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Abstract

We examine the yield curve behavior and the relative performance of affine term structure models using

government bond yield data from Canada, Germany, Japan, UK, and US. We find strong predictability

of forward rates for excess bond returns and reject the expectations hypothesis across all five countries.

A three-factor model is sufficient to capture movements in the yield curve of Canada, Japan, UK,

and US, but may not be enough for Germany. An exhaustive comparison among affine term structure

models with no more than three factors reveals that the three-factor essential affine model (A1(3)E)
with only one factor affecting the volatility of the short rate but with all three factors affecting the price

of risk performs best in all five countries. Simulations provide inconclusive evidence on whether this

best affine model can successfully generate the rich yield curve behavior observed in the data.
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1 Introduction

Despite the large theoretical literature on dynamic term structure models and extensive empirical investi-

gations of their performance using U.S. data,1 there is as yet virtually no systematic study of the behavior

of the yield curve or the performance of popular dynamic term structure models in other major government

bond markets.2 This paper extends the empirical examination of dynamic term structure models to Canada

(CA), Germany (GM), Japan (JP), and the United Kingdom (UK), in addition to the United States (US).

Although empirical regularities in the US term structures have been documented very extensively in

the literature, the behavior of foreign term structures has not been well studied because of the lack of

foreign data. We use a newly constructed data set for the one- to ten-year constant maturity zero coupon

nominal government bond yield data for CA, GM, JP, UK and US to study the term structure behavior

in these five countries and to examine how well affine term structure models account for these empirical

regularities. This is the first paper that carries out international comparisons of term structure models

and such comparisons are bound to be informative because of the wide differences in monetary policies,

government bond markets, interest and inflation processes across these countries during the sample period of

1985 to 2002. For example, while CA, US and UK have experienced high inflation and high nominal rates

in 1980s, Germany and Japan has enjoyed low rates throughout the period. While Japan has witnessed its

interest rate gradually decline to zero and has concerned about deflation, Germany has weathered shocks

from the unification and the introduction of Euro. In light of these differences, an important issue is

whether empirical regularities found for the U.S. term structure carry over to foreign markets and, in turn,

how affine term structure models perform in these markets.

Before making a formal comparison of affine term structure models, we first examine the information

content of foreign term structures and check whether stylized findings about US yield curve behavior, such

as the failure of the expectations hypothesis and the predictive power of forward rates for excess future

bond returns, extend to the other four OECD countries. The resulting empirical findings in turn provide

benchmarks against which the best affine term structure model is later examined.

Under the expectations hypothesis with a constant risk premium the coefficient from the regression

of the change of the τ−period zero-coupon yield on the term spread, which is defined as the difference

between the τ -period bond yield and the one-year bond yield, should be unity for all bond maturities τ .

1See Dai and Singleton (2003) for a comprehensive survey.
2There are a few exceptions. For example, Brennan and Xia (2003) estimates a three-factor Gaussian model where the three

factors are the real interest rate, the expected rate of inflation and the volatility of the pricing kernel.
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Many studies, notably Fama (1984), Stambaugh (1988), and Campbell and Shiller (1991), have found that

the expectations hypothesis is violated in the US yield data. We test the expectations hypothesis in all

five countries using two regression specifications. In the first specification, we test whether the current

maturity-adjusted term spread forecasts changes in the τ−period zero-coupon bond yield with a theoretical

predictive coefficient of one. In the second specification, we test whether the current term spread forecasts

average short rate changes with a coefficient of one. These two specifications are theoretically equivalent

under the null of expectations hypothesis, but may lead to different empirical results if the expectations

hypothesis is violated in the data.

Although there is variation across countries, the slope estimates from the first regression are often

negative and become increasingly so as the bond maturity increases. However, the yields used in the

estimation are highly persistent and the point estimates of the coefficients are usually not significantly

different from the theoretical value of unity when the standard errors are corrected for autocorrelation. In

contrast, the slope estimates from the second regression are all positive and in most cases are close to unity,

which is consistent with the prediction of the expectations hypothesis. The slope estimates also slightly

increase with the bond maturity τ . Our simulation results suggest that the paradoxical results from the two

specifications are consistent with a simple model in which both the interest rate and the term premium

follow AR(1) processes.

Finally, we test whether forward rates forecast future excess bond returns. Predictability of bond excess

returns by forward rates provides another piece of evidence that the expectations hypothesis is violated

and that the bond market risk premia are time varying. We find that forward rates have predictive power

in all five countries. The effect is especially strong in GM, JP and US, and it is mainly concentrated on

bonds with maturities less than six years.

These results suggest that empirical regularities in term structures are broadly similar despite the wide

differences in government bond markets, and they provide overwhelming out-of-sample evidence that

bond market risk premia are time-varying so that models that allow for a time-varying risk premium are

required to fit the yield data well. Important dynamic term structure models include the complete affine

term structure models of Duffie and Kan (1996) and Dai and Singleton (2001), the essential affine term

structure model of Dai and Singleton (2002) and Duffee (2002), the affine model with regime shifts of

Bansal and Zhou (2002), and the Gaussian-quadratic model of Ahn, Dittmar, and Gallant (2002). In this

paper, we focus on the comparison of the relative performance of models in the affine term structure family

which include both the complete and the essential affine models.
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Preliminary analysis shows that in all five countries the first three principal components of yields

explain over 99% of the total yield curve variation and the components can be broadly characterized as

“level,” “slope,” and “curvature” ,3 but each country has its unique features. In particular, there is evidence

of more than three factors in the German yield curve. It is possible that German re-unification and the

introduction of the Euro, which both occurred during our sample period, caused structural breaks in the

German bond market so that a model with four factors or with regime shifts such as that used by Bansal

et. al. (2003) is likely to provide a better fit.

We estimate all three-factor essentially affine models using a Kalman filter/Quasi Maximum Likelihood

(QML) approach, and then compare all nested models using Wald test as well as likelihood function values.

Non-nested models, as well as nested models that are not eliminated in the first step, are also estimated

using the same approach and then compared using the Schwarz criterion and the in- and the out-of-sample

pricing errors. We find that the essential three-factor model, A1(3)E, in which only one factor affects the

instantaneous volatility of the short rate but all three factors affect the price of risk, performs best in all five

countries. The best model has very small average in- and out-of- sample prediction errors, although it is

still associated with occasional large mis-pricing. The consistent superior performance of A1(3)E across

all five term structures suggest that this model is flexible enough to capture both universal stylized facts

and country-specific empirical regularities. This provides preliminary evidence that implications from US

term structure data may be robust enough to extend to foreign markets.

The model-implied risk free rate tracks the one-month Treasury bill rates quite well for UK, CA

and JP, but there is a noticeable gap between the two for Germany around 1998-99 when the Euro was

introduced, and for the US in 2000 when the Internet Bubble burst. The time series of the estimated

price of risk in the bond market shows great variation during the sample. This partly reflects the fact

that the parameters governing the prices of risks are estimated very imprecisely, but despite the difficulty

in pinning down parameters, the estimated price of risk varies with important monetary events and stock

market performance in a plausible fashion.

Finally, we examine whether the best model, A1(3)E, can generate the stylized regression results

discussed above. We find that estimation results from simulated data for all three regressions are generally

different from those obtained from the actual data in both magnitude and patterns across different maturities,

but the differences are statistically insignificant (at the 5% level). Thus, the coefficient estimates observed

in the data could conceivably be generated by an A1(3)E model. This conclusion must be tempered by the

3These labels were first proposed by Litterman and Scheinkman (1991) for the U.S. yield data.
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observation that the difficulty in obtaining precise estimates of the affine term structure model parameters,

especially those governing risk premia, translates into low power in refuting the model.

The rest of the paper is organized as follows. In Section 2, we give a brief discussion and summary

statistics of the yield curve data and provide a principal components analysis of the yield curve. In section

3, we provide evidence on the violation of the expectations hypothesis in all five countries under three

regression specifications. Section 4 introduces the affine term structure models considered in the paper.

Section 5 contains details of the estimation procedure, the estimation results, and the comparison of all

affine term structure models with up to three factors. Section 6 presents simulation evidence on whether

the “best” model (in the sense of best fitting the yield curve) within the affine term structure family can

successfully generate the stylized empirical findings documented in Section 3. Section 7 summarizes and

concludes the paper.

2 Term Structure Data

The basic data are estimated constant-maturity zero-coupon government bond yields for Canada (CA),

Germany (GM), Japan (JP), the United Kingdom (UK), and the United States (US). The raw data consist

of bond prices, coupon rates, and coupon, issue, and redemption dates for all available government bonds

outstanding on the second of each month from Datastream. A cubic spline was fitted to these coupon-bond

yields with maturities up to forty years for each country each month.4 Zero-coupon yields for maturities of

six months and from one to ten years are estimated at the beginning of each month. Yields for maturities

of six months, one, two, three, five, seven, and ten years (or nine years for JP and GM) are used in the

in-sample analysis and estimation, while yields for maturities of four, six, and eight years are reserved for

out-of-sample analysis. The data start in January 1983 and end in May 2002 for CA, GM and JP, but end

in February 2003 for UK and in January 2003 for US. The maximum number of observations is 233 for

CA, GM and JP, 241 for the US, and 242 for the UK. However, there are only 203 (193) observations for

the ten-year bond in GM (JP).

Summary statistics for the bond yield data of each country are reported in Table 1. In all countries,

average yields are generally increasing, while their standard deviations are generally decreasing with

maturity.5 For example, the sample mean increases from about 6.4% for the six-month bond to 7.6%

4See Brennan and Xia (2004) for more details of the raw data and the estimation of the zero-coupon bond yields. Brennan

and Xia (2004) created a slightly different zero-coupon yield dataset for their study of the co-variation of risk premium in the

bond and the foreign exchange markets by fitting a cubic spline to government coupon bonds with maturities less than 20 years.
5The sample mean decreases at the long end for GM and JP, most likely caused by missing observations from the ten-year
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for the ten-year bond in US, while the sample volatility decreases with the bond maturity from 2.29% to

1.03% in US. As compared with the widely-used McCulloch-Kwon (1993) U.S. yield data, which has

monthly observations from January 1953 to December 1998, our U.S. data yield higher sample means but

smaller sample volatilities for all maturities. This is especially true at the long end: our ten-year yield has

a sample volatility of only 1.03% as compared with 2.7% of the McCulloch-Kwon data.

All yields in all countries are highly persistent. The first order autocorrelation is over 0.96 in CA,

GM, UK and US, and is above 0.99 in JP. There is also substantial cross-correlation (not reported here

for brevity) between yields of different maturities. The cross-correlation structure is quite similar for CA,

UK and US, where the correlations range from 0.8 between the two most distant maturities (six months

and ten years) to 0.99 between adjacent maturities. The cross-correlations for Japan are all greater than

0.94. On the other hand, cross-correlations are much lower in Germany where the correlation is only about

0.5 between short and long maturity bond yields. High cross-correlations suggest that a small number of

common factors drive the co-movement of the bond yields across different maturities. This is confirmed

by the finding that the first three principal components explain a high proportion of the total variation of

the eleven yields on bonds with maturities between six months and ten years. In CA, UK and US, the

first component explains about 95%, the second around 3-4%, and the third about 0.2-1.8% of the total

variation. In JP, the first component accounts for over 98% of the total variation, the second about 1.12%,

and the third 0.24%. In contrast, the first component of the German bond yields explains only about 82.8%

of the total variation, while the second and the third components contribute 15.6% and 1.1%, respectively.

The first three components together explain over 99.9% of the total variation in CA, JP, UK and US, and

about 99.6% of the total variation in GM.

