endowment economies, it
features endogenous growth from investment governed by each sector’s installation
technology.

With these definitions we can redefine aggregate consumption in (4) as a product
of weighted capital and the consumption-to-weighted capital ratio

C = K
(
kθ1−η(A1 − i1)η + (1− k)(1− θ)1−η(A2 − i2)η

)1/η︸ ︷︷ ︸
≡c(k,θ)

. (B4)

In contrast to the one-sector iid case, consumption-to-capital now varies over time
with the each sector’s capital share and dividend, and the demand for its good.
When a sector has a high capital share, the agent prefers to have a high demand for
its good, and will choose the sector’s production schedule to maximize consumption
of that good.

We conjecture that J(·) has the homogeneity property in weighted capital

J(K1, K2, θ) =
1

1− γ
[Kv(k, θ)]1−γ , (B5)

where v(k, θ) is a function to be determined. Using this property to rewrite (14)
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gives16

0 = max
i1,i2

{
ρ

1− 1/ψ

((
c(k, θ)

v(k, θ)

)1−1/ψ

− 1

)
+
∑
θ′ 6=θ

πθθ′

1− γ

((
v(k, θ′)

v(k, θ)

)1−γ

− 1

)

+
2∑

n=1

(
φn(in)Jn +

1

2
σ2
nJnn

)
+ ϕσ1σ2J12

}
, for θ ∈ {Θm}Mm=1. (B6)

The first term in the equation relates to the agent’s flow utility related to the ra-
tio of consumption to continuation utility. The second term relates to changes in
continuation utility that occurs from demand shocks. The last summation describes
changes in supply that affect the agent’s choice of investment and the agent’s value
from diversification.

The first-order conditions for i1 and i2 jointly solve

ρ

(
c(k, θ)

v(k, θ)

)−1/ψ

p1 =
φ′1(i1)J1(k, θ)v(k, θ)

k1/η
,

ρ

(
c(k, θ)

v(k, θ)

)−1/ψ

p2 =
φ′2(i2)J2(k, θ)v(k, θ)

(1− k)1/η
. (B7)

Finally, the one sector economy defines the boundaries of the two-sector econ-
omy as one sector becomes negligibly small. In these limits, the sector’s capital
stock Kn is the single state variable. The stochastic growth rates of capital, con-

16The components of the HJB equation are

J1(k, θ) =

(
k + η

v′(k, θ)

v(k, θ)
k(1− k)

)
,

J2(k, θ) =

(
(1− k)− η v

′(k, θ)

v(k, θ)
k(1− k)

)
,

J (k, θ) =
v′′(k, θ)

v(k, θ)
η2k2(1− k)2,

J11(k, θ) = (1− η)
(
k2 − J1(k, θ)

)
− γJ1(k, θ)2 + J (k, θ),

J22(k, θ) = (1− η)
(

(1− k)2 − J2(k, θ)
)
− γJ2(k, θ)2 + J (k, θ),

J12(k, θ) = (1− η)

(
k(1− k)− η v

′(k, θ)

v(k, θ)
k(1− k)(2k − 1)

)
− γJ1(k, θ)J2(k, θ)− J (k, θ).
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sumption, investment, and output are equal. Because growth rates and returns are
iid, the ratios of consumption-, investment-, and output-to-capital are constant, as
is Tobin’s Q. The optimal investment rate solves

An − i∗n =
1

φ′n(i∗n)

[
ρ+ (1/ψ − 1)

(
φn(i∗n)− γσ

2
n

2

)]
, (B8)

and the coefficient that solves the value function is given by

bn =
ρ

φ′n(i∗n)

[
1 +

1/ψ − 1

ρ

(
φn(i∗n)− γσ

2
n

2

)] 1/ψ
1/ψ−1

. (B9)

Using these two coefficients we define the boundaries of (B6) v(0, θ) = b1 and
v(1, θ) = b2, for all θ ∈ {Θm}.

