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Abstract

In this paper I investigate whether firms’ physical investments should react to the speculative over-

pricing of their securities. I introduce investment subject to quadratic adjustment costs (along the lines

of Abel and Eberly [1994]) in an infinite horizon continuous time model with short sale constraints and

heterogeneous beliefs (along the lines of Scheinkman and Xiong [2003]). Under standard assumptions,

I show that the neoclassical "q" theory of investment will continue to hold despite the presence of

(endogenous) speculative mispricing in the stock market. Strikingly, the welfare implications of the

theory will also continue to hold, despite the presence of a speculative bubble. I show how the model

provides a new formalization of the notions of "short-termist" and "long-termist" investment policies

and also how the behavior of investment can be used to disentangle rational and behavioral approaches

to so-called asset pricing anomalies.
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1 Introduction

...certain classes of investment are governed by the average expectation of those who deal on

the Stock Exchange as revealed in the price of shares, rather than by the genuine expectations

of the professional entrepreneur (J.M.Keynes, The General Theory, 1936, p.151)

Further, it is difficult to know how firms in making investment, and financing decisions,

should react to changes in the market’s valuation of risk which reflect speculative movements.....

(J. Tobin and W. Brainard, Private Values and Public Policy, Essays in Honor of William Fellner,

1977, p. 248)

Standard neoclassical theory predicts that investment is inherently tied with the stock market through

Tobin’s ”q”. The essence of ”q” theory is the following argument: If the repurchase cost of capital is less

than the net present value of additional profits it will bring at the margin, the company should then invest

and vice versa. The only reason preventing the ratio of the two values (known as q) from always being equal

to 1 are adjustment costs1 : It is expensive to install new capital and thus a deviation of q from 1 can exist,

but it should diminish over time. The link between investment and the stock market follows: The value of a

company is the net present value of its profits and thus whenever one sees the stock market rising, one should

simultaneously observe an increase in investment in order to bring the numerator and the denominator of

the ”q” ratio in line.

There is however a concern with this line of reasoning. Namely, what happens if, at times, the stock

market valuation does not reflect the net present value of profits but instead contains terms that are unrelated

to ”fundamentals”? Will the ”q” theory continue to hold, or will firm’s decision makers adopt an eclectic

approach about which of the components of valuation they will pay attention to?

As the two quotations at the beginning of the text suggest, this question is probably one of the oldest

questions in the neoclassical theory of investment. Economists and market participants are repeatedly

reminded of the importance of this question every time that stock markets exhibit rapid increases in value.

Typically, such movements raise concerns about the extent to which they are justified by fundamentals

alone. Also apparent during most of these episodes is that business’ physical investment is the main nexus

connecting the real economy with the financial sector. During the recent boom and bust of the stock market,

investment was the main macroeconomic aggregate that co-moved with the stock market. The behavior of

investment in the US during the late twenties, as well as the behavior of the Japanese economy during the

late eighties provide further sources of alarming empirical evidence in this direction2.

1Under Hayashi’s (1982) conditions.
2For empirical evidence during those episodes see Panageas (2005), Chirinko and Schaller (2001)
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Whether investment will react only to fundamental sources, or whether it will also react to speculative

overpricing in the stock market could have important policy implications. If investment "filters" out specu-

lative components and only reacts to fundamental variations in the stock market, it is seemingly difficult to

make an argument for activism by the monetary and/or fiscal authorities. Indeed, in most of the existing

discussions, activism is justified on the basis of "misguided" physical investment.3

The aim of this paper is to answer the question of whether investment should react to both fundamentals

and speculative components and study the implications of this issue. I start with an explicit reason for why

assets can deviate from fundamentals, namely heterogenous beliefs along with a constraint on short sales.

I then introduce investment subject to quadratic adjustment costs and study investors’ holding horizons,

optimal investment, and the resulting equilibrium prices in a unified dynamic framework.

More specifically, I use short sales constraints and heterogenous beliefs as two of the main building blocks

of the model in order to derive positive deviations of prices from "fundamentals". It is intuitive that the

presence of a short sale constraint can cause the price of an asset to deviate from its fundamental value if

market participants do not have homogenous beliefs. Agents who believe that the current price is above the

net present value of dividends, would have to go short in order to take advantage of what they perceive to

be mis-pricing. However, they cannot do this because of the short sale constraint. Accordingly, for pricing

purposes, these skeptical agents do not matter, and the price will only reflect the views of the most optimistic

market participants.

Furthermore, if the most optimistic agent perceives that there might be an even more optimistic agent

"down the road", then the equilibrium price will contain a speculative component. This component will

discount the (purely speculative) gains from reselling shares to these more optimistic agents in the future.

This basic intuition was first expressed in a formal intertemporal model by Harrison and Kreps (1978). A

number of papers extended the intuition into various directions. A partial listing includes Allen, Morris, and

Postlewaite (1993), Morris (1996), Detemple and Murthy (1997), Hong and Stein (2002) and most recently

Scheinkman and Xiong (2003). All these papers study an exchange setting without a role for investment.

On the other hand there are numerous papers that study investment, but do not allow for deviations from

fundamentals. The formal neoclassical theory of investment in a dynamic setting with adjustment costs goes

back at least to Brainard and Tobin (1968), Lucas and Prescott (1971), Hayashi (1982), and Abel (1983). A

unified approach to this theory was provided in the seminal paper by Abel and Eberly (1994).

In this paper, I link these two strands of the literature into one unified model. In particular the framework

presented in this paper nests Scheinkman and Xiong (2003) and Abel and Eberly (1994, 1997) as special

cases. The most important advantage of providing this link is that all quantities of interest are endogenous

to the model. In particular, the extent of overpricing, the holding horizons of the investors, and the optimal

3For example see Blanchard (2000), Dupor (2002), Dupor and Conley (2004).
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investment strategies of the firm are all jointly determined. Hence the model can address a novel set of

issues:

a) Will investment be affected by speculative overpricing, and under which assumptions? The answer

proposed by the model is simple and intuitive. Assuming no frictions of any sort (i.e. transaction costs,

shareholder-management conflicts etc.), the neoclassical q theory will hold despite the presence of speculation.

Marginal q will contain (endogenously) a purely speculative component and as a result investment will be

increased. However, the assumption of frictionless trading is sometimes implausible. For example, in many

companies the controlling shareholders are likely to face larger costs of liquidating their positions compared

to retail investors4 and hence they have longer holding horizons. The model then predicts that the effect of

speculative valuations on investment policy will be attenuated. A major advantage of the present framework

is that horizons and resale premia are endogenous: The horizon of an investor will be determined as a

function of the costs that she is facing in accessing markets, the extent of mispricing etc. As a result, a new

insight of the analysis is that short-termist and long-termist investment policies are not mutually exclusive

alternatives, but rather the two extremes of a continuum of possibilities, that depend on the ease of access

to financial markets by controlling shareholders. This provides a new formalization of these notions as well

as a unified view of neoclassical investment theory in speculative markets.

b) The second issue that I address is efficiency: Is the share price maximizing investment level efficient

from a welfare perspective? This is a particularly important question for economic policy, since a negative

answer would open the possibility for welfare enhancing intervention. Somewhat surprisingly, the answer of

the present model is that share price maximizing investment is efficient, under standard assumptions. This

is a striking result, because the price of the company and marginal q are above their "fundamental" values

under any agent’s beliefs.

c) The third issue that I address is: Which investments are likely to be most affected by speculation?

The present model derives the speculative components in marginal q endogenously and makes the simple

prediction that marginal q and investment will be highest when the disagreement about the marginal product

of capital of such investments is highest. Hence the model provides a potential rationalization for the high

sensitivity of younger companies’ investment to the stock market, or the investment of companies that employ

new and untested technologies ("high tech" companies).

d) A final issue concerns the importance of investment in disentangling rational vs. behavioral expla-

nations of certain asset pricing "anomalies". There is a growing literature that argues theoretically and

empirically that predictability in asset returns is compatible with rational variations in risk premia because

investment co-moves with variations in expected returns. Implicitly, this co-movement is seen as evidence

consistent with rational explanations of return predictability5. What I show in this paper is that behavioral

4Because of loss of private benefits, adverse price pressure on the stock, or capital gains taxes.
5 See for example Lamont (2000) for an empirical investigation and Zhang (2004) for a theoretical exposition. Both papers
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and rational theories become observationally equivalent in many respects if investment reacts perfectly to

speculative overpricing. The present model can deliver both predictability and co-movement between in-

vestment and expected returns, along with numerous other asset pricing facts. On the negative side, this

observational equivalence suggests caution in the interpretation of certain empirical findings. On the positive

side however, it suggests one promising approach to disentangle rational and behavioral theories. Namely,

to identify companies with investment policies determined by "long termist" investors, and study whether

investment and expected returns co-move for these companies. As these companies’ investment would "filter"

out the speculative components, any evidence of co-movement between expected returns and investment in

this subset would be consistent only with rational variation in expected returns.

As the model allows for tractable closed form solutions one can address also purely quantitative issues.

I demonstrate in particular that investment significantly amplifies speculative overpricing, compared to a

model without investment. The reason is that firms will react to speculative overpricing of their securities by

increasing investment. This will make the so-called "growth options" or "rents to the adjustment technology"

embedded in the price of the firm more valuable. Calibrated versions of the model, suggest that growth

options6 gain significant relative importance in the price. This could help explain the astoundingly large

measures of growth options (like market-to-book or price-to-earnings ratios) that are commonly observed

during speculative episodes.

Because of the closed form solutions it is also computationaly feasible to simulate artificially large datasets

like CRSP or COMPUSTAT and determine the degree of belief heterogeneity that would be consistent with

the predictability observed in empirical studies. Simply put, I investigate whether a behavioral explanation of

predictability, would or would not require strongly diverging beliefs by certain investors . In order to account

for the observed predictability in the data, I find that one needs to assume relatively strong belief divergence,

but only for a small subset of all the companies present in the artificial (simulated) dataset.

To summarize, the present paper makes it possible to study two feedbacks jointly: from speculative

valuations to investment and the reverse. Thus it makes it possible to analyze a richer set of economic

questions than models that would contain only investment but no room for speculation (like Abel and

Eberly [1994]) or speculative overpricing but no investment (like Scheinkman and Xiong [2003])

The paper is related to a number of strands in the literature. A number of papers have addressed similar

issues, including: Fischer and Merton (1984), Morck, Shleifer, and Vishny (1990), Blanchard, Rhee, and

Summers (1993), Stein (1996), Chirinko and Schaller (1996) and more recently Polk and Sapienza (2002)

point out that their results are consistent with rational theories, without making the claim that they can disentangle behavioral

from rational theories. Other papers that use investment to account for predictability in a rational framework are Berk, Green

and Naik (1999) and Gomes, Kogan and Zhang (2003) among others.
6Growth options are defined as the difference between the equilibrium price when investment is determined optimally and

the equilibrium price when investment is set to 0 throughout.
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and Gilchrist, Himmelberg, and Huberman (2002). A central theme of this literature is the importance of

investor’s horizons. However, the models in the existing literature do not allow for dynamic trading, dynamic

market clearing and dynamic investment. By allowing for optimal dynamic trading and market clearing, the

present paper makes the investor holding horizon an endogenous quantity, unlike overlapping generations

models (OLG) that assume finite horizons. This is a crucial advantage if one is to speak of the welfare

properties of the model, since all agents are present in the markets at all times (even if they may choose

to not participate in certain instances). Furthermore, speculative premia arise endogenously as the result

of dynamic trading, and do not need to be assumed exogenously. In brief, the present framework allows

a more natural formalization of the notion of short-termism versus long-termism along with the possibility

to quantify speculative components and analyze their efficiency properties. Additionally, since the model is

intertemporal, it is possible to derive an explicit relation between speculation and neoclassical investment

theory in the "marginal q" tradition of Brainard and Tobin (1965).

The paper is also related to literature in financial economics that uses insights from investment theory

to address issues such as the predictability of returns, the role of book to market ratios, etc. A partial

listing would include Jermann (1998), Cochrane (1991,1996), Naik (1994), Berk, Green, and Naik (1999),

Lamont (2000). Berk, Green, and Naik (1999), Gomes, Kogan and Zhang (2003), and Zhang (2005) in

particular show how a model with investment can account for some apparent irregularities in asset pricing

as the power of the book-to-market ratio to predict returns7. Most of these models are perfectly rational.

However, this paper presents a quantifiable behavioral model that can explain the same set of facts. Having

a quantifiable behavioral model with the ability to explain certain features of asset pricing data can help

identify the observationally equivalent parts of the two theories from the parts that distinguish them and thus

guide empirical research. As already mentioned, a promising approach suggested by the theory developed

in this paper is to study the co-movement between investment and expected returns for companies whose

investment policies are influenced mostly by large "long-termist" shareholders.

The paper is also complementary to the strand in the macroeconomics literature that models bubbles

in the framework of overlapping generations models. Tirole (1985) is the seminal paper in this literature,

whereas Olivier (2000), Ventura (2003), Caballero, Farhi and Hammour (2005), are some recent contribu-

tions. This literature assumes short horizons, whereas in the present paper short horizons arise endogenously.

Most importantly, the setup of this model allows for standard welfare definitions, since all agents are infinitely

lived. This is in contrast with OLG models, which preclude conventional definitions of welfare since certain

groups of agents never get a chance to trade. It is also noteworthy that in the standard OLG model bubbles

can exist and be efficient, if and only if the economy is dynamically inefficient and thus bubbles crowd out

7This fact is documented in the cross section by Fama and French (1992,1995) and in the time series dimension by Kothari

and Shanken (1997) among others.
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investment. This is at odds with the data, since bubbles and investment booms seem to coincide. Recent

models in the OLG tradition (Olivier [2000], Ventura [2003]) overcome this difficulty by introducing some

other background inefficiency or externality that the bubble helps correct. Interestingly in these models it is

sometimes efficient to create a bubble if none exists. Hence there is always room for some potential policy in-

tervention. By contrast, the present framework suggests that bubbles will boost investment, without having

to assume anything about dynamic inefficiency or other sources of externalities or constraints. Moreover, the

level of investment chosen by a share price maximizing firm will be efficient no matter whether speculative

bubbles exist or not. Therefore there appears to be no room for policy intervention. Finally, as a practical

matter, in OLG type models it is somewhat hard to reconcile the fact that holding horizons conicide with

biological lifespans of generations: In the real world bubbles are associated with typical holding horizons of

a few days, not decades. However, it is true that the simpler setup of overlapping generations allows one to

address a richer set of issues (related e.g. to savings and fiscal policy) that would be difficult in the present

setup. In a sense, models with heterogenous beliefs and shorting constraints provide micro-foundations for

the bubbles that arise in the OLG literature8.