The weights of the first three principal components on the eleven bond yields, which are plotted in

Figure 1, show broadly similar patterns across all five countries.6 The weights of the first principal

component are similar across yields so that this component can be interpreted as a level component. The

second component has negative weights on the three shortest bonds in CA, GM, JP and UK, and positive

weights on the long bonds, and the magnitude of the negative and positive weights is similar, implying

that the second component is close to the difference between the long and the short bond yields and can

be interpreted as a slope component. In US, however, the pattern of the weights of the second component

is more like an inverted and skewed “U” shape, so that it can be interpreted as a combination of a slope in

the short end and a curvature in the long end. In all five countries, the third component has weights of the

bond.
6Litterman and Scheinkman (1991) first carried out the principal component analysis for the US yield data.
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same sign on the short and long bonds but of the opposite sign on the bonds with intermediate maturities.

In addition, the weights on the short and the long bonds in CA, UK and US are almost the same, so the

weights are close to the calculation of a second difference in bond yields so that the component corresponds

to the curvature of the yield curve. The magnitudes of the weights on the short and the long bonds in the

other two countries, however, are very skewed, so that the component can be interpreted approximately as a

combination of a curvature at the short end and another curvature at the long end. Therefore, although the

properties of the first three components can be broadly characterized as “level,” “slope,” and “curvature”

in all five countries, they show some interesting country-specific patterns.

3 The Expectations Hypothesis Re-visited

Before comparing the affine term structure models, we first examine whether the stylized empirical findings

for US yields, the failure of the expectations hypothesis and the predictive power of forward rates for excess

future bond returns, extend to the other four OECD countries. This examination not only provides evidence

on the robustness of the findings from the US data, but also generates empirical results that can be used

as benchmarks for the best affine term structure model to match.

The violation of the expectations hypothesis in the U.S. yield data is well documented and there

is compelling empirical evidence that the expected excess returns on the U.S. Treasury bonds exhibit

predictable variation over time.7 In contrast, results for other countries are mixed. On the one hand,

Jorion and Mishkin (1991) found no, or much weaker, evidence against the expectations hypothesis for UK,

Germany, and Switzerland, and Hardouvelis (1994) found strong support for the expectations hypothesis

in all G7 countries except the US. On the other hand, Bekaert, Wei and Xing (2002) find strong statistical

evidence against the expectations hypothesis of the term structure in US, UK and GM.

While this is not the first paper extending the analysis of US term structure behavior to other countries,

it is still worthwhile to revisit the problem for three reasons. First, earlier studies have only used a subset

of term structures, mostly with maturities less than five years. Since information content in the short

and long end of the term structure is likely to be different, it is important to re-examine the question

by using the entire term structure. Second, existing results are mixed and are all based on data before

1992. As international capital market integration evolves over time,8 it is interesting to check whether

recent data give more or less consistent results across different countries. Finally, earlier studies, which

7A long list of empirical studies include Fama (1984), Fama and Bliss (1987), Stambaugh (1988), Campbell and Shiller

(1991), Bekaert, Hodrick and Marshall (1997), and Cochrane and Piazzesi (2002), to name a few.
8See, for example, Bekaert and Harvey (1995) and Brennan and Xia (2004).
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were before the development of affine term structure models, could not link the term structure behavior

to dynamic models in the international setting, so this paper provides the first international comparison of

affine models with the empirical regularities in the term structure as benchmarks.

Following Campbell and Shiller (1991), we define the expectations hypothesis (EH) of the term struc-

ture as the proposition that the continuously compounded long term yield is equal to the average of the

expected future short term (one-period) interest rates and a constant term premium. Formally,

yτ
t = ατ +

1
τ

τ−1∑

k=0

Et

[
y1
t+12k

]
, (1)

where yτ
t is the τ−year zero-coupon yield at month t, y1

t+12k is the one-year interest rate at month t+12k,

and ατ is the constant term premium. The EH implies that the expected excess return on long term bonds

is constant over time.

Campbell and Shiller (1991) propose two approaches to test the expectations hypothesis. The first is

based on the observation that equation (1) holds for both the τ−year bond at month t and the (τ − ∆)-year

bond at month t + 12∆, where ∆ is measured in years. Taking the difference between them implies that

the maturity weighted term spread
yτ

t −y1
t

τ−1 predicts the change of the τ−period zero-coupon yield from

month t to month t + 12∆, yτ−∆
t+12∆ − yτ

t . Since our data are monthly but the zero-coupon bond maturities

vary from one to ten years (∆ = 1), our first approach is thus based on the following regression:

yτ−1
t+12 − yτ

t = a0 + a1
yτ
t − y1

t

τ − 1
+ ε, τ = 2, · · · , 10. (2)

Under the expectations hypothesis, a1 is uniformly one for all bond maturities τ .

The second approach is motivated by subtracting the short rate from both sides of equation (1) and

re-arranging, so that the average expected future change in the one-year rate equals the current term spread:

1
τ

τ−1∑

k=0

Et

[
y1
t+12k

]
− y1

t = −ατ + yτ
t − y1

t

which can be equivalently re-written as

1
τ

τ−1∑

k=1

[
y1
t+12k − y1

t

]
= b0 + b1

[
yτ
t − y1

t

]
+ ε, τ = 2, · · · , 10. (3)

Under the expectations hypothesis, the slope coefficient b1 is again one for all bond maturities τ and the

intercept b0 = −ατ is a maturity-specific constant.

The estimates of a1 together with the OLS and the Newey-West adjusted standard errors are reported
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in Table 2. The adjusted regression R2 is less than 1.4% for CA, GM, UK and US so that in these four

countries the term spread has virtually no predictive power for future yield changes. The R2 is, however,

much larger for JP, where it increases from around -0.3% for τ = 2 to 9.5% for τ = 6 and then decreases

to 5.2% for τ = 9. The estimates reported in Table 2 are inconsistent with the expectation hypothesis: the

slope coefficient is mostly negative across the five countries and the nine bond maturities, and it becomes

more negative as the bond maturity increases. Since both the dependent variable and the regressors are

highly persistent, the Newey-West standard errors are typically twice as large as the OLS standard errors,

and the slope estimates are all insignificant according to the Newey-West t−ratios (except for bonds with

maturities of five, six, seven, and eight years in Japan). The slope estimates are only significantly different

from the theoretical value of unity in GM and JP, suggesting that there is significant statistical evidence

against the expectations hypothesis only in these two countries.

The OLS estimate of the slope coefficient b̂1 in equation (3) is reported in Table 3. In stark contrast

to the results in Table 2, there is a very strong relation between average future short rate changes and

the current yield spread, and the expectations hypothesis is not rejected in most cases. In Canada, for

example, b̂1 ranges from 0.83 to 1.14, which is significantly different from zero but not from one, and the

regression R̄2 ranges from 10% to 62%. In general, both the R̄2 and the slope estimate increase with τ ,

which measures the distance of the spread yτ
t − y1

t . Interestingly, while Japan has the strongest predictive

relation in Table 2, it has the weakest in Table 3, where the slope coefficient is not significantly different

from zero for ∀τ ≤ 6, and is less than 0.5 and significantly different from one but not from zero for

τ = 4, 5, 6. The violation of the expectations hypothesis is also observed for τ = 6, 7, 8, 9 in Germany

and US, where the slope estimate is significantly greater than one.

In summary, while there are country-specific patterns in the results, the broad picture is similar across

these five countries in that estimates from first regression specification clearly contradict the expectations

hypothesis while those from the second one are mostly supportive of the hypothesis. The tension between

these two sets of results is consistent with the paradox documented in Campbell and Shiller (1991) using

only US yield data and a different sample period. Thus, the slope of the term structure gives no, or a

wrong, forecast of the short-term change in the long term bond yield, but it gives a strong forecast which

is consistent with the expectations hypothesis for long term changes in the one-year bond rate.

Bekaert, Hodrick and Marshall (1997) demonstrate via Monte Carlo simulation that both the point

estimates and the OLS standard errors in these two regression-based tests of the expectations hypothesis

are severely biased in small samples under the null hypothesis. They argue that results from the two
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regressions would provide more consistent rejections of the expectations hypothesis if small sample biases

were taken into account. We examine the small sample bias in the parameter estimates in two ways.

First, we derive the bias-adjusted parameter estimates as well as bias-adjusted standard errors using the

bias adjustment formula given in Stambaugh (1997) and the estimation approach proposed in Amihud and

Hurvich (2004). Second, we estimate the parameters and the standard errors using the bootstrap approach.

We find that both the bias adjustment in the first approach and the difference between the bootstrap and

the OLS estimates are negligible in the two regressions.

Two explanations of the paradox have been offered. The first, which was offered by Campbell and

Shiller (1991), argues that current long term yields do move in the direction stipulated by the expectations

hypothesis, but that they under-react to current short rates and/or over-react to future short rates. This

explanation relies on the failure of the rational expectations hypothesis but assumes a constant risk premium.

The second explanation, which was argued in Fama and Bliss (1987), assumes that expectations are rational,

but that the risk (or expected term) premium are time varying. A stochastic but slow-moving risk premium

would allow the expectations hypothesis to hold approximately in the short run but imply its failure in the

long run.

To provide direct evidence of time variation in bond market risk premium, we regress excess bond

returns on lagged forward rates in the spirit of Fama and Bliss (1987), Cochrane and Piazzesi (2002),

and Bansal et. al. (2003), all of whom use the Fama-Bliss zero-coupon constant maturity US bond yield

data with maturities from one to five years. The expectations hypothesis, that long yields are the average

of expected future short yields plus a constant term premium, implies that excess returns should not be

predictable, so any predictability of excess bond returns by forward rates provides additional evidence

against the expectations hypothesis.

Let rτ
t+12 denote the excess log holding period return from buying a τ -period bond at time t and then

selling it one year later, then

rτ
t+12 ≡ ln Pt+12(τ − 1)− lnPt(τ) − y1

t , ∀τ ≥ 2.

Then define the time t log forward rate between time t+ i− 1 and t+ i as the rate from holding an i-year

and shorting an (i − 1)-year zero-coupon bond at t:

ft(0, 1) = − ln Pt(1) = y1
t , and ft (i− 1, i) ≡ lnPt(i − 1) − lnPt(i), ∀i ≥ 2.

Ten ft(i, i + 1)’s for i = 0, · · · , 9 can be calculated from the yield data.
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We examine a multiple regression of rt+12(τ) (τ = 2, · · · , 10) on several forward rates.9 To avoid

problems caused by high cross-correlation between adjacent forward rates, we restrict the regressors to be

the one year spot rate (f(0, 1)) and two- and eight-year forward rates (f(2, 3) and f(8, 9)):10

rτ
t+12 = c0 + c1ft(0, 1) + c2ft(2, 3) + c3ft(8, 9) + et, τ = 2, . . . , 10. (4)

The results reported in Table 4 reveal significant joint forecasting power in the three forward rates,

but the magnitude varies from country to country with CA the weakest and JP the strongest. While R̄2

increases with τ in CA (2.6% to 13%) and US (31% to 34%), it first increases and then decreases (hump-

shaped) with τ in GM (27.5% to 33.4% and then to 25.9%), JP (28.6% to 36.3% and then to 22.5%)

and UK (13.7% to 17.6% and then to 8.9%). The individual Newey-West adjusted t−ratios are mostly

significant at the 5% level except for those in CA. Interestingly, similar to the finding in Cochrane and

Piazzesi (2002), the point estimates of the coefficients exhibit an inverted “V-”shape in JP and UK where

ĉ1 < 0, ĉ2 > 0 and ĉ3 < 0 for all τ , but it only has such a pattern in CA, GM and US for bonds with

τ ≤ 6. This suggests that information content is different at different maturities of the term structure in

different countries, but the support for a time varying bond risk premium is largely consistent along the

whole term structure and across all countries.

