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Abstract

We study optimal consumption and portfolio choice in a framework where investors save

for early retirement and assume that agents can adjust their labor supply only through an

irreversible choice of their retirement time. We obtain closed form solutions and analyze the joint

behavior of retirement time, portfolio choice, and consumption. Investing for early retirement

tends to increase savings and stock market exposure, and reduce the marginal propensity to

consume out of accumulated personal wealth. Contrary to common intuition, prior to retirement

an investor might find it optimal to increase the proportion of financial wealth held in stocks as

she ages, even when she receives a constant income stream and the investment opportunity set

is also constant. This is particularly true when the wealth of the investor increases rapidly due

to strong stock market performance, as was the case in the late 1990’s.
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1 Introduction

Two years ago, when the stock market was soaring, 401(k)’s were swelling and (..) early

retirement seemed an attainable goal. All you had to do was invest that big job-hopping

pay increase in a market that produced double-digit gains like clockwork, and you could

start taking leisurely strolls down easy street at the ripe old age of, say, 55. (Business

Week 31 December 2001)

The dramatic rise of the stock market between 1995 and 2000 significantly increased the pro-

portion of workers opting for early retirement (Gustman and Steinmeier [2002]). The above quote

from Business Week demonstrates the reasoning behind the decision to retire early: A booming

stock market raises the amount of funds available for retirement and allows a larger fraction of the

population to exit the workforce prematurely.

As a matter of fact, retirement savings seem to be one of the primary motivations behind

investing in the stock market for most individuals. Accordingly, there is an increased need to

understand the interactions between optimal retirement, portfolio choice, and savings, especially

in light of the growing popularity of 401(k) retirement plans. These plans give individuals a great

amount of freedom when determining how to save for retirement. This increased flexibility has

also raised concerns about the rationality in agents’ portfolio and savings decisions. Having a

benchmark against which to check the rationality of people’s choices is crucial both from a policy

perspective and in order to form the basis of sound financial advice.

In this paper we develop a theoretical model to address some of the interactions between savings,

portfolio choice and retirement in a utility maximizing framework. We assume that agents are faced

with a constant investment opportunity set and a constant wage rate while still in the workforce.

Their utility exhibits constant relative risk aversion and is nonseparable in leisure and consumption.

The major point of departure from preexisting literature is that we model the labor supply choice

as an optimal stopping problem: An individual can work for a fixed (non-adjustable) amount of

time and earn a constant wage but is free to exit the workforce (forever) at any time she chooses.

In other words, we assume that workers can work either full time or retire. As such, individuals

are faced with three questions to decide: 1) how much to consume 2) how to invest the savings

and 3) when to retire. The incentive to quit work comes from a discrete jump in their utility due
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to an increase in leisure once retired. When retired, they cannot return to the workforce.1 We

also consider two extensions of the basic framework. In the first extension we disallow the agent

to choose retirement past a prespecified deadline. In a second extension we disallow her to borrow

against the net present value (NPV) of her human capital. (i.e. we require financial wealth to be

non-negative)

The major results that we obtain can be summarized as follows:

First, we show that the agent will enter retirement when a certain wealth threshold is reached,

which we determine explicitly. In this sense, wealth plays a dual role in our model. Not only

does it determine the resources available for future consumption, it also controls the "distance" to

retirement.

Second, the option to retire early strengthens the incentives to save compared to the case where

early retirement is not allowed. The reason is that saving not only increases consumption in the

future but also brings retirement "closer". Moreover, this incentive is wealth dependent: As the

individual approaches the critical wealth threshold to enter retirement, the "option" value of retiring

early becomes progressively more important and the saving motive becomes stronger.

Third, the marginal propensity to consume (mpc) out of wealth declines as wealth increases

and early retirement becomes more likely. The intuition is simple: An increase in wealth will bring

retirement closer, therefore decreasing the length of time the individual remains in the workforce.

Conversely, a decline in wealth will postpone retirement. Thus, changes in wealth are somewhat

counterbalanced by the behavior of the remaining NPV of income and thus the effect of a marginal

change in wealth on consumption becomes attenuated. Once again this attenuation is strongest for

rich individuals who are closer to their goal of early retirement.

Fourth, the optimal portfolio is tilted more towards stocks compared to the case where early

retirement is not allowed. An adverse shock in the stock market will be absorbed by postponing the

retirement time. Thus, the individual is more inclined to take risks as she can always postpone her

retirement time instead of cutting back her consumption in the event of a declining stock market.

Moreover, in order to bring retirement closer, the most effective way is to invest the extra savings

in the stock market instead of the bond market.

Fifth, the choice of portfolio over the life cycle exhibits some new and interesting patterns.

We show that there exist cases where an agent might find it optimal to increase the percent of
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financial wealth that she invests in the stock market as she ages (in expectation). This is true

even if her income and the investment opportunity set are constant. This happens, because wealth

increases over time and hence the option of early retirement becomes more relevant ("in the money"

in option pricing terminology). Accordingly, the tilting of the optimal portfolio towards stocks

becomes stronger. Indeed, as we show in a calibration exercise, the model predicts that -prior to

retirement- portfolio holdings could increase with age especially when the stock market exhibits

extraordinary returns as it did in the late 1990’s when many workers experienced rapid increases

in wealth, thus opting for an earlier retirement date. In fact our model suggests a possible partial

rationalization for the (apparently irrational) behavior of individuals who increased their portfolios

as the stock market was rising and then liquidated stock as the market collapsed.2

This paper is related to a number of strands in the literature, which is surveyed in Ameriks

and Zeldes (2001). The paper closest to ours is Bodie, Merton, and Samuelson (1992) (henceforth

BMS). The major difference between BMS and this paper is the different assumption about the

ability of agents to adjust their labor supply. In BMS labor can be adjusted in a continuous fashion.

However, there seems to be a significant amount of evidence that labor supply is to a large extent

indivisible. In many jobs workers work either full time or they are retired. Moreover, it appears

that most people do not return to work after they retire, or if they do, they return to less well

paying jobs or work only part time. As BMS claim in the conclusion of their paper

Obviously, the opportunity to vary continuously one’s labor without cost is a far cry

from the workings of actual labor markets. A more realistic model would allow limited

flexibility in varying labor and leisure. One current research objective is to analyze the

retirement problem as an optimal stopping problem and to evaluate the accompanying

portfolio effects.

This is precisely the direction we take here. There are at least two major directions in which

our results differ from BMS. First, we show that the optimal retirement decision introduces an

option-type element in the decision of the individual, that is entirely absent if labor is adjusted

continuously. Second, the horizon and wealth effects on portfolio and consumption choice in our

paper are fundamentally different than in BMS. For instance, the holdings of stock in BMS are a

constant multiple of the sum of (financial) wealth and human capital. This multiple is not constant
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in our setup, but instead depends on wealth3. Third, the model presented here allows for a clear

way to model retirement, which is difficult in the literature allowing for a continuous choice of

labor/leisure. An important implication is that in our setup we can calibrate the parameters of

the model to observed retirement decisions. In the BMS framework calibration to microeconomic

data is harder, because individuals do not seem to adjust their labor supply continuously. Liu and

Neiss (2002) study a framework similar to BMS, but force an important constraint on the maximal

amount of leisure. This however omits the issues related to indivisibility and irreversibility. In sum,

the fact that labor supply flexibility is modeled in a more realistic way allows a closer mapping

of the results to real world institutions than is allowed by a model exhibiting continuous choice

between labor and leisure.

The model is also related to a strand of the literature that studies retirement decisions. A

partial listing would include Stock and Wise (1990), Rust (1994), Laezar (1986), Rust and Phelan

(1997), and Diamond and Hausman (1984). Most of these models are structural estimations that

are solved numerically. Here our goal is different. We do not include all the realistic ramifications

that are present in actual retirement systems. Instead, we isolate and very closely analyze the new

issues introduced by indivisibility and irreversibility of the labor supply / retirement decision on

savings and portfolio choice. Sundaresan and Zapatero (1997) study optimal retirement, without

considering the disutility of labor.

Some results of this paper share some similarities with results obtained in the literature on

consumption and savings in incomplete markets. A highly partial listing would include Viceira

(2001), Chan and Viceira (2000), Campbell et al. (2004), Koo (1998), and Caroll and Kimball

(1996) on the role of incomplete markets and He and Pages (1993) and El Karoui and Jeanblanc

Pique (1998) on issues related to the inability of individuals to borrow against the NPV of their

future income. This literature produces some insights on why consumption (as a function of wealth)

should be concave, and also has some implications on life cycle portfolio choice. However, the

intuitions are quite different from the ones we obtain here. In this paper the results are driven

by an option component in agent’s choices that is related to their ability to adjust their time of

retirement. In the incomplete markets literature results are driven by agents’ inability to effectively

smooth their consumption due to missing markets.4

The role of labor supply flexibility in a general equilibrium model with continuous labor/leisure
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choice is considered in Basak (1999). It is very likely that the results we present in this paper

could form the basis for a general equilibrium extension. It is well known in the macroeconomics

literature that allowing indivisible labor is quite important if one is to explain the volatility of

employment relative to wages. See for example Hansen (1985) and Rogerson (1988).

Technically, we extend methods proposed by Karatzas and Wang (2000) (who do not allow for

income) to solve optimal consumption problems with discretionary stopping. The extension that we

consider in section 5 uses some ideas proposed in Barone-Adesi and Whaley (1987), while section

6 extends the framework in He and Pages (1993) to allow for early retirement.

As this paper was completed we became aware of independent work by Lachance (2003) and

Dybvig and Liu (2003). Lachance (2003) studies a model with a utility function that is separable

in leisure and consumption, but without a deadline and / or borrowing constraints. Moreover,

separable utility does not allow consumption drops upon retirement as the ones observed in the

data. Technically, Lachance (2003) uses dynamic programming and not convex duality methods in

order to solve the problem, which cannot be easily extended to models with deadlines, borrowing

constraints, etc. Dybvig and Liu (2003) study a very similar model to that in section 7 of this paper

with similar techniques. Dybvig and Liu (2003) use their model to compare voluntary vs. manda-

tory retirement. In this paper we are interested in determining the effects of the option to retire

early, and in particular prior to a deadline on portfolios and consumption decisions. The presence

of a deadline introduces a time varying wealth threshold (in contrast to the constant threshold

in Dybvig and Liu [2003]) which is important for the results related to life cycle portfolio choice.

It also allows us to compare our results with a model of mandatory retirement at a prespecified

retirement date in a more natural way. Schematically speaking, we compare a "European" option

to an "American" option with the same deadline, whereas Dybvig and Liu (2003) compare a "Euro-

pean" option to an "American" option without deadline. It turns out that the former comparison

leads to a more natural embedding of our results in the existing theoretical literature, since we

can isolate the effects coming from optimal stopping and not from the extra maturity.5 Hence we

obtain a number of new analytical results concerning consumption, life cycle portfolio choice etc.

in an analytically tractable way.

The structure of the paper is as follows: Section 2 contains the model setup. Section 3 presents

the solution. In section 4 we describe the analytical results if one places no retirement deadline.
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Section 5 contains an extension to the case where retirement cannot take place past a deadline.

Section 6 contains some calibration exercises. Section 7 extends the model by imposing borrowing

constraints and section 8 concludes. The technical details and all proofs can be found in the

Appendix.

2 Model Setup

2.1 Investment Opportunity Set

The consumer can invest in the money market, where she receives a fixed strictly positive interest

rate r > 0.We place no limits on the positions that can be taken in the money market. In addition

the consumer can invest in a risky security with a price per share that evolves as

dPt
Pt

= µdt+ σdBt

where µ > r and σ > 0 are given constants and Bt is a one-dimensional Brownian motion

on a complete probability space (Ω, F, P ).6 We finally define the state price density process (or

stochastic discount factor) as

H(t) = γ(t)Z∗(t), H(0) = 1

where γ(t) and Z∗(t) are defined as

γ(t) = e−rt

Z∗(t) = exp

½
−
Z t

0
κdBs − 1

2
κ2t

¾
, Z∗(0) = 1

and κ is the Sharpe ratio

κ =
µ− r

σ

It is a standard result, that these assumptions imply a dynamically complete market (Karatzas

and Shreve [1998] Chapter 1).

2.2 Portfolio and Wealth Processes

An agent chooses a portfolio process πt and a consumption process ct > 0, which are progressively

measurable and satisfy the standard integrability conditions given in Karatzas and Shreve (1998)
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Chapters 1 and 3. She also receives a constant income stream y0 as long as she works and no

income stream once in retirement. Retirement is an irreversible decision. Until section 5 we will

assume that an agent can retire at any time that she chooses.

The agent is endowed with an amount of financial wealth W0 ≥ −y0
r . The process of stock-

holdings πt is the dollar amount invested in the risky asset (the ”stock market”) at time t. The

rest, Wt − πt, is invested in the money market. Short selling and borrowing are both allowed. We

will place no extra restrictions on the (financial) wealth process Wt until section 7 of the paper.