The outline of the paper is as follows: Section 2 contains the model setup. Section 3 contains a discussion

of the basic equilibrium definitions and conditions of optimality along with the solution to the model. Section

4 contains a discussion of the model’s implications for investment theory. Section 5 contains the implications

of the model for asset prices and section 6 concludes.

2 The model

This section contains the building blocks of the model: a) A standard investment framework with quadratic

adjustment costs along the lines of Abel (1983), Abel and Eberly (1994), (1997) and b) A model where valu-

ations endogenously deviate from "long-run" fundamentals due to short selling constraints and heterogenous

beliefs along the lines of Scheinkman and Xiong (2003). In this section, I introduce the basic concepts. The

next section derives a closed form solution for equilibrium prices and investment.

2.1 Company Profits and Investment

There is a single company and the goal will be to determine its value as part of the (partial) equilibrium

solution of the model. In line with Scheinkman and Xiong (2003), the company’s cumulative earnings process

(dDt) is given by:

dDt = Ktftdt+KtσDdZ
D
t (1)

8Even though different in scope, the seminal paper by Woodford (1991) is similar in spirit in using borrowing constraints to

arrive at results that are similar to OLG models, even though his agents are infinitely lived.
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whereKt is the capital stock, ft is the marginal product of capital, (which I will refer to as "productivity")

and dZD
t is a standard one dimensional Brownian Motion. σD is a constant controlling the ”noise” in

earnings. The presence of such noise prevents market participants from precisely inferring ft (since they can

only observe Kt and dDt). The variable ft is not observable and evolves according to an Ornstein Uhlenbeck

process as:

dft = −λ(ft − f)dt+ σ

s
ft

f
dZf

t (2)

where λ > 0 is a mean reversion parameter, f > 0 is a long-run productivity rate, σ is a constant

controlling the volatility of the process and dZf
t is a second Brownian motion that is independent of dZ

D
t .

For simplicity I will assume that the company is fully financed by equity and there is a finite number of

company shares whose supply I normalize to 1.

The company can invest in physical capital at the rate it, while depreciation is given by δ. Accordingly,

the evolution of the capital stock is given by:

dKt = (−δKt + it) dt

Investment is subject to quadratic adjustment costs, so that the cumulative company earnings net of

investment costs are given by:

dΠt = dDt −
³
pit +

χ

2
(i2t )

´
dt

where χ is a constant controlling the significance of adjustment costs and p is the cost of purchasing

capital. It will be useful for later purposes to define

ep = p

µ
r + δ

f

¶
The assumption of adjustment costs that are independent of Kt has the benefit of allowing tractable

solutions, however it comes at the cost of breaking down the equivalence between average and marginal

”q” 9. Panageas (2005) demonstrates how to generalize to the case where marginal and average q coincide,

without however being able to compute explicit closed form solutions. It is likely that one can add further

realistic features (for example irreversibility, more general adjustment cost functions). However, one would

have to give up on closed form solutions.

2.2 Agents and Signals

The information structure is very similar to Scheinkman and Xiong (2003). There are two continuums of

risk neutral agents that I will call type A and type B agents. Risk neutrality is convenient both in terms of
9 This assumption has been made by several authors in the literature. See Abel and Eberly (1994) and the references therein

(especially footnote 19)
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simplifying the calculations and abstracting from considerations related to spanning, etc. In addition to the

earnings process (1) both agents observe two signals that I will denote as signal sA and signal sB. These

signals evolve according to:

dsAt = ftdt+ σsφdZ
f
t + σs

q
1− φ2dZA

t (3)

dsBt = ftdt+ σsdZ
B
t

where (dZA
t , dZ

B
t , dZ

f
t , dZ

D
t ) are standard mutually orthogonal Brownian motions and 0 < φ < 1 is a

parameter controlling the informativeness of signal sA, while σs is a constant controlling the noise of the two

signals. To see why φ controls the informativeness of signal sA, note that φ is just the correlation between

the observed dsAt and the unobserved dft.10

Agents have heterogenous perceptions about the informativeness of the various signals. Agents in group

A have the correct beliefs, while agents in group B assume that the innovations to the sBt process are more

informative and the innovations to the sAt process less informative than in reality. In particular they believe

that the signals evolve according to:

dsAt = ftdt+ σsdZ
A
t

dsBt = ftdt+ σsφdZ
f
t + σs

q
1− φ2dZB

t

Finally, and in line with both Harrison and Kreps (1978) and Scheinkman and Xiong (2003) I assume

that the total wealth of each group is infinite.11

There are two remarks about this setup. First, there is no asymmetric information of any sort in this

model. The observable quantities (signals, prices, capital and earnings) are in every agent’s information set.

Disagreement among agents lies on the interpretation of the signals. Second, and in line with Scheinkman

and Xiong (2003), I assume that agents of type B do not try to update their beliefs about φ, mostly for

simplicity. Scheinkman and Xiong (2003) motivate this assumption by appealing to overconfidence.12

In the appendix I establish an approximate filter for this setup.13 In particular, I show the following

10To see this, note that dZft appears in both (2) and (3)
11This assumption is made by both Harrison and Kreps (1978) and Scheinkman and Xiong (2003) and is used to drive prices

to the reservation value of each group. The motivation behind it is that an individual company is "small" compared to the

entire economy. It encapsulates the partial equilibrium nature of the exercise. In particular, irrational traders can survive.

Harrison and Kreps (1978) contain an extensive discussion on relaxations of this assumption. The reader is referred to that

paper for details.
12 It is important to note that even if one allowed updating about φ, the results wouldn’t change qualitatively, as long as

agents start with different priors on φ.
13 In contrast to Scheinkman and Xiong (2003) I assume a square root process for ft in (2) instead of a standard OU process

in order to guarantee ft is positive, thus allowing a lower bound on ft (which is required for some of the proofs in the appendix).

The downside of this assumption is that filtering becomes much more involved and I have to settle for an approximate filter,

the properties of which seem to be very good. On this issue see also the next footnote.
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result:

Proposition 1 Let the posterior mean of agent A about ft be denoted bfAt . Then agent A0s beliefs about f,

evolve approximately according to:

d bfAt = −λ³ bfAt − f
´
dt+

s bfAt
f
σfdB

A
t (4)

where σf is an appropriate constant and dBA
t is an appropriate linear combination of the processes

³
dsAt − bfAt dt´ ,³

dsBt − bfAt dt´ , ³dDt

Kt
− bfAt dt´ with the property that the volatility of dBA

t is 1. (Details are given in the ap-

pendix). Similarly for agent B:

d bfBt = −λ
³ bfBt − f

´
dt+

s bfBt
f
σfdB

B
t (5)

where dBA
t is an appropriate linear combination of the processes

³
dsAt − bfBt dt

´
,
³
dsBt − bfBt dt

´
,
³
dDt

Kt
− bfBt dt

´
with the property that the volatility of dBB

t is 1.

This proposition is almost identical to the result established in Scheinkman and Xiong (2003) and the

interested reader is referred to this paper for details. For the purposes of this work, it suffices to provide a

basic intuition behind the above proposition. The proposition asserts that agents will update their beliefs

about ft by appropriately weighting the information in the signals and the information contained in the

earnings process. Both Scheinkman and Xiong (2003) and the appendix to this paper derive these weights

and demonstrate that agents of type A will place more weight on signal sAt compared to agents of type B.

Similarly agents of type B will overweigh signal sBt compared to type A agents. This is intuitive. An agent

of type A believes that signal dsAt is correlated with the unobserved dft and hence a positive shock to dsAt

will make her adjust her beliefs about the location of ft. The exact opposite is true of agent B, whose beliefs

about ft will be more sensitive to changes in dsBt .

A quantity that will be central for what follows is the disagreement process defined as the difference

between the posterior means of agents A and B about ft :

gAt =
bfBt − bfAt

The appendix demonstrates that gAt can be approximated by a simple OU process:

dgAt = −ρgAt dt+ σgdW
A
t (6)

with ρ an appropriate constant (determined in the appendix). Moreover, the correlation between dgAt and

d bfAt is14:

cov(dgAt , d
bfAt ) = −σ2g2 dt

14 I would like to thank Bernard Dumas for providing me with a set of notes on how to perform this computation.
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The situation for agent B is symmetric. She perceives that the process:

gBt = −gAt

evolves approximately as an OU process (exactly the same OU process as for agent A) and cov(dgBt , d bfBt ) =
−σ2g

2 dt.

Obviously, knowing bfAt , gAt allows one to compute bfBt = bfAt +gAt . As agents are risk neutral and adjustment
costs are quadratic, the posterior means of the two types of agents will be sufficient statistics for the entire

belief structure. Hence the state variables of the model are
³
Kt, bfAt , gAt ´ . It is very important to note

that approximations are confined only to obtaining the dynamics of the exogenous state variables
³ bfAt , gAt ´.

Conditional on these approximate dynamics for the belief processes, the rest of the analysis is exact. In

particular, no approximation is necessary for the endogenous quantities of the model (prices, investment

policies and trading strategies). Alternatively put, if one outright assumed that the posterior mean of agent

A about ft behaved as in equation (4), while the difference of her beliefs with agent B behaved as postulated

in (6), one could proceed with the rest of the analysis without any sort of approximation.15

3 Equilibrium Investment, Trading and Pricing

To determine equilibrium prices it is instructive to first analyze equilibrium prices and investment assuming

that all agents are of the same type (A without loss of generality). This will provide a "no-speculation"

benchmark. I then turn to the question of determining equilibrium prices and investment in the presence of

heterogenous beliefs.

3.1 Homogenous Beliefs

I start with the simplest possible case where every agent is of type A and accordingly everyone agrees on

the interpretation of the signals. The results in this subsection are fairly standard and the reader is referred

for details to Abel and Eberly (1994,1997).

The goal is to maximize shareholder value

Pt = max
is

EA

Z ∞
t

e−r(s−t)dΠs (7)

15An alternative approach to the one pursued in this section that avoids all approximations is the following: In order to

enforce a "lower bound" on fAt , one could assume the same dynamics and derive the same exact filters as in Scheinkman and

Xiong (2003) with the addition of an appropriate termination value of the company once fAt hits a lower barrier (e.g. 0). This

would make the entire analysis exact at the cost of imposing an ad-hoc termination value. In either case the expression for

marginal q is the same, while there are some insignificant differences for the "growth options".
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where Pt is the price of the company and r > 0 is the riskless rate. (7) can be rewritten as16

Pt = max
is

EA

Z ∞
t

e−r(s−t)
³
fsKs − pis − χ

2
(i2s)

´
ds

One can further rewrite the above objective as17

Pt = max
is

EA

Z ∞
t

e−r(s−t)
³ bfAs Ks − pis − χ

2
(i2s)

´
ds (8)

This is a problem of exactly the same form as the ones considered in Abel and Eberly (1994),(1997). The

next proposition gives the solution

Proposition 2 The solution to (7) is:

Pt

³ bfAt ,Kt

´
=

Ã
f

r + δ
+

bfAt − f

r + δ + λ

!
Kt +

∙
C1

³ bfAt − f
´2
+ C2

³ bfAt − f
´
+ C3

¸
(9)

for appropriate constants C1, C2, C3 given in the appendix. Optimal investment is given by:

it =
1

χ
(PK − p) =

1

χ

Ã
f(1− ep)
r + δ

+
bfAt − f

r + δ + λ

!
(10)

Exactly as in Abel and Eberly (1997), the equilibrium price is a linear function of the capital stock. The

term multiplying the capital stock in (9) is marginal "q". There are two observsations about this term.

First, it is equivalent to the net present value of the marginal product of capital discounted at the interest

rate plus the depreciation rate. Indeed, the appendix demonstrates that:

E

µZ ∞
t

e−(r+δ)(s−t) bfAs ds¶ = f

r + δ
+

bfAt − f

r + δ + λ
(11)

Second, marginal q is the derivative of the equilibrium price w.r.t. the capital stock, and hence it captures

the "incentive to invest". Alternatively put, it summarizes the benefits of investing an inframarginal unit of

capital and hence affects the optimal investment choice as equation (10) reveals. Assuming also that:

ep < λ

λ+ r + δ
≡ p (12)

it is easy to see that it > 0 for all bfAt and thus Kt > 0 for all t > 0 (since bfAt > 0). Assumption (12) is the

only parameter restriction that is needed for some of the results and I will assume it throughout. The term

16Throughout I will restrict attention to investment policies that satisfy the requirement:

E
∞

t
e−r(s−t)KsdZ

D
s = 0

which amounts to a standard square integrability condition on the allowed capital stock processes. Indeed in the present

setup the capital stock turns out to be stationary and as such this is an easily verifiable condition.
17This is true since the objective is linear in the state and quadratic only in the control it, hence certainty equivalence holds.

For details on such problems see Bertsekas (1995).
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inside the square brackets of (9) captures the "rents to the adjustment technology" or "growth options", i.e.

the value of being able to adjust the capital stock in the future. The appendix establishes thatµ
C1

³ bfAt − f
´2
+ C2

³ bfAt − f
´
+ C3

¶
=
1

2χ
E

µZ ∞
t

e−r(s−t) (PK(s)− p)2 ds

¶
(13)

The right hand side of (13) shows that small adjustment costs (i.e. low values of χ) will tend to increase the

value of the adjustment technology and vice versa. This is intuitive: the less it costs to adjust the capital

stock, the more a company is able to invest and take advantage of temporary increases in fundamentals³ bfAt ´ . Hence the more valuable is its adjustment technology.
Of interest is to also examine how "marginal q" and "growth options" depend on bfAt . It is clear that

marginal q is increasing in bfAt . The same is true for the growth options:
Lemma 1 Let:

uF
³ bfAt ´ = µC1 ³ bfAt − f

´2
+ C2

³ bfAt − f
´
+ C3

¶
Then

uF
fAt

> 0

The above proposition establishes that the value of "growth options" increases as bfAt increases. This is

because bfAt is persistent and hence an increasing bfAt makes it more likely that large investments will need to

be undertaken in the near future and thus the technology to adjust the capital stock becomes more valuable.

3.2 Heterogenous Beliefs: Optimal Investment, Trading, and EquilibriumPrices

The following definition provides a starting point for the analysis:

Definition 1 An equilibrium is defined as a collection of a (stochastic) price process Pt, an investment policy

it, and optimal (selling) stopping times τ for investors {A,B} such that:

Pt = max
o∈{A,B}

½
sup
is,τ

Eo
t

∙Z t+τ

t

e−r(s−t)
³
dDs −

³
pis +

χ

2
i2s

´
ds
´
+ e−rτPt+τ

¸¾
(14)

This recursion is almost identical to the one originally proposed by Harrison and Kreps (1978) with the

difference being an additional optimization over investment strategies.