Since both the excess bond returns and the forward rates are highly persistent, we also examine

univariate and multivariate cointegrating regressions (results not reported for brevity). The predictive

power of the forward rates remains in all five countries, but now only for selective bond maturities, most

of which are less than six years. The log likelihood decreases with τ , indicating a weaker predictive relation

for long maturity bonds. The strong predictive power comes mainly from near- or medium- term forward

rates, f(i, i + 1), with i ≤ 4. Although the significance of ĉi (i = 1, 2, 3) is weaker in the cointegrating

regression, the cointegrating and the OLS regressions yield broadly consistent results in support of the

forecasting power of forward rates and in rejecting the static expectations hypothesis.

A challenge faced by term structure models is then whether they can successfully explain the qualitative

and quantitative behavior of the time-varying excess bond returns and forecastable term structures. Dai

and Singleton (2002) show that the U.S. term structure forecastabilities are consistent with a three-factor

(essentially) affine model, while Brandt and Chapman (2002) find that the Gaussian-quadratic model is

9A univariate regression finds predictive power of forward rates in four out of five countries, but the R̄2’s are much lower

than those from a multi-variate regression reported in Table 4 below.
10Similar results are obtained by using any other forward rates f(i, i + 1) with 0 < i ≤ 4 to replace f(2, 3) and f(i, i + 1)

with i ≥ 6 to replace f(8, 9). The results are very different, however, when we include all forward rates in the regression,
indicating unreliable point estimates when highly correlated neighboring forward rates are used simultaneously.

11



better at matching the second moments of the term structure. We will limit our analysis to the affine term

structure family and examine whether the affine model, which provides the best fit of the yield curve, can

generate the above-documented stylized facts of the yield data in all five countries (CA, GM, JP, UK and

US).

4 Affine Term-Structure Models

The no-arbitrage condition implies that the time-t price of a default-free zero-coupon bond that matures

at T , P (t, T ), is given by

P (t, T ) = EQ
t

[
e−

∫ T
t

r(s)ds
]
, (5)

where r is the (instantaneous) risk free rate and EQ denotes the expectation under the risk-neutral (equiv-

alent martingale) measure Q.

A N -factor affine term structure model (ATSM) is obtained by assuming that the instantaneous short

rate r(t) is an affine function of anN -vector of unobservable state variablesX(t) = (X1(t), X2(t), · · · , XN(t)):

r(t) = δ0 + δ′1X (t) , (6)

where the scalar δ0 and the N × 1 vector δ1 are constants, and the state variables X(t) follow an “affine

diffusion” under the risk neutral measure Q:

dX(t) = K̃
(
θ̃ − X(t)

)
dt + Σ

√
S (t)dWQ (t) , (7)

where K̃ and Σ are N × N matrices of constants, and θ̃ is an N -vector of constants. The N × N matrix

S(t) is diagonal and its ith diagonal element is given by

S (t)ii = αi + β′
iX(t), (8)

where αi is a scalar and βi, the ith column of the matrix β ≡ [β1, · · · , βN ], is an N -vector. Finally, WQ

is an N−dimensional independent standard Brownian motion under the risk neutral measure Q. Note that

both the drifts, K̃
(
θ̃ − X(t)

)
, and the conditional variance, ΣS (t) Σ

′
, of the state variable process (7)

are affine functions of the state variables X(t) under the measure Q.

Duffie and Kan (1996) show that under these assumptions the bond price P (t, T ) in equation (5) can
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be expressed as an exponential affine function of the underlying state variables, X(t):

P (t, T ) = exp
(
A (τ)− B (τ)′ X (t)

)
(9)

where τ = T − t, and the parameters A(τ) and B(τ) satisfy the following ordinary differential equations:

dA (τ)
dτ

= −θ̃′K̃ ′B (τ) +
1
2

N∑

i=1

[
Σ′B (τ)

]2
i
αi − δ0, (10)

dB (τ)
dτ

= −K̃ ′B (τ) − 1
2

N∑

i=1

[
Σ′B (τ)

]2
i
βi + δ1, (11)

with initial conditions A(0) = 0 and B(0) = 0.

While equation (7) specifies the state variable process under the risk neutral measure Q, the time series

of bond prices is governed by the physical measure. To estimate the model using observable bond prices

and yields, it is necessary to specify the dynamics of the price of risk which links the dynamics of the

state variables X(t) under the risk-neutral measure with the dynamics under the physical measure. To this

end, write the process of the pricing kernel, M , as

dM

M
= −rdt − Λ

′
tdW,

where the N−vector Λ is the price of risk associated with the innovations dW .

To ensure that the drifts and conditional variances of X(t) remain affine functions of X(t) under the

physical measure, Λ is assumed to be a special affine function of the state variables, as suggested in Duffee

(2002):

Λt =
√

S (t)
(
λ1 + S(t)−1Iλ2X (t)

)
, (12)

where λ1 is a constant N -vector, and λ2 is a constant N × N matrix. The indicator matrix I is diagonal

with the ith element given by

Iii =





1 if inf (αi + β′
iX(t)) > 0

0 otherwise

Thus, the dynamics of X(t) under the physical measure are simply

dX(t) = K (θ − X(t))dt + Σ
√

S (t)dW (t) . (13)
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Matrix K and vector θ are related to their measure-Q counterparts as follows:

K = K̃ − ΣΦ − ΣI−λ2,

θ = K−1
(
K̃θ̃ + ΣΨ

)
,

where Φ is a N by N matrix with the ith row defined by λ1 (i)β(i)′, and Ψ is a N -vector with the ith

element given by λ1 (i)α(i).

The specification of the price of risk in equation (12) defines the “essential” affine model of Duffee

(2002) and Dai and Singleton (2002). When λ2 = 0, the model reduces to the so-called “complete” affine

model examined by Dai and Singleton (2001). Under “complete” affine term structure models, both the

drift and the variance of the state variables, X , and the pricing kernel, M , are affine functions of X under

P and Q. Under “essential” affine term structure models, the drift and the variance of X(t) are still

affine functions of X(t), but the pricing kernel variance ΛtΛ
′
t is no longer affine in X(t). The pricing

kernel variance, however, does not affect the pricing of zero-coupon bonds in equation (5). Therefore, the

“essential” model with λ2 6= 0 retains the tractability of the “complete” affine model, but has the benefit

of allowing the price of risk to vary independently of the short rate volatility.

The benefit of this added flexibility can be illustrated easily in a simple one-factor model. For example,

if the short rate follows a Vasicek process with constant drift and volatility, then the price of risk Λ is also

constant under the complete affine term structure model. If the short rate follows a square root process

(CIR model) with a constant drift but a volatility that is proportional to the square root of the short rate,

then Λ is also proportional to the square root of the short rate. This close link between short rate volatility

and the price of risk severely limits the model specification. To obtain models that have a constant short

rate volatility but a time-varying price of risk or vice versa, we need to extend the “complete” affine model

to the “essential” affine family. More flexibility is achieved if multiple factors drive the dynamics of the

short rate.11

5 Estimation and Model Comparison

To estimate the ATSM, additional constraints must be imposed on the parameters to ensure that the model

is admissible and identifiable. For example, restrictions must be imposed to ensure that Sii(t) ≥ 0. Dai

11Brennan and Xia (2003) estimate an essential affine three-factor Gaussian model across the five countries considered in this

paper. There model which is a special case of the models considered in this paper assumes that r and Λ follow correlated Markov
Gaussian processes.
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and Singleton (2001) (DS) introduced the canonical form Am(N) to denote an N−factor model with the

first m factors entering the matrix S, which determines the volatility of the state variables and in turn

affects the short rate volatility. Up to N factors can affect the price of risk under the more general essential

affine term structure framework. We use Am(N)C to denote the complete ATSM and Am(N)E to denote

the essential ATSM. When m = N , the essential and the complete affine models coincide since the

indicator matrix in equation (12), I , is zero in this case. DS provide sufficient parameter restrictions and

normalizations to guarantee admissibility and identification of the affine model, and these are reproduced

in Appendix A for completeness.

We start from a three-factor essential affine model, Am(3)E, with the number of factors affecting the

short rate volatility m = 0, 1, 2, 3 for each country, and then examine its two sets of nested models. The

first set of nested models of Am(3)E (m = 0, 1, 2) is its complete model counterparts, Am(3)C, under

the constraint λ2 = 0 with λ2 defined in (12). The second set of nested models contains essential models

with fewer factors Am(N)E (m ≤ N < 3). When m = 3, there are no nested models. The details of the

parameter constraints under the nested models are also contained in Appendix A.

While the Wald test is the correct test for the first set of nested models, it is invalid for the second set

of nested models because parameters associated with excluded factors such as the elements in the third

row or third column of the K matrix only exist under the alternative of three-factor models and are not

identified under the null of one- or two- factor models. Andrews and Ploberger (1994) and Hansen (1996)

point out that the presence of such nuisance parameters invalidates classical Wald, LM or LR tests. A

suitable test in the current setting is however still unavailable in the literature. Andrews and Ploberger

(1994) explore optimal testing but do not discuss methods to obtain critical values in practice. Hansen

(1996) only considers regression models with additive nonlinearity, and it is not obvious how to extend

his method to nonlinear latent-variable maximum likelihood estimation settings. Therefore, we use the

Wald test to formally test the first set of nested models but only treat the Wald test results together with

likelihood function value comparisons as suggestive examinations of the dimension of the factor model

(the second set of nested models).

The estimation is carried out using bond yields with maturities of six months, one, two, three, five,

seven, and ten years. The ten-year bond yield in GM and JP is plagued with many missing observations,

so it is replaced by the nine-year bond yield for these two countries. Bond yields with maturities of four,

six, and eight years are saved for out-of-sample analysis.
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Equation (9) implies that the bond yield yt is a linear function of the factors X(t)

yt(τj) ≡ − ln Pj,t

τj
= −A (τj) + B (τj)

′ X (t) + εt(τj), j = 1, · · · , 7, (14)

where τj is the jth bond’s time-to-maturity, A(τj) and B(τj) are defined by the ODE (10-11), while ε

is added to reflect the possibility of model misspecification and measurement errors in the bond yield

data. The complete and the essential affine term structure models assume the same state variable dynamics

under the risk neutral measure Q and have the same bond pricing formula. They, however, make different

assumptions for the price of risk, which lead to different state variable dynamics under the physical measure

P . Therefore, equation (14) relates observable bond yields yt(τj) to different expressions of A(τj), B(τj)

and X(t) under P for the complete and affine models.

Equation (14) is the basis of our empirical studies of ATSM. When ε is assumed to be zero, the N

unobservable factors, X , can be inverted from any N bond yields. Since there is no a priori information

governing the choice of bonds, we choose to use all seven bonds by assuming ε(τj) 6= 0 ∀j. In this case,

the state variables X(t) are treated as latent variables in the estimation.

Exact maximum likelihood estimation (MLE) is generally preferred for the estimation of the ATSM,

because it has the property of consistency and asymptotic efficiency. When X(t) is treated as a vector

of latent variables, a Kalman filter algorithm is used together with the MLE. In the case of Am(N)E

models, however, the exact MLE is feasible only when m = 0, i.e., only in the case of multi-factor

Gaussian models. In all other nonlinear models, a quasi-maximum likelihood (QML) estimation has to be

used. The exact Kalman-filter is also replaced by an approximated version in which the first order Taylor

expansion is applied to the dynamics of the vector X(t) in equation (13). Another widely used method is

the Efficient Method of Moments (EMM) technique combined with a semi-nonparametric (SNP) auxiliary

model. The EMM/SNP is more flexible and can be used to estimate non-affine term structure models such

as the quadratic model proposed by Ahn, Dittmar, and Gallant (2002). Duffee and Stanton (2002) find,

however, that the EMM/SNP estimation method yields quite poor small sample results within the affine

term structure model family. On the other hand, the approximate Kalman filter/QML approach, despite its

theoretical inconsistency, produces the best results. Therefore, we use the approximate Kalman filter/QML

approach to estimate the ATSM.