Additionally in that section we will impose the restriction Wt ≥ 0. As long as the agent is working,
the wealth process evolves as

dWt = πt {µdt+ σdBt}+ {Wt − πt} rdt− (ct − y0) dt (1)

Applying Ito’s Lemma to the product of H(t) and W (t), integrating and taking expectations

we get for any stochastic time τ that is finite almost surely

E

µ
H(τ)W (τ) +

Z τ

0
H(s) [c(s)− y0] ds

¶
≤W0 (2)

This is the well known result that in dynamically complete markets one can reduce a dynamic

budget constraint of the type (1) to a single intertemporal budget constraint of the type (2). If the

agent is retired the above two equations continue to hold with y0 = 0.

2.3 Leisure, Income and the Optimization Problem

To obtain closed form solutions, we assume that the consumer has a utility function of the form

U(lt, ct) =
1

α

¡
l1−αt cαt

¢1−γ∗
1− γ∗

, γ∗ > 0 (3)

where ct is per period consumption, lt is leisure and 0 < α < 1.We assume that the consumer is

endowed with l units of leisure. lt can only take two values l1 or l. If the consumer is working, then

lt = l1; when retired lt = l. We will assume that the wage rate w is constant, so that the income

stream is y0 = w(l − l1) > 0. We will normalize l1 = 1. Observe also that this utility is general

enough so as to allow consumption and leisure to be either complements (γ∗ < 1) or substitutes

(γ∗ > 1). The consumer maximizes expected utility

max
ct,πt,τ

E

∙Z τ

0
e−βtU(l1, ct)dt+ e−βτ

Z ∞

τ
e−β(t−τ)U(l, ct)dt

¸
(4)
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where β > 0 is the agent’s discount factor.7 The easiest way to proceed is to start backwards

by solving the problem

U2(Wτ ) = max
ct,πt

E

∙Z ∞

τ
e−β(t−τ)U(l, ct)dt

¸
U2(Wτ ) is the Value function once the consumer decides to retire andWτ is the wealth at retirement.

By the principle of dynamic programming we can rewrite (4) as

max
ct,Wτ ,τ

E

∙Z τ

0
e−βtU(l1, ct)dt+ e−βτU2(Wτ )

¸
(5)

It will be convenient to define the parameter γ as

γ = 1− α(1− γ∗)

so we can then re-express the per-period utility function as

U(l, c) = l(1−α)(1−γ
∗) c

1−γ

1− γ

Since we have normalized l = 1 prior to retirement, the per period utility prior to retirement is

given by:

U1(c) = U(1, c) =
c1−γ

1− γ
(6)

Notice that γ > 1 if and only if γ∗ > 1 and γ < 1 if and only if γ∗ < 1. Under these assumptions, it

follows from standard results (See for example Karatzas and Shreve [1998], Chapter 3), that once

in retirement the Value function becomes

U2(Wτ ) =
³
l
1−α´1−γ∗ µ1

θ

¶γ W 1−γ
τ

1− γ
(7)

where

θ =
γ − 1
γ

µ
r +

κ2

2γ

¶
+

β

γ

In order to guarantee that the Value function is well defined, we assume throughout that θ > 08

and β − r < κ2

2
9. It will be convenient to redefine the continuation Value function as

U2(Wτ ) = K
W 1−γ

τ

1− γ

where

K =
³
l
1−α´1−γ∗ µ1

θ

¶γ

(8)
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Since l > l1 = 1 we have that

K
1
γ >

1

θ
if γ < 1 (9)

K
1
γ <

1

θ
if γ > 1 (10)

3 Solution

We present the solution to the problem described in section 2.3 and discuss the properties of the

joint retirement /consumption and portfolio choice problem, when retirement is an irreversible

discrete decision.

Proposition 1 Define the constants

γ2 =
1− 2β−r

κ2
−
q
(1− 2β−r

κ2
)2 + 8 β

κ2

2
(11)

λ =

⎛⎝ (γ2 − 1)θ³
1 + γ2

γ
1−γ

´³
K

1
γ θ − 1

´ y0
r

⎞⎠−γ (12)

C2 =

"
γ
1−γ

(γ2−1)
1+γ2

γ
1−γ

− 1
#

y0
r

λγ2−1

and assume that10

r

θ

³
1−γ
γ + γ2

´
γ2 − 1

< 1

Finally let λ∗ be the (unique) solution of

γ2C2 (λ
∗)γ2−1 − 1

θ
(λ∗)−

1
γ +

y0
r
+Wt = 0 (13)

Then

C2 > 0, γ2 < 0

and the optimal policy is

a) If Wt < W = (γ2−1)K
1
γ θ

1+γ2
γ

1−γ K
1
γ θ−1

y0
r
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consumption follows the process

cs =

µ
λ∗eβ(s−t)

H(s)

H(t)

¶− 1
γ

1{t ≤ s < τ∗} (14)

cs = l
(1−α) (1−γ∗)

γ

µ
λ∗eβ(s−t)

H(s)

H(t)

¶− 1
γ

1{s ≥ τ∗} (15)

The optimal retirement time is

τ∗ = inf{s :Ws =W} =
= inf

½
s : λ∗eβ(s−t)

H(s)

H(t)
= λ

¾
(16)

Moreover, the optimal consumption and the optimal stockholdings as a function of Wt are given

by

ct = c(Wt) = (λ
∗(Wt))

− 1
γ (17)

πt = π(Wt) =
κ

σ

µ
γ2(γ2 − 1)C2λ∗(Wt)

γ2−1 +
1

γ

1

θ
λ∗(Wt)

− 1
γ

¶
(18)

where the notation λ∗(Wt) is used to make the dependence of λ∗ on Wt explicit.

b) If Wt ≥ W = (γ2−1)K
1
γ θ

1+γ2
γ

1−γ K
1
γ θ−1

y0
r the optimal solution is to enter retirement immediately

(τ∗ = t) and the optimal consumption /portfolio policy is given as in Karatzas and Shreve (1998)

section 3.

The nature of the solution is intuitive: The agent enters retirement if and only if the level of

her assets exceeds W . Up to that point her consumption is given by (14), whereas it jumps to (15)

once retired. The jump is given by:

cτ+

cτ−
= l

(1−α) (1−γ∗)
γ = K1/γθ (19)

where the first equality follows by dividing (15) by (14) and the second from (8). Notice that

γ∗ > 1 will imply a downward and γ∗ < 1 an upward jump (since l > 1). A key quantity in all the

solutions is λ∗. It can be shown that λ∗ is the derivative of the value function and is decreasing

in Wt. Formally, letting J(Wt) be the value function of the problem, JW = λ∗(Wt). Equation
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(17) suggests an alternate interpretation of λ∗ as the marginal utility of consumption. In other

words, (17) is the standard "Euler" equation U 0(ct) = JW . Moreover, an application of the implicit

function theorem to (13) is sufficient to show that equation (18) leads to:

πt = −κ
σ

JW
JWW

= −µ− r

σ2
JW
JWW

This is the familiar Merton formula for the optimal portfolio. λ∗ solves the simple nonlinear

equation (13) and hence one can study analytically the dependence of λ∗ on Wt, something that

we do repeatedly in the next section.

4 Properties of the solution

In this section we explore some properties of the solution. A central theme of the analysis is the

presence of an option element in the decision of the agent, that fundamentally alters the nature

of the optimal consumption / portfolio decision. The benchmark model to which we compare the

results is a model where there is a constant labor income stream and no retirement (the worker

works forever). This is the natural benchmark for this section, since it keeps all else equal except

for the the option to retire.

The results obtained in this section allow us to isolate intuitions related to optimal retirement,

in a framework where solutions are not time dependent and therefore easier to analyze. Fortunately,

all of the results obtained in this section carry over to the next, where we introduce a retirement

deadline. In that section the benchmark to which we compare the optimal retirement model is

more natural: Namely, retirement is mandatory at time T , but without the option to retire early.

4.1 Wealth at Retirement

Wealth at retirement is given by Proposition 1 as

W =
(γ2 − 1)K

1
γ θ³

1 + γ2
γ
1−γ

´³
K

1
γ θ − 1

´ y0
r

As Proposition 1 asserts, for wealth levels higher than this, it is optimal to enter retirement.

For lower wealth levels it is optimal to remain in the workforce. In the appendix we show that W

is strictly positive, i.e. a consumer will never enter retirement with negative wealth since there is

no more income to support post-retirement consumption.

12



Using (19) we can rewrite W as the product of three terms:

W =
(γ2 − 1)³
1 + γ2

γ
1−γ

´
³
l
1−α´ 1−γ∗

γÃ³
l
1−α´ 1−γ∗γ − 1

! y0
r

(20)

The last term shows the linear dependence ofW on y0. This homogeneity of degree 1 shows that one

can express the target wealth at retirement in terms of multiples of current income, and suggests

the normalization y0 = 1, which we adopt in all quantitative exercises.

The second term is related to the agent’s preferences over consumption and leisure. Assuming

γ∗ > 1, equation (19) implies that agents who value leisure and hence experience larger drops in

consumption upon entering retirement, will enter retirement earlier (W is lower). An interesting

implication of (19) along with (20) is that both the second and third term are in principle observable

from consumption and income data. Moreover, γ2 (defined in [11]) only depends on parameters

related to the investment opportunity set and not on agent preferences. Hence, up to knowing an

agents risk aversion equation (20) suggests a straightforward way to compute W and compare it to

the data.

We conclude by discussing the dependence of W on κ, the Sharpe ratio. Differentiating W

w.r.t. γ2 it is not hard to establish that W γ2 > 0 and then differentiating γ2 w.r.t. the Sharpe

ratio (κ) and applying the chain rule gives that:

Wκ < 0 (21)

i.e. the retirement threshold is lower in economies with a higher Sharpe ratio. This is intuitive:

a high Sharpe ratio implies that the stock market can produce strong gains and sustain post-

retirement consumption, hence the agent is more willing to retire. In other words the gains that

can be obtained in the stock market relative to the importance of a fixed income stream are more

sizeable and accordingly the agent is more willing to go into retirement.

4.2 Optimal Consumption

We concentrate on a consumer with wealth lower than W, so there is an incentive to continue

working. Optimal consumption prior to retirement is given by Proposition 1 as

ct = (λ
∗)−

1
γ

13



where λ∗ solves equation (13):

γ2C2 (λ
∗)γ2−1 − 1

θ
(λ∗)−

1
γ +

y0
r
+Wt = 0 (22)

In the appendix we show that θ > 0 implies that

1− γ2 >
1

γ
(23)

It is now useful to rewrite (22) as

−γ2C2cγ(1−γ2)t +
1

θ
ct =Wt +

y0
r

(24)

Up to the term −γ2C2cγ(1−γ2)t , this equation is the standard equation that one would obtain

in a Merton-type framework, with a constant income stream. Indeed, if one removed the option of

retirement, optimal consumption would be given by

ct = θ
³
Wt +

y0
r

´
The difference here is that the individual wants to retire and hence has an added incentive to save

for a given level of wealth (since γ2 < 0 and C2 > 0). Even though we cannot provide an explicit

solution to this equation we can still calculate the marginal propensity to consume out of wealth

and its derivative by using the implicit function theorem. We first define the marginal propensity

to consume as

mpc =
∂ct
∂Wt

We differentiate both sides of equation (24) w.r.t. Wt, to getµ
−γγ2(1− γ2)C2c

γ(1−γ2)−1
t +

1

θ

¶
mpc = 1 (25)

One can first observe from this equation, that mpc is strictly below θ since γ2 < 0, C2 > 0.

Compared to the infinite horizon problem (where one stays in the workforce forever) the marginal

propensity to consume out of wealth is strictly lower due to the option value embodied in (22). One

can also study the dependence of the mpc on wealth. Differentiating once more and using equation

(23) gives

mpc0 = −mpc3
³
−γγ2(1− γ2)(γ(1− γ2)− 1)C2cγ(1−γ2)−2t

´
< 0
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In other words, prior to retirement, the marginal propensity to consume out of wealth is a

decreasing function of wealth and accordingly consumption is a concave function of wealth. To

understand this, note that the consumer adopts a ”threshold” policy for her retirement. If wealth

is high, the time to retirement is ”close” and thus an increase inWt is counterbalanced by a decrease

in the net present value of remaining income. Hence a consumer reacts less to a change in wealth,

the closer her wealth is to the threshold level of retirement.

Reversing signs in the above argument, it is also true that the effect on consumption of a drop

in pre-retirement wealth will be mitigated by an increase in the net present value of remaining

income. Alternatively speaking, a negative shock to wealth will only partially affect consumption.

A component of the drop will just postpone plans for retirement and this will in turn increase the

net present value of income to be received in the future.

Of course once in retirement the problem becomes a standard Merton type problem and the

usual affine relationship between consumption and wealth prevails.

It is important to note that the key to these results is not the presence of labor supply flexibility

per se, but the "real option" inherent in the retirement decision. To substantiate this claim,

assume that the agent never retires, and her leisure choice is determined optimally on a continuum

at each point in time, so that lt + ht = l11 where ht are the hours devoted to work and the

instantaneous income is wht, with w defined as in section 2.3. The solution that one obtains for

optimal consumption in such a framework with perfect labor supply flexibility is

ct = C1

³
Wt +

y0
r
C2

´
for two appropriate constants C1, C2. Notice the simple affine relationship between wealth and

consumption. These results show an important direction in which the present model sheds some new

insights, beyond existing frameworks, into the relationship between retirement, consumption and

portfolio choice. With endogenous retirement, wealth has a dual role. First, as in all consumption

and portfolio problems, it controls the amount of resources that are available for future consumption.