From a purely asset pricing perspective, (14) states that the equilibrium price will be the maximum of

the two "private" valuations of a company share by agents A,B. These private valuations are inside the

curly brackets and are in turn comprised of two components: a) the net present value of profits up to the

optimally chosen time at which a share is resold (t+ τ) and b) the equilibrium (discounted) price obtained
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at time t + τ by reselling the stock. Moreover the investment policy is determined so as to maximize the

share price.

To understand the above equilibrium definition it is useful to consider two thought experiments. Suppose

that an investor takes the equilibrium price process as given. Suppose moreover, that the right hand side

in (14) is larger than the left hand side. There would then exist either a (physical) investment strategy or

a "selling" policy for at least one of the investors that would make her want to bid more than the current

price in the market. Similarly, if the right side was smaller than the left side, then there would be neither

an investor, nor an investment policy, nor a selling strategy that would allow either of the investors to earn

(in expectation) a rate of return equal to the interest rate. Hence left and right side must equal.

It is interesting to note that (14) collapses to the usual net present value expression when all investors

have the same beliefs. To see this suppose that all investors are of type A. Then, (14) simplifies to:

Pt = sup
is,τ

EA
t

∙Z t+τ

t

e−r(s−t)
³
dDs −

³
pis +

χ

2
i2s

´
ds
´
+ e−rτPt+τ

¸
=

= sup
is

EA
t

∙Z ∞
t

e−r(s−t)
³
dDs −

³
pis +

χ

2
i2s

´
ds
´¸

(15)

The second line follows from Bellman’s Optimality Principle which asserts that the continuation value

from any stopping time onwards must be equal to the infinite horizon value of the dynamic optimization

problem18.

In general however, the key difference between (15) and (14) is that the identity of the investor holding

the company stock will change dynamically through time, and hence (14) will not collapse to (15).

Solving for an equilibrium is not straightforward. In contrast to Scheinkman and Xiong (2003), the

dividend process is endogenous because of investment and the presence of an additional state variable (cap-

ital). Hence it is impossible to collapse the problem to a single one-dimensional optimal stopping problem

as in Scheinkman and Xiong (2003). Fortunately, an alternative argument can be used (see appendix) that

preserves the tractability of the framework of Scheinkman and Xiong (2003).

The next proposition demonstrates how to construct an equilibrium to (14). For most of the results that

will be discussed in the body of the paper, it suffices to present the general structure of the solution. In

particular, as the next proposition shows, the equilibrium price is still an affine function of the capital stock.

Simply put, the equilibrium price continues to have the same simple form as (9). For the body of the text,

I concentrate on a discussion of marginal q and relegate the exact computation of growth options to the

appendix.

Proposition 3 Let

qt =
f

r + δ
+

bfAt − f

r + δ + λ
+ 1{gAt > 0} gAt

r + δ + λ
+

y1(−
¯̄
gAt
¯̄
)

2(r + δ + λ)y01(0)
(16)

18See e.g. Fleming and Soner (1993)
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where 1{·} is the indicator function, and y1 is a positive, convex, increasing and differentiable function19 ,

which solves the ordinary differential equation:

σ2g
2
y001 − ρgAt y

0
1 − (r + δ)y1 = 0 (17)

subject to the boundary conditions:

lim
x→∞ y1(x) = ∞ (18)

lim
x→−∞ y1(x) = 0 (19)

Then an equilibrium is given by the function P
³ bfAt , gAt ,Kt

´
20 :

P
³ bfAt , gAt ,Kt

´
= qt

³ bfAt , gAt ´Kt +G
³ bfAt , gAt ´

for an appropriate function G
³ bfAt , gAt ´ computed explicitly in the appendix. The optimal investment

strategy is

it =
1

χ
(qt − p) (20)

and the optimal stopping time for investor A is to resell the asset immediately once bfAt < bfBt and to hold

it otherwise. Similarly, the optimal strategy for investor B is to resell the asset once bfBt < bfAt and to hold

it otherwise.

There are several observations associated with this proposition. First, as already noted, the equilibrium

price is a simple affine function of the capital stock. Just as in the case of homogenous beliefs, one obtains a

decomposition of the price into marginal q (times the capital stock) and growth options. And as in the case

for homogenous beliefs, marginal q continues to be the key quantity driving investment as (20) demonstrates.

There is also a tight linkage between marginal q and the results obtained in Scheinkman and Xiong (2003),

which will be explored subsequently.

A final remark concerns the optimal selling strategies implied by the above proposition. Just as in

Scheinkman and Xiong (2003), the identity of the investor who is holding the shares of the company will

change an infinite number of times. Simply put, the company is always in the hands of the most "optimistic"

investor, i.e. the investor who currently has the highest posterior mean about ft. By equation (6) the

difference in beliefs between the two agents
¡
gAt
¢
will mean revert to 0. Moreover, since gAt is a diffusion, it

will "cross" 0 infinitely often and therefore the identity of the person holding the stock will change infinitely

often. This basic result will be responsible for the presence of speculative components in the equilibrium

price, since investors will expect to resell the shares to each other with probability 1.
19The explicit solution to y is given by a Kummer function. Functions of this sort are discussed in Abramowitz and Stegun

(1965), Chapter 13.
20Under some mild restrictions on the allowed parameters discussed in the appendix.
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3.2.1 Marginal "q" and speculation

As already asserted, the key quantity driving investment is marginal q. Comparing the expression for

marginal q in the presence of heterogenous beliefs to the equivalent expression in the presence of homogenous

beliefs one observes an extra term, namely:

b(gAt ) ≡ 1{gAt > 0} gAt
r + δ + λ

+
y1(−

¯̄
gAt
¯̄
)

2(r + δ + λ)y01(0)
(21)

The function y1 is positive, increasing, convex, continuously differentiable and asymptotes to 0 at −∞
and +∞ at +∞. The key property that it satisfies is (17). To see why this property is important, assume

first that gAt < 0 so that bfAt > bfBt and thus agent A holds the company by proposition 3. Apply Ito’s

Lemma to b(gAt ), and use (17) to obtain:

dE(b(gAt ))

dt
=

σ2g
2
b00 − ρgAt b

0 = (r + δ) b

This calculation shows that b(·) is a positive term that grows (in expectation) at the interest rate plus the

rate of depreciation. Hence, from the perspective of agent A it behaves as if it were a pure "bubble" that

grows at a constant rate (in expectation). It is also interesting to use the identities bfBt = bfAt + gAt and

gAt = −gBt to express qt in (16) as:

qt =
f

r + δ
+

bfBt − f

r + δ + λ
+ b(gBt )

where

b(gBt ) = 1{gBt > 0} gBt
r + δ + λ

+
y1(−

¯̄
gBt
¯̄
)

2(r + δ + λ)y01(0)
(22)

One can now apply the same reasoning to show that whenever agent B holds the company, (which meansbfBt > bfAt and thus gBt < 0 ) (22) gives

dE(b(gBt ))

dt
=

σ2g
2
b00 − ρgBt b

0 = (r + δ) b

Hence, when agent B holds the stock, b(·) is growing as a bubble according to the beliefs of agent B. The
same result is true for growth options.

In sum, no matter who is owning the company there is always a component built into the price that

behaves like an endogenous bubble. In contrast to the bubbles that arise in OLG models however, one need

not assume that agents are finitely lived, or that the economy is dynamically inefficient. Effectively, the fact

that the identity of the stockholder changes dynamically introduces finite horizons and therefore "bubbles"

into marginal q endogenously.

An implication of the above analysis is that marginal q will be higher than any agents’ beliefs about the

appropriately discounted net present value of the marginal product of capital. The easiest way to see this is
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to use bfBt = bfAt + gAt in order to express qt as:

qt = max
o∈{A,B}

Ã
f

r + δ
+

bfot − f

r + δ + λ

!
+

y1(−
¯̄
gAt
¯̄
)

2(r + δ + λ)y01(0)
> max

o∈{A,B}

Ã
f

r + δ
+

bfot − f

r + δ + λ

!
(23)

It is very interesting to relate the results obtained in this section to Scheinkman and Xiong (2003) and

Abel and Eberly (1994,1997). Even though the equilibrium price of the firm is significantly different than

in Scheinkman and Xiong (2003) due to the presence of growth options21 , the marginal q obtained in this

section is just the equilibrium price one would obtain in the model of Scheinkman and Xiong (2003) if one

introduced an asset with payoffs equal to the marginal product of capital and used the interest rate r + δ

instead of r. There is also a connection to Abel and Eberly (1994,1997) who establish that marginal q is

just the net present value of the marginal product of capital discounted at r+ δ, when adjustment costs are

independent of the capital stock. However, Abel and Eberly (1994,1997) cannot distinguish between market

prices and net present values since agents have homogenous beliefs and thus the two notions coincide.

What this section demonstrates, is that q theory essentially continues to hold, even though marginal q

contains an endogenous "speculative bubble". The reason is intuitive. Investment in the present model serves

two purposes. One is to increase the "long run fundamentals" of the company according to the beliefs of the

current owners. This motive is captured by the term:

max
o∈{A,B}

Ã
f

r + δ
+

bfot − f

r + δ + λ

!

in equation (23). However, since there is disagreement about the true marginal product of capital, there

is a second and purely speculative reason for the increased investment, which is captured by the term:

y1(−
¯̄
gAt
¯̄
)

2(r + δ + λ)y01(0)

in (23). This term is "speculative" since it captures the resale premium that current owners will obtain once

they resell the firm. By investing more they can increase not only the "long run" fundamental value of the

firm, but also the resale price that they can obtain once they decide to liquidate their holdings of company

stock. This basic observation and its implications for investment theory are discussed in greater detail in

the next section.

4 Implications for Investment Theory

This section discusses some of the key implications of the model for investment theory. The three questions

that I will try to answer using the framework developed are: 1) Is the investment level that is chosen as

a result of share price maximization efficient? 2) Which are the key conditions for neoclassical investment

21See the appendix for a closed form solution to the growth options.
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theory to hold in the presence of speculation - what happens if one relaxes these assumptions? and 3) Which

types of investments are likely to be more affected by speculation?

4.1 Efficiency

One of the cornerstone results of neoclassical investment theory is the efficiency of the investment level that

results when firms maximize their share price. Does this result continue to hold in a speculative market?

To answer this question, it is important to give a more precise definition of efficiency. As is common,

I will introduce a central planner. This central planner will be constrained by the structure of the asset

market. In particular she will not be able to alleviate the shorting constraint. In particular, I will assume

that:

1. Her only choice variable is to dictate the investment policy it of the firm. In particular she takes the

interest rate r as exogenously given, like a central planner in a small open economy

2. Given the investment policy, market participants make trading and consumption decisions. The equi-

librium price of the firm is given by:

Pt = max
o∈{A,B}

½
sup
τ

Eo
t

∙Z t+τ

t

e−r(s−t)
³
dDs −

³
pis +

χ

2
i2s

´
ds
´
+ e−rτPt+τ

¸¾
(24)

(Notice that there is no longer an optimization step over it since market participants take investment

as given)

3. The central planner maximizes a weighted average of the expected utility of the continuum of markets

participants22:

V =

Z
λ(x)V (x)dx (25)

where λ(x) > 0 is the weight of participant x and V (x) is agent x0s expected utility:

V (x) = Ex

Z ∞
t

e−r(s−t)dC(x)s

and C
(x)
t is the consumption process for agent x.

This definition of the central planner’s actions and objectives attempts to isolate the investment decision,

while keeping the structure of the asset market unaltered. The following proposition gives a key result, that

is quite general. In particular, it holds for any group of agents, structure of beliefs, disagreement etc.

22 I shall constrain attention to λ(x) that keeps this objective finite for all it. There is no contradiction in assuming infinite

(collective) wealth of the market participants within each group and a well defined value function for the central planner. One

can always choose λ(x) that gives a bounded value function for the central planner while preserving the assumption of infinite

(collective) wealth within each group.
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Proposition 4 Suppose prices are determined by (24). For any investment policy it, there exist two con-

stants (depending on x only) α0(x) and α1(x) ≥ 0 such that the value function of agent x can be written
as:

V (x) = α0 + α1Pt (26)

with α1 > 0 if agent x is endowed with stock at time t.

This result immediately implies the efficiency of share price maximization as an objective for the central

planner, since (26) and (25) imply that:

V =

Z
λ(x)V (x)dx =

µZ
λ(x)a0(x)dx

¶
+

µZ
λ(x)a1(x)dx

¶
Pt = A0 +A1Pt

for A1 =
¡R

λ(x)a1(x)dx
¢ ≥ 023 . Hence the same investment policy that maximizes the company price

also maximizes the central planner’s objective, since her objective is an affine function of the price of the

company.

This result is somewhat surprising: Everyone in the economy agrees that prices are above their fun-

damental values under any market participants’ subjective (infinite horizon) valuation. Yet, the resulting

investment is efficient. It should also be emphasized that the statement of the proposition does not depend

on the specifics of the setup. The only equation of the whole setup, that is used in the proof is (24).

The intuition is simple: For agents that hold stock, their subjective assessment of their utility depends

on the price of the stock: A higher price of the stock (of which they have non-negative holdings because

of the shorting constraint) increases their wealth and therefore their expected consumption in the future,

irrespective of whether they form that expectation under correct or incorrect beliefs.

A somewhat constraining but simultaneously simplifying feature of the present framework is risk neutral-

ity. It allows one to arrive at equation (26) which obviously wouldn’t hold under risk aversion.24 The fact

remains however, that the model presents a simple counterexample to the claim that is commonly made in

the press and the academic literature: Namely that one should take active measures to combat speculation

because it will lead to misplaced investment and misallocation of resources. The above analysis suggests

that the conventional approach to allocative efficiency does not necessarily imply such a conclusion25.

It is also noteworthy that the present setup allows an assessment of efficiency in a context where stock

prices are above everyone’s fundamental valuations, agents are infinitely lived and always present in the

market. Models with heterogenous beliefs, risk averse consumers and complete markets would also imply

23There are a few technical remarks: First A1 > 0 as long as the central planner places a non-degenerate weight λ(x) on

agents that are endowed with some stock at time t. Second, even in the degenerate case where the central planner places 0

weight on time t stockholders, A1 > 0 as long as the central planner can effect a once and for all transfer payment between the

two groups at time t.
24However, it is not clear whether risk aversion would add new intuitions in this context.
25However, it appears that paternalistic approaches to welfare would immediately imply activism.
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efficient investment allocations, but then prices would coincide with every agent’s fundamental valuation

(since markets are complete), so the efficiency of share price maximizing investment would be an obvious

result. Similarly, OLG models would allow deviations from fundamental (infinite horizon) valuations, but

addressing welfare in those models is hard, because no agent can participate in the market at all the times.