The observable implications of a given model consist of a set of transition equations and a set of

observation equations. The set of observation equations is given by (14). The set of transition equations

for the unobservable state variables X(t) is a discretized version of the dynamics of X(t) in equation
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(13). To simplify the estimation, ε(τj) is assumed to have variance proportional to the inverse of the bond

maturity, σ2
ε(τj)

= σ2
e

τj
, and to have zero correlation both with one another and with innovations in the

transition equations. When the dynamics of X(t) are nonlinear, the transition equation is approximated by

the conditional mean and the conditional variance of X(t), both of which are derived in de Jong (2000)

for the complete affine model and in Duffee (2002) for the essential affine model. For completeness, the

conditional mean and variance together with the details of the estimation procedure are summarized in

Appendix B.

There are three steps in the estimation. First, four non-nested Am(3)E models with m = 0, 1, 2, 3

are estimated for each country, and the two sets of nested models are examined under each three-factor

(N = 3) model. Both the Wald test result12 and the comparison of likelihood function values suggest that

three-factor models dominate their one-factor (N = 1) or two-factor (N = 2) counterparts in all cases

and for all countries. The Wald test, however, fails to reject the nested model A2(3)C in all countries.

In this case, the same estimation approach is used in the second step to estimate the term structure model

A2(3)C. Results from these two steps are omitted for brevity. In summary, we find that complete affine

models except for A2(3)C are all easily rejected in favor of essential models, and that models with fewer

than three factors are inferior to three-factor models in all five countries.

The four non-nested Am(3)E (m = 0, 1, 2, 3) models together with A2(3)C are compared in the last

step under three different metrics. The first metric is the Schwarz Criterion:

BIC = loglikelihood− 1
2
Nθ ln(T )

where Nθ is the number of parameters and T is the number of observations. The Schwarz Criterion

compares the log likelihood function value with a penalty for over-parameterization. The higher is BIC,

the better is the model. The second metric is the in-sample absolute pricing error, PE, averaged across

all the seven bonds and over all the observations. The absolute pricing error at each time t is defined as

PEt =
1
J

J∑

j=1

|ŷt (τj) − yt (τj)|

where J = 7 is the number of bonds used in the estimation, ŷt (τj) is the predicted, and yt (τj) is the

12As we discussed earlier, the Wald test is not valid in the test of the dimension of a factor model due to the presence of

nuisance parameters, so the results are only suggestive.
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observed yield for maturity τj at t. The time-series average absolute pricing error

PE =
1
T

T∑

t=1

PEt

is then used to compare different models. The third metric is the out-of-sample absolute pricing error,

PEO, averaged across the three yields not used in the estimations.

Table 5 reports the values of BIC, PE and PEO for the five models. The best value is reported in

bold face. First, all three metrics choose the same best model A1(3)E in JP, UK and US. In CA, A1(3)E

performs the best according to the BIC criterion and is the second best according to both the PE and

the PEO criteria. In GM, A1(3)E is the best model according to both PE and PEO while it is the

second-to-best model based on BIC. Taking into account of all three metrics, A1(3)E seems to be the

best model for all five countries. In light of the wide difference in the monetary policies and government

bond markets, this finding is striking and suggests that the A1(3)E model is flexible enough to fit many

different term structure behaviors in different markets.

Table 6 reports the parameter estimates for A1(3)E for the five countries. Due to the large number of

parameters (24) and the short sample period (only 233-242 monthly observations), it is not surprising to

find that most of the parameter estimates have large asymptotic standard errors and are thus not statistically

significant.13

The estimate of the measurement error volatility σe is statistically significant but economically small

in all five countries; it varies from about 8-9 basis points in CA and UK to about 29 basis points in GM.

This implies a pricing error of about 11 (2-3) basis points for the six-month (ten-year) bond in CA and

about 41 (9) basis points for the six-month (ten-year) bond in GM. The estimate of δ0, the constant term

in the short rate process (6), is positive and significant in GM, JP, UK and US, but it is close to zero and

insignificant in CA. The coefficients δi (i = 1, 2, 3) are all small. In four out of the five countries, at least

one δi is significantly different from zero at the 5% level. The long run mean of the first state variable,

θ1, is only statistically significantly different from zero in CA, GM and UK. The estimates for β12 and

β13 are very imprecise with large standard errors, but they are close to the numbers reported by Duffee

(2002).

The mean-reversion parameter for the first factor, K11, is generally small in magnitude (from 0.02 in

13We estimate the maximum number of possible parameters allowed under the identification and admissibility. Both Duffee

(2002) and Dai and Singleton (2002) found similarly large standard errors associated with their parameter estimates under the

most general parameter specifications, but they then re-estimate a preferred model by exogenously setting certain parameters to

zero.
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UK to 0.15 in GM, but 0.43 in U.S.) but highly significant in all five countries, indicating that the first

state variable X1 is very persistent. The mean-reversion parameter K22 for the second state variable is

only significant in CA, where the estimate of 0.52 is much larger than its first-factor counterpart. The

estimates for the other four countries, although still positive, are smaller in magnitude and statistically

insignificant. The estimates of the third-factor mean-reverting parameter, K33, ranging from 0.25 to 1.6,

are only significant in US and UK. The off-diagonal elements in the matrix K are generally statistically

insignificant except for K23 in US. The point estimates suggest thatX2 andX3 are generally more transient

as compared to X1.

Estimates of the elements of the first price of risk vector, λ1, are mostly negative across all five

countries. In CA, GM, UK and US, at least one element in λ1 is significantly different from zero, but

all three elements of λ1 in JP are insignificant. Finally, the estimates of the matrix λ2 are generally quite

imprecise. The estimates for the element λ2,21 are often around 60 with even larger standard errors. There

is no statistically significant estimate out of the six elements of λ2 in GM, JP, and UK, but there is one

significant estimate in CA and two in US.

Table 7 reports summary statistics on the yield prediction errors. The mean and the standard deviation

of the absolute prediction errors are reported in the first two rows while the maximum and the minimum

of the raw prediction errors are reported in the last two rows. The left panel reports results for bonds used

in the estimation, while the right panel contains statistics for bonds not used in the estimation.

The average absolute prediction error generally declines with the yield maturity. For example, it ranges

from 40 basis points for the six-month yield to about 27 basis points for the ten-year yield in Canada.

Similar magnitude of the average absolute mispricing are observed in GM, UK and US. Japan’s mispricing

at around 20 basis points across all maturities is the smallest. The standard deviation of the prediction error

also declines with maturity, which is around 30 basis points at the short end and is about 18 basis points

at the long end. Judging from these two statistics, the model does a good job in fitting the term structure

across all five countries. The maximum and the minimum prediction errors, however, paint a different

picture. They indicate very poor fit of the model for at least one point of the sample. For example, the

maximum absolute prediction error for the six-month bond ranges from over 140 basis points in the US

to about 275 basis points in Germany. Even at the long end, the largest prediction error is still at around

100 basis points. The small average prediction error together with occasionally large error confirms the

observation that the predicted and the actual yield curves are almost on top of one another for most periods,

but there are a few points of large deviations during the sample period.
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To study the behavior of the factors extracted by the Kalman filter algorithm, we first examine their

correspondencewith the first three principal components “level,” ”slope,” and “curvature.” The correlations

between one of the factors and one of the principal components are reported in Table 8. There is always

one extracted factor, X1 for CA, GM, JP, and US and X2 for GM, that is highly correlated with the

“level” component, and the correlation coefficient is above 0.9 in CA, JP, UK and US and is around 0.87

in GM. The correspondence between one of our extracted factors, X3 for CA, GM, UK, and US and X2

for JP, with the “slope” component is weaker, ranging from only 0.45 in JP to about 0.81 in CA. The

correspondence between one of our extracted factors, X2 for CA, GM, and US, X2 for JP, and X1 for

UK, and the “curvature” component is the weakest, with the highest correlation at about 0.7 in the US

and the lowest at 0.4 in UK. Therefore, the behavior of the three factors, although all from the A1(3)E

model, differs from country to country.

In addition to the above analysis, we also examine how well the model-implied instantaneous risk free

rate, r̂(t),

r̂(t) ≡ δ̂0 + δ̂′1X̂ (t) , (15)

tracks the one-month Treasury bill rate, TB. The sample mean (sample volatility) of r̂(t) for CA, GM,

JP, UK and US is, respectively, 7.11%, 5.38%, 3.55%, 8.13% and 6.31% (2.63%, 1.90%, 2.36%, 3.19%,

and 2.42%), which compares with the sample mean (sample volatility) of the corresponding one-month

Treasury Bill rates at 7.10%, 4.95%, 3.21%, 8.30%, and 5.46% (2.98%, 1.78%, 2.63%, 3.10%, and 2.04%).

The time series of both r̂(t) and TB of the five countries are plotted in Figure 2. Since the one-month

Treasury bill rate14 is not used in the estimation, this plot provides an out-of-sample examination of the

goodness-of-fit of the best model at the very short end of the yield curve.

Figure 2 shows that A1(3)E works the best in UK, where the fitted short rates and the one-month

Treasury bill rates are virtually coincident. The model also works well in CA and JP. In CA, r̂ is close to

TB after 1987, but r̂ is substantially lower than TB around 1986. In JP, r̂ is close to TB before 1994,

but the estimated short rate at around 1% is higher than the T-bill rate, which is virtually zero in late

1990s. The model does not seem to provide a good fit for the US T-bill rates. Although the time series

dynamics of r̂ closely tracks that of the TB, the implied short rates are higher than TB in most periods.

The implied short rate runs up to a much higher level in 1999 and then it drops to a lower level than TB

14The one-month Treasury bill rates for the U.S. are from CRSP, the rates for CA and UK are from Datastream, and the rates

for GM is from Bloomberg. The Japan T-bill rates from March 1993 to December 2002 are from Datastream, and those from

January 1983 to February 1993 are provided by Kent Daniel.
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in 2002. The model works well in GM before 1997, but r̂ has a large dip in 1997-98 and then a run-up in

1999 while the T-bill rates has much smaller swings during this period. It is possible that the replacement

of Mark-denominated bonds by Euro-denominated bonds caused structural break or instability in the yield

curve, leading to the poor performance of any model without regime shifts. This figure suggests that while

A13(E) is the best model among the family of affine term structure models and provides a reasonably

good fit for the term structure, alternative non-affine models may work better for some countries than the

others.

Although the parameters governing the price of risk, λ1 and λ2, are estimated with large errors, it is

still instructive to examine the time series of the price of risk. The estimated vector of market price of

risk is given by

Λ̂t =
√

Ŝ (t)
(
λ̂1 + Ŝ(t)−1Iλ̂2X̂ (t)

)
, (16)

where the ith element, Λ̂(i) (i = 1, 2, 3), of the 3 × 1 vector Λ̂(t) gives the price of risk associated with

the ith state variable at time t.

Figure 3 contains the plot of Λ̂(i) (i = 1, 2, 3) for the five countries. The one standard deviation

bound is calculated but not plotted in the figure. In general, Λ̂(1) is smaller in magnitude with tight one

standard deviation bounds, and it is significantly different from zero in most periods. The other two prices

of risk, Λ(2) and Λ(3), however, are associated with large one standard deviation bounds so that they are

generally statistically insignificant despite their large magnitude. This reflects the difficulty in obtaining a

good estimate of the market price of risk in general affine term structure models.15 While Λ̂(1) increases

over time in CA, GM and JP, it declines during the same sample period in UK and US. There is a huge

spike in Germany’s Λ̂(2) at the end of 1998, which is accompanied by a plunge of Λ̂(3) at the same time.

A similar pattern is observed in the US during the period of 2000-2003, when a large decline in Λ̂(2)

coincides with a run-up in Λ̂(3). Note that all Λ̂(i)’s (i = 1, 2, 3) peaked (in the absolute value) around

the stock market crash in year 2000, suggesting some co-movement of prices of risk in the international

capital markets.