A. DERIVATION OF SDF AND RISK-FREE RATE

From (15), Ito’s lemma shows

dΛ

Λ
= fJ(C, J)dt− γ dK

K
+

1

2
γ(1 + γ)

(
dK

K

)2

− γ dK
K

∂ζ(k, θ)

∂k
dk

+
∂ζ(k, θ)

∂k
dk +

1

2

((
∂ζ(k, θ)

∂k

)2

+
∂2ζ(k, θ)

∂k2

)
(dk)2

+
∑
θ′ 6=θ

(
eζ(k,θ

′)

eζ(k,θ)
− 1

)
dN (θ,θ′), (B10)

where the dynamics for weighted capital in (B1) are

dK

K
= k

dK1

K1

+ (1− k)
dK2

K2

+
1

2
(η − 1)k(1− k)

(
σ2

1 + σ2
2 − ϕσ1σ2

)
dt. (B11)
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The risk-free rate in units of consumption good −Et[dΛ/Λ] is therefore

r(k, θ) = ρ+ ρ

(
1/ψ − γ
1− 1/ψ

)(
1−

(
c(k, θ)

v(k, θ)

)1−1/ψ
)

+ γ
1

dt
Et
[
dK

K

]
− 1

2
γ(1 + γ)

(
k2σ2

1 + (1− k)2σ2
2 + 2k(1− k)ϕσ1σ2

)
+ γ

∂ζ(k, θ)

∂k
ηk(1− k)(σ2

1k − σ2
2(1− k) + (1− 2k)ϕσ1σ2)− ∂ζ(k, θ)

∂k

1

dt
Et[dk]

− 1

2

((
∂ζ(k, θ)

∂k

)2

+
∂2ζ(k, θ)

∂k2

)
η2k2(1− k)2(σ2

1 + σ2
2 − 2ϕσ1σ2)

−
∑
θ′ 6=θ

πθθ′

(
eζ(k,θ

′)

eζ(k,θ)
− 1

)
. (B12)
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Figure 1: The Puzzle Within and Across Asset Classes
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The top-left, top-right, and bottom-left panels plot share-implied risk premia (E[Re]) on valuation-
implied risk premia for the five book-to-market portfolios, five industry, and our construction of
US household portfolio wealth, respectively. We calculate share-implied risk premia as the vector
Et[Re] = γΣwt, for all t, where γ is a value of risk aversion, Σ is the estimated constant covari-
ance matrix of portfolio excess returns and wt is the vector of current wealth shares from the data.
Valuation-implied risk premia are the fitted values of a regression of future annual cumulative excess
returns on the current dividend yield and a constant. The bottom-right corner plots the change in
Tobin’s Q on the change in the industry’s wealth share, with the five color-coded regression lines
overlayed. Debt, equity, and housing data are quarterly, constructed from the BEA, the Flow of
Funds, and the BLS, and cover from 1951Q4 until 2015Q4, as does data on Tobin’s Q, which in-
terpolates Compustat’s annual series of PPENT for its denominator. Equity portfolio returns and
wealth shares data are quarterly and are from Ken French’s website and cover from 1928Q1 until
2015Q4.
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Figure 2: The Puzzle at Long Horizons
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This figure plots the 95 percent confidence interval of various slope coefficients from predictive
regressions of the form 1

H

∑H
h=1Rt+h −R

f
t+h = aH + bH × wt + εt+H for each asset. The slope

coefficients, bH , range over quarterly horizons H = 4, 8, . . . , 40. The horizontal axis, Horizon, is
measured in years. The estimate of the slope is a solid line; the confidence interval is defined by
the dashed lines; and the line across zero is dotted. Newey and West (1987) standard errors are
used with a lag length equal to the forecast horizon in quarters. Debt, equity, and housing data
are quarterly, constructed from the BEA, Flow of Funds, and BLS, and cover from 1951Q4 until
2015Q4. Equity portfolio returns, risk-free rate returns, and wealth shares data are quarterly and are
from Ken French’s website and cover from 1928Q1 until 2015Q4.
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Figure 3: Overview of Economy
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𝐶𝐶𝑊𝑊𝐶𝐶𝑊 𝑓𝑓𝑊𝑊𝑓𝑓𝑓𝑓 = 𝑁𝑁𝑊𝑊𝑊𝑊 𝑅𝑅𝑊𝑊𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊 𝐼𝐼𝑅𝑅𝐼𝐼𝑓𝑓𝐼𝐼𝑊𝑊
+ 𝐼𝐼𝑅𝑅𝑊𝑊𝑊𝑊𝐼𝐼𝑊𝑊𝐶𝐶𝑊𝑊 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑊𝑊𝑅𝑅𝐷𝐷𝐶𝐶 + 𝑅𝑅𝑊𝑊𝑅𝑅𝑅𝑅𝐼𝐼𝐼𝐼𝑊𝑊𝑊𝐶𝐶𝑊𝑊𝐶𝐶