This precludes standard welfare criteria and creates inherent inefficiencies irrespective of the investment

policy chosen.

4.2 Long-termism, Short-termism, and Neoclassical Investment Theory

Which are the key assumptions in the model that make the neoclassical (marginal q) theory hold? Alterna-

tively, which conditions would have to fail to invalidate the conclusion? In this model the most important

channel that connects investment to speculative overpricing is the assumption of share price maximization.

In reality however, one might think that there are certain key investors that do not have the same ease

of access to financial markets as the average retail investor. To make an example, the average retail investor

of company X can liquidate her shares without having to worry that her decision will adversely affect the

price, result in significant transactions costs or capital gains taxes. However, if a major shareholder tried to

liquidate her position in shares of company X, that would in all likelihood cause a severe price reaction, be

associated with large transactions costs and substantial capital gains taxes26. At the same time it is unlikely

that a retail investor and a major stockholder will have the same power in affecting the investment decisions

of company X.

To be precise, suppose that company X has one large investor (I) that would face a cost of T (per share)

if she tried to liquidate her shares. However, there are also a number of retail investors who face no cost in

reselling their shares and are of type {A,B} as previously described. Finally, assume that the large investor
controls the investment of the company as long as she doesn’t resell her shares.

Then, it seems reasonable to modify the definition of equilibrium as follows:

Definition 2 Suppose I holds enough shares that allow her to control the investment policy of the company.

Then an equilibrium is defined as a collection of a (stochastic) price process (for retail stock) Pt, an investment

policy it, and optimal (selling) stopping times τ for investors {I,A,B} such that:
1) (Optimality of the investment policy for the large investor) The investment policy it is determined so

that:

sup
it,τ

EI
t

∙Z t+τ

t

e−r(s−t)
³
dDs −

³
pis +

χ

2
i2s

´
ds
´
+ e−rτ (Pt+τ − T )

¸
(27)

26Especially if the "key" investor was holding shares in the company for a much longer time than retail investors and

potentially before the onset of disagreement.
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2) (Asset Pricing given it). The equilibrium price for stock in the "open market" is determined so that:

Pt = max
o∈{A,B}

½
sup
τ

Eo
t

∙Z t+τ

t

e−r(s−t)
³
dDs −

³
pis +

χ

2
i2s

´
ds
´
+ e−rτPt+τ

¸¾
(28)

If I resells her shares, suppose that equilibrium reverts back to the definition given in (14). The major

difference between the definitions of equilibrium given above and (14) is the presence of a cost T that makes

the large investor different from anyone else. In a sense, a large investor is "entrenched" inside the company

and cannot profit from speculation as much as retail investors can.

To make an extreme point suppose that the large investor I would be facing a sufficiently high T , that

would make it optimal to never resell her shares. (To achieve that let T → ∞) Then it is optimal to set
τ =∞ in (27) so that it becomes:

sup
it

EI
t

∙Z ∞
t

e−r(s−t)
³
dDs −

³
pis +

χ

2
i2s

´
ds
´¸

(29)

Notice that this infinite horizon objective is perfectly equivalent to (8). Alternatively, even though the stock

prices at which retail investors buy and sell stock will continue to be above their "fundamental values"

(because of equation [28]) the investment policy will not at all be affected by the overpricing .

This is a key observation that allows a formalization of discussions contained in e.g. Blanchard, Rhee

and Summers (1993) and Stein (1996) about long-termism and short-termism. Here, I allow an explicit

modelling of these notions in a framework where markets clear dynamically. Long-termism is just the extent

of "entrenchment" of current "major" shareholders in the firm. If current major shareholders cannot resell

their shares (because of capital gains taxes, or purely for control reasons or any other reason captured in the

cost T ) then mispricing will not affect the investment policy of the firm. If however, the firm is maximizing

share price, then "overpricing" will affect investment as described in the previous section.

One of the most significant advantages of the present framework is that short horizons are not imposed

exogenously (as in OLG models), but result endogenously due to the short-selling constraint. Moreover, for

major shareholders the horizon is also an endogenous quantity that depends on their ability to liquidate

their holdings (i.e the cost T ).

An important implication is that both short-termism and long-termism are not two mutually exclusive

possibilities. They present the two extremes of a continuum of possibilities that depend on the cost T. The

usual short-termist hypothesis presents the limit as T → 0, while the long-termist alternative presents the

limit as T →∞. The theory is silent about which is the more empirically relevant region, but makes a precise

prediction about the factors that determine the answer to this question (namely the cost T ). In reality one

would expect the truth to lie between the two extremes and this may be an explanation for the literature

that finds some, yet limited, "pass through" of speculative components to investment (see e.g. Blanchard

Rhee and Summers [1993], Morck, Shleifer and Vishny [1990]).
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It is important to note that the same results would hold if "major shareholders" could only partially

liquidate their holdings of stock in the company (presumably because they value control and they don’t

want to liquidate their shares beyond some level). Then their objective would be to maximize some weighted

average between share price and long term value.

A very practical implication27 of the above discussion concerns the necessary features of a tax system

that would aim to limit the "pass through" of speculative components to investment. Sometimes it is argued

that one should raise a tax on transactions (a so-called "Tobin’s" tax) so as to force investors to hold stocks

longer and limit their speculative trading motives. The above analysis suggests that it is sufficient to raise

taxes on "key" shareholders. It is interesting that the current system of capital gains taxes has such effects.

To see this, assume that certain key investors own a large fraction of the stock and have been owning it for

a long time. Furthermore, assume that speculation raises the price of their shares. Since they have been

owning shares before the onset of speculation, they will face substantial capital gains taxes if they try to

liquidate their shares compared to the average "small" investor who has been holding company stock for a

shorter duration of time. Since capital gains taxes are due only upon resale of the shares they end up taxing

large investors who have been holding stock for a long time more than the average small investor, and hence

achieve exactly what is needed in order to induce "long termism".

4.3 Heterogeneity in Beliefs and Investment

What types of investments are likely to be most affected by speculative overpricing? To answer this question,

assume that the firm is maximizing share price (short-termism). Then the model predicts that investment

will be most affected, when the heterogeneity of beliefs about the future marginal product of capital is most

severe.

Formally, marginal q is a strictly increasing function of the variability in belief differences (σg) 28 all else

equal. As a result, investment will be higher when σg is higher.

This is a key prediction of the model that can potentially help explain a number of empirical facts.

The first empirical fact is that speculation seems to affect investment in "high tech" and relatively young

companies as was recently the case for many companies in the NASDAQ. It seems plausible to assume that

there was increased divergence in beliefs about the future marginal product of capital of many of these

companies. Combined with shorting constraints29 this created fertile ground for speculative overpricing.

The predictions of the model are also consistent with the increased sensitivity of young firms’ investment

to the stock market30 . One would expect that young firms introduce innovations thus leaving more room for

27 I would like to thank Andy Abel for helpful discussions on this issue.
28This can be shown by exactly the same steps as in Scheinkman and Xiong (2003).
29 See Ofek and Richardson (2003) for empirical evidence on this.
30For empirical evidence see e.g. Farhi and Panageas (2005) and references therein.
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disagreement about their future marginal product of capital. Hence, both their investment and their share

price are likely to be influenced more by speculation.

A final possible application of this framework (that is not pursued here) is the following: In the present

model, speculation has the effect of also increasing the volatility of marginal q. If one combines this with the

"q" theory of mergers developed in Jovanovic and Rousseau (2002) one could also explain why speculation

leads to such increases in merger activity as the ones observed in the data.

In summary, the model makes predictions not only about whether investment is going to be influenced by

speculation, but also which types of investment are likely to be affected. Hetereogeneity in beliefs about the

future marginal product of capital is a key condition, which appears to be particularly relevant for younger

firms and firms in "new tech" sectors.

5 Implications for Asset Prices

Thusfar, the focus has been on the effects "inflated asset prices" have on investment. In this section I

explore the reverse link, namely from investment to asset prices. The equilibrium price in this paper differs

significantly from Scheinkman and Xiong (2003) because of growth options (which capture the value of the

ability to adjust the capital stock). Moreover, the presence of a time varying capital stock and a time varying

q (the market-to-book ratio in finance jargon) will make it possible to use simulated moments of the model

to match certain asset pricing facts.

The first subsection presents a theoretical discussion of predictability of returns in the present model.

The discussion there is intended to provide the intuitions for the results that follow in the second subsection.

The second subsection presents a quantitative exercise: Using the closed form solution to the model, I

simulate an artificial dataset containing roughly the same number of observations as CRSP and calibrate the

model so as to match certain well known asset pricing facts. The purpose of this exercise is to measure in a

quantitative sense: a) by how much does investment and the presence of growth options affect the equilibrium

prices and b) how strong heterogeneity in beliefs would have to be in order to match the predictability of

returns by book-to-market ratios observed in the data.

5.1 Predictability and Endogenous Investment

Up to this stage, there was no need to assume that one of the two agents should have objectively rational

beliefs about the data generating process. The only key assumption was heterogeneity in beliefs. To talk

about the implications of the model for expected returns however, one must make an additional assumption

about the objective data generating process. In particular, assume from now on that agents of type A have

the "correct" beliefs, in the sense that their understanding of the data generating process coincides with the
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objective data generating process. This enables me to replace the objective probability measure with the

belief system of agent A in computing the expected returns that follow.

Given that all agents are risk neutral and there is perfect competition, the expected return perceived by

any agent who holds stock has to be equal to the interest rate. Similarly, an agent liquidates her position

in stock, whenever she feels that the expected return on the stock from that point on will be less than the

interest rate31.

To see this formally, define:

ZP =max
i

Ã
1

2

σ2f

f
bfAt Pff−λ( bfAt −f)P f+

1

2
σ2gPgg −

1

2
σ2gPfg−ρgP g+PK(−δKt+it) +

bfAt Kt − i
³
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χ

2
i
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Applying Ito’s Lemma to P and using the optimal investment policy i∗, one obtains:

EA(Pt+dt − Pt) +
h bfAt Kt − i∗

³
p+

χ

2
i∗
´i

dt = ZPdt

The appendix establishes that32

ZP
½
= rP if gAt < 0

< rP if gAt ≥ 0
(30)

This last equation shows that agents of type A will hold stock if and only if they perceive its expected

return to be equal to r, else they will resell to agents of type B. One can also show that the "gap" between

the expected return and rP will be increasing in gAt . More importantly there will be predictability in this

market: Define the Book to Market ratio as:

Kt

Pt
=

1

qt

³ bfAt , gAt ´ +
Kt

G
³ bfAt , gAt ´ (31)

Assume for a moment that the second term in (31) can be ignored. By (16), qt is increasing in gAt and hence
Kt

Pt
is decreasing in gAt . Keeping bfAt fixed, this implies that a low Kt

Pt
will be associated with high values

of gAt and low returns (from [30])33 . Whether investment is high in these times or not, will depend on the

assumption that one makes about short-termism and long-termism. If investors are long-termist, investment

will not be affected. On the contrary, if investors are short-termist then investment will also be high.

These observations suggest that the model at least qualitatively is able to explain a number of facts about

asset prices documented in Fama and French (1992). A high market to book ratio will predict low expected

returns going forward and high investment. Moreover, it suggests caution with the argument made in the

literature that one can use investment to tell apart rational and irrational theories of predictability34 . If the

firm pursues short-termist objectives, then investment and expected returns will co-move, even though the

31Proposition 7 establishes exactly that.
32This can be established by using equations (79) and (80) in the appendix along with: ZP − rP = LP.
33 It turns out that a similar result holds for growth options.
34 See also Lamont [2000] for a careful discussion on this.
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variation in expected returns is driven by wrong beliefs. Thus, finding that investment predicts returns is

suggestive of neither irrationality or rationality, since it is compatible with both types of theories.

This observational equivalence seems to be a robust result. Zhang (2005) contains a discussion of asset

pricing anomalies in a perfectly rational q-theoretic model. As long as q-theory continues to hold in the

presence of speculation, most of the results in Zhang (2005) continue to hold in the present framework35,

even though the driving force of predictability is behavioral.

On the positive side however, the model suggests a promising path to disentangle the two types of expla-

nations. The discussion about long-termism and short-termism suggests that one should study separately

the co-movement between investment and expected returns for companies with large controlling shareholders

and those with diverse stockholder bodies. According to the model, there should be little co-movement be-

tween the investment behavior and the expected returns of companies with large "long-termist" controlling

shareholders. This is a manifestation of the fact that long-termist investors will ignore variations in the

difference in beliefs gAt in making investment decisions, which are the source of predictability. Obviously,

this will not hold true for share price maximizing firms. Hence, if the variation in expected returns observed

in the market is due to behavioral influences, there should be a different extent of co-movement between

expected returns and investment for firms pursuing short-termist and long-termist objectives. If however,

variations in expected returns are due to purely rational variations in risk or risk aversion, there appears to

be no reason to make such a distinction36.

In conclusion, the present model suggests that if investment is affected by speculative motives, then it

becomes fairly hard to use investment in order to distinguish rational from irrational theories of asset pricing.

The model will become observationaly equivalent in many respects to rational models of predictability, since

most of these models operate through an investment channel (Berk Green and Naik [1999], Gomes Kogan

and Zhang [2003], Zhang [2005] etc.). On a more positive note, this section also suggests a promising route

to construct tests of rational vs. irrational explanations for asset pricing facts.

5.2 A Quantitative Exercise

The benefit of having a closed form solution for the value of the firm is that one can simulate a very large

(artificial) dataset, such as CRSP and COMPUSTAT, and then calibrate some key parameters of the model

so as to match certain well documented asset pricing facts.

In this section I try to address two questions in particular: 1) Does investment amplify the effect of

35Zhang (2005) uses a framework where marginal and average q are equal. The framework developed here will produce the

same equivalence if adjustment costs are taken to be linear homogenous in the capital stock. (Panageas [2005])
36 In the presence of risk aversion one would need the added assumption that "entrenched" long-termist investors should also

have access to markets that will allow them to hedge the risks associated with their holdings of shares of the company that

they cannot easily resell.
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mispricing compared to a model without investment and by how much? And 2) how large does the difference

in beliefs between the rational and the irrational agent have to be in order to account for the variation and

predictability in returns observed in the data? Throughout this section, assume that investment is determined

as part of the share price maximization problem of the firm (short-termism).

Before proceeding with the calibration, one should note an important fact about the model: "Overpricing"

is controlled solely by one (and only one) parameter. This parameter is φ (defined in section 2.2). It captures

the extent to which each investor believes that signal A (resp. signal B) is more informative than signal B

(resp. signal A). When φ = 0 for instance there is no difference in beliefs between the two agents and there

are no speculative components as a result.

