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Abstract

In the instrumental variables (IV) regression model, weak instruments can lead to
bias in estimators and size distortion in hypothesis tests. This paper examines how
weak instruments affect the identification of the elasticity of intertemporal substitution
(EIS) through the linearized Euler equation. Conventional IV methods result in an
empirical puzzle that the EIS is significantly less than one while its inverse is not
different from one. This paper shows that weak instruments can explain the puzzle
and reports valid confidence intervals for the EIS using pivotal statistics. The EIS is

less than one and not significantly different from zero for eleven developed countries.
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I Introduction

The elasticity of intertemporal substitution (EIS) in consumption is a parameter of central
importance in macroeconomics and finance. In a basic model of the effects of monetary
policy, the EIS is the parameter that relates current and expected future real interest rates
to the current level of aggregate demand in the “intertemporal IS relation” (Woodford 2003,
Chapter 4). In the consumption and portfolio choice problem of an infinitely lived investor
with Epstein and Zin (1989) preferences, the EIS is the key parameter in the optimal con-
sumption rule (Campbell and Viceira 1999).
To estimate the EIS, denoted by v, one typically uses the regression equation

Acipr = T +Yriper + i, (1)

where Ac;yq is the consumption growth at time ¢ + 1, r; ;41 is the real return on asset ¢ at
t+1, and 7; is a constant. The error & ;41, which is linear in the innovation to consumption
growth and asset return, is correlated with the regressor ;4. However, given a vector of

instruments Z; uncorrelated with the error, 1) can be identified by the moment restriction

E[thz‘,tﬂ] = 0. (2)

Z; typically consists of economic variables known at time ¢, such as lagged consumption
growth and asset return. Equation (1) can be estimated by two stage least squares (TSLS) if
the error is homoskedastic, or by linear generalized method of moments (GMM) if the error
is heteroskedastic.

Regression equation (1) can be written in the reversed form as
1
v

where p; is a constant and 7;,4;1 is the error. The inverse of the EIS, which is also the

Tite1 = Wi + —Ac1 + Migt1, (3)

coefficient of relative risk aversion under power utility, is then identified by the moment

restriction
E[Z1;141] = 0. (4)

Moment restrictions (2) and (4) are equivalent up to a linear transformation.



Using equation (1) or (3), numerous papers have estimated the EIS with US data (e.g.
Hansen and Singleton (1983), Hall (1988), and Campbell and Mankiw (1989)) and interna-
tional data (e.g. Campbell (2003)). The general empirical finding is that the EIS estimated
by equation (1) is small (Hall 1988), while its inverse estimated by equation (3) is also small
(Hansen and Singleton 1983). For instance, Campbell (2003, Table 9) reports a 95% con-
fidence interval of [-0.14,0.28] for 1, using quarterly US data (1947-1998) on nondurable
consumption and T-bill returns. On the other hand, he reports a 95% confidence interval of
[-0.73,2.14] for 1/1).

Therefore, one rejects the null hypothesis ¢ = 1 using equation (1), which instruments for
T-bill return, but fails to reject ¢ = 1 using equation (3), which instruments for consumption
growth. Whether ¢ < 1 is of economic interest because it has important implications on
the relative magnitudes of income and substitution effects in the intertemporal consumption
decision of an investor facing time-varying expected returns. Campbell and Viceira (1999)
show that when the EIS is less (greater) than one, the investor’s optimal consumption-wealth
ratio is increasing (decreasing) in expected returns.

Although equations (1) and (3) correspond to the same moment restriction up to a linear
transformation, GMM is not invariant to such transformations. Therefore, the choice of
normalization for the moment restriction can affect point estimates and confidence intervals.
According to conventional first-order asymptotic theory, the choice of normalization should
be negligible in large samples, leading to the same (at least approximately) inference of
the EIS. In practice, however, equations (1) and (3) give very different (even contradictory)
confidence intervals for the EIS as discussed above.

The leading explanation for this apparent failure of first-order asymptotics is weak in-
struments. In order for a vector of instruments Z; to be valid, it must not only be exogenous
but relevant, that is correlated with the endogenous variable r;,.; in equation (1) or Acyqq
in equation (3). As Neely, Roy and Whiteman (2001) and Campbell (2003) note, weak in-
struments is a problem in estimating the EIS because both consumption growth and asset
returns are notoriously difficult to predict. Weak instruments can cause estimators to be
severely biased and the finite-sample distribution of test statistics to depart sharply from

the limiting distribution, leading to large size distortions in hypothesis tests (see Nelson



and Startz (1990), Staiger and Stock (1997), or Stock, Wright and Yogo (2002) for a recent
survey).

The purpose of this paper is to estimate and make valid inference of the EIS for the
eleven developed countries in Campbell’s (2003) dataset, carefully accounting for problems
caused by weak instruments. The idea that weak instruments is a problem in estimating the
EIS is not new, and the paper that is closest to this is Neely et al. (2001). Showing that
weak instruments may account for the discrepancy between small values of ¢ estimated by
equation (1) and small values of 1/1 estimated by equation (3), Neely et al. (2001, p. 403)
conclude that “prior beliefs grounded in economic theory seem to be necessary to settle the
consumption CAPM debate over small versus large risk aversion” because of identification
failure.!