Figure 4 plots,

η̂ ≡
√

Λ̂Λ̂′
,

which is the estimated maximum Sharpe ratio in the bond market. As in Figure 3, the precision of Λ̂ is

15Dai and Singleton (2002) and Duffie (2002), for example, also report large standard errors for their price of risk estimates

in general affine term structure models.
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very low. Nonetheless, we detect some interesting patterns in the plot.

As compared to the risk free rate in Figure 2, the market price of risk displays much more volatility

and contains some spikes in the plot. The sample mean (standard deviation) of η̂ in CA, GM, JP, UK and

US are respectively, 0.88 (0.57), 0.98 (0.41), 2.32 (1.12), 0.98 (0.55), and 2.02 (1.13). In CA, η̂ swings

from almost zero in early 1983 and late 1980s to almost three around 1985-86. It steadily increases during

the period of 1989-1992 before it declines in early 1990s. The GM η̂ is stable and lies mostly below

one before 1991 (the unification), but it exhibits more variation afterwards and even shot up to almost

three when the Euro was introduced in 1998-99. On the one hand, this is consistent with the previous

observation that the three-factor affine models may be a poor for German yield data which can then lead

to unreasonable parameter and factor estimates. On the other hand, it may rationally reflect the higher

compensation of risk required by investors during this period, which brings a new monetary regime and a

lot of uncertainty in the implementation of the new currency. The price of risk for Japanese bond market

also seems to contain a structural break. Before 1991, η̂ has long swings around the mean of 1.4, but it

then steadily increases over time after 1991 to the peak of 5 in 1996 before it declines toward the mean of

2.3. The UK total market price of risk η̂ fluctuates around its mean of 0.98 with a range from zero to two

except for the spike of 3 occurred in 2000. There are two spikes in the US η̂, with one in September 1985

and the other in September 2000. While the first run-up in Λ̂ happens right after the Volcker monetary

experiment during 1979-1982, the second run-up coincides with the burst of the Internet bubble in year

2000. Therefore, the price of risk in the bond market is affected by both country-specific monetary policies

and common international factors.

6 Term Structure Forecasts: Some Simulation Evidence

Although the A1(3)E model provides a reasonable fit to the data and leads to reasonable estimates of

the instantaneous short rate and market prices of risk, the ultimate challenge for the model is to explain

the qualitative and quantitative behavior of term structure predictability that was documented in Section

3. In this section, we provide simulation evidence on the small-sample behavior of the term structure

forecastability.16

We simulate 2000 time series of yields for maturities of one to ten years using parameter estimates

from the best model, A1(3)E, for each country. The length of each time series corresponds to the number

16Dai and Singleton (2002), Duffee (2002), and Brandt and Chapman (2002) all examine whether essential affine models can

accommodate various stylized facts in the US yield curve.
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of observations in the actual historical data and varies between 233 and 242 months. The details of the

simulation are relegated to Appendix C.

The regressions (2), (3), and (4) are carried out on each simulated dataset. First, the annual yield

change of a bond of maturity τ years is regressed on the yield spread between the τ -year and the one-year

yield as in equation (2). Second, the average of future short rate changes is regressed on the yield spread

as in equation (3). Finally, excess bond returns are regressed on the forward rates as in equation (4).

The slope coefficient estimates â1, b̂1, and ĉi(i = 1, 2, 3), which correspond to the historical estimates

reported in Tables 2, 3 and 4, are recorded. The means and standard deviations of the estimates â1, b̂1,

and ĉi(i = 1, 2, 3) from the 2000 simulations are then interpreted as the simulated point estimates and the

simulated standard errors.

Figure 5 plots the simulated slope estimates of â1 together with its two-standard-error bounds. For

comparison, the estimates obtained from the historical data which were reported in Table 2 are also plotted

in the figure. In contrast to the observation that the sample estimates from Table 2 are mostly negative and

become more so when the bond maturity τ increases, the simulated estimates based on A1(3)E and its

MLE parameters are mostly positive and show an upward trend with τ in CA, GM, and US.17 The estimates

â1 in JP are close to zero and flat in τ while the estimates in UK are decreasing with τ . Interestingly,

although the best models across the five countries are all A1(3)E, they generate different small-sample

patterns in the slope coefficient estimates. The slope coefficients are estimated with such large error in the

small sample that the historical estimates from section 2 fall safely within the two standard error bounds

except for those corresponding to long maturities in CA and short maturities in UK. Therefore, the pattern

of slope coefficients we found in the historical data could conceivably have been generated by the A1(3)E

model.

Figure 6 plots the slope estimates of b̂1 from the simulated data together with its two-standard-error

bounds. The estimates obtained from the historical data which were reported in Table 3 are also plotted

in the figure. Consistent with the historical estimates reported in Table 3, the simulated slope estimates

increase with maturity τ in CA, GM, JP, and US. In UK, however, the simulated slope estimates decline

with τ , which is opposite to the pattern observed in the historical estimates. While the historical estimates

all fall inside the two standard error bounds of the simulated estimates in CA, GM, JP and US, UK’s

sample estimates at both the short and the long ends fall outside the bounds.

17In light of the findings of Dai and Singleton (2002), who show that only A0(3)E model has a reasonable chance in

accommodating the coefficient patterns in Table 2 using US yield data, it is not surprising that our best models across five

countries, all of which are A1(3)E, fail to generate a similar pattern as that observed in Table 2.
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Figure 7 plots the simulated coefficient estimates ĉ1, ĉ2 and ĉ3 together with their two-standard-error

bounds from regression (4). The results are plotted only for bonds with three years to maturity (τ = 3),

since the results for other maturities are broadly similar. Corresponding coefficient estimates based on

historical data and reported in Table 5 are also plotted. The two-standard-error bounds are tighter in

GM and UK as compared to those in CA, JP and US. The simulated coefficient estimates are very close

to the historical estimates in CA, and they are not statistically different from the historical ones in GM

and US. The coefficient estimates from the simulated data, however, are statistically different from their

historical counterparts in JP and UK. Although the simulated estimates of the coefficients exhibit an

inverted “V-”shape in four of the five countries, this pattern disappears as τ increases.

The results from Figures 5 to 7 taken together imply that the best essential affine models A1(3)E

whose parameter estimates were reported in Table 6 could conceivably generate the stylized empirical

results that were documented in Section 3. However, it is also possible that the difficulty in obtaining

precise estimates of the affine term structure model parameters, especially those governing risk premia,

translates into very low power in refuting the model. Therefore, it is premature to conclude that an affine

term structure model is successful in generating the rich yield curve behaviors and strong term structure

forecastability observed in the data.

7 Conclusion

In contrast to the large and growing empirical dynamic term structure literature examining the US yield

curve, similar analysis for other developed bond markets is still lacking. In this paper, we extend analysis of

the yield curve and the performance comparison of dynamic affine term structure models to five developed

government bond markets: Canada, Germany, Japan, United Kingdom and the United States.

Although the first three principal components of yields can be broadly characterized as “level,” “slope,”

and “curvature,” each country has unique yield curve features. Using three frequently used regression

specifications, we first provide extensive empirical evidence that the bond risk premium is time varying

in all five countries.

Since there is no prior evidence on which affine term structure model fits the yield curve best in

countries other than US, this paper examines all possible models within the family of affine dynamic

term structure models with one to three factors. The models are estimated using the Kalman filter/QML

approach, and the Wald test is carried out to compare nested models. The Schwartz criteria and the in-

and out-of- sample prediction errors are used to compare non-nested models. The three-factor essentially
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affine model, A1(3)E, in which only one factor affects the instantaneous volatility of short rates but all

three factors affect the price of risk, appears to be the best model in all five countries. This finding is

consistent with results in Dai and Singleton (2002) and Duffee (2002) on US data. The A13(E) model

provides very good average fit of the yield curve in all five countries, but has occasional large mis-pricing

during the sample.

Finally, we examine whether the best affine model can explain qualitative and quantitative aspects of

yield curve behavior such as the forecast power of forward rates for expected bond excess returns. Our

simulation evidence shows that, while point estimates of regression coefficients exhibit patterns different

from the point estimates obtained from historical data, they are not statistically different from them owing

to the large estimation errors that arise in the small sample regression studies. This lack of power renders

an inconclusive answer to the question of whether the best affine term structure model can successfully

generate the observed stylized empirical findings in the data. This paper has restricted itself to the analysis

of affine term structure models. Further work is required to assess the performance of quadratic term

structure models and term structures models with regime shifts on international data.

To conclude the paper, we note that while there are country-specific empirical regularities, qualitative

results and their implications are strikingly consistent across all five countries. It is thus likely that common

international factors and economic forces as well as country specific monetary policies are important driving

forces behind these government term structures.
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Appendix

A. Parameter Restrictions and Nested Hypothesis Tests

This appendix contains information on the parameter constraints in the five canonical affine term structure

models, which are explicitly estimated in this paper, to ensure admissibility and identification. In all

three-factor models, Σ = I3×3 is always an identity matrix. The parameter δ0 is unconstrained in all five

models. Other parameter constraints are summarized in Table A1.

Under each essential affine model Am(N)E, there are several nested models. The model A0(3)E

nests three alternative models: (1) A0(2)E with the parameter constraints H0 : λ1,3 = λ2,31 = λ2,32 =

λ2,33 = λ2,13 = λ2,23 = δ1 (3) = 0; (2) A0(1)E with parameter constraints H0 : λ1,3 = λ2,31 = λ2,32 =

λ2,33 = λ2,13 = λ2,23 = δ1 (3) = 0, and λ12 = λ212 = λ221 = λ222 = δ1 (2) = 0; and (3) A0(3)C with

parameter constraints H0 : λ2 = 0.

The model A1(3)E also nests three models: (1) A1(2)E with parameter constraints H0 : λ1,3 =

λ2,31 = λ2,32 = λ2,33 = λ2,23 = δ1(3) = 0; (2) A1(1)C with parameter constraints H0 : λ1,3 = λ2,31 =

λ2,32 = λ2,33 = λ2,23 = δ1(3) = 0, and λ1,2 = λ2,21 = λ2,22 = δ1 (2) = 0; and (3) A1(3)C with

H0 : λ2 = 0.

The model A2(3)E nests two models: (1) A2(2)C with parameter constraints H0 : λ1,3 = λ2,31 =

λ2,32 = λ2,33 = δ1 (3) = 0; and (2) A2(3)C with H0 : λ2 = 0.

Finally, the model A2(3)C nests A2(2)C with H0 : λ13 = δ1 (3) = 0 while there is no nested models

under A3(3)C.

B. Estimation Procedure

de Jong (2000) and Duffee (2002) show that the conditional mean and the conditional variance of the state

variables X are given by

E [Xs|Xt] =
(
I − e−K(s−t)

)
θ + e−K(s−t)Xt, (B1)

Var [Xs|Xt] = Lb0L
′
+

N∑

i=1

(
N∑

l=1

LblL
′
L−1

l,i

)
Xt,i, (B2)

where the matrix L is from the diagonalization of K in K = LDL−1 with D as the diagonal matrix. The

diagonal elements of D are denoted d1, · · · , dN .
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Before defining b0 and bl (l = 1, · · · , N ), we need to introduce several new variables:

α∗ = α, θ∗ = L−1θ, Σ∗ = L−1Σ, β∗ = βL,

G0 = Σ∗diag (α∗) (Σ∗)
′
, Gi = Σ∗diag (β∗

i ) (Σ∗)
′

(i = 1, · · · , N),

where β∗
i is the ith row of the matrix β∗ and G0 and Gi are N × N matrices.

The variance of Xs conditional on Xt depends on s− t. Define F0(s− t), Fi(s− t) (i = 1, · · · , N ),

and Hi(s − t) (i = 1, · · · , N ) as time-varying N × N matrices with typical element (j, k) given by

F0(s − t)(j,k) ≡ (dj + dk)
−1 G

(j,k)
0

(
1 − e−(dj+dk)(s−t)

)
,

Fi(s − t)(j,k) ≡ (dj + dk)
−1 G

(j,k)
i

(
1 − e−(dj+dk)(s−t)

)
,

Hi(s − t)(j,k) ≡ (dj + dk − di)−1 G
(j,k)
i

(
e−di(s−t) − e−(dj+dk)(s−t)

)
,

then we have

b0 = F0(s − t) +
N∑

i=1

θ∗i [Fi − Hi] , and bl = Hl.