Hence, the base case φ = 0 presents a good departure point. Under this restriction the model becomes

a standard Abel and Eberly [1994] framework. In order to calibrate the rest of the parameters, I match

simulated moments of the model to the data. Then I vary φ in order to study the effects of speculative

mispricing.

As a first step, I set some parameters following standard choices in the literature. The parameter δ is

the depreciation rate and is set to 0.07. The interest rate is set to r = 0.06. The reason for this choice is

explained below. The parameter f captures the marginal product of capital "in the long run" and is set to

r+ δ. As a result of these choices, the mean of the stationary distribution of marginal q is equal to 1, since:

EA (q) = EA

µ
f

r + δ
+

f − f

r + δ + λ

¶
=

f

r + δ
= 1

In the above expression I have deliberately dropped time subscripts in order to denote expectation under

the stationary measure.

It is straightforward to verify that in this model the capital stock and the price will have a stationary

distribution because investment itself is stationary. One can then determine p and the stationary standard

deviation of bftA, so as to match the average book-to-market ratio in the data. Furthermore one can use the
first two moments of the dividend-to-price ratio to match parameters related to mean reversion in ft and

the volatility of dividends. Finally χ is determined so that the model can match empirical regressions of the

investment to capital ratio on average q in the data. Table 1 reports the parameters that were chosen to

match the moments in the data (reported in Table 2). To compute the (stationary) moments implied by the

model I used a Monte Carlo experiment to simulate 184.000 years of artificial data37 .

It is important to note that these are time series moments of the model. Hence one should match them

to time series moments in the data. The data in the second column are based on several empirical studies:

The study of Kothari and Shanken (1997) reports an average B/M of 0.69 with a standard deviation of

37dt was chosen to be 1/12 in the simulations. Several initial observations were discarded to ensure that initial conditions are

drawn from the stationary distribution.
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Parameter Value Parameter Value

λ 0.10 p 0.38

r 0.06 σ 0.25f

δ 0.07 σs σ

f 0.13 σD 0.5σ

χ 2.00 φ (basecase) 0

Table 1: Parameters used in calibration

Statisitic: Model Data

Mean (B/M) 0.730 0.690

S.D. (B/M) 0.160 0.220

Mean (I/K) 0.070 0.069

S.D.(I/K) 0.024 0.020

Mean(D/P) 0.050 0.036

S.D.(D/P) 0.019 0.014

Mean (annualized Return) 0.065 0.061

S.D. (annualized Return) 0.165 0.239

Mean (marginal q) 1.000 -

S.D. (marginal q) 0.250 -
cov(I/K,q)
var(q) 0.060 (0.03; 0.11)

Table 2: Data and model implied moments. For data sources see text.

0.22 using a sample of companies from 1926 to 1990. The dividend yield is given as 0.036 with a standard

deviation of 0.014.

The interest rate was chosen at 6% in order to match the return reported in Kothari and Shanken (1997)

who report a value weighted return of 9.4 % (for the companies in their sample) with standard deviation of

23.9 %. However these returns are not real returns. Adjusting for an average annual inflation of 3.27% from

1926 to 1990 produces an average real return of 6.13%.

It should be noted that the present model cannot simultaneously match the real interest rate and the real

return on the stock market, since risk neutrality precludes any risk premium. Thus one should interpret "the

interest rate" in this paper as proxying for both a discount rate and a risk premium. Using this interpretation,

I chose r = 0.06, in order to match the absolute level of (real) returns in the sample of Kothari and Shanken

(1997).38 It is reasonable to conjecture that in a richer model with risk aversion one would obtain similar

38The fact that the model does not allow a risk premium does not mean however that it cannot be used to study predictability
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results to this model as long as there is little variation in relative risk aversion of agents and the correlations

between stock payoffs and the stochastic discount factor.

To compare the average investment to capital ratio to the data, I used the data in Blanchard, Rhee

and Summers (1993) to compute the average investment to capital ratio and its standard deviation. They

report (annual) data on (aggregate) investment and capital in the US economy from 1900-1990. In Farhi and

Panageas (2005) this series is extended to 2003. The average investment to capital ratio for this extended

series is 6.85%, while its standard deviation is 1.95 percent. The final statistic is the coefficient obtained

by regressing the investment to capital ratio on average q. These regressions are performed routinely in

microeconomic studies. For comparison purposes, Abel and Eberly (2002) report an average coefficient of

0.03 (when they use simple OLS estimates) and 0.11 when they use analyst forecasts as instruments.

The baseline model has a descent performance in terms of matching some basic moments of the data.

It should be emphasized that φ was taken to be 0 in calibrating the above parameters. Hence the above

simulated moments correspond to a world without disagreement of any sort.

The first question one may ask is how large is the overpricing that would result if φ is varied. Instead of

speaking of φ directly, it is probably more informative to study the implications of different levels of φ for

the average deviation of irrational from rational beliefs. A simple way to measure distance between the two

set of beliefs is the "volatility ratio" defined as:

σg√
2ρcσfA

The numerator
³

σg√
2ρ

´
is the standard deviation of the stationary distribution of the difference in beliefs.

The denominator is the average standard deviation of the posterior belief distribution of the rational agent

A. A volatility ratio of 1 implies that "on average" agent B’s beliefs about the posterior mean of f are within

one standard deviation of the beliefs of agent A. Therefore, the volatility ratio provides a convenient way

to translate values of φ into statements about the average distance between the beliefs of the two types of

agents.

Figure 1 contains a mapping from levels of φ to volatility ratios. Levels of φ close to 0.5 imply fairly

low volatility ratios. As φ approaches 0.9 the corresponding ratio reaches 1.4. The mapping becomes fairly

nonlinear as one approaches 1. It will be useful to refer to this mapping between φ and the volatility ratio

throughout.

Figure 2 presents an attempt to measure the extent of interaction between investment and mispricing in

the following sense: The model presented in this paper nests the models of Abel and Eberly (1994,1997) and

Scheinkman and Xiong (2003) as special cases. One would like to know how much can be gained by their

in (expected) absolute returns, which will vary considerably, because of the time varying influence of irrational traders. It merely

means that r will be an upper bound to the expected return.
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Figure 1: Volatility ratio and φ.

interaction. Figure 2 plots marginal and average q for various levels of φ and different assumptions about

speculative trading.

It is most instructive to start with the case where all market participants are of the type A. Then φ

may vary but there are no speculative components in the price or marginal q. In this case one obtains the

model of Abel and Eberly (1994). Comparing the difference between marginal q and average q amounts to

comparing the value of a "tree" that cannot adjust its capital stock to a company that can adjust its capital

stock and hence has "growth options". Throughout, when I speak of marginal or average q, I evaluate all

quantities at the stationary means of bfAt and gt which are given by f and 0 respectively. The capital stock

is also evaluated at the stationary mean of Kt, assuming all market participants are of the same type and

therefore there is no speculation.

By construction, in the absence of speculation, marginal q is equal to 139 (irrespective of φ) . Average q

39Since f = r + δ
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in the absence of speculation is given by the line ’Av-q -No Spec.’ and is about 1.5 for most values of φ.40

Hence the value of a firm that has the "option" to invest, compared to a simple "tree", that has no option

to invest, is about 50% higher in the absence of speculation. The exact numbers are given in Figure 2 and

are labeled ’Av-q -No Spec.’.

The next natural exercise is to compare the value of two "trees" that cannot invest. The "trees" are

identical except that in the one case there is speculation, and in the other case there is none. This amounts

to comparing "marginal q" when there is speculation to marginal "q" when there is no speculation. In the

latter case marginal q is identically 1. The exact numbers for marginal q in the presence of speculation are

given in Figure 2 and are labeled ’Marg-q -Spec.’. Effectively, this comparison is identical to the compar-

isons performed in Scheinkman and Xiong (2003) where they compare values of "trees" in the absence of

investment.41 . The effect of speculation raises the value of marginal q between 10% and 50%, depending on

40 (Notice that average q rises somewhat with φ even though there is no speculation and all agents have the same beliefs.

This is because φ affects somewhat the variance of the beliefs of agent A)
41 It is important to note that compared to Scheinkman and Xiong (2003) the numbers reported here for the comparison
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φ.

The above two comparisons effectively present two special cases of the model, since either speculation or

investment were excluded. This was instructive because it helped uncover the models of Abel and Eberly

(1994) and Scheinkman and Xiong (2003) as special cases. Once both forces are allowed (i.e. both investment

and speculation) then the numbers for average q increase by several orders of magnitude, as is demonstrated

by the line ’Average q-Spec.’.

This occurs because the two forces interact: speculation increases the need for investment so that the

ability to adjust the capital stock (as captured by growth options) becomes more valuable. Moreover,

the growth options themselves depend on the ft which is the parameter that agents disagree about, thus

speculative components are built into the growth options as well (see the appendix for details). As such

this second effect reinforces the first. The result is a significantly increased level of average q, reflecting the

increased value of the growth options.

To recap, the model appears to be able to produce fairly strong interactions between investment and

speculation. The amplification works through growth options that seem to become more important when

there is speculation in the market. This appears to be a key prediction of the model and a potential reson for

the very large levels of q (or market-to-book in finance jargon) that one observes during speculative episodes:

Figure 3 reports results on the ability of the model to produce both reasonable book-to-market ratios and

predictability. I simulated paths of 2300 companies over 27 years in order to repeat the experimental setting

of Fama and French (1992). In doing so, I assumed that all companies are identical, except for φ42 .The

returns of these companies and the book-to-market ratios were simulated under the assumption that for 75%

of the companies there is no disagreement (φ = 0) whereas for 25% of these companies agents disagree with

φ = 0.9. I then calculated equal weighted returns for 10 portfolios formed on book-to-market as described

in Fama and French (1992). Figure 3 plots the resulting returns and compares them to the results reported

in Fama and French (1992)43 . I focused only on the portfolios with the 5 lowest B/M ratios since this paper

is concerned with overpricing.

The circles in Figure 3 depict simulation results, while the crosses reproduce the Fama and French (1992)

data. The important result of this figure is that for both the simulations and the data the scatter of points

is aligned on a line with similar slope. Fama-MacBeth regressions produce regression coefficients of roughly

0.44 compared to 0.5 reported in Fama and French (1992).

between the two levels of marginal q are smaller. This is due mostly to the fact that in the present paper there is depreciation

that makes the "effective" interest rate r + δ = 0.13.
42A number of initial years (prior to the 37 that form the simulation study) was dropped to make sure that initial capital

stocks, fundamentals and disagreement are drown from the stationary distribution.
43To compare the results I subtracted a 7.2% annual (or 0.6% monthly) from the results in Fama anf French (1992) in order

to compute real returns
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It is also interesting to note that the simulated data produce a distribution of book-to-market ratios that

are not very far away from the numbers reported in Fama and French (1992). For the portfolios with the

lowest log(b/m) in Fama and French (1992)44 the log(b/m) is around -1.5, whereas in the simulations the

respective number is around -1.2.

These results suggest that the present model can produce degrees of predictability very similar to the

ones observed in the data. Perhaps a more interesing conclusion is that the present model needs to assume

that only a small number of companies needs to be overpriced in order to explain the data. However, the

disagreement in these companies needs to be relatively large: φ = 0.9 inplies a volatility ratio of 1.4 which

seems somewhat large.

44 I ignored portfolio 1B in their study and focused on portfolio 1A in order to avoid outliers.
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6 Conclusion

In this paper I develop a framework to study the interactions between speculative trading and investment.

In the model agents have heterogenous beliefs, and are prevented from short-selling. Thus, speculative

components emerge endogenously. If firms maximize share prices (as is typically assumed in neoclassical

investment theory), then investment reacts to speculative overpricing. Marginal q will endogenously contain

a speculative bubble and hence will be higher than the appropriately discounted marginal product of capital

under any market participant’s beliefs. This speculative component will be higher, when belief heterogeneity

increases. This may help explain why the investment behavior of young (high tech companies for example) is

particularly affected during speculative episodes: The marginal product of capital in such untested ventures

is likely to leave room for disagreement.

Somewhat surprisingly, the level of investment arising from share price maximization is efficient. A central

planner that cannot alter the underlying asset structure and the associated trading constraints will effectively

replicate the market outcome when choosing investment. This is a surprising result since it suggests that

asset price bubbles do not necessarily justify policy intervention.

The link between speculation and investment is likely to break down if investment is controlled by

shareholders lacking perfect market access. I model imperfect access as a cost these shareholders must pay

in order to access markets. This may happen for a variety of reasons: capital gains taxes, losses of private

benefits associated with control, nonlinear price pressure etc. If these costs become very large then the

optimal investment policy converges to the optimal policy one would obtain in the complete absence of

speculation ("long-termism"). In this paper long-termism and short-termism are not mutually exclusive

alternatives, but present the extreme limits of a continuum of possibilities, depending on the cost of access

to financial markets by controlling shareholders.

Beyond providing a new formalization of these notions, I show that endogeneizing investor horizons allows

one to address very practical issues. For instance, I show that a capital gains tax appears to be particularly

well suited to prevent the "pass-through" of speculative components to investment.

According to the model , investment might also help distinguish between rational and behavioral theories

of so-called asset pricing "anomalies", since it can act as a "filter" of speculative components. I argue that

both approaches will yield similar predictions if investment is affected by speculation, since they will both

predict that investment should co-move with expected returns. The benchmark (short-termist) case of the

present model is consistent with most of the facts that have been put forth as evidence in favor of rational

asset pricing theories, even though it is a behavioral model. This is a negative result, since it suggests

that investment might not "filter out" speculative components. On the positive side however, the model

suggests that the investment behavior of firms with large "long-termist" controlling shareholders is unlikely
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to be affected by speculation, and hence can be used to disentangle rational variation in risk premia from

speculative components.

Another finding of the paper is that investment tends to considerably amplify the effects of specula-

tion on asset prices. The ability to invest becomes particularly valuable during a speculative episode, thus

growth options increase significantly in value. This may help explain why the most commonly used mea-

sures of growth options (like market-to-book, price-to-earnings etc.) tend to reach record high levels during

speculative episodes.

There are several directions that are not explored in this paper. A first major issue concerns the financing

side in a speculative market. As Panageas (2005) shows, the Modigliani Miller (MM) Theorem is not

violated in the setup of this paper. Farhi and Panageas (2005) introduce endogenous financing constraints

to obtain a violation of the MM Theorem and show that financing constraints can significantly alter the

welfare implications of the model. In their model, speculation acts like a substitute for collateral which can

help alleviate contractual inefficiencies arising from the financing constraint. They conclude that even a

paternalistic social planner, might find welfare improvements in the presence of speculation.

A second issue is whether the theory developed above could be used to derive new empirical tests.