Second, it controls the distance to the threshold at which retirement is optimal. It is this second

channel that is behind the behavior of the mpc analyzed above.12

The concavity of the consumption function is also a common result in models combining non-

spanned income and /or borrowing constraints of the form Wt ≥ 0 (e.g. Caroll and Kimball

[1996]). A quite important difference between these models and the one considered here, is that in
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the present model the effects of concavity are most noticeable for high levels of wealth and not for

low wealth levels. In our model the mpc asymptotes to θ as Wt → −y0
r ,
13 and declines from there

to the point where Wt =W. After that it jumps back up to θ, reflecting the loss of the real option

associated with remaining in the workforce. By contrast in models like Koo (1998) or Duffie et al

(1997) the mpc is above θ for low levels of wealth and asymptotes to θ as Wt →∞.We discuss this

issue further in section 7, when we introduce borrowing constraints.

4.3 Optimal Portfolio

By Proposition 1, the optimal holdings of stock are given by

πt =
κ

σ

µ
γ2(γ2 − 1)C2 (λ∗)γ2−1 +

1

γ

1

θ
(λ∗)−

1
γ

¶
From (13), we have that

γ2C2 (λ
∗)γ2−1 +

y0
r
+Wt =

1

θ
(λ∗)−

1
γ

therefore

πt =
κ

σ

1

γ

³
Wt +

y0
r

´
+

κ

σ
γ2C2 (λ

∗)γ2−1
µ
(γ2 − 1) +

1

γ

¶
The first term is equal to a standard Merton type stockholdings formula for an infinite horizon

investor with constant income but no option to retire. The second term is positive. To see this,

notice that

(γ2 − 1) +
1

γ
< 0

by equation (23)and γ2 < 0, C2 > 0. Moreover, by the definitions of C2, λ
∗ one can derive that

C2 (λ
∗)γ2−1 =

y0
r

⎡⎣ γ

1− γ

(γ2 − 1)³
1 + γ2

γ
1−γ

´ − 1
⎤⎦µλ∗

λ

¶γ2−1
(26)

Thus, as λ∗ → ∞ the importance of this term disappears, whereas as λ∗ →λ this term ap-

proaches its maximal value. It is easiest to interpret this result by observing that a) λ∗ is a

decreasing function of wealth (Wt) and b) by (16) λ is the lowest value that λ∗ can attain before

the agent goes into retirement14. In words, when an agent is very poor, the relevance of early re-

tirement is small and thus the stockholdings chosen resemble those of a simple Merton type setup.
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By contrast as wealth increases, so does the likelihood of early retirement and this term becomes

increasingly important.

In summary, the option value of work increases the incentive to take risk compared to the

benchmark of an infinite horizon Merton setup with constant income but no retirement. Moreover,

as wealth increases and comes close to the retirement threshold, this incentive is maximized.

The intuition for this result is straightforward. As wealth increases, it becomes more likely that

the "real" option to retire will be exercised. The most effective way to affect that likelihood is by

investing in stocks. The agent is more willing to take risks in the stock market, because she can

postpone her retirement instead of reducing consumption in the event of a negative shock.

It is interesting to relate these results to BMS. To do that, we start by normalizing the nominal

stock holdings by Wt. This gives the ratio φt =
πt
Wt

, or using (26)

φ =
κ

σ

1

γ

µ
1 +

y0
Wt

1

r

¶
+

+
κ

σ

y0
Wt

1

r
γ2

"µ
λ∗

λ

¶γ2−1µ
(γ2 − 1) +

1

γ

¶#⎡⎣ γ

1− γ

(γ2 − 1)³
1 + γ2

γ
1−γ

´ − 1
⎤⎦

The first term in the equation for φ corresponds to the term one would obtain in the absence of

retirement (i.e. the Merton framework where a worker never retires). The second term is the effect

of the real option to retire. It is interesting to note the dependence of these terms on Wt. By fixing

y0 and increasing Wt, one can observe that the first term actually decreases. This is the standard

BMS effect. In other words, ignoring the real option to retire (which is captured in the second

term only) one would arrive at the conclusion that an increase in wealth should be associated with

a decline in the portfolio share allocated to risky assets. This conclusion is not necessarily true if

one considers the option to retire. To see why, compute φW and evaluate it around W, in order to

obtain after some simplifications:

φW (W ) = − 1
W

µ
φ(W )− κ

σ

1

γ

¶
+
1

W

1

φ(W )

³κ
σ

´2 ³K 1
γ θ − 1

´
K

1
γ θ

µ
(γ2 − 1) +

1

γ

¶
γ2
1− γ

The first term is clearly negative, and captures the increase in the denominator of φ = π
W . The

second term though is positive and potentially larger than the first term, depending on parameters.

This result is driven by the real option of work, not labor supply flexibility per se. Indeed one

can show (using the methods in BMS) that allowing an agent to choose labor and leisure freely on
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a continuum would result in:

πt =
1

γ∗
κ

σ

µ
Wt +

y0
r

l

(l − l1)

¶
This implies that φ would have to be decreasing in Wt. The reason for these differences is that

in BMS, the amount allocated to stocks as a fraction of total resources (financial wealth + human

capital) is a constant. In our framework this fraction depends on wealth. Wealth controls both

the resources available for future consumption and the likelihood of "exercising" the real option of

retirement.

In summary, not only does the possibility of early retirement increase the incentive to save more,

it also increases the incentive of the agent to invest in the stock market because this is the most

effective way to obtain this goal. Furthermore, this incentive is strengthened as an individuals’

wealth approaches the target wealth level that triggers retirement.

4.4 The Correlation between Consumption and the Stock Market

As we showed in section 4.2 the marginal propensity to consume out of wealth (and hence the

sensitivity of changes to consumption w.r.t. changes in the wealth) is decreased by the possibility of

early retirement. One might also wonder whether this also implies a decreased correlation between

consumption and the stock market (compared to the standard Merton model). If this result were

true, it could then be hoped that the model can shed some light into the equity premium puzzle,

because the same fixed level of µ would be compatible with a lower correlation between consumption

and the stock market than the standard Merton model.15 The answer is unfortunately, that it does

not. The reason is quite simple and can be seen by examining formula (16) in Basak (1999) which

continues to be true in our setup (for agents prior to retirement)

µ− r = −cUcc

Uc
cov

µ
dPt
Pt

,
dc

c

¶
+

Uch

Uc
cov

µ
dPt
Pt

, dl

¶
(27)

Uch is the cross partial of U w.r.t the hours worked and dl is the variation in leisure. In our setup

dl = 0 prior to retirement and µ, r, cUcc
Uc

are constants in our framework. Accordingly, cov
³
dPt
Pt

, dcc

´
is constant as well. It is important to note that this result was obtained solely by the fact that

dl = 0 along with the assumption of a constant investment opportunity set and CRRA utilities. In

other words -prior to retirement- the consumption CAPM holds in this framework
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This may seem surprising in light of the results we obtained for the marginal propensity to

consume out of wealth. One might expect that a declining mpc would be sufficient to produce a

low correlation between the stock market and consumption. The resolution of this puzzle is that

a decrease in mpc in this model is accompanied by an equivalent increase in the exposure to the

stock market through a portfolio that is more heavily tilted towards stocks. In other words, even

though consumption becomes less responsive to shocks in the wealth process, at the same time the

shocks to the wealth process become larger because of a riskier portfolio.16 The two effects exactly

balance out.

An important caveat is that the above discussion relies heavily on partial equilibrium. To see

if labor supply flexibility can indeed explain the observed smoothness of aggregate consumption

and accordingly a large equity premium one would have to study a general equilibrium version of

this model (as Basak [1999] does for continuous choice of labor/leisure). In that case a fraction

of the population would be entering retirement at each instant and would experience consumption

changes due to the increase in leisure. Hence, at the aggregate the simple consumption CAPM no

longer holds.

µ− r = −cUcc

Uc
cov

µ
dPt
Pt

,
dc

c

¶
It can be reasonably conjectured that in this framework the behavior of the interest rate and

the equity premium would be very different than in Basak (1999). Even in the base case of CRRA

utilities and multiplicative technology shocks, the equity premium and the interest rate would

exhibit interesting dynamics. However, these issues are beyond the scope of this paper.

5 Retirement before a Deadline

None of the claims made so far relied on restricting the time of retirement to lie in a particular

interval. The exposition was facilitated by the infinite horizon setup because it allowed for explicit

solutions to the associated optimal stopping problem. However, the tradeoff is that in the infinite

horizon case, there is no notion of "life" cycle, since time plays no explicit role in the solution.

Moreover, the "natural" theoretical benchmark for the model of the previous section is one without

retirement at all. In this section we are able to extend all the intuitions of the previous section by
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comparing the early retirement model to a benchmark model with mandatory retirement at time

T, which is more natural.17

Allowing for a retirement deadline introduces a new state variable (time to retirement), which

considerably complicates the analysis. However, we are able to use approximation methods to solve

the associated "finite horizon"18 optimal stopping problem, that are simple to analyze, compute

and seem to work very well in practice.

Formally, the only modification that we introduce compared to section 2 is that equation (5)

becomes

max
ct,Wτ ,τ

E

∙Z τ∧T

t
e−β(s−t)U(l1, cs)ds+ e−β(τ∧T−t)U2(Wτ∧T )

¸
(28)

where T is the retirement deadline.

Proposition 2 Define

eV E(λ, T − t) =
γ

1− γ
λ
γ−1
γ
1

θ

h³
K

1
γ θ − 1

´
e−θ(T−t) + 1

i
+ λy0

1− e−r(T−t)

r

Let eV (λ;T − t) be given by:

C2(T−t)λγ2(T−t) + eV E(λ, T − t), if λ > λ(T−t)µ
γ

1− γ
K

1
γ (λ)

γ−1
γ

¶
if λ ≤ λ(T−t)

where

λ(T−t) =

⎛⎝ (γ2(T−t) − 1)θ(T−t)³
1 + γ2(T−t)

γ
1−γ

´³
K

1
γ θ(T−t) − 1

´ y0(1− e−r(T−t))
r

⎞⎠−γ (29)

θ(T−t) is given by

θ(T−t) =
θh³

K
1
γ θ − 1

´
e−θ(T−t) + 1

i
C2(T−t) is given by

C2(T−t) =

"
γ
1−γ

(γ2(T−t)−1)
1+γ2(T−t)

γ
1−γ

− 1
#

y0(1−e−r(T−t))
r

λ
γ2(T−t)−1
(T−t)

(30)

and γ2(T−t) is given by

γ2(T−t) =
1− 2β−r

κ2
−
q
(1− 2β−r

κ2
)2 + 8 β

(1−e−β(T−t))κ2
2
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eV (λ, T − t) is continuously differentiable everywhere and eVλ(λ, T − t) maps (0,∞) into the interval
(−∞, y0r

¡
1− e−r(T−t)

¢
). Finally compute the (unique) solution of

γ2(T−t)C2(T−t) (λ
∗)γ2(T−t)−1 − 1

θ(T−t)
(λ∗)−

1
γ +

y0(1− e−r(T−t))
r

+Wt = 0 (31)

Then an approximate solution to (28) is given by

a) If Wt < W (T−t) = K
1
γ λ
− 1
γ

(T−t)
consumption follows the process

cs =

µ
λ∗eβ(s−t)

H(s)

H(t)

¶− 1
γ

1{t ≤ s < τ∗}

cs = l
(1−α) (1−γ∗)

γ

µ
λ∗eβ(s−t)

H(s)

H(t)

¶− 1
γ

1{s ≥ τ∗}

and the optimal retirement time is

τ∗ = inf{s :Ws =W (T−s)}
= inf{s : λ∗eβ(s−t)H(s)

H(t)
= λ(T−s)}

The optimal consumption and the optimal portfolio as a function of Wt are given by

ct = c(Wt) = (λ
∗(Wt))

− 1
γ

πt = π(Wt) =
κ

σ

µ
γ2(T−t)(γ2(T−t) − 1)C2(T−t)λ∗(Wt)

γ2−1 +
1

γ

1

θ(T−t)
λ∗(Wt)

− 1
γ

¶
where the notation λ∗(Wt) is used to make the dependence of λ∗ on Wt explicit.

b) If Wt ≥ W (T−t) the optimal solution is to enter retirement immediately (τ∗ = t) and the

optimal consumption /portfolio policy is given as in Karatzas and Shreve (1998) section 3.

The appendix discusses the nature of the approximation and examines its performance against

consistent numerical methods to solve the problem. The basic idea behind the approximation is

to reduce the problem to a standard optimal stopping problem and use the same approximation

technique as Barone-Adesi and Whaley (1987). The most important advantage of this approxi-

mation, is that it leads to very tractable solutions for all quantities involved. This can be seen

most easily by observing that equation (31) is practically identical to equation (13). One can also

check easily that the formulas for optimal consumption, portfolio etc. are identical to the respective
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formulas of proposition 1 (the sole exception being that the constants are modified by terms that

depend on T − t). As a result, all of the analysis in section 4 carries through to this section. This

is particularly true for the dependence of consumption, portfolio etc. on wealth. Economically, the

only new dimension introduced is that all constants depend explicitly on the distance to mandatory

retirement, and thus enable the study of interaction effects between wealth and the an investor’s

age. Here we will focus only on the implications of the model for portfolio choice over the life cycle.