𝑞𝑞𝑁𝑁𝐾𝐾𝑁𝑁
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Figure 4: Balancedness and Growth
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This figure plots model policy functions as a function of k and three levels of θ = {Θ1,Θ5,Θ9}.
The lightest green line corresponds with the lowest level of demand for the business sector’s good;
increasing darkness indicates greater demand. The conditional drift of the first (business) sector’s
capital share is E[dk]. The variable w − k plots the wealth share of the business sector in excess of
its capital share.
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Figure 5: Tobin’s Q and Risk Premia
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This figure plots policy functions from the model as a function of k and three levels of θ =
{Θ1,Θ5,Θ9}. The lightest green line corresponds with the lowest level of demand for the busi-
ness sector’s good; increasing darkness indicates greater demand. The left-side plots are for the
business sector; the right-side, the housing sector. Both Tobin’s Q and the risk premia are measured
in units of the numeraire.
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Figure 6: Decomposition of Business Sector’s Risk Premium
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This figure plots the decomposition of the risk premium for the first (business) sector:(
1
dtEt[dR1]− r

)
= λ1σ1β11 + λ2σ2β12 +

∑
θ′ 6=θ πθθ′λDemandβDemand. Functions from the

model are displayed as a function of k and three levels of θ = {Θ1,Θ5,Θ9}. The lightest green
line corresponds with the lowest level of demand for the business sector’s good; increasing darkness
indicates greater demand. Approximations to the demand shock’s beta and risk price are obtain-
ing by taking expectations of the functions conditional on every (k, θ) pair: E[λDemand|k, θ] =∑
θ′ 6=θ πθθ′

(
eζ(k,θ

′)

eζ(k,θ)
− 1
)

and E[β1Demand|k, θ] =
∑
θ′ 6=θ πθθ′

(
1− Q1(k,θ

′)
Q1(k,θ)

)
.
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Figure 7: Business Sector’s Risk Premium Contribution by Source, in Percent

0 0.2 0.4 0.6 0.8 1
k

0

1

2

3

4

5

6

7
Θ1

Supply 1

Supply 2

Demand

0 0.2 0.4 0.6 0.8 1
k

0

1

2

3

4

5

6

7
Θ5

0 0.2 0.4 0.6 0.8 1
k

0

1

2

3

4

5

6

7
Θ9

This figure plots a decomposition of risk premia. Decompositions are displayed as a function of
k and three levels of θ = {Θ1,Θ5,Θ9}, for which each has a subplot. Supply 1 equals σ1λ1β11;

Supply 2 equals σ2λ2β12 and Demand equals
∑
θ′ 6=θ πθθ′

(
eζ(k,θ

′)

eζ(k,θ)
− 1
)(

1− Q1(k,θ
′)

Q1(k,θ)

)
. The sum

of all three sources totals the sector’s risk premium for each (k, θ) pair.
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Figure 8: Decomposition of Asset Demand
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This figure plots each asset’s mean-variance demand and hedging demand as a function of the busi-
ness’s wealth and three levels of θ = {Θ1,Θ5,Θ9}. The lightest green line corresponds with the
lowest level of demand for the business sector’s good; increasing darkness indicates greater demand.
The left-side plots are for the business sector; the right-side, the housing sector. The dashed black
lines are a 45-degree line and a line at zero. By construction, the sum of mean-variance demand and
hedging demand equals the sector’s wealth.
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Figure 9: Hedging Demand from Both Shocks and Only Supply Shocks
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This figure plots histograms of hedging demand for 5,000 simulations of the full model (Both
Shocks) and 1,000 simulations for the model having only supply shocks ( Supply Shocks). The
Supply Shocks simulation solves the model fixing Θ = 0.5. The horizontal axis measures hedging
demand HDn = wn −MVn in percentage points.
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Figure 10: Recovering Θ from the Data
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This figure plots the inverted state variables (k, θ) from the data on the business’s sector capital
share k and wealth share w. The capital share of the data is matched exactly to the model’s first
sector’s capital share k, quarter-by-quarter, and is plotted in the top subpanel. Given the match of k
and our calibration, the distance between the data’s w and the model’s counterpart is minimized for
each data point. The corresponding best fit of w and the implied θ are plotted in the bottom subpanel
on the left and right axes, respectively. Business and housing sector data are quarterly, constructed
from the BEA, Flow of Funds, and BLS, and cover from 1951Q4 until 2015Q4.
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Figure 11: Model Recovery of Tobin’s Q, Risk Premia, and Hedging Demand
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This figure plots model-implied time series from the history of inverted state variables. Given data
on the business’s sector capital share k and wealth share w, the model counterparts are exactly fitted
to k and best fitted tow, jointly implying a quarter-by-quarter (k, θ) pair. This time series pair is then
uses the model’s policy functions to plot Tobin’s Q, risk premia, and hedging demand in the top,
middle, and bottom subpanel respectively. Both sector’s hedging demands are plotted in the bottom
subpanel. All model time series are smoothed with a 12-quarter moving average. Debt, Equity, and
Housing data are quarterly, constructed from the BEA, Flow of Funds, and BLS, and cover from
1951Q4 until 2015Q4, as does data on Tobin’s Q, which interpolates Compustat’s annual series of
PPENT for its denominator.
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Table I: Calibration (Annual)