In the Kalman filter/QML approach, the transition equation for the state variables X is the discretized

version equation (13) with the conditional mean and conditional variance given in (B1-B2); and the

observation equation is given in (14). The observation error ε is assumed to be independent of the

innovations to the state variables dW . In addition, the variance-covariance of the observation error V ≡

Var (ε) is assumed to be a J × J diagonal matrix with the jth diagonal element given by Vjj = σ2

τj
. This

implies that the pricing error of each bond due to possibly measurement error or model mis-specification

is independent of the bond maturity. The details of the estimation procedure are as follows:

• The selection of initial parameter values.

1. Duffee (2002)’s estimated optimal values (from his web site) were used as the initial values

for each model.

2. The two standard-deviation boundaries of the converged estimates were calculated from the

above initial values.

3. Set the converged estimate as the first set of initial parameter values, and draw other initial

parameter values randomly within the two standard deviation boundaries until 50 converged

outputs were obtained.

• The evaluation of the estimation.
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1. The minimization process was carried out using the simplexmethod (Fortran routine DUMPOL).

2. A specific parameter set is discarded if

(a) The program fails to converge.

(b) The converged estimate θ̂ is not valid (see definition below).

(c) θ̂ ± 4θ is invalid, where 4θ = min{abs(θ) · 10−5, 10−9} if θ 6= 0; and 4θ = 10−9

otherwise.

(d) The eigenvalue of the information matrix is complex.

3. An estimate θ̂ is invalid if

(a) It does not satisfy the requirements of the canonical form (see Appendix A).

(b) The numerical solutions of ODE in equations (10-11) cannot be achieved with the desired

precision within the maximum 100,000 steps.

(c) Positive-definite matrices fail to be positive definite at θ̂.

• The treatment of missing observations.

1. The system matrices from the observation equation are allowed to be different across time in

the Kalman filter algorithm.

2. If bond yields of certain maturities are missing at a specific date, then only available bond

yields of other maturities are used in the updating. Therefore, the number of observation

equations may be different at different time, leading to different system matrices.

C. Simulation

In the simulation, the MLE parameter estimates are treated as the “true” parameter values. The state

variable X(t) is generated by assuming that the discretized process for X(t) is a stochastic difference

equation

∆X(t + h) = K (θ − X(t))h + Σ
√

S (t)ε(t + h)
√

h, (C1)

where h = 1
360 (one day) is the time interval between two observation, and ε(t+h) has an N ×1 standard

normal distribution. The terms K (θ − X(t)) and Σ
√

S (t) are exactly the same as the drift and volatility

terms in equation (13).

To generate state variables X at the monthly frequency, the sequence of values {X(t + h), X(t +

2h), · · · , X(t + 30h)} is simulated from equation (C1) by starting from X(t) at the beginning of the
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month and then saving X(t + 30h) as the observation at the end of the month. Using the long run mean

θ as the initial value X(0), a sample of 466 monthly observations of state variables are generated. The

first 233 observations are discarded and the last 233 observations are used to construct a sample of bond

yields with maturities of one to ten years according to equation (14).

Each set of simulated bond yield data consists of 233 observations for CA, GM and JP, and of 242 and

241 observations for UK and US. The regressions (2), (3), and (4) are carried out and the slope coefficient

estimates â1, b̂1, and ĉi(i = 1, 2, 3) are recorded in each of the 2000 simulated datasets. The mean and

standard deviation of the 2000 estimates â1, b̂1, and ĉi(i = 1, 2, 3) are then calculated as the point estimate

and the standard error of the coefficients.
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Table 1

Summary Statistics of Zero-Coupon Constant Maturity Government Bond Yields

This table reports summary statistics for the estimated zero-coupon constant maturity government bond yields with maturities of six

months and one to ten years. The sample starts from January 1983 and ends in May 2002 for CA, GM, and JP, but ends in February 2003 for

UK and in January 2003 for US.

1. Canada

Bond Yield Maturities

Securities 0.5 1 2 3 4 5 6 7 8 9 10

mean (% per year) 7.25 7.37 7.59 7.78 7.95 8.09 8.18 8.25 8.30 8.34 8.39

Std. Dev. (% per year) 2.54 2.46 2.34 2.27 2.23 2.21 2.19 2.15 2.11 2.08 2.07

No. of Observation 233 233 233 233 233 233 233 233 233 233 233

Autocorrelation 0.977 0.979 0.982 0.984 0.986 0.987 0.988 0.988 0.989 0.989 0.989

2. Germany

Bond Yield Maturities

Securities 0.5 1 2 3 4 5 6 7 8 9 10

mean (% per year) 5.50 5.62 5.78 5.85 5.92 6.03 6.18 6.31 6.41 6.47 6.35

Std. Dev. (% per year) 1.84 1.62 1.48 1.46 1.44 1.39 1.33 1.27 1.22 1.17 1.10

No. of Observation 233 233 233 233 233 233 233 233 233 233 203

Autocorrelation 0.968 0.976 0.980 0.985 0.988 0.988 0.988 0.987 0.985 0.982 0.975

3. Japan

Bond Yield Maturities

Securities 0.5 1 2 3 4 5 6 7 8 9 10

mean (% per year) 3.34 3.28 3.31 3.50 3.71 3.90 4.05 4.16 4.27 4.37 3.94

Std. Dev. (% per year) 2.49 2.48 2.45 2.39 2.33 2.25 2.17 2.10 2.06 2.04 1.78

No. of Observation 233 233 233 233 233 233 233 233 233 233 193

Autocorrelation 0.993 0.995 0.994 0.993 0.993 0.993 0.992 0.992 0.993 0.993 0.990

4. United Kingdom

Bond Yield Maturities

Securities 0.5 1 2 3 4 5 6 7 8 9 10

mean (% per year) 7.65 8.06 8.12 8.18 8.23 8.27 8.29 8.31 8.31 8.30 8.27

Std. Dev. (% per year) 2.72 2.67 2.44 2.34 2.30 2.29 2.30 2.30 2.30 2.29 2.28

No. of Observation 197 241 242 242 242 242 242 242 242 242 242

Autocorrelation 0.988 0.986 0.985 0.984 0.985 0.985 0.986 0.987 0.988 0.988 0.989

5. United States

Bond Yield Maturities

Securities 0.5 1 2 3 4 5 6 7 8 9 10

mean (% per year) 6.38 6.45 6.60 6.75 6.91 7.06 7.21 7.35 7.47 7.56 7.60

Std. Dev. (% per year) 2.29 2.24 2.20 2.18 2.14 2.05 1.91 1.73 1.54 1.31 1.03

No. of Observation 241 241 241 241 241 241 241 241 241 241 241

Autocorrelation 0.986 0.986 0.987 0.987 0.987 0.986 0.985 0.983 0.980 0.976 0.966
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Table 2

The Regression of Change in Long-Term Yields on the Yield Spread

This table reports the OLS slope coefficient from equation (2):

yτ−1
t+12 − yτ

t = a0 + a1
yτ

t − y1
t

τ − 1
+ ε, τ = 2, · · · , 10,

where the yield change of a τ -year bond from month t to t + 12 is regressed on the yield spread between the τ−period bond and the one-year
bond at month t. The OLS standard error is in parentheses and the Newey-West adjusted standard error is in the brackets. The adjusted R2 is

in percentage. Regression results in GM and JP for the ten-year bonds are omitted due to missing data.

Country Bond Maturity τ
2 3 4 5 6 7 8 9 10

CA 0.669 0.384 0.180 0.081 0.081 -0.027 -0.316 -0.725 -1.140

(0.33) (0.32) (0.31) (0.33) (0.36) (0.40) (0.45) (0.51) (0.56)

[0.70] [0.69] [0.69] [0.73] [0.80] [0.90] [1.00] [1.11] [1.21]

R̄2 1.4 0.2 -0.3 -0.4 -0.4 -0.5 -0.2 0.5 1.4

GM -0.041 -0.391 -0.481 -0.425 -0.435 -0.543 -0.679 -0.871

(0.13) (0.16) (0.17) (0.19) (0.22) (0.25) (0.29) (0.33)

[0.25] [0.28] [0.33] [0.36] [0.40] [0.47] [0.56] [0.65]

R̄2 -0.4 2.4 3.0 1.7 1.4 1.7 2.0 2.6

JP 0.225 -0.662 -1.717 -2.268 -2.451 -2.362 -2.177 -1.982

(0.33) (0.49) (0.50) (0.49) (0.50) (0.52) (0.54) (0.55)

[0.64] [1.07] [1.19] [1.20] [1.21] [1.25] [1.30] [1.32]

R̄2 -0.3 0.4 4.7 8.5 9.5 8.1 6.5 5.2

UK 0.009 -0.033 -0.041 -0.053 -0.086 -0.150 -0.248 -0.380 -0.545

(0.22) (0.25) (0.29) (0.32) (0.35) (0.37) (0.40) (0.42) (0.44)

[0.43] [0.49] [0.56] [0.64] [0.72] [0.80] [0.87] [0.94] [1.01]

R̄2 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -0.1 0.2

US -0.031 -0.260 -0.414 -0.406 -0.235 -0.222 -0.278 -0.238 -0.364

(0.28) (0.29) (0.32) (0.38) (0.47) (0.54) (0.56) (0.52) (0.46)

[0.62] [0.64] [0.70] [0.82] [0.96] [1.02] [1.05] [1.07] [0.97]

R̄2 -0.4 -0.1 0.3 0.1 -0.3 -0.4 -0.3 -0.4 -0.2
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Table 3

The Regression of Short Rate Change on the Yield Spread

This table reports the OLS slope coefficient from equation (3):

1

τ

τ−1∑

k=1

[
y1

t+12k − y1
t

]
= b0 + b1

[
yτ

t − y1
t

]
+ ε, τ = 2, · · · , 10,

where the average future change of the one-year bond is regressed on the yield spread between the τ−period bond and the one-year bond.
The OLS standard error is in parentheses and the Newey-West adjusted standard error is in the brackets. The adjusted R2 is in percentage.

Regression results in GM and JP for the ten-year bonds are omitted due to missing data.

Country Bond Maturity τ
2 3 4 5 6 7 8 9 10

CA 0.834 0.832 0.896 0.976 1.000 1.043 1.087 1.128 1.144

(0.17) (0.12) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07) (0.08)

[0.35] [0.24] [0.18] [0.14] [0.11] [0.11] [0.11] [0.10] [0.11]

R̄2 9.9 18.2 31.2 46.4 56.3 60.3 61.6 65.3 61.8

GM 0.479 0.526 0.677 1.298 1.401 1.453 1.504 1.530

(0.07) (0.07) (0.08) (0.10) (0.09) (0.09) (0.08) (0.07)

[0.13] [0.13] [0.16] [0.18] [0.16] [0.16] [0.14] [0.13]

R̄2 19.3 21.6 28.1 46.0 57.2 62.6 69.6 78.3

JP 0.612 0.690 0.426 0.371 0.443 0.622 0.942 1.467

(0.17) (0.20) (0.18) (0.16) (0.15) (0.15) (0.16) (0.15)

[0.32] [0.41] [0.39] [0.33] [0.30] [0.31] [0.38] [0.30]

R̄2 5.3 5.1 2.2 2.3 4.4 9.0 17.8 41.7

UK 0.505 0.637 0.755 0.872 0.981 1.041 1.125 1.162 1.250

(0.11) (0.10) (0.10) (0.09) (0.08) (0.08) (0.07) (0.07) (0.07)

[0.22] [0.16] [0.17] [0.16] [0.16] [0.15] [0.14] [0.13] [0.13]

R̄2 8.1 15.2 22.9 32.2 42.6 51.2 60.2 67.1 73.3

US 0.485 0.715 0.786 1.143 1.414 1.387 1.369 1.299 1.114

(0.14) (0.12) (0.14) (0.13) (0.11) (0.09) (0.07) (0.06) (0.04)

[0.31] [0.26] [0.27] [0.24] [0.16] [0.15] [0.14] [0.10] [0.06]

R̄2 4.5 13.1 13.4 29.3 47.3 57.4 68.8 77.9 82.5
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Table 4

The Regression of Bond Excess Returns on the Forward Rates

This table reports the OLS regression coefficients from equation (3):

rτ
t+12 = c0 + c1ft(0,1) + c2ft(2,3) + c3ft(8,9) + et, τ = 2, · · · ,10.