The results for life-cycle consumption are similar.

To provide a benchmark against which to compare the solutions, we consider the portfolio

problem of an agent with mandatory retirement in T − t periods. For simplicity we also assume

there is no labor supply flexibility, i.e. the agent is endowed with an income stream of y0. By

standard derivations, the portfolio of an agent in this case is

πmand.
t =

1

σ

κ

γ

Ã
Wt + y0

1− e−r(T−t)

r

!

A constant fraction
³
1
σ
κ
γ

´
of the net present value of resources available to the individual

³
W0 + y0

1−e−rT
r

´
is invested in the stock market irrespective of her age. Since we only observeWt and πt in the data,

and not the net present value of future income, it is interesting to divide total holdings of stock by

financial wealth, which gives:

πmand.
t

Wt
=
1

σ

κ

γ

Ã
1 +

y0
Wt

1− e−r(T−t)

r

!
(32)

This expression captures a number of well understood intuitions. First, the allocation towards

stocks as a fraction of financial wealth declines with age, for a fixed level of Wt. Second, in ex-

pectation Wt will increase over time, reinforcing the first effect. Therefore, (in expectation) the

allocation to stocks should be downward sloping over time.

Allowing for early retirement considerably alters some of these conclusions. To demonstrate this

effect, we proceed (as in section 4.3) to arrive at the optimal holdings of stock πt in the presence

of optimal early retirement

πt =
κ

σ

1

γ

Ã
Wt + y0

1− e−r(T−t)

r

!
(33)

+
κ

σ

y0
¡
1− e−r(T−t)

¢
r

Ã
λ∗

λ(T−t)

!γ2T−1
γ2(T−t)

µ
1

γ
+ (γ2(T−t) − 1)

¶⎡⎣ γ

1− γ

³
γ2(T−t) − 1

´
³
1 + γ2(T−t)

γ
1−γ

´ − 1
⎤⎦
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where λ∗ is given by (31). As in section 4.3 the second term captures the "real" option of early

retirement and is strictly positive. As with most options, its relevance is larger a) the more likely

it is that it will be exercised (in/out of the money) and b) the more time is left until its expiration.

Accordingly, the importance of the second term in (33) should be expected to decrease when T − t

is small and/or the ratio of Wt to the target wealth W (T−t) is small.

This now opens up the possibility of rich interactions between "pure" horizon effects (variations

in T − t, keeping Wt constant) and wealth effects, beyond the ones already present in (32). As an

agent ages but is not yet retired, the "pure" horizon effects will tend to work in the same direction

as in equation (32). However, in expectation wealth increases as well and thus the option to retire

early becomes more and more relevant, counteracting the first effect.

Another property of the optimal portfolio that is implied by the present framework is a down-

ward jump in stockholdings, immediately after the agent enters retirement. In that case stockhold-

ings take the standard Merton form

πt =
κ

σ

1

γ
Wt

These effects are quantitatively illustrated in the next section.

6 Quantitative Implications

To quantitatively assess the magnitude of the effects described in section 5 we proceed as fol-

lows. First, we fix the values of the variables related to the investment opportunity set to:

r = 0.03, µ = 0.1, σ = 0.2. For β we choose 0.07 in order to account for both discounting and

a constant probability of death. For γ we consider a range of values (typically 2, 3, 4). This leaves

one more parameter to be determined, namely K. K controls the shift in the marginal utility of

consumption upon entering retirement. It is a well documented empirical fact that consumption

drops considerably upon entering retirement. As such, the most natural way to determine the

value of K is to match the agent’s declining consumption upon entering retirement. Aguiar and

Hurst (2004) report expenditure drops of 17%, whereas Banks et al. (1998) report changes in log

consumption expenditures of almost 0.3 in the five years prior to retirement and thereafter. Since

these drops are mainly calculated for food expenditures, which are likely to be inelastic, we also

calibrate the model to somewhat larger drops in consumption than that.19
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In light of (19)
cτ+

cτ−
= K1/γθ

where cτ− is consumption immediately prior to retirement and cτ+ is the consumption immedi-

ately thereafter. We therefore determine K so that K1/γθ = {0.5, 0.6, 0.7}. We fix the mandatory
retirement age to be T = 65 throughout, and normalize y0 to be 1. The abbreviation "ret" indicates

the solution implied by a model with optimal early retirement (up to time T ) and "BMS" denotes

the solution of a model with mandatory retirement at time T, with no option to retire earlier or

later.

Figure 1 plots the "target" wealth that is implied by the model, i.e. the level of wealth required

to enter retirement. This figure demonstrates two patterns. First, "threshold" wealth declines as

an agent nears mandatory retirement. This is intuitive. The option to work is more valuable the

longer its "maturity". As a (working) agent ages, the incentive to keep the option "alive" is reduced

and hence the wealth threshold declines. Second, the critical wealth implied by this model varies

with the assumptions made about risk aversion, and the disutility of work as implied by a lower

K1/γθ. Risk aversion tends to shift the threshold upwards, whereas lower levels of K1/γθ (implying

more disutility of labor) bring the threshold down. These are intuitive predictions. An agent who

is risk averse wants to avoid the risk of losing the option to work, whereas an agent who cares a lot

about leisure will want to enter retirement earlier.

Figure 2 addresses the importance of the real option to retire for portfolio choice. The figure

plots the second term in equation (33) as a fraction of total stockholdings πt. In other words, it

plots the relative importance of stockholdings due to the real "option" component as a percent

of total stockholdings. This percentage is plotted as a function of two variables: a) age and b)

wealth. Age varies between 45 and 64. Wealth varies between 0 and x, where x corresponds to

the level of wealth that would make an agent retire (voluntarily) at 64. We normalize wealth levels

by x so that the (normalized) wealth levels vary between 0 and 1. We then plot a panel of figures

for different levels of γ,K1/γθ. Figure 2 demonstrates the joint presence of "time to maturity"

and "moneyness" effects in the real option to retire. Keeping wealth fixed and varying the time to

maturity (i.e. increasing age) the relative importance of the real option to retire declines. Similarly,

increasing wealth makes the real option component more relevant, because the real option is more

"in the money". It is interesting to note that the "real option" component is large, taking values
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as large as 40% for some parameter combinations.

In Figure 3 we consider the implications of the model for life cycle portfolio choice. We fix a

path of returns corresponding to the realized returns on the CRSP value weighted index between

1990 and 2000. We then plot the portfolio holdings (defined as total stockholdings normalized by

financial wealth) over time for an individual whose wealth in 1990 was just enough to allow her

to retire in the beginning of 2000 at the age of 59. We repeat the same exercise assuming various

combinations of K1/γθ and γ. In order to be able to compare the results, we also plot the portfolio

that would be implied if the individual had no option of retiring early. We label this later case as

"BMS". What figure 3 shows, is that the portfolio of the agent is initially declining and then flat

or even increasing over time after 1995. This is in contrast to what would be predicted by ignoring

the option to retire early (the "BMS" case). This fundamentally different behavior of the portfolio

of the agent over time is due to the extraordinary returns during the latter half of the 1990’s, that

makes wealth grow faster, and hence the real option to retire very important towards the end of the

sample. By contrast, if one assumed away the possibility of early retirement, the natural conclusion

would be that a run-up in prices would change the composition of total resources (financial wealth

+ human capital) of the agent towards financial wealth. For a constant income stream this would

mean accordingly a decrease in the portfolio chosen.

Figure 4 demonstrates the above effect more clearly. In this figure we normalize total stock-

holdings by total resources (human capital + financial wealth). As already shown, for the BMS

case we get a constant equal to
³
κ
σ
1
γ

´
. By allowing for an early retirement option we observe that

the fraction of total resources invested in stock, exhibits a stark increase towards the latter half

of the 1990’s, because the option of early retirement becomes more relevant. The increase in this

fraction is small for the first half of the 1990’s and large for the latter part of the decade.

Figure 4 is useful in understanding the behavior of the portfolio holdings in Figure 3. In

the first half of the sample the standard BMS intuition applies. The fraction of total resources

invested in the stock market is roughly constant even after taking the option of early retirement

into account. Hence by the standard intuition behind the BMS results the portfolio of the agent

(total stockholdings normalized by financial wealth) declines over time. However, in the latter half

of the sample, the increase in the real option to retire is strong enough to counteract the decline in

the portfolio implied by standard BMS intuitions.

25



Figures 5 and 6 repeat the same exercise as figures 3 and 4, only now for an agent who "came

close" to retirement in 2000. However, we assume that her wealth at that point was slightly less

than enough in order to actually retire. To achieve this we just assume that in 1990 she started with

slightly less initial wealth than necessary to retire by 2000. It is interesting to note what happens

post 2000. Now, the option of early retirement starts to become irrelevant and the agent’s portfolio

declines. The effect of a disappearing option magnifies the drop in the portfolio. By contrast in the

BMS case the abrupt drop in the stock market (and hence wealth) would be counterbalanced by

a change in the composition between financial wealth and human capital towards human capital.

This effect tends to somehow counteract the effects of aging, and produces a much more moderate

drop in portfolio holdings.

These figures are meant to demonstrate the fundamentally different economic implications that

can result once one takes into account the real option to retire. As such they should be seen as

merely an illustrative application. Note however, that a stronger result can be shown in the context

of this exercise. For wealth levels close to the retirement threshold, the portfolio would increase

with age in expectation, and not just for the sample path that we consider. What is special about

the path that we consider is that the strong gains in the stock market drive investor wealth close

to the optimal retirement threshold. This increase of the portfolio with age (in expectation) would

be impossible in the absence of an early retirement option.

The present paper is theoretical in nature, and we don’t claim to have modeled even a small

fraction of all the issues that influence real life retirement, consumption, and portfolio decisions (like

liquidity constraints, shorting and leverage constraints, transaction costs, undiversifiable income

and health shocks etc.). However, note that the model does produce "sensible" portfolios (for the

combination γ = 4, K1/γθ = 0.7) as well as variations in portfolio shares between 1995 and 2003.

In the bottom right plots of figure 5 for instance the portfolio of the agent grows from 0.58 to 0.62

between 1995 and 1999 and then declines to roughly 0.5 by the beginning of 2003. By comparison,

the EBRI20 reports that the average equity share in a sample of 401(k)’s grew steadily from 0.46 to

0.53 between 1995 and 1999 only to fall to 0.4 by the beginning of 2003. The reason why the model

does not perform poorly is that we are considering an agent close to retirement, at a time when

the remaining NPV of her income is not a big component of her total wealth in the first place. For

early stages in the life cycle the model (unsurprisingly) has similar problems matching the data as
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BMS, which is to be expected.

We conclude with the following caveat. These results cannot be taken so far as to suggest

a rational explanation for agents, who increased their stockholdings during the latter half of the

1990’s but then chose to sharply reduce holdings once the market was in decline. The individuals

in our model do not take into account any predictability in returns. In light of equation (21) a

decrease in the Sharpe ratio (as was suggested by rising P/E ratios during the latter half of the

1990’s) would have to be accompanied by an increase in the wealth threshold. In simple terms,

an agent who understood that expected returns would be low (potentially because of irrational

exuberance) would have been more careful about retiring compared to what is suggested by our

model. Extending the model to allow for predictability would be a fascinating extension, that is

beyond the scope of the present paper.

With this caveat in mind, it is true that the present model shows a number of differences that

can result from the real option to retire. As the quote from Business Week at the beginning of

this paper suggests, for many agents the ability to retire earlier is an important consideration.

The present framework seems to be a natural starting point to examine the implications of early

retirement for portfolio choice and savings over the life cycle. Again, the examples in this section

are meant merely to illustrate how the presence of the real option to retire can potentially modify

some of the commonly held views on portfolio choice.

7 Borrowing constraint

We have thus far assumed that the agent was able to borrow against the value of her future labor

income. In this section we impose an additional restriction: It is impossible for the agent to borrow

against the value of future income. Formally, we add the requirement that Wt ≥ 0, for all t > 0.

To preserve tractability, we assume in this section that the agent is able to go into retirement at

any time that she chooses without a deadline. This makes the problem stationary and as a result

the optimal consumption and portfolio policies will be given by functions of Wt alone.

The borrowing constraint is never binding post-retirement because the agent receives no income

and has constant relative risk aversion. This implies that once the agent is retired, her consumption,

her portfolio, and her value function are the same with or without borrowing constraints. In
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particular, if she enters retirement at time τ with wealth Wτ , her expected utility is still U2(Wτ ).

The problem the agent now faces is

max
ct,Wτ ,τ

E

∙Z τ

0
e−βtU(l1, ct)dt+ e−βτU2(Wτ )

¸
(34)

subject to the borrowing constraint

Wt ≥ 0,∀t ≥ 0, (35)

and the budget constraint

dWt = πt {µdt+ σdBt}+ {Wt − πt} rdt− (ct − y01{t < τ}) dt. (36)

By arguments similar to the ones in section 2 we can rewrite these two constraints as

E

∙Z τ

0
Hscsds+HτWτ

¸
≤ E

∙Z τ

0
Hsy0ds

¸
+W0,

E
£R τ

t Hscsds+HτWτ

¤
Ht

≥ E
£R τ

t Hsy0ds
¤

Ht
,∀t ≥ 0.