Panageas (2005) extends this theory to allow for linear homogenous adjustment costs, and shows that

marginal and average q are equated. Unfortunately, one cannot solve explicitly for the price in that case.

However the usual relation between investment and average q continues to hold, despite the speculative

components. Panageas (2005) derives appropriate Euler and first order conditions that are implied by the

present framework and uses them to test short-termism vs. long-termism in the context of a "natural

experiment" in the 1920’s.

A third question concerns the implications of this theory for executive compensation. This paper an-

alyzed investment in a dynamic q-theoretic environment, under the assumption that investment policy is

determined in the best interest of some group of shareholders. In reality investment decisions are made by

the management of a firm.. Bolton, Scheinkman and Xiong (2003) analyze the implications of these consid-

erations. Their analysis provides a potential explanation for the observed compensation schemes which were

widespread during the speculative episode of the late 1990s.
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A Appendix: Proofs

A.1 Proofs for section 2.2

The essential difficulty in proving proposition 1 is the nonlinearity introduced by the square root in (2). It is well

known in the literature on filtering that problems of these kind do not admit a finite dimensional characterization. A

particularly popular approach in the engineering literature to deal with this difficulty is to use the so-called "extended

Kalman Filter", which is proposed in Jazwinski (1970)45 . The key idea behind this filter is to focus on the first two

moments of the posterior distribution and ignore the feedback from moments higher than 2.

Applying the extended Kalman filter to the filtering problem of agent A (the formulas are similar for agent B)

one obtains the system of equations:

d bfAt = −λ
³ bfAt −f´ dt+ φσsσ

r
ft
A

f
+γAt

σ2s

³
dsA− bfAt dt´ (32)

+
γAt
σ2s

³
dsB− bfAt dt´+ γAt

σ2D

µ
dDt

Kt
− bfAt dt¶

dγAt
dt

= −2
⎛⎝λ+ φ

σ

σs

scfAt
f

⎞⎠γAt +(1− φ2)σ2
cfAt
f
− ¡γAt ¢2µ 2

σ2s
+

1

σ2D

¶
(33)

where cfAt denotes the posterior mean of agent A about ft and γAt the posterior variance.

One interesting observation is the extended Kalman filter and the regular Kalman filter coincide if one sets cfAt = f.

One can easily check that in this case equation (32) coincides with the corresponding equation in Scheinkman and

Xiong (2003), while setting dγAt
dt = 0 in equation (33) (so as to obtain the stationary variance of beliefs) and solving

for γAt gives the same expression as in Scheinkman and Xiong (2003).

Assuming that λ is relatively large and σf relatively small, then

r
fAt
f
∼ 1 and one can rewrite (33) as:

dγAt
dt

= −2
µ
λ+ φ

σ

σs

¶scfAt
f
γAt + (1− φ

2
)σ
2
cfAt
f
− ¡γAt ¢2µ 2

σ2s
+

1

σ2D

¶
(34)

Equation (34) is an ordinary differential equation for a given path of cfAt . One can solve it explicitly. However,
one can get some insights on certain properties of the solution by "integrating" forward to obtain:

γAt = γAt0e
−2 t

t0
wsds +

Z t

t0

e−2(
t
ξ
wsds)

∙
(1− φ

2
)

µ
σ2

f

¶ cfAξ −µ 2

σ2s
+

1

σ2D

¶
γ2ξ

¸
dξ

45Unfortuanately, this filter does not make a claim to approximate the optimal non-linear filter, even though in

applications it seems to have very good performance. Recent literature discuss the properties and the efficiency of

this filter for "small" noise expansions.
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where:

wt =

µ
λ+ φ

σ

σs

¶scfAt
f

As t0 → −∞ one obtains

γAt =

Z t

−∞
e−2(

t
ξ
wsds)

∙
(1− φ2)

µ
σ2

f

¶ cfAξ −µ 2

σ2s
+

1

σ2D

¶¡
γAξ
¢2¸

dξ

In other words γt is an infinite moving average of past values of bft and γ2t . As long as mean reversion is strong (high
λ, small σf ) only the most recent values of bft and γ2t will "matter", and this motivates the approximation:

γAt =
(1− φ2)

³
σ2

f

´ cfAt − ³ 2
σ2s
+ 1

σ2D

´ ¡
γAt
¢2

2
³
λ+ φ σ

σs

´r
fAt
f

which can be solved to yield:

γAt =

scfAt
f
eγ (35)

where:

eγ=
r³

λ+ φ σ
σs

´2
+(1− φ

2
)
³
2σ

2

σ2s
+ σ2

σ2D

´
−
³
λ+ φ σ

σs

´
2
σ2s
+ 1

σ2D

Replacing (35) into (32) leads to the approximate belief processes:

d bfAt = −λ
³ bfAt −f´ dt+ (36)scfAt
f

∙
φσsσ+eγ

σ2s

³
dsA− bfAt dt´+ eγ

σ2s

³
dsB− bfAt dt´+ eγ

σ2D

µ
dDt

Kt
− bfAt dt¶¸ (37)

d bfBt = −λ
³ bfBt −f´ dt+ (38)scfBt
f

∙
φσsσ+eγ

σ2s

³
dsB− bfBt dt

´
+
eγ
σ2s

³
dsA− bfBt dt

´
+
eγ
σ2D

µ
dDt

Kt
− bfBt dt

¶¸
(39)

Since dsA−fAt dt
σs

,
dsB−fAt dt

σs
,
dDt
Kt
−fAt dt
σD

are (standard) Brownian motions in the mind of agents of type A, it will

be convenient to define the "total volatility" of bfAt (or bfBt ) by
σf=

sµ
φσsσ+eγ

σs

¶2
+

µ eγ
σs

¶2
+

µ eγ
σD

¶2
which leads to formulas (5) and (4). It is quite interesting to notice that the approximate filters derived are very

close to the ones obtained in Scheinkman and Xiong (2003): except for the presence of the square root in (36) and

(38), the updating equations are identical to the respective equations in Scheinkman and Xiong (2003).
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This is a key observation: As long as mean reversion is strong enoungh, the ratio

r
fAt
f
,

r
fBt
f
will not differ

significantly from 146 . Setting

r
fAt
f
= 1,

r
fBt
f
= 1, one can then replicate the arguments in Scheinkman and Xiong

(2003) to arrive at the dynamics of the disagreement process gAt :

dgAt ≡ dcfBt −dcfAt ' −ρgAt dt+ σgdW
A
g (40)

where ρ, σg are given by:

ρ =

sµ
λ+ φ

σ

σs

¶2
+ (1− φ

2
)σ
2

µ
2

σ2s
+

1

σ2D

¶
σg =

√
2φσ

To compute the covariance between the two processes note that47 :

V ar(dg
A
t ) = Cov(dcfBt −dcfAt , dgAt ) = Cov(dcfBt , dgAt )− Cov(dcfAt , dgAt )

Since

dgAt = −dgBt
one gets:

Cov(dcfBt , dgAt ) = −Cov(dcfBt , dgBt )

and since the model is symmetric:

Cov(dcfBt , dgBt ) = Cov(dcfAt , dgAt )
Hence:

V ar(dg
A
t ) = −2Cov(dcfAt , dgAt ) (41)

or:

Cov(dcfAt , dgAt ) = −φ2σ2dt
Note that the calculations made for the covariance did not rely on anything else except for the symmetry in the

model. Hence equation (41) is true for both the exact and the approximate belief model.

Eventually, all of the above arguments are meant to give a rough justification of why in the presence of reasonably

strong mean reversion in ft one can proceed with the above approximations. How well this approximation is likely

to perform will depend on the application at hand and the parameters used.

46One could derive an alternative approximation to this disagreement process by subtracting dfAt from dfBt and then

approximating all terms to the first order. Such an approximation would yield something close to the OU process

used here for reasonably small φ. For simplicity I chose the approximate OU process described in the beginning of

this section to be able to compare the results to Scheinkman and Xiong (2003).
47 I am indebted to Bernard Dumas for providing me with notes that provided the correct calculation of the

covariance in the Scheinkman and Xiong (2003) model.

41



Figure 4 demonstrates the performance of these approximations for the quantitative calibration in section 5 for

400 months of data. The top left figure compares the solution to (33) (obtained by an Euler Scheme) with (35).

There are two observations about the top left panel. First, the two volatilities co-move quite closely and second the

posterior standard deviation (captured by γAt ) does not vary too much.

These two observations help understand the next three panels. The top right panel is depicting the exact solution

to the extended Kalman filter obtained by solving the two dimensional system (32) and (33) and the approximate

filter obtained using (36).

The two processes basically cannot be disentangled from each other, since they practically coincide. The bottom

left panel depicts the performance of the extended Kalman Filter against the actual process ft. It is easy to see

that the extended Kalman Filter performs well in "recovering" the path of ft. Finally, the bottom left panel depicts

the difference in beliefs between agents A and B obtained from the approximate equation (40). Once again, the

approximation is sufficiently good that one cannot disentangle the two processes, since they are practically identical.

From these simulations it can be reasonably claimed that the approximation used is sufficiently accurate for all

practical purposes.

A.2 Proofs for section 3.1

Proof. (Proposition 2) I use a standard verification argument to verify that (9) provides the solution to (7). To

start, conjecture a value function of the form:

P
� efAt ,Kt

�
= qF

� efAt �Kt + uF
� efAt � (42)

and substitute this conjecture into the Hamilton Jacobi Bellman equation:

max
it

%
1

2
σ2f
efAt
f
Pff − λ( efAt − f)Pf + PK (−δK + it)− rP + efAt Kt − pit − χ

2
(i2t )

&
= 0 (43)

Solving for it gives:

it =
1

χ
(PK − p)

Plugging this optimal it back into (43) it is straightforward to check that (42) satisfies (43) if and only if the

functions qF
� efAt � and uF

� efAt � solve the ordinary differential equations:
1

2
σ2f
efAt
f
qFff − λ( efAt − f)qFf − (r + δ)qF + efAt = 0 (44)

1

2
σ2f
efAt
f
uFff − λ( efAt − f)uFf − ruF +

�
qF − p

�2
2χ

= 0 (45)

The solution to equation (44) is48 :

qF
� efAt � = f

r + δ
+

efAt − f

r + δ + λ
(46)

48 In this paper only particular solutions of ODE’s will be considered. Economically this means that "rational

bubbles" will not be allowed, i.e. terms that grow unboundedly in expectation at the riskless rate. See Abel and

Eberly (1997) on this point.
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Figure 4: Performance of the Approximate Filter.
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whereas the solution to uF
� efAt � is given as

uF ( efAt ) = C1
� efAt − f

�2
+ C2

� efAt − f
�
+C3

with:

C1 =
1

χ

1

r + 2λ

1

2

�
1

r + δ + λ

�2
(47)

C2 =
1

χ

1

(r + λ)

1

(r + δ + λ)

%�
f(1− hp)
r + δ

�
+

σ2f
2

1

f

1

r + 2λ

1

r + δ + λ

&
(48)

C3 =
1

r

%
1

2χ

�
f(1− hp)
r + δ

�2
+ σ2fC1

&
(49)

where ep = p r+δ
f
.It is also interesting to note that the Feynman Kac Theorem (see Oksendal 1998) implies that:

uF ( bfAt ) = 1

2χ
EA

µZ ∞
t

e−r(s−t) (PK(s)− p)
2
ds

¶
since uF solves (45).

Proof. (Lemma 1) The derivative of uF w.r.t efAt is given by:

2C1
� efAt − f

�
+ C2

Since efAt will always be positive it suffices to check that:

−2C1f + C2 > 0

Finally, use the definitions of C1, C2 to obtain:

−2C1f + C2 > 0⇔ hp < 1− r + δ

r + δ + λ

1

r + 2λ

#
r + λ− σ2f

2f
2

$
By assumption (12)

ep< 1− r + δ

r + δ + λ
< 1− r + δ

r + δ + λ

1

r + 2λ

Ã
r + λ− σ2f

2f
2

!
since

1

r + 2λ

Ã
r + λ− σ2f

2f
2

!
< 1

and the proof is complete.

A.3 Proofs for section 3.2

The goal of this section is to prove proposition 3. This involves several steps which are summarized here: Lemmas 2

and 3 along with definition 3 establish some preliminary results. They discuss solutions to certain ordinary differential

equations that will show up repeatedly in the proofs. The next step is to conjecture an optimal investment policy
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whose optimality is verified at the end of the proof. This is done in conjecture 1. A useful intermediate step is

to derive the value of the firm to an investor who will never resell her stock, but takes the investment policy given

in conjecture 1 as exogenously given. The resulting value is computed in proposition 5 and is used in conjecture

2 to arrive at a conjecture about the equilibrium pricing function. The conjectured equilibrium pricing function

decomposes the price into the value to an infinite horizon investor (obtained in proposition 5) and a speculative

premium which is shown to be the solution to a specific optimal stopping problem in Lemma 4. Using continuity

and smooth pasting proposition 6 shows that the solution to this optimal stopping problem indeed has the form

conjectured in conjecture 2. To complete the verification that conjecture 2 provides the actual pricing function one

needs proposition 7 which effectively establishes that an agent sells the stock if and only if she perceives that its

expected return is less than the interest rate. The proof is concluded by using the conjectured pricing function to

show 1) that the conjectured optimal investment policy is optimal given that equilibrium price, 2) that an agent of

type A will find it optimal to resell the stock immediately when bfAt < bfBt and 3) that her reservation value coincides

with the equilibrium price. This is achieved in the proof of proposition 3. The equivalent results for agent B are

perfectly symmetric and are omitted.)

Lemma 2 Consider the linear second order ordinary differential equation (ODE):

σ2g
2
y00 − ρxy0 − (r + δ)y = 0 (50)

Then there are two linearly independent solutions to this ODE and are given by

y1(x) =

+
U
�
r+δ
2ρ

, 1
2
, ρ
σ2g
x2
�

if x ≤ 0
2π

Γ 1
2
+ r+δ

2ρ
Γ( 12 )

M
�
r+δ
2ρ , 12 ,

ρ
σ2g
x2
�
− U

�
r+δ
2ρ , 12 ,

ρ
σ2g
x2
�

if x > 0

y2(x) = y1(−x)

where U() and M() are Kummer’s U and M functions49 . y1(x) is positive, increasing (y01(x) > 0) , convex

(y001 (x) > 0) and satisfies limx→−∞ y1(x) = 0, limx→+∞ y1(x) = ∞. Accordingly, y2(x) is positive, decreasing and

satisfies:limx→−∞ y1(x) = ∞, limx→+∞ y1(x) = 0. Moreover any positive solution that satisfies equation (50) and

limx→−∞ y(x) = 0 is given by: βy1(x) where β > 0 an arbitrary constant. Similarly any solution to (50) that is

positive and satisfies: limx→∞ y(x) = 0 is given by βy2(x) where β > 0 is an arbitrary constant.