Parameter Value
Preferences

ρ 0.02
γ 10
ψ 1.1
ε 3

Technology
Business Housing

A 0.15 0.10
κ 12 14
σ 0.032 0.034
δ 0.075 0.020
ϕ 0

Table II: Ergodic Distribution of Π

Θm Value Density
Θ1 0.049 0.040
Θ2 0.179 0.081
Θ3 0.292 0.127
Θ4 0.398 0.163
Θ5 0.500 0.177
Θ6 0.602 0.163
Θ7 0.708 0.127
Θ8 0.821 0.081
Θ9 0.951 0.040
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Table III: Summary Statistics

Data Both Shocks Supply Shocks
Mean Stdev Mean Stdev Mean Stdev

Aggregate

Output 3.1 4.9 3.5 6.9 3.4 2.8
Consumption (expenditure) 3.1 2.9

3.5 5.0 3.4 2.6
Consumption (cash flow) 3.7 6.8

Business

Capital stock 3.4 3.2 3.5 3.5 3.6 3.2
Cash flow 4.1 8.0 3.6 19.5 3.6 3.3
Excess return 14.0 12.0 6.7 8.3 2.0 3.3

Housing

Capital stock 2.4 3.4 3.5 3.6 2.6 3.0
Cash flow 3.0 12.9 3.6 15.5 2.6 3.1
Excess return 4.5 5.7 6.8 7.1 -0.6 3.4

This table summarizes means and standard deviations of variables from the data and the model
subject to both shocks and to only supply shocks. Cash flow and return data are quarterly from
1951Q4 until 2015Q4. Aggregate quantities and capital stocks are annual from 1929-2015. Sources:
BEA, Federal Reserve Flow of Funds, and BLS for the CPI price deflator. Values are real where
applicable. Consumption (expenditure) is the real growth rate of personal consumption expenditure
on nondurables and services. Consumption (cash flow) is a cash flow-weighted growth rate of the
business and housing cash flow. Simulation data are calculated with and without a demand shock.
When there are no demand shocks, we solve the model fixing Θ = 0.5. We simulate each model
5,000 times for 480 quarters, burning in the first half and leaving 60 years of quarterly data. We
calculate both the mean and standard deviation of each variable for each simulation. We then average
across both of these statistics to report the columns titled Mean and Stdev.
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Table IV: Finite Sample Distribution of Regression Slope Coefficients

Panel A: Risk Premium on Wealth Share
Business Housing

b̂n 1% Mean 99% 1% Mean 99%

Levels

Data -0.622 -0.303

Both Shocks -0.677 -0.015 0.512 -0.449 0.025 0.614
Supply Shocks 0.003 0.004 0.004 0.003 0.004 0.006

Changes

Data -0.463 -0.016

Both Shocks -1.891 -0.416 0.209 -0.242 0.365 1.727
Supply Shocks 0.003 0.004 0.004 0.003 0.004 0.006

Panel B: Tobin’s Q on Wealth Share
Business Housing

b̂n 1% Mean 99% 1% Mean 99%

Levels

Data 0.031 0.012

Both Shocks -0.068 -0.006 0.086 -0.249 -0.077 0.010
Supply Shocks -0.020 -0.012 -0.008 -0.024 -0.016 -0.010

Changes

Data 0.040 0.001

Both Shocks -0.077 0.054 0.166 -0.465 -0.124 0.058
Supply Shocks -0.020 -0.012 -0.008 -0.024 -0.016 -0.011

This table reports point estimates of regressions in the data and finite sample distributions of regres-
sion coefficients from simulated data. The regressions specifications are identical across data and
model. In each simulation we run the Levels regressions of 1

dtEt[dRnt]− rt = an + bn×wnt + εnt
in Panel A and Qnt = an+ bn×wnt+ εnt in Panel B for each sector n. We also run the regressions
after differencing the regressors and regressand in the subpanels marked Changes. We report the
mean and the 1st and 99th percentile of slope coefficients b̂n across simulations. Wealth shares and
risk premia are measured in percent. Debt and Equity (Business), and Housing data are quarterly
and cover from 1951Q4 until 2015Q4, as does data on Tobin’s Q, which interpolates Compustat’s
annual series of PPENT as the denominator.
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