We present the solution in Proposition 3. The post retirement solution is the standard Merton

solution and is completely determined by the critical wealth W required to enter retirement.

Proposition 3 Under technical conditions (71) and (72) in the Appendix, there exist appropriate

constants C1, C2, ZL, ZH , γ1, γ2 (also given in the Appendix) and a positive decreasing process X
∗
s

with X∗
t = 1 so that the optimal policy triple < bcs,cWτ ,bτ > is

a) If Wt < W = K
1
γZ

− 1
γ

L

bcs =

µ
λ∗eβ(s−t)X∗

s

H(s)

H(t)

¶− 1
γ

1{s < bτ}
cWτ = W

bτ = inf{s :Ws =W} =
= inf{s : λ∗eβ(s−t)X∗

s

H(s)

H(t)
= ZL}

and λ∗ is given by

γ1C1 (λ
∗)γ1−1 + γ2C2 (λ

∗)γ2−1 − 1
θ
(λ∗)−

1
γ +

y0
r
+Wt = 0 (37)
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Using the notation λ∗(Wt) to make the dependence of λ∗ onWt explicit, the optimal consumption

and portfolio policy is given by

ct = c(Wt) = (λ
∗(Wt))

− 1
γ

πt = π(Wt) = −κ
σ

λ∗(Wt)

λ∗Wt
(Wt)

where λ∗Wt
(Wt) denotes the first derivative of λ∗(Wt) with respect to Wt.

b) If Wt ≥ W = K
1
γZ

− 1
γ

L the optimal solution is to enter retirement immediately (bτ = t) and

the optimal consumption policy is given as in the standard Merton (1971) infinite horizon problem.

We devote the remainder of this section to a comparison of results obtained in section 4 with

the resultant optimal policies obtained in Proposition 3.

A simple intuitive argument shows that (compared with section 3) wealth at retirement is

smaller with borrowing constraints than without: W < W . (W is the threshold at which an

individual facing no borrowing constraints goes into retirement). The reasoning is the following:

Given a level of wealthW , the agent will achieve the same utility U2(W ) if she goes into retirement

at t irregardless of any borrowing constraints. But the expected utility the agent will achieve by

postponing her retirement decision to t+ dt is strictly lower if she faces borrowing constraints (the

inequality is strict because there is a non-zero probability that the constraint will bind between t

and t + dt ). As a result, the value of postponement is strictly lower with borrowing constraints

than without, i.e. W < W.

The total stockholdings can be computed by steps similar to section 4. The implicit function

theorem gives

λ∗

λ∗Wt

= −
µ
γ1(γ1 − 1)C1 (λ∗)γ1−1 + γ2(γ2 − 1)C2 (λ∗)γ2−1 +

1

γ

1

θ
(λ∗)−

1
γ

¶
(38)

and by steps similar to section 4 we obtain the optimal stockholdings as

πt =
κ

σ

1

γ

³
Wt +

y0
r

´
+

κ

σ
γ1C1 (λ

∗)γ1−1
µ
(γ1 − 1) +

1

γ

¶
+

κ

σ
γ2C2 (λ

∗)γ2−1
µ
(γ2 − 1) +

1

γ

¶
.

The first term is equal to a standard Merton type portfolio for an infinite horizon problem. One

can show that the second term is negative and decreasing in λ∗ (increasing in wealth), while the
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third term is positive and decreasing in λ∗ (increasing in wealth). πt is therefore decreasing in λ∗

(increasing in wealth) as in section 4.

The presence of borrowing constraints has two effects: it moderates holdings of stock, and

decreasingly so as the wealth of the agent increases (and hence by (37) λ∗ decreases). In economic

terms, considerations related to optimal retirement are relevant for large levels of wealth, whereas

considerations related to borrowing constraints are relevant for low levels of wealth. As a result,

the economic intuitions that apply to the two cases can be analyzed separately.

Figure 7 compares optimal portfolios for four cases. with and without the early retirement

option, and with and without the imposition of borrowing constraints. For the cases where we

allow retirement, we take wealth levels close to retirement but lower than the threshold that would

imply retirement. The figure demonstrates that for levels of wealth close to retirement there are

only (minor) quantitative differences between agents with borrowing constrains and agents without.

The qualitative properties are the same. Holdings of stock increase with wealth (more than linearly).

One can observe that the optimal stockholdings in the presence of early retirement are more tilted

towards stocks whether we impose borrowing constraints or not. Similarly, the optimal holdings of

stock are smaller when one imposes borrowing constraints (whether one assumes early retirement

or not).

We conclude by summarizing the key insights of this section: Borrowing constraints are relevant

for levels of wealth where optimal retirement is not an issue. Similarly, the effects of optimal

retirement are relevant for levels of wealth where borrowing constraints are highly unlikely to bind

in the future. Hence, as long as one examines the effects of the option to retire close to the threshold

levels of wealth, borrowing constraints can be safely ignored. However, it is important to note that

borrowing constraints can fundamentally affect quantities related to e.g. the expected time to

retirement for a person who starts with wealth close to 0 because they will typically imply lower

levels of stockholdings and hence a more prolonged time (in expectation) to reach the retirement

threshold.
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8 Conclusion

In this paper we proposed a simple partial equilibrium model of consumer behavior which allows for

the joint determination of optimal consumption, portfolio and the retirement time of a consumer.

Essentially closed form solutions were obtained for virtually all quantities of interest. The results

can be summarized as follows: The ability to time one’s retirement introduces an option type

character to the optimal retirement decision. This option is most relevant for individuals with

a high likelihood of early retirement, which are individuals with high wealth levels. This option

in turn affects both an agent’s incentive to consume out of current wealth and her investment

decisions. In general, the presence of the option value to retire will lead to portfolios that are more

exposed to stock market risk. The marginal propensity to consume out of wealth will be lower as

one approaches early retirement, reflecting the increased incentives to reinvest gains in the stock

market in order to bring retirement ”closer”. In turn, the likelihood of attaining early retirement

is more relevant for individuals who are young and/or wealthy.

An important practical implication of our model is that the relationship between stockholdings

and age is likely to be more complicated than is suggested in BMS. This can be most easily seen

by dividing the stockholdings by total wealth (financial wealth + the net present value of future

income) in order to control for the effects discussed in BMS. In our model the resulting fraction

is not constant (as in BMS), but has clear option pricing properties and depends on both wealth

and the distance to mandatory retirement, if such a deadline is imposed. Even though the fraction

of total wealth invested in the stock market decreases as an individual ages for a given level of

(financial) wealth, this fraction increases as wealth increases for a given time to retirement.

The model makes some quite intuitive predictions. We single out some of the predictions that

seem to be particularly interesting: First, during stock market booms, there should be an increase

in the numbers of people opting for retirement as a larger percent of the population hits the

retirement threshold. (Some evidence for this may be found in Gustman and Steinmeir [2002] and

references therein). Second, it is possible that portfolios over the life cycle could exhibit increasing

holdings of stock over time, even when there isn’t variation in the investment opportunity set and

the income stream exhibits no correlation with the stock market (or any risk whatsoever). This is

interesting in light of evidence in Ameriks and Zeldes (2001) that portfolios tend to be increasing

or hump-shaped with age for the datasets that they consider. Third, according to the model there
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should be a discontinuity in the holdings of stock and in consumption upon entering retirement.

There is ample empirical evidence on the latter. (see e.g. Aguiar and Hurst (2004) and references

therein). The former seems to have been less tested an hypothesis. Fourth, all else equal, switching

to a more flexible retirement system should imply increased stock market participation. It is an

empirical fact that stock market participation increased in the U.S. during the last years, while at

the same time 401(k)’s were gaining popularity. Fifth, increasing levels of stock holdings during

a stock market runup and liquidations during a stock market fall might not be due to irrational

herding. Instead they might be due to the behavior of the real option to retire that emerges during

the runup and becomes irrelevant after the fall.

In this paper we have tried to outline the basic new intuitions that are introduced by the timing

of the retirement decision. By no means do we claim that we have addressed all the issues that are

likely to be relevant for actual retirement decisions (unfairly priced health insurance, unspanned

income etc.). We view the theory developed in this paper as a complement to our understanding

of richer -typically numerically solved- models of retirement. There are however many interesting

extensions to this model that should be relatively tractable.

A first important extension would be to include features that are realistically present in actual

401(k) type plans such as tax deferral, employee matching contributions and tax provisions related

to withdrawals. By so doing, the solutions developed in this model could be used to determine the

optimal saving, retirement and portfolio decisions of consumers that are contemplating retirement

and taking into account tax considerations.

A second extension would allow the agent to reenter the workforce (at a lower income rate)

once retired. We doubt this would alter the qualitative features of the model, but it is very likely

that it would alter the quantitative predictions. It can be reasonably conjectured that the wealth

thresholds would be significantly lower in that case, and the portfolios even stronger tilted towards

stocks, because of the added flexibility.

A third extension of the model would be to introduce predictability and more elaborate pref-

erences. If one were to introduce predictability, while keeping the market complete (like Wachter

[2002]) the methods of this paper can be easily extended. It is also very likely that the model does

not loose its tractability if one uses Epstein-Zin type utilities, in conjunction with the methods

recently developed by Schroder and Skiadas (1999).
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A fourth extension of the model that we currently pursue is to study its general equilibrium

implications. This is of particular interest as it would enable one to make some predictions about

how the properties of returns are likely to change as worldwide retirement systems begin to offer

more freedom to agents in making investment and retirement decisions.
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9 Appendix

9.1 Proofs for section 3

The goal of this section is the proof of Proposition 1. Throughout this section we fix t = 0 without loss of

generality. We start with some useful definitions that are standard in the convex duality approach21

For a concave, strictly increasing and cont. differentiable function U : (0,∞)→ R satisfying

U 0(0+) = lim
x↓0

U 0(x) =∞ and U 0(∞) = lim
x→∞U 0(x) = 0 (39)

we can define the inverse I() of U 0(). I() maps (0,∞)→ (0,∞) and satisfies

I(0+) =∞, I(∞) = 0

A very convenient concept is that of a Legendre Fenchel transform (eU) of a concave function U : (0,∞)→
R eU(y) = max

x>0
[U(x)− xy] = U(I(y))− yI(y), 0 < y <∞ (40)

It is easy to verify that eU() is strictly decreasing and convex and satisfies
eU 0(y) = −I(y), 0 < y <∞ (41)

U(x) = min
y>0

heU(y) + xy
i
= eU(U 0(x)) + xU 0(x), 0 < x <∞

The inequality

U(I(y)) ≥ U(x) + y [I(y)− x]

follows from (40).

With these definitions we can proceed to extend the duality approach proposed by Karatzas and Wang

(2000) to address portfolio problems with discretionary stopping to a setting with income.

We start by fixing a stopping time τ and defining

Vτ (W 0) =maxct,πt
E

∙Z τ

0

e−βtU1(ct)dt+ e
−βτ

U2(W τ )

¸
(42)

where U1 and U2 were defined in (6),(7). The following result is a generalization of the equivalent result

in Karatzas and Wang (2000)22 to allow for income.
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Lemma 1 Let:

eJ(λ; τ) = E

∙Z τ

0

h
e−βtfU1(λeβtH(t)) + λH(t)y0

i
dt+ e−βτ eU2(λeβτH(τ))¸

For any τ that is finite almost surely, there exists λ∗ such that

Vτ (W0) = inf
λ>0

h eJ(λ; τ) + λW0

i
=fJ(λ∗; τ) + λ∗W0

and the optimal solution to (42) entails

Wτ = I2(λ
∗eβτHτ ) (43)

ct = I1(λ
∗eβtH(t))1{t < τ} (44)

with I1, I2 defined in a similar way to equation (41). Moreover the value function V (W0) of the problem

outlined in section 2 satisfies

V (W0) = sup
τ

Vτ (W0) = sup
τ
inf
λ>0

h eJ(λ; τ) + λW0

i
= sup

τ

h eJ(λ∗; τ) + λ∗W0

i

This result shows that one can proceed in two steps to solve the entire problem. First fix a stopping

time. Conditional on that one can determine the optimal consumption and portfolio policies. Then de-

termine the resulting value function and maximize over stopping times. This approach is unfortunately

somewhat unfruitful. Karatzas and Wang (2000) show that instead one can reduce the entire joint portfolio-

consumption-stopping problem into a pure optimal stopping problem by investigating cases in which the

following inequality

V (W0) = sup
τ
inf
λ>0

h eJ(λ; τ) + λW0

i
≤ inf

λ>0
sup
τ

h eJ(λ; τ) + λW0

i
= inf

λ

heV (λ) + λW0

i
(45)

becomes an equality, with eV (λ) is defined as
eV (λ) = sup

τ

eJ(λ; τ) = sup
τ

E

∙Z τ

0

h
e−βtfU1(λeβtH(t)) + λH(t)y0

i
dt+ e−βτ eU2(λeβτH(τ))¸ (46)

The inequality (45) follows from a standard result in convex duality (See e.g. Rockafellar (1997)).