Proof. Lemma 2. The proof effectively replicates arguments in Scheinkman and Xiong (2003) and therefore

large portions are omitted. If v(z) is a solution to:

zv00(z) +
�
1

2
− z

�
v0(z)− r + δ

2ρ
v(z) = 0 (51)

49These functions are described in Abramowitz and Stegun (1965) p.504.
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then y(x) = v
�

ρ
σ2g
x2
�
satisfies (50). The general solution to equation (51) is given by50 :

v(z) = αM

�
r + δ

2ρ
,
1

2
, z

�
+ βU

�
r + δ

2ρ
,
1

2
, z

�

where the functions M() and U() are given in terms of their power series expansion in 13.1.2. and 13.1.3. of

Abramowitz and Stegun (1964). The properties y1 > 0, y01 > 0, y
00
1 > 0, limx→−∞ y1(x) = 0, limx→+∞ y1(x) = ∞

can be established as in Scheinkman and Xiong (2003). To establish independence, it remains to show that the

Wronskian of the two solutions (y1y02− y01y2) is different from 0 everywhere. This is immediate since y1(x), y2(x) > 0

and y01(x) > 0, y
0
2(x) < 0.

Lemma 3 Consider the linear (inhomogenous) second order ODE:

σ2g
2
y00−ρxy0−(r + δ)y = −f(x) (52)

Using y1, y2 from Lemma 2 the general solution to (52) is given as:

y(x) =

"Z +∞

x

Ã 2
σ2g
f(z)y2(z)

y01(z)y2(z)− y1(z)y
0
2(z)

!
dz + C1

#
y1(x)+

"Z x

−∞

Ã 2
σ2g
f(z)y1(z)

y01(z)y2(z)− y1(z)y
0
2(z)

!
dz + C2

#
y2(x)

provided that the above integrals exist. Moreover the derivative y0(x) is given as:

y0(x) =

⎡⎣] +∞

x

⎛⎝ 2
σ2g
f(z)y2(z)

y01(z)y2(z)− y1(z)y02(z)

⎞⎠ dz +C1

⎤⎦ y01(x) +
⎡⎣] x

−∞

⎛⎝ 2
σ2g
f(z)y1(z)

y01(z)y2(z)− y1(z)y02(z)

⎞⎠ dz +C2

⎤⎦ y02(x)
Proof. Lemma (3)The proof is a basic variations of parameters argument and is omitted. For details see e.g.

Section 9.3. in Rainville, Bedient and Bedient (1997).

By setting C1 = C2 = 0 in the above Lemma one gets the so called particular solution to (52), which will depend

on σ, ρ, r and the specific functional form of f(x).The following definition will be useful later on:

Definition 3 For any given f(x), σg, ρ, r + δ let:

Z(x; f(x), σg, ρ, r + δ) = y(x; f(x), σg, ρ, r + δ, C1 = C2 = 0)

These two Lemmas will be used repeatedly in the proof.

The first step is to make a guess on the form of optimal investment. In particular suppose that the firm’s

investment policy is given by:

50See. Abramowitz and Stegun (1965) p. 504
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Conjecture 1 The optimal investment policy in equilibrium is given as:

it =
1

χ

#
f(1− hp)
r + δ

+
efAt − f

r + δ + λ
+ 1{gAt > 0} gAt

r + δ + λ
+ βy1(−

���gAt ���)$ (53)

where β is a constant that can be determined as:

β =
1

2(r + δ + λ)y01(0)
(54)

and y1 is the function described in Lemma 2.

The next step will be to determine the equilibrium prices, stopping times for agents etc. conditional on the

investment policy (53).

To do this it is easiest to start by computing the "infinite" horizon value of the company to an investor of type

A conditional on the policy (53). One can focus without loss of generality on the determination of the reservation

price for agent A, since the problem for agent B is symmetric. Formally, the goal will be to determine the value of:

V (Kt, efAt , gAt ) = EA
t

�] ∞

t

e−r(s−t)
� efAs Ks − pis − χ

2
(i2s)

�
ds

�
(55)

This function captures the value of the asset to an "infinite" horizon investor of type A who takes the conjectured

investment policy (53) as given.

Proposition 5 The solution to (55) is given by:

V
�
Kt, efAt , gAt � =

%
f

r + δ
+

efAt − f

r + δ + λ

&
Kt +

+

�
C1
� efAt − f

�2
+C2

� efAt − f
�
+ C3

�
+u(gAt )

where u(gAt ) < 0 and C1, C2, C3 are the same constants as in Proposition 2.

Proof. (Proposition 5) According to the Feynman Kac Theorem51 the solution V
�
Kt, efAt , gAt � to (55) must

satisfy the partial differential equation:

AV + efAt Kt − it
�
p+

χ

2
it
�
= 0 (56)

where A is the infinitesimal operator given by:

AV =
σ2f
2

efAt
f
Vff +

σ2g
2
Vgg − σ2g

2
Vfg − λ( efAt − f)Vf − ρgAt Vg + Vk (−δKt + it)− rV

51See Oksendal (1998).
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(Recall from (41) that cov(d bfAt , dgAt ) = −0.5var(dgAt ).) Next, conjecture a solution of the form:
V = h

� efAt �Kt + z
� efAt , gAt �

and substitute this conjecture back into (56). This gives conditions that h() and z() have to satisfy in order to satisfy

(56). h() has to satisfy:
σ2f
2

efAt
f
hff − λ( efAt − f)hf − (r + δ)h+ efAt = 0

A particular solution is given by52 :

h
� efAt � = f

r + δ
+

efAt − f

r + δ + λ

while z
� efAt , gAt � solves the partial differential equation:

σ2f
2

efAt
f
zff +

σ2g
2
zgg − σ2g

2
zfg − λ( efAt − f)zf − ρgAt zg − rz + h( efAt )it − it

�
p+

χ

2
it
�
= 0 (57)

Now rewrite the last two terms on the left hand side of (57) using Conjecture 1 to obtain:

h( efAt )it − it
�
p+

χ

2
it
�
=

1

2χ

#
f

r + δ
+

efAt − f

r + δ + λ
− p

$2
− 1

2χ

�hb(gAt )�2 (58)

where hb(gAt ) = βy1(−
���gAt ���) + 1{gAt > 0} gAt

r + δ + λ

(58) implies that the last two terms on the left hand side of (57) are additively separable in terms involving bfAt
and gAt . Thus one can reduce the solution to the PDE (57) to two ordinary differential equations z1( efAt ), u(gAt ) that
satisfy:

σ2f
2

efAt
f
z1ff − λ( efAt − f)z1f − rz1 +

1

2χ

#
f

r + δ
+

efAt − f

r + δ + λ
− p

$2
= 0 (59)

σ2g
2
ugg − ρgug − ru− 1

2χ

�hb(gAt )�2 = 0 (60)

z1( efAt ) solves the exact same ODE as uF � efAt � in Proposition (2) and thus it will have the same solution:
z1( efAt ) = C1

� efAt − f
�2
+C2

� efAt − f
�
+C3

for the same constants as in Proposition 2. Finally, one can use the results in Lemma 3 to construct the solution

to (60). It is given by:

u(gAt ) = Z

�
gAt ;− 1

2χ

�hb(gAt )�2 , σg, ρ, r� < 0

With an expression for the value of the asset to an agent who does not intend to resell it ever in the future, one

can proceed to guess an equilibrium pricing function and an optimal stopping policy. An informed "guess" is that

52Obviously there are other solutions that ”explode” at the rate r but we will only be interested in bounded solutions

in this paper.
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the optimal stopping policy is of a particularly simple form: Agent A should sell once efAt < efBt and agent B should

sell once efBt < efAt . This is the case because there are no transactions costs in this model. Accordingly, each agent
sells the asset once she stops having the most optimistic beliefs in the market. In particular, using the function V ,

conjecture that the equilibrium price will have the following form:

Conjecture 2 Using the function V determined in proposition 5, there exist a function s(Kt, bfAt , gAt ) so that
equilibrium is given by:

P (Kt,
bfAt , gAt ) = V

³
Kt, bfAt , gAt ´+s(Kt,

bfAt , gAt ) (61)

whenever gAt < 0 and by53 :

P (Kt,
bfAt +gAt ,−gAt ) = P (Kt,

bfBt , gBt ) = V
³
Kt, bfBt , gBt

´
+s(Kt,

bfBt , gBt ) (62)

whenever gAt ≥ 0. (The first equality in (62) follows fron the definition of bfBt , gBt ). Finally, s(Kt, bfAt , gAt ) can be
expressed as

s(Kt,
bfAt , gAt ) = βy1(g

A
t )Kt+n(g

A
t )
³ bfAt − f

´
+v(g

A
t ) (63)

for some appropriate functions n(·), v(·).

The rest of the proof is devoted to verifying this conjecture and constructing appropriate functions, so that the

conjecture is true. It is interesting to note that the conjectured price decomposes the price into a fundamental and

a speculative component. The fundamental component corresponds to the "infinite horizon" valuation of the most

optimistic agent. The function s(Kt, bfAt , gAt ) is the speculative component in the price. The next Lemma gives a
characterization of s(Kt, bfAt , gAt ) that will prove very useful.
Lemma 4 The pricing function in Conjecture 2 holds true if and only if:

s(Kt, efAt , gAt ) = sup
τ

Ee−rτ
��

gAτ
r + δ + λ

+ βy1(−gAτ )
�
Kτ +w( efAτ , gAτ )� (64)

for w( efAτ , gAτ ) given by:
w( efAτ , gAτ ) = kC2 + n(−gAτ )

l
gAτ +C1

�
gAτ

�2
+ u(−gAτ )− u(gAτ ) +

k
n(−gAτ ) + gAτ 2C1

l� efAτ − f
�
+ v(−gAτ )

Proof. (Lemma 4) The argument is similar to the one given in Scheinkman and Xiong (2003). Using (14) and

(61) one obtains that:

P (Kt, efAt , gAt ) =
53The notation P (Kt, efAt + gAt ,−gAt ) means that the function P (x1, x2, x3) which has three arguments x1, x2 and

x3 should be evaluated at x1 = Kt, x2 = efAt + gAt , x3 = −gAt .
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= sup
τ

E

�] τ

0

e−rt
� efAt Kt − pit − χ

2
i2t

�
dt+ e−rτP (Kτ , efBτ , gBτ )� =

= sup
τ

E

�] τ

0

e−rt
� efAt Kt − pit − χ

2
i2t

�
dt+ e−rτ

k
V
�
Kτ , efBτ , gBτ �+ βy1(g

B
τ )Kτ + n(gBτ )

� efBτ − f
�
+ v(gBτ )

l�
=

= sup
τ

E

⎡⎣ U∞
0

e−rt
� efAt Kt − pit − χ

2
i2t

�
dt+

e−rτ
k
V
�
Kτ , efBτ , gBτ �− V

�
Kτ , efAτ , gAτ �+ βy1(g

B
τ )Kτ + n(gBτ )

� efBτ − f
�
+ v(gBτ )

l
⎤⎦ =

= V
�
Kt, efAt , gAt �+ sup

τ
Ee−rτ

⎡⎢⎣
�

gAτ
r+δ+λ + βy1(g

B
τ )
�
Kτ +C2g

A
τ + u(gBτ )− u(gAτ )+

C1

�� efBτ − f
�2 − � efAτ − f

�2�
+ n(gBτ )

� efBτ − f
�
+ v(gBτ )

⎤⎥⎦ =
= V A + sup

τ
Ee−rτ

⎡⎣ �
gAτ

r+δ+λ + βy1(−gAτ )
�
Kτ +

�
C2 + n(−gAτ )

�
gAτ + C1

�
gAτ
�2
+

+u(−gAτ )− u(gAτ ) +
�
n(−gAτ ) + gAτ 2C1

� � efAτ − f
�
+ v(−gAτ )

⎤⎦
where the third to last line follows from (55), the next to last line follows from Proposition 5 and (63) and the last

line follows from the identities:

efBτ = efAτ + gAτ

gBτ = −gAτ

Defining the function w( efAτ , gτ ) as:
w( efAτ , gτ ) =

k
C2 + n(−gAτ )

l
gAτ + C1

�
gAτ

�2
+ u(−gAτ )− u(gAτ ) +

+
k
n(−gAτ ) + gAτ 2C1

l� efAτ − f
�
+ v(−gAτ )

concludes the proof.

In light of Lemma 4 it suffices to show that (63) is right in order to verify conjecture 2. In particular one needs

to establish that there exist appropriate functions n(·), v(·), and an appropriate constant β such that:

βy1(g
A
t )Kt + n(gAt )

� efAt − f
�
+ v(gAt ) = sup

τ
Ee−rτ

��
gAτ

r + δ + λ
+ βy1(−gAτ )

�
Kτ +w( efAτ , gAτ )� (65)

In other words it remains to establish the existence of functions n(gAt ), v(g
A
t ) and a constant β so that the Value

function of the optimal stopping problem on the right hand side has the form on the left hand side inside the

continuation region, i.e. inside the region where agent A finds it optimal to hold the asset. Moreover, to verify

the conjecture one also needs to show that it will be optimal for agent A to resell the asset once gAt ≥ 0. The
right hand side of (65) is a three dimensional optimal stopping problem (in Kt, efAt , gAt ) and in general there is no
method to solve such problems analytically. This is in contrast to one dimensional optimal stopping problems where

continuity along with smooth pasting is enough to determine the stopping region and the associated value function

in most cases. Fortunately, the simple form of the conjectured continuation and stopping region allows one to solve

this problem as is demonstrated in the next proposition:
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Proposition 6 There exist functions n(gAt ), v(g
A
t ) and a constant β such that the function:

s(Kt, efAt , gAt ) =
+
βy1(g

A
t )Kt + n(gAt )

� efAt − f
�
+ v(gAt ) if g

A
t < 0�

gAt
r+δ+λ + βy1(−gAt )

�
Kτ + w( efAt , gAt ) if gAt ≥ 0 (66)

satisfies

σ2f
2

efAt
f
sff +

σ2g
2
sgg − σ2g

2
sfg − λ( efAt − f)sf − ρgAt sg + sK

%
−δK +

1

χ

#
f(1− hp)
r + δ

+
efAt − f

r + δ + λ
+ βy1(g

A
t )

$&
− rs = 0

if gAt < 0, is twice continuously differentiable in the region gAt > 0 and in the region gAt < 0 and once cont.

differentiable everywhere. The constant β is given by:

β =
1

2(r + δ + λ)

1

y01(0)

and the functions n(·) and v(·) are given in the proof.