The Newey-West adjusted t−ratios are reported in the brackets. The adjusted R2 is in percentage. Regression results in GM and JP for the

ten-year bond are omitted due to missing data.

Bond Maturity τ
Country Coefficient 2 3 4 5 6 7 8 9 10

CA c0 -0.007 -0.015 -0.024 -0.036 -0.049 -0.062 -0.076 -0.090 -0.102

[0.71] [0.90] [1.12] [1.37] [1.60] [1.76] [1.89] [1.98] [2.01]

c1 -0.112 -0.317 -0.560 -0.771 -0.898 -1.071 -1.343 -1.706 -2.136

[0.54] [0.82] [1.03] [1.14] [1.13] [1.18] [1.32] [1.52] [1.73]

c2 0.163 0.463 0.802 1.044 1.053 0.997 0.991 1.108 1.422

[0.89] [1.39] [1.76] [1.85] [1.59] [1.31] [1.13] [1.11] [1.26]

c3 0.097 0.154 0.216 0.354 0.639 1.022 1.458 1.866 2.135

[0.68] [0.59] [0.60] [0.78] [1.18] [1.62] [2.02] [2.29] [2.36]

R̄2 2.6 4.6 6.8 8.1 8.2 8.7 10.1 11.7 13.0

GM c0 -0.013 -0.032 -0.037 -0.033 -0.033 -0.047 -0.079 -0.129

[1.55] [1.81] [1.41] [1.01] [0.88] [1.05] [1.52] [2.21]

c1 -0.229 -0.455 -0.677 -0.836 -0.964 -1.084 -1.206 -1.369

[2.32] [2.38] [2.51] [2.62] [2.71] [2.70] [2.67] [2.73]

c2 0.452 0.966 1.263 1.261 1.202 1.172 1.085 0.875

[4.16] [4.31] [3.89] [3.19] [2.61] [2.18] [1.77] [1.30]

c3 0.038 0.086 0.131 0.280 0.523 0.897 1.544 2.576

[0.21] [0.22] [0.21] [0.36] [0.56] [0.81] [1.21] [1.82]

R̄2 27.5 33.4 32.0 26.7 23.2 21.7 22.4 25.9
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Table 4 (continue)

Bond Maturity τ
Country Coefficient 2 3 4 5 6 7 8 9 10

JP c0 0.003 0.014 0.021 0.025 0.029 0.028 0.021 0.011

[1.07] [2.30] [2.27] [2.05] [1.88] [1.50] [0.99] [0.48]

c1 -0.775 -1.903 -3.117 -4.150 -4.825 -5.220 -5.554 -5.807

[3.60] [4.57] [5.33] [5.67] [5.57] [5.40] [5.39] [5.33]

c2 1.339 3.162 4.920 6.291 7.109 7.444 7.593 7.536

[5.75] [6.82] [7.49] [7.70] [7.57] [7.40] [7.32] [6.88]

c3 -0.503 -1.192 -1.700 -2.023 -2.197 -2.106 -1.783 -1.303

[4.11] [4.88] [4.68] [4.31] [3.97] [3.44] [2.72] [1.87]

R̄2 28.6 34.8 36.3 34.6 30.5 26.1 23.5 22.5

UK c0 0.000 -0.009 -0.020 -0.030 -0.039 -0.045 -0.047 -0.047 -0.043

[0.02] [0.84] [1.23] [1.44] [1.53] [1.52] [1.43] [1.28] [1.08]

c1 -0.439 -0.779 -1.058 -1.293 -1.485 -1.635 -1.747 -1.827 -1.883

[2.77] [2.82] [2.82] [2.76] [2.65] [2.50] [2.34] [2.18] [2.04]

c2 0.974 1.980 2.779 3.327 3.623 3.689 3.551 3.236 2.772

[3.69] [4.23] [4.39] [4.32] [4.06] [3.68] [3.22] [2.69] [2.14]

c3 -0.501 -1.022 -1.380 -1.534 -1.500 -1.309 -0.991 -0.572 -0.072

[2.52] [2.92] [2.94] [2.69] [2.27] [1.75] [1.20] [0.63] [0.07]

R̄2 13.7 16.6 17.6 17.2 15.9 14.0 12.1 10.3 8.9

US c0 -0.087 -0.160 -0.228 -0.299 -0.377 -0.456 -0.524 -0.571 -0.583

[5.06] [5.19] [5.24] [5.41] [5.85] [6.28] [6.44] [6.31] [5.85]

c1 -0.632 -1.286 -1.922 -2.462 -2.855 -3.267 -3.775 -4.438 -5.293

[3.36] [3.98] [4.43] [4.60] [4.56] [4.58] [4.73] [5.24] [6.40]

c2 1.200 2.310 3.322 4.201 4.941 5.698 6.457 7.156 7.707

[5.50] [6.14] [6.52] [6.64] [6.66] [6.80] [6.93] [7.14] [7.52]

c3 0.605 1.139 1.669 2.263 2.946 3.617 4.213 4.708 5.033

[4.54] [5.09] [5.47] [5.86] [6.44] [6.92] [7.10] [7.16] [7.18]

R̄2 31.0 32.4 31.9 30.6 30.6 32.1 33.3 33.6 33.7
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Table 5

The Schwartz Criterion, the In-, and out-of- Sample Prediction Errors for Non-nested Model Comparisons

This table reports the Schwarz Criterion BIC, the in-sample pricing error PE, and the out-of-sample pricing error PEO for all

models that cannot be rejected in the first two steps of the estimation. The values of BIC are given in thousands while the values of PE and

PEO are given in basis points. The value of the best model of each country is in bold face.

Affine Term Structure Models

Country Criterion A0(3)E A1(3)E A2(3)E A2(3)C A3(3)C

CA BIC 10.024 10.093 9.662 9.565 9.690

CA PE 33.9 31.5 40.2 32.1 31.1

CA PEO 31.7 30.1 37.7 31.0 29.7

GM BIC 9.215 9.197 8.957 9.108 9.084

GM PE 23.6 22.3 24.7 23.4 24.6

GM PEO 20.0 18.7 19.3 19.1 19.2

JP BIC 9.331 9.375 9.336 9.333 9.272

JP PE 22.2 21.1 22.1 22.1 22.1

JP PEO 22.0 21.3 21.9 21.8 22.2

UK BIC 10.164 10.209 10.096 10.064 10.151

UK PE 30.7 29.3 31.0 31.5 30.3

UK PEO 28.7 27.9 29.3 29.4 28.6

US BIC 9.642 9.658 8.376 8.421 8.750

US PE 32.4 29.1 34.9 34.8 35.4

US PEO 32.8 29.6 35.4 34.5 34.2
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Table 6

Parameter Estimates for the Best of Model of Each Country

This table reports the parameter estimates for A1(3)E, the best model of each country. The parameters are estimated using Kalman filter/QML approach. The asymptotic standard error

is given in the parenthesis. For the model of A1(3)E, α1 = β12 = β13 = 0, α2 = α3 = β11 = 1, and the first row of λ2 is all zero. For other parameter constraints, please refer to Appendix A.

The parameter with ∗ denotes significance at 5%.

Model: A1(3)E
Constants CA GM JP

δ0 0.0066 (0.0074) 0.0432∗ (0.0120) 0.1203∗ (0.0310)
σe 0.0008∗ (0.00002) 0.0022∗ (0.00005) 0.0021∗ (0.00004)

Parameters Index i Index i Index i
1 2 3 1 2 3 1 2 3

δi 0.0042∗ 0.0000 0.0073∗ 0.0004 2.11E − 9 0.0117∗ −0.0005∗ 0.0001 0.0002
(0.0006) (0.0002) (0.0014) (0.0003) (0.0005) (0.0050) (0.0002) (0.0009) (0.0045)

θi 21.1482∗ 0 0 39.8416∗ 0 00 93.9499 0 0
(4.0049) (20.1873) (95.8792)

K1i 0.0478∗ 0 0 0.1506∗ 0 0 0.0356∗ 0 0
(0.0051) (0.0119) (0.0063)

K2i −0.0000 0.5161∗ 3.2337 −1.6912 0.0594 4.6844 −0.2429 0.0059 6.2579
(0.0567) (0.2199) (2.7879) (6.8021) (0.7840) (21.3211) (11.9537) (21.1830) (56.2555)

K3i −0.0000 0.0060 0.2506 −0.0040 −0.1138 1.5207 −0.4206 −0.0962 1.5579
(0.0484) (0.0284) (0.2486) (0.0997) (0.4636) (0.7876) (4.0006) (5.4523) (21.1966)

β1i 1 10.5953 0.1047 1 9.5914 0.0207 1 10.0959 1.3734
(12.8186) (0.0709) (77.9973) (0.0432) (62.9907) (28.5664)

λ1i −0.0227∗ −6.1130 −2.8957∗ −0.0350∗ −6.0213 −1.2088 0.0058 −6.3325 0.1713
(0.0051) (4.7322) (1.2893) (0.0114) (26.0404) (1.5701) (0.0039) (39.0317) (23.7682)

λ2,2i 64.8963 −0.5323∗ −0.9770 57.7593 0.0773 5.2376 64.0284 −0.4179 2.6956
(100.2326) (0.2487) (1.9672) 675.6679 (0.4379) (22.7773) (62.0354) (8.2873) (23.5923)

λ2,3i 0.4187 −0.0794 −0.0413 0.0379 0.0130 −0.5497 −0.1506 −0.0718 0.0438
(0.3296) (0.0528) (0.2758) (0.0911) (0.0607) (0.4120) (35.1388) (1.5160) (8.2992)

LL 10158.49 9262.16 9440.1633

3
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Table 6 (continued)

Model: A1(3)E
Constants UK US

δ0 0.1232∗ (0.0143) 0.1466∗ (0.0218)
σe 0.0009∗ (0.00002) 0.0019∗ (0.00004)

Parameters Index i Index i
1 2 3 1 2 3

δi −0.0005 0.0012 0.0035 −0.0039∗ 0.0002 0.0000
(0.0004) (0.0011) (0.0030) (0.0012) (0.0011) (0.0005)

θi 29.5491∗ 0 0 14.1498 0 0
(5.8932) (9.5182)

K1i 0.0180∗ 0 0 0.4254∗ 0 0
(0.0069) (0.0509)

K2i −0.5616 0.1006 2.6879 −1.0532 0.0267 1.6321∗

(0.5035) (0.1921) (3.3785) (4.5621) (0.0365) (0.2026)
K3i −0.0018 −0.0402 0.8187∗ −1.0557 0.0073 0.4453∗

(0.1065) (0.0647) (0.2661) (4.4834) (0.0479) (0.1871)
β1i 1 10.9528 0.2079 1 14.2853 1.0597

(20.6811) (0.1963) (121.8975) (9.4008)
λ1i 0.0482∗ −5.8385 −0.4892 −0.1094∗ −4.2300 −3.8555

(0.0130) (8.5791) (1.9740) (0.0476) (20.2047) (19.4405)
λ2,2i 64.4729 −0.0408 2.7388 59.5679 0.3477∗ 1.9063

(129.9537) (0.2841) (3.1974) (754.1299) (0.1639) (1.6473)
λ2,3i 0.2383 0.0251 0.1729 4.8784 −0.1316 −0.8961∗

(0.5087) (0.0440) (0.3403) (59.5906) (0.1250) (0.1429)

LL 10274.12 9701.28

3
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Table 7

Summary Statistics of Prediction Errors from Model A1(3)E

This table reports the summary statistics of the prediction errors, defined as the difference between the actual and the predicted yields

at each month across all maturities, from the best model A1(3)E. The mean and the standard deviation are for the absolute prediction errors

while the maximum and the minimum are for the raw (before taking absolute value) prediction errors. All numbers are in basis points.