The interesting fact about (46) is that it is a standard optimal stopping problem, for which one can

apply well known results. In particular, the parametric assumptions that we made in section 2.3 allow us to

solve this optimal stopping problem explicitly. We do this in the following Lemma.
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Lemma 2 Assume that

r

θ

³
1−γ
γ + γ2

´
γ2 − 1

< 1 (47)

and let

γ2 =
1− 2β−rκ2 −

q
(1− 2β−rκ2 )

2 + 8 β
κ2

2
< 0

λ =

⎛⎝ (γ2 − 1)θ³
1 + γ2

γ
1−γ

´³
K

1
γ θ − 1

´ y0
r

⎞⎠−γ

C2 =

∙
γ
1−γ

(γ2−1)
(1+γ2

γ
1−γ )

− 1
¸
y0
r

λγ2−1

Finally let

Zt = λeβtHt

Then a) The function eV (λ) is strictly convex. b) The value function eV (λ) of the optimal stopping problem
of (46) is given by

C2λ
γ2 − γ

γ − 1
1

θ
λ
γ−1
γ +

y0
r
λ, if λ > λµ

γ

1− γ
K

1
γ (λ)

γ−1
γ

¶
if λ ≤ λ

The optimal stopping strategy is to stop the first time the process Zt reaches λ. eV (λ) is continuously
differentiable everywhere and eV 0(λ) maps (0,∞) into (−∞, y0r ).

Proof. (Lemma 2). The proof of convexity is fairly standard (available upon request). We proceed by

calculating the solution to the optimal stopping problem. It is easy to show that

eU1(λ) = max
c

c1−γ

1− γ
− λc =

=
γ

1− γ
λ
γ−1
γ

and

eU2(λ) = max
X

µ
K
X1−γ

1− γ
− λX

¶
=

= K
1
γ

γ

1− γ
λ
γ−1
γ
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so that the expression (46) becomes

sup
τ∈S

E

∙Z τ

0

e−βt
γ

1− γ

¡
λeβtHt

¢ γ−1
γ dt+ e−βτ

µ
γ

1− γ
K

1
γ
¡
λeβτHτ

¢ γ−1
γ

¶
+ λy0

Z τ

0

Htdt

¸
Consider the process

Zt = λeβtHt = λH0e
(β−r− 1

2κ
2)t−κBt

so that
dZt
Zt

= (β − r) dt− κdBt, Z0 = λ

With this new notation we can rewrite the above optimal stopping problem as

sup
τ∈S

E

∙Z τ

0

e−βt
µ

γ

1− γ
(Zt)

γ−1
γ + y0Zt

¶
dt+ e−βτ

µ
γ

1− γ
K

1
γ (Zτ )

γ−1
γ

¶¸
To solve this pure optimal stopping problem we proceed as in Oksendal (1998) p. 213. It is easy to show

that the continuation region will have the form23

Z ≤ Zt <∞

To determine Z we apply the standard methodology of smooth pasting, i.e. we search for φ(Zt) satisfying

the following properties

−βφ+ (β − r)Z
∂φ

∂Z
+
1

2

∂2φ

∂Z2
Z2κ2 +

µ
γ

1− γ
Z

γ−1
γ + y0Z

¶
= 0 on U (48)

φ(Zt) ≥
µ

γ

1− γ
K

1
γ (Zt)

γ−1
γ

¶
everywhere (49)

−βφ+ (β − r)Z
∂φ

∂Z
+
1

2

∂2φ

∂Z2
Z2κ2 +

µ
γ

1− γ
Z

γ−1
γ + y0Z

¶
≤ 0 on R\U (50)

φ(Zt) is C2 a.e. and C1 (51)

where U is the continuation region and D is the exercise boundary. The general solution to (48) is given by

φ(Z) = C1Z
γ1 + C2Z

γ2 − γ

γ − 1Z
γ−1
γ
1

θ
+

y0
r
Z

where

γ1,2 =
1− 2β−rκ2 ±

q
(1− 2β−rκ2 )

2 + 8 β
κ2

2

It is straightforward to verify that

γ1 > 0, γ2 < 0, γ1 + γ2 = 1− 2
β − r

κ2

Since the continuation region is of the form Z< Z <∞ we require

C1 = 0
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and thus we are left with determining the optimal exercise point and the constant C2 and Z.We can do that

by invoking (51) to get the set of conditions

C2Z
γ2 − γ

γ − 1
1

θ
Z

γ−1
γ +

y0
r
Z =

γ

1− γ
K

1
γ (Z)

γ−1
γ (52)

γ2C2Z
γ2−1 − 1

θ
Z−

1
γ +

y0
r

= −K 1
γZ−

1
γ (53)

Notice that we can rewrite the above as

C2Z
γ2−1 − γ

γ − 1
1

θ
Z−

1
γ +

y0
r

=
γ

1− γ
K

1
γ (Z)

− 1
γ

γ2C2Z
γ2−1 − 1

θ
Z−

1
γ +

y0
r

= −K 1
γZ−

1
γ

Solving for Z leads to

Z−
1
γ =

(γ2 − 1)θ³
1 + γ2

γ
1−γ

´³
K

1
γ θ − 1

´ y0
r

One can show that

1 + γ2
γ

1− γ
< 0 if γ < 1

1 + γ2
γ

1− γ
> 0 if γ > 1

and hence Z−
1
γ> 0, independent of γ.We also note that the above two inequalities also imply:

(γ2 − 1) < −
1

γ
(54)

independent of γ, an inequality that we use throughout in the text. It is also the case that:

C2 =

∙
γ
1−γ

(γ2−1)
(1+γ2

γ
1−γ )

− 1
¸
y0
r

Zγ2−1 > 0

since

γ

1− γ

(γ2 − 1)³
1 + γ2

γ
1−γ

´ − 1 = − 1
1−γ³

1 + γ2
γ
1−γ

´ > 0

The previous considerations allow us to guess that the solution to the optimal stopping problem under

consideration is given by

C2Z
γ2 − γ

γ − 1
1

θ
Z

γ−1
γ +

y0
r
Z, if Z > Z (55)µ

γ

1− γ
K

1
γ (Z)

γ−1
γ

¶
if Z ≤ Z (56)

38



We proceed to verify that this is indeed the optimal stopping time by considering the rest of the conditions

(namely (50) and (49)). To verify (49) we need to show that

C2Z
γ2 − γ

γ − 1
1

θ
Z

γ−1
γ +

y0
r
Z ≥

µ
γ

1− γ
K

1
γZ

γ−1
γ

¶
for Z ≥ Z. We do this by considering the difference

T (Z) = C2Z
γ2 +

γ

γ − 1
µ
K

1
γ − 1

θ

¶
Z

γ−1
γ +

y0
r
Z

It is clear that T (Z) satisfies: T ( Z) = 0 and T 0(Z) = 0 by construction. The claim that T (Z) ≥ 0 for Z >Z

will be proved if we can show that T 0(Z) ≥ 0 for Z >Z. T 0(Z) is given by

T 0(Z) = C2γ2Z
γ2−1 + Z−

1
γ

µ
K

1
γ − 1

θ

¶
+

y0
r

or

T 0(Z) = C2γ2

µ
Z

Z

¶γ2−1
Zγ2−1 +

µ
Z

Z

¶− 1
γ

Z−
1
γ

µ
K

1
γ − 1

θ

¶
+

y0
r

Observe that for Z >Z we have that µ
Z

Z

¶γ2−1
<

µ
Z

Z

¶− 1
γ

and accordingly

C2γ2

µ
Z

Z

¶γ2−1
Zγ2−1 > C2γ2

µ
Z

Z

¶− 1
γ

Zγ2−1

since γ2 < 0 and (γ2 − 1) < − 1
γ :

T 0(Z) ≥
µ
Z

Z

¶− 1
γ
∙
C2γ2Z

γ2−1 + Z−
1
γ

µ
K

1
γ − 1

θ

¶¸
+

y0
r

(57)

But

C2γ2Z
γ2−1 + Z−

1
γ

µ
K

1
γ − 1

θ

¶
= −y0

r

by the fact that T 0(Z) = 0. Accordingly (57) becomes

T 0(Z) ≥
"
1−

µ
Z

Z

¶− 1
γ

#
y0
r

> 0

for Z > Z. This verifies that T (Z) > 0 for Z > Z.

We are left with checking that (50) holds. Observe first, that for Z <Z, the function under consideration

becomes: γ
1−γK

1
γ (Zt)

γ−1
γ . Letting φ(Z) = γ

1−γK
1
γ (Zt)

γ−1
γ and computing

A(φ) = −βφ+ φ0Z(β − r)+
φ00

2
Z2κ2+

µ
γ

1− γ
Z

γ−1
γ + y0Z

¶
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it is easy to check that A(φ) ≤ 0 whenever Z <

µ
1−γ
γ y0

K
1
γ θ−1

¶−γ
. Hence in order to prove the claim it

suffices to show that

Z<

Ã
1−γ
γ y0

K
1
γ θ − 1

!−γ
(58)

To check (58) we need to show that

Z−
1
γ =

(γ2 − 1)θ³
1 + γ2

γ
1−γ

´³
K

1
γ θ − 1

´ y0
r

>

1−γ
γ y0

K
1
γ θ − 1

We need to distinguish cases. For γ < 1,
³
K

1
γ θ − 1

´
> 0 and thus the above inequality can be rewritten as

(γ2 − 1)θ³
1 + γ2

γ
1−γ

´
r
>
1− γ

γ

or equivalently

r

θ

³
1−γ
γ + γ2

´
γ2 − 1

< 1 (59)

Observe that we arrive at the same inequality for γ > 1 too with identical steps. This is exactly assumption

(47). The previous reasoning allows us to obtain the function eV (λ) as
eV (λ) = C2λ

γ2 − γ

γ − 1
1

θ
λ
γ−1
γ +

y0
r
λ, if λ > λ

eV (λ) =

µ
γ

1− γ
K

1
γ (λ)

γ−1
γ

¶
if λ ≤ λ

where

λ = Z =

⎛⎝ (γ2 − 1)θ³
1 + γ2

γ
1−γ

´³
K

1
γ θ − 1

´ y0
r

⎞⎠−γ

The function eV (λ) is continuously differentiable everywhere and convex. Accordingly, we can calculate the
derivative

eV 0(λ) = γ2C2λ
γ2−1 − 1

θ
λ−

1
γ +

y0
r
, if λ > λ

eV 0(λ) =
³
−K 1

γ λ−
1
γ

´
if 0 < λ ≤ λ

The range of eV 0(λ) for positive λ is (−∞, y0r ) implying that the equation

eV 0(λ) = −W0

will always have a solution as long as W0 ∈ (−y0
r ,∞), since eV 0(λ) is an increasing continuous function.

Remark 1 Notice that in contrast to Karatzas and Wang (2000) the function eV (λ) does not have to be
decreasing due to the presence of income. As a matter of fact we show that eV 0(λ) takes values in (−∞, y0r ).
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Remark 2 Assumption 47 can be shown to be always satisfied as long as θ > 0 in two special cases: i) if

γ > 1 and β ≥ r or ii) if β = r . We conjecture that θ > 0 is sufficient for assumption 47 more generally

but we haven’t been able to prove it algebraically. However, in all numerical exercises that we consider we

satisfy the condition i) of this remark.

Proof. Remark (2) To see this, observe that we can rewrite (47) as

r + (θ − r)γ > (θ − r)γ2γ,

r > (r − θ)γ(1− γ2).

This inequality is clearly satisfied if θ ≥ r, that is if

γ − 1
γ

κ2

2γ
+
β − r

γ
≥ 0.

Observe that this last equation is verified if γ > 1 and β ≥ r. To show ii) assume now that β = r and that γ

is arbitrary as long as θ > 0. Multiplying both numerator and denominator of (47) by γ2 and using the fact

thatγ2(γ2 − 1) = 2r
κ2 we reduce to showing that

κ2

2θ

∙
γ2
γ
+
2r

κ2

¸
< 1

Now using the definition of θ = r − 1
2
1−γ
γ

κ2

γ and the fact γ1 + γ2 = 1 we reduce the above problem to

checking that the ratio
r − 1

2
κ2

γ (γ1 − 1)
r − 1

2
1−γ
γ

κ2

γ

< 1

which will be trivially the case if γ > 1. For γ < 1 this will be true if

γ1 − 1 >
1− γ

γ

but this is immediate since

γ1 >
1

γ

The following result is a straightforward extension of a result in Karatzas and Wang (2000) and is given

without proof.

Lemma 3 Let cτλ be the optimal stopping rule associated with λ and given in Lemma 2. Then

eV 0(λ) = −E
"Z τλ

0

H(t)
¡
I1(λe

βtH(t))− y0
¢
dt+H(cτλ)I2(λeβτλHτλ)

#
, λ ∈ (0,∞)
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This Lemma shows that the derivative of eV (λ) informs us of the amount of initial wealth that would be
needed in order to sustain a stream of consumption and retirement wealth of

bct = I1(λe
βtH(t))1{t < cτλ}cWτλ = I2(λe
βτλH(cτλ))

To prove Proposition 1 we use this observation in order to replace the inequality in (45) with an equality

sign and thus compute the Value function of the problem of interest.