Proof. (Proposition 6) The first step is to construct the Value function under the assumption that both the

conjecture for the optimal stopping region and the equilibrium investment strategy is correct. Since for gAt < 0 the

conjectured optimal strategy is to hold the asset, one can formulate a necessary condition for the value function s of

the optimal stopping problem on the right hand side of (65). Namely, it has to be the case that inside this region

gAt < 0 :

σ2f
2

efAt
f
sff+

σ2g
2
sgg−σ2g

2
sfg−λ( efAt −f)sf−ρgAt sg+sK %−δK +

1

χ

#
f(1− hp)
r + δ

+
efAt − f

r + δ + λ
+ βy1(g

A
t )

$&
−rs = 0 (67)

An informed guess is that this PDE has a solution of the form:

βy1(g
A
t )Kt + ζ( efAt , gAt )

Plugging this conjecture into (67) one gets the set of equations:

σ2g
2
y1gg − ρgAt y1g − (r + δ)y1 = 0 (68)

σ2f
2

efA
f
ζff +

σ2g
2
ζgg −

σ2g
2
ζfg −−λ( efAt − f)ζf − ρgAt ζg + βy1(g

A
t )it − rζ = 0 (69)

where:

it =
1

χ

Ã
f(1−ep)
r + δ

+
bfAt −f

r + δ + λ
+βy1(g

A
t )

!
It is immediate that the function y1(gAt ) constructed in Lemma 2 satisfies (68) by construction

54 . One can determine

a solution to equation (69) by postulating that the solution u is given by:

ζ( efAt , gAt ) = v(gAt ) + n(gAt )
� efAt − f

�
54Moreover it is the only solution that vanishes as gAt →−∞
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and upon substituting this conjecture into (69) it is easy to see that v(gAt ) and n(gAt ) have to satisfy the two

ordinary differential equations:

σ2g
2
vgg − ρgAt vg − rv +

1

χ

�
βy1(g

A
t )

�
f(1− hp)
r + δ

+ βy1(g
A
t )

��
− σ2g
2
ng = 0 (70)

σ2g
2
ngg − ρgAt ng − (r + λ)n(gAt ) +

1

χ

�
β

r + δ + λ

�
y1(g

A
t ) = 0 (71)

In the gAt < 0 region, the general solution to (70) and (71) is given by:

v(gAt ) = c1y
(r)
1 (gAt ) + c2y

(r)
2 (gAt ) + vP (g

A
t ) (72)

n(gAt ) = hc1y(r+λ)1 (gAt ) + hc2y(r+λ)2 (gAt ) + nP (g
A
t ) (73)

where vP (gAt ), nP (g
A
t ) are the particular solutions to the above equations obtained by Lemma 3

55 :

vP (g
A
t ) = Z

�
gAt ;

1

χ

�
βy1(−|gAt |)

�
f(1− hp)
r + δ

+ βy1(−|gAt |)
��

− σ2g
2
ng
�
−|gAt |

�
, σg, ρ, r

�
nP (g

A
t ) = Z

�
gAt ;

1

χ

�
β

r + δ + λ

�
y1(−|gAt |), σg, ρ, r + λ

�

and y
(x)
1 (gAt ), y

(x)
2 (gAt ) are defined in an identical way to y1(g

A
t ) and y2(g

A
t ) of Lemma 2 with the only exception

that r + δ is replaced by x. It is also clear that since y1(−
��gAt ��),ng ¡−|gAt |¢ are bounded functions56 , the above

functions are finite. Moreover, it is easy to check that the particular solutions to the above equations satisfy v0P (0) = 0

and n0P (0) = 0.
57 Finally, to keep only solutions that do not explode as gAt →−∞, set c2 = hc2 = 0.

Observe that s(·) is of the form posited in the left hand side of equation (65). To conclude, it remains to determine
the constants β, c1, ec1 in such a way that the resulting value function for the optimal stopping problem (65) is both

continuous and cont. differentiable everywhere. For gAt > 0 the conjecture is that agent A resells to agent B, so that

the value function for this case is given by the value of ”immediate exercise” i.e.

s(Kt, efAt , gAt ) = � gAt
r + δ + λ

+ βy1(−gAt )
�
Kt +w( efAt , gAt ) if gAt > 0

In each of the two regions (gAt < 0, gAt > 0) the function s(·) is twice cont. differentiable, accordingly continuity
and differentiability only needs to be enforced at gAt = 0. The left limit of s(·) at gAt = 0 is given by:

βy1(0)Kt + v(0) + n(0)
� efAt − f

�
55Note that in the gAt < 0 region: gAt = −|gAt |
56To see this, proceed as in Scheinkman and Xiong (2003) to establish that the limits of these two functions at

−∞ are 0 and that they are increasing functions. This establishes that y1(−
��gAt ��),ng �−|gAt |� are bounded between

(0, y1(0)) and (0, ng (0)) respectively.
57Since they are symmetric around 0 and continuously differentiable.
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whereas the right limit is obtained by evaluating
�

gAt
r+δ+λ

+ βy1(−gAt )
�
Kt+w( efAt , gAt ) around gAt = 0. This yields

after obvious simplifications:

βy1(0)Kt + v(0) + n(0)
� efAt − f

�

so that continuity is immediately satisfied. It is straightforward to also verify that the derivatives w.r.t. bfAt and Kt

are continuous at gAt = 0.Hence it remains to enforce continuity of the derivative w.r.t. g
A
t . To this end compute

left and right derivatives of (66) (w.r.t. gAt ) at g
A
t = 0 and using (72) and (73) along with the fact that v

0
P (0) = 0

and n0P (0) = 0, require that the derivative is continuous for any Kt, bfAt , gAt to obtain the conditions

βy01(0) =
1

r + δ + λ
− βy01(0)

hc1y(r+λ)01 (0) = −hc1y(r+λ)01 (0) + 2C1

2c1y
(r)0
1 (0) = −2u0(0) + C2 + n(0)

which implies that:

β =
1

2(r + δ + λ)

1

y01(0)hc1 =
C1

y
(r+λ)0
1 (0)

c1 =
−2u0(0) + C2 + n(0)

2y
(r)0
1 (0)

With these constants and Proposition 6 along with conjecture 2 and Proposition 5 completes the construction

of the candidate price function. Moreover, it is clear that it is continuously differentiable everywhere and twice

continuously differentiable except possibly at gAt = 0.

To finalize the proof one needs the next proposition:

Proposition 7 Suppose condition (12) holds and let

LP =max
i

³
AP+ bfAt Kt−i

³
p+

χ

2
i
´´
≤ 0 (74)

where the operator AP is defined as

AP =1
2

σ2f

f
bfAt PfAt fAt −λ( bfAt −f)P fAt

+
1

2
σ2gPgAgA −

1

2
σ2gPfAt gA

−ρgAt PgA+PK(−δKt+it)− rP

Then for gAt ≥ 0 :
LP ≤ 0
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Proof. Proposition (7)

When gAt ≥ 0, the price according to the maintained conjecture (2) is given by:

P (Kt,ffBt , gBt ) = V
�
Kt,ffBt , gBt �+ s

�
Kt,ffBt , gBt �

Agents of type B hold the shares of the company and according to the perfect competition assumption, these agents

perceive that the expected return on the stock is equal to rdt according to their subjective beliefs. Therefore:

max
i

+
1

2

σ2f

f
efBt PfBt fBt

− λ( efBt − f)PfBt
+
1

2
σ2gPgBgB − 1

2
σ2gPfBgB − ρgBt PgB + PK(−δKt + it)− rP + efBt Kt − i

�
p+

χ

2
i
�,

= 0

(75)

This fact is a trivial consequence of the perfect competition assumption, and it can be shown directly by using the

definition of the equilibrium price. To avoid confusion due to excess notation, it is important to note that Pff (and

similarly for all other derivatives) denotes the second partial derivative of the price function P (Kt, efBt , gBt ) w.r.t. its
second argument

� efBt � evaluated at efBt . One can further rewrite (75) as P (Kt, efBt , gBt ) =P (Kt, efAt + gAt ,−gAt ) by
using the following two identities:

efBt = efAt + gAt (76)

gBt = −gAt (77)

It will greatly simplify notation to denote P1 as the (partial) derivative of P w.r.t. its first argument, P2 as the

partial derivative w.r.t. the second argument etc. and rewrite (75) as:

max
i

+
1

2

σ2f

f
efBt P22 − λ( efBt − f)P2 +

1

2
σ2gP33 − 1

2
σ2gP23 − ρgBt P3 + P1(−δKt + it)− rP + efBt Kt − i

�
p+

χ

2
i
�,

= 0

(78)

Now note that P (Kt, efBt , gBt ) =P (Kt, efAt + gAt ,−gAt ) along with (76), (77) imply that:

PgA = −P3 + P2

PgAgA = P33 − 2P23 + P22

PgAfAt
= −P32 + P22

PfAt
= P2

PfAt fAt
= P22

Thus one can rewrite (74) as:

1

2

σ2f

f

� efBt − gAt

�
P22 − λ( efBt − gAt − f)P2 +

1

2
σ2g (P33 − 2P23 + P22)− 1

2
σ2g (−P32 + P22)− ρ

�
−gBt

�
(−P3 + P2)

−rP +
� efBt − gAt

�
Kt +max

i

q
P1(−δKt + it)− i

�
p+

χ

2
i
�r
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Using (78) and making some obvious cancellations, one can rewrite the above expression as:

−gAt
%
1

2

σ2f

f
P22 + (ρ− λ)P2 +Kt

&

Hence to complete the proof, it remains to show that:

P2 > 0, P22 > 0,Kt > 0

The fact that P2 > 0 is immediate by Lemma 1, and the fact n(·) ≥ 0, which can be established by arguments
similar to Scheinkman and Xiong (2003). P22 = V22 = C1 > 0. And Kt is guaranteed to be positive since condition

(12) guarantees that investment is always positive.

Combining all of the above results, one gets:

Proof. (Proposition 3) By Proposition 5, Proposition 7 and equation (56) it is straightforward to verify that

the conjecture 2 for P ( bfAt , gAt ,Kt) satisfies the following properties:

LP = 0 if gAt < 0 (79)

LP ≤ 0 if gAt ≥ 0 (80)

where:

LP =max
i

³
AP + fK − i

³
p+

χ

2
i
´´
≤ 0 (81)

and

AP =1
2

σ2f

f
bfAt Pff−λ( bfAt −f)P f+

1

2
σ2gPgg −

1

2
σ2gPgf−ρgP g+PK(−δKt+it)− rP

Notice also that the investment strategy that maximizes (81) satisfies:

it=
1

χ
(PK−p)= 1

χ

Ã
f(1−ep)
r + δ

+
bfAt −f

r + δ + λ
+1{gAt > 0}

gAt
r + δ + λ

+βy1(−
¯̄
gAt
¯̄
)

!

which coincides with the conjectured investment strategy. Moreover P ( bfAt , gAt ,Kt) is once cont. differentiable

everywhere and also twice cont. differentiable except at gAt = 0. To verify optimality, consider now any policy it and

any stopping time τ . Then Ito’s Lemma implies:

e−r(τ−t)Pτ= P t+

Z τ

t

e−r(s−t)APds+
Z τ

t

dMs

where dMt is a local martingale. Since Pt ≥ 0 for all t, one can conclude that EA
¡R τ
0
dMt

¢ ≤ 0 and thus:
EA

³
e−r(τ−t)Pτ

´
≤ P t+E

A

∙Z τ

t

e−r(s−t)
³
AP + bfAs Ks − is

³
p+

χ

2
is

´
ds
´¸
−EA

∙Z τ

t

e−r(s−t)
³ bfAs Ks−is

³
p+

χ

2
is

´
ds
´¸
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Then the following set of inequalities follows

Pt ≥ Pt+E
A

∙Z τ

t

e−r(s−t)LPsds
¸
≥ P t+E

A

∙Z τ

t

e−r(s−t)
³
AP + bfAs Ks − is

³
p+

χ

2
is

´´
ds

¸
≥ EA

³
e−r(τ−t)Pτ

´
+EA

∙Z τ

t

e−r(s−t)
³ bfAs Ks − is

³
p+

χ

2
is

´´
ds

¸
Thus there is no set of investment policy / stopping policies that can yield more than Pt. Moreover, the conjectured

investment and stopping policies turn the above inequalities into equalities and hence must be optimal. In other

words whenever gAt < 0, it is indeed optimal for agent A to hold the asset until gAt ≥ 0 and to invest according to the
conjectured investment strategy. Moreover, the conjectured price of the asset coincides with the "reservation value" of

agent A whenever gAt < 0, since she is the "pivotal" agent in those states. The case for gAt > 0 is perfectly symmetric,

with the only exception that agent B is the "pivotal" agent. This shows that given the conjectured equilibrium price

the conjectured investment and reselling strategies are optimal and that the conjectured equilibrium prices coincide

with the reservation values of the pivotal agent. This concludes the proof.

A.4 Proofs for section 4

Proof. (Proposition 4)Let

dGt= d(Dt+P t)

denote the total gains process from investing in the stock. The intertemporal budget constraint of agent x is:

dWx
t

Wx
t

= πxt
dGt

Pt
+(1− π

x
t )rdt−

dCt

Wx
t

The short selling constraint implies πxt≥ 0. By the definition of the equilibrium price (24), the expected return to

the stock market from the perspective of someone who is holding stock has to be equal to the interest rate. Therefore

πxt> 0 implies that:
dGt

Pt
= rdt+ dM t

where dM t is a martingale difference process under the beliefs of agent x. If πxt= 0 and the agent is not holding

stock, dM t need not be a martingale difference according to her beliefs. However in those cases the dynamics of her

budget constraint are given simply by:
dWx

t

Wx
t

= rdt−dCt

Wx
t

and hence dMt does not even enter the dynamics of the budget constraint. Note that these results hold true for any

investment policy of the firm. In sum, the intertemporal budget constraint under agent x0s beliefs can be written

as:
dWx

t

Wx
t

= rdt−dCt

Wx
t

+πxt dM t
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Integrating and imposing a transversality condition gives:

Ex

Z ∞
t

e−r(s−t)dCs=Wx
0

since58 :

Ex

Z ∞
t

e−r(s−t)πxsdMs= 0

But:

Ex

Z ∞
t

e−r(s−t)dCs=Wx
t= Nx

BP
B
t +N

x
SPt

where Nx
B is agent x0s endowment of bonds and PB

t is the price of the bond (which is obviously not affected by

the investment policy of the firm, since r is exogenously given). Nx
S is the agent’s endowment of stock and Pt is the

price of the stock. Thus each agent’s welfare is an affine function of the price of the stock (Pt) , with Nx
S ≥ 0.

58Assume also the technical restriction on the portfolios:

Ei

] ∞

0

e−rs
�
πis

�2
ds <∞
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