In Sample Out of Sample

Yield Maturity 0.5 1 2 3 5 7 10 4 6 8 9

Canada

mean(ABS) 40.2 37.1 33.0 30.7 28.6 26.9 24.4 29.6 27.6 26.1 25.2

std(ABS) 37.6 34.8 30.1 26.5 22.6 20.0 18.4 24.0 21.2 19.6 19.0

Max 250.5 221.2 171.0 148.5 120.0 90.7 94.8 134.1 104.0 82.7 82.7

Min -140.3 -123.7 -105.2 -97.6 -99.5 -106.0 -103.4 -92.7 -98.4 -111.3 -112.3

Germany

mean(ABS) 34.3 23.4 23.6 20.4 18.7 17.0 18.1 19.3 17.7 17.2 20.1

std(ABS) 35.7 26.6 20.6 15.2 14.1 13.9 14.0 14.1 13.9 13.3 16.2

Max 352.7 264.5 146.5 73.5 102.8 104.6 105.1 93.2 105.0 104.8 104.7

Min -121.0 -107.6 -106.6 -87.5 -62.2 -54.7 -71.8 -70.7 -58.5 -49.7 -92.0

Japan

mean(ABS) 23.6 18.4 21.4 20.7 22.2 21.8 19.3 21.3 22.5 19.7 21.9

std(ABS) 21.3 18.9 20.1 19.2 18.7 17.6 16.9 18.4 18.6 16.8 18.3

Max 108.4 107.3 116.8 100.4 90.5 95.4 91.6 87.2 97.2 94.8 88.9

Min -133.2 -102.5 -96.8 -104.4 -92.2 -81.1 -83.4 -100.3 -84.4 -82.3 -84.0

UK

mean(ABS) 29.0 32.0 31.5 30.3 29.0 28.0 25.8 29.6 28.6 27.3 26.5

std(ABS) 33.6 32.5 29.9 28.3 26.0 24.3 22.1 27.0 25.1 23.5 22.8

Max 177.1 170.0 201.9 205.4 186.5 167.2 146.0 197.5 176.0 159.9 153.1

Min -170.9 -187.2 -156.8 -133.0 -137.1 -145.2 -131.8 -127.3 -143.5 -142.9 -138.0

US

mean(ABS) 35.4 32.1 29.5 28.4 28.1 28.5 22.1 28.1 27.9 28.6 26.1

std(ABS) 27.9 25.4 21.9 20.9 21.6 20.5 16.7 21.6 20.6 21.1 19.2

Max 104.8 104.5 99.8 85.4 86.4 97.5 54.9 81.2 87.2 108.1 93.7

Min -140.6 -130.7 -119.3 -109.8 -97.9 -102.2 -91.8 -102.3 -100.6 -102.7 -100.5

Table 8

Correlations between Estimated Three Factors and the Level, Slope and Curvature Components

This table reports the correlation between the extracted three factors from the Kalman filter estimation and the factors of “level,”

“slope,” and “curvature” from the principal component analysis. “SV” stands for the state variable with which the correlation is calculated.

Level Slope Curvature

SV Correlation SV Correlation SV Correlation

CA X1 0.9357 X3 0.8135 X2 0.5847

GM X1 0.8741 X3 0.7700 X2 0.5072

JP X1 0.9619 X2 0.4561 X3 0.7908

UK X2 0.9894 X3 0.7994 X1 0.4148

US X1 0.9013 X3 0.5310 X2 0.6893
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Table A1

Parameter Restrictions for Three-Factor Affine Models

This table contains the parameter constraints to ensure admissibility and identification for all three-factor models considered in the paper.

Model A0(3)E Model: A1(3)E A2(3)E
Index i Index i Index i

1 2 3 1 2 3 1 2 3
δ1 δ1(1) ≥ 0 δ1(2) ≥ 0 δ1(3) ≥ 0 δ1(1) δ1(2) ≥ 0 δ1(3) ≥ 0 δ1(1) δ1(2) δ1(3) ≥ 0

α 1 1 1 0 1 1 0 0 1

β1i 0 0 0 1 β12 ≥ 0 β13 ≥ 0 1 0 β13 ≥ 0
β2i 0 0 0 0 0 0 0 1 β23 ≥ 0
β3i 0 0 0 0 0 0 0 0 0

θ 0 0 0 θ1 ≥ 0 0 0 θ1 ≥ 0 θ2 ≥ 0 0

K1i K11 > 0 0 0 K11 > 0 0 0 K11 > 0 K12 ≤ 0 0

K2i K21 K22 > 0 0 K21 ≤ 0 K22 K23 K21 ≤ 0 K22 > 0 0

K3i K31 K32 K33 > 0 K31 ≤ 0 K32 K33 K31 ≤ 0 K32 ≤ 0 K33

Eigenvalues of K > 0 Eigenvalues of K > 0 Eigenvalues of K > 0
K1θ > 0 K1θ > 0 and K2θ > 0

I−
1i 1 0 0 0 0 0 0 0 0

I−
2i 0 1 0 0 1 0 0 0 0

I−
3i 0 0 1 0 0 1 0 0 1

λ1,i λ1,1 λ1,2 λ1,3 λ1,1 λ1,2 λ1,3 λ1,1 λ1,2 λ1,3

λ2,1i λ2,11 λ2,12 λ2,13 0 0 0 0 0 0

λ2,2i λ2,21 λ2,22 λ2,23 λ2,21 λ2,22 λ2,23 0 0 0

λ2,3i λ2,31 λ2,32 λ2,33 λ2,31 λ2,32 λ2,33 λ2,31 λ2,32 λ2,33

3
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Table A1 (continued)

Model A2(3)C Model: A3(3)C
Index i Index i

1 2 3 1 2 3
δ1 δ1(1) δ1(2) δ1(3) ≥ 0 δ1(1) δ1(2) δ1(3)

α 0 0 1 0 0 0

β1i 1 0 β13 ≥ 0 1 0 0

β2i 0 1 β23 ≥ 0 0 1 0

β3i 0 0 0 0 0 1

θ θ1 ≥ 0 θ2 ≥ 0 0 θ1 ≥ 0 θ2 ≥ 0 θ3 ≥ 0

K1i K11 > 0 K12 ≤ 0 0 K11 > 0 K12 ≤ 0 K13 ≤ 0
K2i K21 ≤ 0 K22 > 0 0 K21 ≤ 0 K22 > 0 K23 ≤ 0
K3i K31 ≤ 0 K32 ≤ 0 K33 K31 ≤ 0 K32 ≤ 0 K33 > 0

Eigenvalues of K > 0 Eigenvalues of K > 0
K1θ > 0 and K2θ > 0 Kiθ > 0 (i = 1, · · · , 3)

I−
1i 0 0 0 0 0 0

I−
2i 0 0 0 0 0 0

I−
3i 0 0 0 0 0 0

λ1,i λ1,1 λ1,2 λ1,3 λ1,1 λ1,2 λ1,3

λ2,1i 0 0 0 0 0 0

λ2,2i 0 0 0 0 0 0

λ2,3i 0 0 0 0 0 0

4
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Figure 1

Weights of the First Three Principal Components on the Eleven Bonds

The figure plots the weights of the first three principal components on the eleven zero coupon bond yields with maturities of six months and

one to ten years .
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Figure 2

Model Implied Instantaneous Interest Rates and the One-month Treasury Bill Rates

The figure plots the estimated short rate from the best model in each country against the one-month Treasury bill rate, which is not used in the

estimation. The sample is from January 1983 to December 2002. The solid line stands for the implied short rate while the dashed line is for the

one-month Treasury bill rate.
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Figure 3

Model Implied Price of Risk

The figure plots the estimated market price of risk derived from the MLE estimated parameters and state variables from the best model of each

country,

Λ̂t =

√
Ŝ (t)

(
λ̂1 + Ŝ(t)−1Iλ̂2X̂ (t)

)
.

The ith element, Λ̂(i) (i = 1,2, 3), of the 3 × 1 vector Λ̂(t) is the price of risk associated with the ith state variable at time t. The sample is
from January 1983 to December 2002.
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Figure 3 (continued)

1983.01 1987.01 1991.01 1995.01 1999.01
0.055

0.06

0.065

0.07

0.075

JP: Λ(1)

1983.01 1987.01 1991.01 1995.01 1999.01 2003.01

0.1

0.15

0.2

0.25

UK: Λ(1)

1983.01 1987.01 1991.01 1995.01 1999.01

−1

0

1

2

3

4

JP: Λ(2)

1983.01 1987.01 1991.01 1995.01 1999.01 2003.01

−2.5

−2

−1.5

−1

−0.5

0

0.5

UK: Λ(2)

1983.01 1987.01 1991.01 1995.01 1999.01
0

0.5

1

1.5

2

JP: Λ(3)

1983.01 1987.01 1991.01 1995.01 1999.01 2003.01

−1.5

−1

−0.5

0

0.5

1

1.5
UK: Λ(3)

44



Figure 3 (continued)
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Figure 4

Model Estimated Total Market Price of Risk

The figure plots the estimated total market price of risk, derived from the Kalman filter/QML estimated parameters and state variables from the

best model of each country, η̂ ≡
√

Λ̂Λ̂
′
. The sample is from January 1983 to December 2002.
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Figure 5

Simulated Slope Estimates of Regressing the Long-Term Yield Change on the Yield Spread

The figure plots the average slope estimates, â1, from the regression,

yτ−1
t+12 − yτ

t = a0 + a1
yτ

t − y1
t

τ − 1
+ ε, τ = 2, · · · , 10,

against the bond maturity τ using 2000 sets of simulated yields. The two standard error bounds around â1 and the sample estimates from Table

2 are also plotted. The simulated yields contain 233 monthly observations for CA, GM, and JP, and 242 and 241 observations for UK and US,

the same as the sample size of the actual data in the respective five countries.
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Figure 6

Simulated Slope Estimates of Regressing the Short Rate Change on the Yield Spread

The figure plots the average slope estimates b̂1 from the regression

1

τ

τ−1∑

k=1

[
y1

t+12k − y1
t

]
= b0 + b1

[
yτ

t − y1
t

]
+ ε, τ = 2, · · · , 10,

against the bond maturity τ using 2000 sets of simulated yields. The two standard error bounds around b̂1 and the sample estimates from Table
3 are also plotted. The simulated yields contain 233 monthly observations for CA, GM, and JP, and 242 and 241 observations for UK and US,

the same as the sample size of the actual data in the respective five countries.
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Figure 7

Simulated Slope Estimates of Regressing the Excess Bond Returns on the Forward Rates

The figure plots the average slope estimates, ĉ1 , ĉ2 and ĉ3, from the regression

rτ
t+12 = c0 + c1ft(0,1) + c2ft(2,3) + c3ft(8,9) + et, τ = 3.

for bond yields with maturity τ = 3 using 2000 sets of simulated yields. The two standard error bounds around ĉ1, ĉ2 and ĉ3 and the sample
estimates with the corresponding maturity (τ = 3) from Table 4 are also plotted. The simulated yields contain 233 monthly observations for
CA, GM, and JP, and 242 and 241 observations for UK and US, the same as the sample size of the actual data in the respective five countries.
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