Proof. (Proposition 1) We will verify that the triplet

bct = (λ∗eβtH(t))−
1
γ 1{0 ≤ t <bτ}

bτ = inf {t : λ∗eβtH(t) =λ}cWτ = I2(λ
∗eβτλH(cτλ)) = I2(λ) =W

where λ∗ is given by (13) is an optimal policy. We start by showing that this policy is feasible. To see this,

consider the function eV (λ) as obtained in Lemma 2. Since eV (λ) is strictly convex, and fV 0(λ) maps (0,∞)
to (−y0

r ,∞) we know that there exists a unique λ∗ > 0 s.t.

eV (λ∗) + λ∗W0 = inf
λ>0

heV (λ) + λW0

i
which can be rewritten as eV (λ) + λW0 ≥ eV (λ∗) + λ∗W0 ∀λ > 0

Moreover, λ∗ as obtained in equation (13) minimizes
heV (λ) + λW0

i
over all λ > 0, since

fV 0(λ∗) = −W 0

By Lemma 3

W0 = −fV 0(λ∗) = E

"Z τλ∗

0

h
H(t)(λ∗eβtH(t))−

1
γ )−H(t)y0

i
dt+H(bτλ∗)W#

so that we can create portfolios that can finance the consumption stream

bct = I1(λ
∗eβtH(t))1{t < bτλ∗}

and the retirement Wealth cWτλ∗ = I2(λ
∗eβτλ∗H(bτλ∗)) =W
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We now verify optimality of this policy as follows

V (W0) ≥ E

"Z τλ∗

0

e−βtU1(I1(λ∗eβtH(t)))dt+ e−βτλ∗U2
³
I2(λ

∗eβτλ∗H(bτλ∗))´# =
= E

"Z τλ∗

0

e−βt eU1(I1(λ∗eβtH(t)))dt+ e−βτλ∗ eU2 ³I2(λ∗eβτλ∗H(bτλ∗))´#+
λ∗E

"
H(bτλ∗)cWτλ∗ +

Z τλ∗

0

H(t)bctdt#

= E

"Z τλ∗

0

h
e−βt eU1(I1(λ∗eβtH(t))) + λ∗H(t)y0

i
dt+ e−βτλ∗ eU2 ³I2(λ∗eβτλ∗H(bτλ∗))´#+ λ∗W0 =

= eV (λ∗) + λ∗W0 = inf
λ>0

heV (λ) + λW0

i
The first equality follows from the definitions of eU1, I1,eU2, I2. The second equality follows from the intertem-
poral budget constraint and the last from the definition of eV (λ). The fact that V (W0) ≥ infλ>0

heV (λ) + λW0

i
along with (45) delivers the result that

V (W0) = inf
λ>0

heV (λ) + λW0

i
In particular the optimal policies are given by < bct,cWτλ∗ ,bτλ∗ > . The final claim of the proposition concerns
the optimal portfolio. To actually compute it in feedback form we make use of formula (3.8.24) in Karatzas

and Shreve (1998)

π0 = −κ
σ

λ∗(W0)

λ∗W0
(W0)

where λ∗(W0) solves equation (13). The implicit function theorem gives

λ∗

λ∗W0

= −
µ
γ2(γ2 − 1)C2λ∗γ2−1 +

1

γ

1

θ
λ∗−

1
γ

¶
(60)

9.2 Proofs for section 5

Proposition 2 can be established by virtually identical steps as Proposition 1. Once again we set t = 0

without loss of generality. The only substantial difference to section 3 is that now eV (λ, T ) solves the optimal
stopping problem

eV (λ, T ) = sup
τ≤T

E

∙Z τ

0

h
e−βtfU1(λeβtH(t)) + λH(t)y0

i
dt+ e−βτ eU2(λeβτH(τ))¸ (61)

We proceed with the proof of Proposition 2
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Proof. (Proposition 2) Only a sketch is given. The idea behind the approximation is to define

eV E(λ;T )b=E "Z T

0

h
e−βtfU1(λeβtH(t)) + λH(t)y0

i
dt+ e−βτ eU2(λeβTH(T ))#

and compute eV E(λ;T ) =
γ

1− γ
λ
γ−1
γ
1− e−θT

θ
+ λy0

1− e−rT

r
+

γ

1− γ
λ
γ−1
γ K

1
γ e−θT

which can be shown by elementary methods. The next step is to study the difference between

P (λ;T ) = eV (λ;T )− eV E(λ;T )

which we will refer to as the early exercise premium. One can then show that inside the continuation region

the "early exercise premium" P (λ;T ) solves the PDE

−βP + PZZ(β − r) +
1

2
PZZZ

2κ2 − PT = 0

By the same approximation idea as in Barone-Adesi and Whaley (1987) we will postulate a solution of the

form P = Y (T )f(Z, Y (T )), take Y (T ) = 1− e−βT and ignore PY . This allows to reduce the problem to the

determination of solutions of the equation

fZZ(β − r) +
1

2
Z2κ2fZZ − β

Y (T )
f = 0

which is a simple linear ODE. The solution is given just as in the infinite horizon case by

f(Z) = C2TZ
γ2T

where

γ2T =
1− 2β−rκ2 −

q
(1− 2β−rκ2 )

2 + 8 β
Y (T )κ2

2

To determine the complete solution we require continuity and smooth pasting of eV (λ;T ) to γ
1−γλ

γ−1
γ K

1
γ .

Then by arguments identical to the infinite horizon case we get (29) and (30). The rest of the results follow

easily by the arguments used in the case where there is no deadline.

An important concern is the accuracy of the approximation. The most straightforward way to see whether

the solution is accurate or not, is to compare it with a consistent numerical scheme. A particularly attractive

numerical scheme in our single-dimensional framework is a binomial tree of the Cox-Ross-Rubinstein kind.

For a fixed λ and T we can treat (61) as a standard optimal stopping problem and solve it numerically. For

the numbers that we present we chose dt = 1/200. We fixed the parameters of the investment opportunity

set to the levels described in section 6 and experimented with various levels of K1/γθ and γ. We report

results for γ = 3. For other levels of γ the results are similar.
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Figure 8 depicts the value function of problem (61) for T − t = 5.We choose the initial value of λ so that

it coincides with λ(T−t).We then choose the range of λ so that the largest value of λ is given by λ(T−t)e10κ.

In simple terms we look at a range that starts from the critical barrier λ(T−t) and extends from there by 10

standard deviations.24 . The top panel in figure 8 gives the value function of problem (61) obtained through

the binomial tree and the analytical approximation. Since these curves are practically indistinguishable, we

find it more informative to focus on the results in the lower panel which depicts the relative numerical error.

This is defined as the absolute value of the difference between the two value functions over the absolute

value of the level of the value function obtained numerically. As can be seen the relative error is typically

indistinguishable from 0, except on a small strip (very close to λ(T−t)) where it is in the second digit range.

There are two remarks on this: a) the amount of time that the state variable is likely to spend in the

neighborhood of these areas is very small. The relative error seems to be in the second digit range for a

range of λ0s with mass 0.05. The standard deviation of the state variable is 7 times larger than that. b) It

is a well known fact that binomial trees tend to be "jagged" close to the critical region and this might also

be accounting for some of the difference between the two value functions.

Figure 8 shows that except on a negligible set, the value functions of the two problems practically

coincide. This is important since all other quantities (critical wealth levels, consumption and portfolios) are

derived from the solution to (61).

Figure 9 examines the practical implications of using the analytical approximation instead to the bino-

mial tree. We focus on critical wealth levels, because they demonstrate how closely the analytical solution

approximates the numerical one. We plot the critical wealth level as a function of the distance to retirement.

Once again, the two solutions coincide as might be expected in light of the previous figure. Except for times

very close to the retirement deadline, the analytical solution is within the "error" band of the binomial tree.

Even when it isn’t the relative error seems to be negligible. (typically less than 5%). Similar results hold

unsurprisignly for optimal consumption and portfolios, which are not reported here.

In conclusion, we find that the numerical accuracy of the analytical solution that we propose is very

good. Nothing economically meaningful seems to rest on whether we use a consistent numerical scheme, or

the considerably more tractable analytical approximation.

9.3 Proofs for section 7

In what follows we sketch how to obtain the solution to this problem and prove proposition 3. The basic

modification of the approach used so far is that eV (λ) needs to be minimized over a set of decreasing processes
in a manner analogous to He and Pages (1993). The reader is referred to that paper for a number of technical

details. Once again we set t = 0 without loss of generality.
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We start by fixing a stopping time τ and defining

J(W ;πs, cs, τ) = E

∙Z τ

0

e−βtU1(ct)dt+ e−βτU2(Wτ )

¸

for any admissible pair (cs, πs) satisfying (35) and (36). Let λXt be a non-increasing process starting at

X0 = 1 with λ > 0. We obtain the following set of inequalities for any admissible pair (cs, πs)

J(W ;πs, cs, τ) = E

∙Z τ

0

e−βtU1(ct)dt+ e−βτU2(Wτ )

¸
(62)

≤ E

∙Z τ

0

e−βtfU1(λXte
βtH(t))dt+ e−βτ eU2(λXτe

βτH(τ))

¸
(63)

+λE

∙
XτH(τ)Wτ +

Z τ

0

XtH(t)c(t)dt

¸

Integrating by parts and using the fact that X0 = 1, the second term of the right hand side can be

rewritten as

E

∙Z τ

0

XtHtctdt+XτHτWτ

¸
= E

∙Z τ

0

XtHt(ct − y0)dt+XτHτWτ +

Z τ

0

XtHty0dt

¸
=

E

∙Z τ

0

XtHty0dt+HτWτ +

Z τ

0

Ht(ct − y0)dt

¸
+E

"Z τ

0

Ht

Et

£R τ
t
Hs(cs − y0)ds+HτWτ

¤
Ht

dXt

#

so that we have

J(W ;πs, cs, τ) ≤ E

∙Z τ

0

e−βtfU1(λXte
βtH(t))dt+ e−βτ eU2(λXτe

βτH(τ))

¸
+λE

∙Z τ

0

XtHty0dt+HτWτ +

Z τ

0

Ht(ct − y0)dt

¸
+λE

"Z τ

0

Ht

Et

£R τ
t
Hs(cs − y0)ds+HτWτ |Ft

¤
Ht

dXt

#

≤ E

∙Z τ

0

e−βtfU1(Xte
βtH(t))dt+ e−βτ eU2(Xτe

βτH(τ))

¸
+λ

µ
W0 +E

∙Z τ

0

XtHty0dt

¸¶
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where the last inequality comes from the fact that

Et

£R τ
t
Hs(cs − y0)ds+HτWτ

¤
Ht

dXt ≤ 0, and

since dXt ≤ 0,Wt ≥ 0 and

E

∙Z τ

0

Ht(ct − y0)dt+HτWτ

¸
≤W0.

by the budget constraint.The equality occurs if and only if

Wτ = I2
¡
eβτXτHτ

¢
and c(t) = I1

¡
eβtXtHt

¢
, for all 0 ≤ t ≤ τ (64)

and

E

∙
H(τ)Wτ +

Z τ

0

H(t)c(t)dt

¸
=W0 +E

∙Z τ

0

H(t)y0dt

¸

and

Et

£R τ
t
Hs(cs − y0)ds+HτWτ

¤
Ht

dXt = 0.

Evaluating the above set of inequalities at the optimal stopping time τ , and observing that it holds for

all Xt decreasing, we have that

V (W0) ≤ sup
τ

inf
{λ,Xt}

h eJ({Xt, λ} ; τ) + λW0

i
(65)

where V (W0) is the value function of the original problem and eJ(Xt; τ) is given by

eJ({Xt} ; τ , λ) = E

∙Z τ

0

h
e−βtfU1(λXte

βtH(t)) + λXtH(t)y0

i
dt+ e−βτ eU2(λXτe

βτH(τ))

¸

Let

eV ({Xt} , λ) = sup
τ

eJ({Xt} ; τ , λ) (66)

= sup
τ

E

∙Z τ

0

h
e−βtfU1(λXte

βtH(t)) + λXtH(t)y0

i
dt+ e−βτ eU2(λXτe

βτH(τ))

¸
, (67)
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and eV (λ) = inf
{Xt}

eV ( {Xt} , λ) (68)

and define the process Zt:

Zt = λeβtXtHt

We now proceed by analogy to the case without borrowing constraints. For our constant parameters

case, it can be shown that25

V (W0) = sup
τ

inf
{λ,Xt}

h eJ({Xt} ; τ , λ) + λW0

i
= inf

{λ,Xt}
sup
τ

h eJ({Xt} ; τ , λ) + λW0

i
= inf

λ

heV (λ) + λW0

i
. (69)

The optimal policy functions are given by

Wτ = I2
¡
λ∗eβτX∗τHτ

¢
and c(t) = I1

¡
λ∗eβtX∗tHt

¢
, for all 0 ≤ t ≤ τ (70)

where λ∗, τ∗,X∗t solve (69). To solve the infimization over the space of decreasing processes one can

proceed in a fashion analogous to He Pages (1993) to construct the Value of the min-max game of equation

(69). The following generalization of Lemma 2 is required

Lemma 4 For appropriate constants C1, C2, ZL, ZH (given in the proof) define the function eV (λ) as
eV (λ) = C1λ

γ1 + C2λ
γ2 − γ

γ − 1λ
γ−1
γ
1

θ
+

y0λ

r
if ZL ≤ λ ≤ ZH ,

eV (λ) =

µ
γ

1− γ
K

1
γ (λ)

γ−1
γ

¶
if λ < ZL,

eV (λ) = C1Z
γ1
H + C2Z

γ2
H −

γ

γ − 1Z
γ−1
γ

H

1

θ
+

y0ZH
r

if λ > ZH ,

Assume moreover that

−β eV+(β − r)λ
∂ eV
∂λ
+
1

2

∂2 eV
∂λ2

λ2κ2+

µ
γ

1− γ
λ
γ−1
γ + y0λ

¶
≤ 0 for λ < ZL (71)

and eV ≥ µ γ

1− γ
K

1
γ (λ)

γ−1
γ

¶
everywhere (72)
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Then eV (λ) provides the value to the game
eV (λ) = sup

τ
inf
{Xt}

h eJ({Xt} , τ)
i
= inf
{Xt}

sup
τ

h eJ({Xt} , τ)
i

Define also the process

Zt = λeβtXtHt

The optimal stopping policy is to stop once Zt crosses ZL whereas the optimal Xt decreases once Zt = ZH .

Proof. (Lemma 4) We give a sketch26. To keep the notation consistent with section 3 we let t = 0

without loss of generality and use the fact that at time 0, Z0 = λ. We will denote Z = Z0 for convenience.

The purpose is to determine the value φ(Z) of the game

φ(Z) = sup
τ
inf
{Xt}

h eJ({Xt} , τ)
i
= inf
{Xt}

sup
τ

h eJ({Xt} , τ)
i

i.e. to fix a given initial value of the multiplier λ = Z0 and determine a decreasing process X∗t and a stopping

time τ∗ so that X∗t minimizes eJ conditional on λ and τ and τ∗ maximizes eJ conditional on X∗t and λ. In this
context it is not difficult to establish a verification theorem, asserting that φ(Z) is the value of the game, as

long as we can find a function φ(Z) and two barriers ZL and ZH with ZL < ZH satisfying

−βφ+ (β − r)Z
∂φ

∂Z
+
1

2

∂2φ

∂Z2
Z2κ2 +

µ
γ

1− γ
Z

γ−1
γ + y0Z

¶
= 0 for Z ∈ (ZL, ZH) (73)

φ(Z) ≥
µ

γ

1− γ
K

1
γ (Zt)

γ−1
γ

¶
everywhere (74)

−βφ+ (β − r)Z
∂φ

∂Z
+
1

2

∂2φ

∂Z2
Z2κ2 +

µ
γ

1− γ
Z

γ−1
γ + y0Z

¶
≤ 0 for Z < ZL (75)

φz < ∞ in (ZL, ZH) , φ(Z) is C2 a.e. and C1(76)
∂φ

∂Z
≤ 0 everywhere (77)

∂φ

∂Z
= 0 for Z ∈ (ZH ,∞) (78)

A proof of this verification Theorem can be given along the lines of Theorem 3 in He and Pages (1993)

and standard arguments for optimal stopping problems along the lines of Oksendal (1998). We now proceed

to construct a function and two barriers that satisfy these equations. The general solution to

−βφ+ (β − r)Z
∂φ

∂Z
+
1

2

∂2φ

∂Z2
Z2κ2 +

µ
γ

1− γ
Z

γ−1
γ + y0Z

¶
= 0
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is given by

φ(Z) = C1Z
γ1 + C2Z

γ2 − γ

γ − 1Z
γ−1
γ
1

θ
+

y0Z

r

where γ1 and γ2 are given by

γ1 =
1− 2β−rκ2 +

q
(1− 2β−rκ2 )

2 + 8 β
κ2

2

and

γ2 =
1− 2β−rκ2 −

q
(1− 2β−rκ2 )

2 + 8 β
κ2

2

It is straightforward to verify that

γ1 > 0, γ2 < 0.

To enforce the condition (76) we will search for ZL, ZH and C1, C2 so that

C1Z
γ1
L + C2Z

γ2
L −

γ

γ − 1Z
γ−1
γ

L

1

θ
+

y0ZL
r

=

µ
γ

1− γ
K

1
γ (ZL)

γ−1
γ

¶
γ1C1Z

γ1−1
L + γ2C2Z

γ2−1
L − Z

− 1
γ

L

1

θ
+

y0
r

=
³
−K 1

γ (ZL)
− 1
γ

´
γ1C1Z

γ1−1
H + γ2C2Z

γ2−1
H − Z

− 1
γ

H

1

θ
+

y0
r

= 0

−β
µ
C1Z

γ1
H + C2Z

γ2
H −

γ

γ − 1Z
γ−1
γ

H

1

θ
+

y0ZH
r

¶
+

µ
γ

1− γ
Z

γ−1
γ

H + y0ZH

¶
= 0

For notational simplicity, we will define

A1 = C1Z
γ1−1
L ,

A2 = C2Z
γ2−1
L ,

B = (ZL)
− 1
γ

C =
ZH
ZL

With this new notation the above 4x4 system becomes

A1 +A2 = −y0
r
− γ

γ − 1
µ
K

1
γ − 1

θ

¶
B

γ1A1 + γ2A2 = −y0
r
−
µ
K

1
γ − 1

θ

¶
B

γ1A1C
γ1−1 + γ2A2C

γ2−1 = B
C−

1
γ

θ
− y0

r

β
¡
A1C

γ1−1 +A2C
γ2−1¢ = −y0

µ
β

r
− 1
¶
+

γ

1− γ

∙
1− β

θ

¸
BC−

1
γ
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The first two equations allow us to solve for A1 and A2 as functions of B

A1 =

y0
r (1− γ2) +

³
K

1
γ − 1

θ

´
B
³
1− γ2

γ
γ−1

´
γ2 − γ1

,

A2 =
−y0

r (1− γ1)−
³
K

1
γ − 1

θ

´
B
³
1− γ1

γ
γ−1

´
γ2 − γ1

.

The last two equations also allow us to solve for A1 and A2 as functions of B and C

A1 =

y0
r

³
1− γ2 +

rγ2
β

´
+

∙
γ2

γ
γ−1(

1
θ − 1

β )C
− 1
γ − C

− 1
γ

θ

¸
B

Cγ1−1(γ2 − γ1)
,

A2 =

−y0
r

³
1− γ1 +

rγ1
β

´
−
∙
γ1

γ
γ−1(

1
θ − 1

β )C
− 1
γ − C

− 1
γ

θ

¸
B

Cγ2−1(γ2 − γ1)
.

By equating the A1 and A2 obtained from the two subsystems, we get

y0
r

³
1− γ2 +

rγ2
β

´
+

∙
γ2

γ
γ−1(

1
θ − 1

β )C
− 1
γ − C

− 1
γ

θ

¸
B

Cγ1−1(γ2 − γ1)
−

y0
r (1− γ2) +

³
K

1
γ − 1

θ

´
B
³
1− γ2

γ
γ−1

´
γ2 − γ1

= 0,

y0
r

³
1− γ1 +

rγ1
β

´
+

∙
γ1

γ
γ−1(

1
θ − 1

β )C
− 1
γ − C

− 1
γ

θ

¸
B

Cγ2−1(γ2 − γ1)
−

y0
r (1− γ1) +

³
K

1
γ − 1

θ

´
B
³
1− γ1

γ
γ−1

´
γ2 − γ1

= 0

.We can rewrite these two equations as
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so we finally get the following non-linear equation for C
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γ
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´ =
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³
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γ1

γ
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1
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− 1
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− 1
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θ − Cγ2−1
³
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1
γ − 1
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´³
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γ
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´
Thus we are left with determining C from this equation and then, substituting above to obtain B,A1

and A2.Given A1, A2, B,C , we can recover ZL, ZH and C1, C2. Conditions (74) and (75) are stated as part
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of the assumptions of the Lemma (compare equations (71) and (72)). Finally, condition (77) can be shown

by elementary methods.

The solution proposed has the same form as the one obtained in section 3. An agent should enter

retirement when her wealth is sufficiently high. This will occur when Zt is sufficiently low, which in turn is

going to be the case when Wt is high. Similarly, the borrowing constraints will bind once Zt is high, which

will typically be associated with a period of low performance in the stock market. The consumption process

will exhibit a similar behavior to the one described in He and Pages (1993).

The rest of the proposition follows steps similar to section 3.
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Notes

1This assumption can actually be easily relaxed. For instance, we could assume that retirees

can return to the workforce (at a lower wage rate), without affecting any of the major predictions

of the model.

2Some (indirect) evidence to this fact is given in the August 2004 Issue Brief of the Employee

Benefit Research Institute (Figure 2 - based on the EBRI/ICI 401(k) Data)

3If we impose a retirement deadline, this multiple also depends on the distance to this deadline.

4Chan and Viceira (2000) combines intuitions of both literatures. However, they assume labor/

leisure choices that can be adjusted continuously.

5A different way of thinking about our setup is as follows: Assume that past a deadline the

productivity of an individual drops to 0, so that no company is willing to pay her a wage. If one

accepts that such drops in productivity are important for retirement in the first place, then the

models that we analyze in Section 5 capture exactly such a setup.

6We shall denote by F = {Ft} the P -augmentation of the filtration generated by Bt.

7By standard arguments the constant discount factor β could also incorporate a constant hazard

rate of death λ.

8Observe that this is guaranteed if γ > 1

9As we show in the appendix, this will guarantee that retirement takes place with probability 1

in this stochastic setup.

10In the appendix we show that this condition is redundant in many special cases since it is

implied by θ > 0. In the (empirically relevant) region γ > 1, β ≥ r this condition is satisfied

automatically as we show in the appendix.

11See BMS for a proof. Liu and Neis (2002) impose the constraint ht ≥ 0 and obtain different
results. It is interesting to note that in the framework of Liu and Neiss (2002) an individual starts

loosing labor supply flexibility as she approaches the constraint ht = 0. Hence, she effectively

becomes more risk averse. In our framework this is true only post retirement. Pre-retirement, the

individual exposes herself to more risk because this is the only way in which she can accelerate

retirement. This shows that taking indivisibility and irreversibility into account, the properties of

the solution are fundamentally different.

12It is also the key factor behind the behavior of optimal portfolios that will be analyzed in a
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subsequent subsection

13This follows directly from equation (25). As Wt → −y0
r we know by the budget constraint will

imply consumption levels arbitrarily close to 0. Also, as we show in the appendix γ(1− γ2)− 1 > 0
and hence the term c

γ(1−γ2)−1
t goes to 0 leading to limWt→− y0

r
mpc = θ.

14Actually, it is not difficult to show by the results in the Appendix that λ is the solution to

equation (13) if Wt =W.

15It is indeed commonly accepted that the empirically observed low correlation between the stock

market and consumption is one of the key issues behind the equity premium puzzle.

16This can be formally shown by applying Ito’s Lemma to c(Wt) together with the dynamics of

the wealth process (1) and the optimal portfolio π(Wt) to arrive at (27)

17Allowing for continuous adjustment of labor until T does not affect the main conclusions of

this section.

18An important remark on terminology: The term "finite horizon" refers to the fact that the

optimal stopping region becomes a function of the deadline to mandatory retirement. The individual

continues to be infinitely lived.

19Admittedly, not all of these effects are purely due to non-separability between leisure and

consumption. Home production is undoubtedly a key determinant behind these drops. It is im-

portant to note however, that our model is not incompatible with such an explanation. As long

as a) the agent can leverage consumption utility with her increased leisure and b) time spent on

home production is not as painful as work, the present model can be seen as a good reduced form

approximation to a more complicated model that would model home production explicitly.

20Employee Benefits Research Institute, Issue Brief 272 (Aug 2004), especially Figure 2.

21This section is based on Karatzas and Wang (2000). For a more explicit presentation see also Karatzas

and Shreve (1998)

22The proof is omitted and is available upon request.

23Proof available upon request.

24Recall that the state variable evolves as:dZtZt
= (β − r) dt − κdBt, Z0 = λ, so that κ is its standard

deviation.

25This proof is available upon request. It is ommited because it effectively replicates the steps in Karatzas

and Wang (2000), combined with the results in He and Pages (1993)
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26A more detailed proof is available upon request.
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Figure 1: Wealth Thresholds as a function of age. For the left figure we use K1/γθ = 0.5, whereas

for the right figure we use γ = 2.
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Figure 2: Relative importance of the portfolio holdings due to the real option to retire. Percent

of threshold refers to the level of wealth normalized by the threshold wealth that would imply

retirement at age 64.
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Figure 3: Portfolio holdings for an individual who retired in 1999 at age 58. Portfolio refers to total

stockholdings divided by financial wealth.
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Figure 4: Portfolio holdings for an individual who retired in 1999 at age 58. Portfolio refers to total

stockholdings divided by total resources (financial wealth + human capital).
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Figure 5: Portfolio holdings for an individual who was 58 years old in 1999 but did not have enough

wealth to retire. Portfolio refers to total stockholdings divided by financial wealth.
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Figure 6: Portfolio holdings for an individual who was 58 years old in 1999 but did not have enough

wealth to retire. Portfolio refers to total stockholdings divided by total resources (financial wealth

+ human capital).
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Figure 8: Value functions for the analytical approximation and the numerical solution. The top

panel depicts levels, whereas the bottom panel depicts relative error.
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Figure 9: Critical wealth levels as a function of years to mandatory retirement for the analytical

solution, and the numerical solution obtained via a binomial tree.
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