Compared to Neely et al. (2001), this paper goes a step further to estimate the EIS
despite near identification failure. I am able to make progress on the EIS debate due to
recent methods that have been developed to handle weak instruments. Stock and Yogo
(2003) have developed a pretest, based on the first-stage F-statistic, to formally test whether
given instruments are weak. Some instrumental variables (IV) estimators, such as the limited
information maximum likelihood (LIML) estimator, provide more reliable point estimates
and inferences with weak instruments, compared to TSLS (Hausman, Hahn and Kuersteiner
2001, Stock and Yogo 2003). Kleibergen (2002) and Moreira (2001, 2003) have developed
pivotal statistics to test coefficients in the structural equation, which result in tests with
correct size regardless of the strength of identification. Using these methods, I conclude
that the EIS is small across the eleven developed countries, which agrees with Hall’s (1988)
finding for the US.

The rest of the paper is organized as follows. Section II reviews the assumptions necessary
to derive regression equations (1) and (3) from the Euler equation for Epstein and Zin
(1989) preferences. Section III outlines the relevant econometric methods when instruments
are weak. Section IV applies these econometric methods to data from eleven developed

countries and discusses the empirical findings. Section V concludes.

!'Neely et al. assume power utility, so the risk aversion is the inverse of the EIS.



II Linearized Euler Equation

Let § be the subjective discount factor, v be the coefficient of relative risk aversion, and
define = (1 —+)/(1—1/4). The Epstein and Zin (1989, 1991) objective function is defined
recursively by

Uy = [(1 - 8)C " 4+ §(B,ULHYOP1a=), (5)
where C} is consumption at time ¢. In the special case v = 1/1, (5) reduces to the familiar
time separable power utility model with period utility U(C;) = C}~7/(1 — 7). The repre-
sentative household maximizes objective function (5) subject to the intertemporal budget

constraint

Wiv1 = (1 4+ Ry 1) (W — Cy), (6)

where Wy, is the household’s wealth and 1+ R,, ;11 is the gross real return on the portfolio
of all invested wealth at ¢ + 1. Epstein and Zin (1991) show that (5) and (6) together imply

an Euler equation of the form

Oy —1/4\ ? 1 1-6
E |6 S 1+ R, —1, 7
(&) ) (Faem) o "

where 1 + R, 441 is the gross real return on asset :.

A. Conditional Homoskedasticity

Let lowercase letters denote the log of the corresponding uppercase variables (e.g. r;:41 =
log(14 R;++1)). Assuming that asset returns and consumption are homoskedastic and jointly

lognormal conditional on information at time ¢, the Euler equation (7) can be linearized as

1
Eirigy = i+ EEtACtH, (8)
— 0
Hy = — lOg(S + Var(?“w7t+1 — Etrw7t+1) — Z—WVHJT(ACHJ — EtACt+1)7 (9)
1 0
Wi = py— évar(ri,t-i—l —Eirig) + @COV(TMH —Eirigp1, Acer — EdAciiq)
+(1 = 0)Cov(ritir — Erizir, Twir1 — By is1)- (10)

(See Campbell (2003) or Campbell and Viceira (2002, Chapter 2) for a textbook treatment.)

Without the assumption of lognormality, equation (8) holds as a second-order loglinear
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approximation of (7). For a conditionally riskfree asset, equation (8) reduces to

1
i1 = piy + @EtActH. (11)

Regression equation (3) is obtained from equation (8) by setting
1
MNit+1 = Tit+1 — Eth’,tﬂ - @(Act+1 - EtACt+1>-

The error 7; 441 is conditionally homoskedastic by the same assumption used to linearize the
Euler equation. It is straightforward to show that 7, is serially uncorrelated and satisfies
the moment restriction (4). The efficient two-step GMM estimator is TSLS in this case.
In order for the instruments to be relevant (i.e. not weak), they must be correlated with
consumption growth Ac;y.

Regression equation (1) is obtained by rearranging (3), which implies that

fz‘,t+1 = ACt+1 - EtACtH - w(ri,tJrl - EtT’i,tH)-

Since moment restriction (2) is satisfied, 1) can be estimated by TSLS. In this normalization,

the instruments are weak if they are weakly correlated with asset return r; ;.

B. Conditional Heteroskedasticity

If asset returns and consumption are conditionally heteroskedastic, Euler equation (7) can
still be linearized as equation (8). The only difference is that the variance and covariance
terms that appear in the intercept p; must be replaced by conditional variances and co-
variances. In this section, I show that the EIS can still be identified by the same moment
restrictions.

To simplify the notation, consider the linearized Euler equation for the riskfree asset (11)
in the special case of power utility (i.e. v =1/¢ and 6 = 1),

T = e+ YEAC, (12)
2

Kre = — 10g5 — %Vart(ACtH — EtACt+1). (13)

The intercept ps,; is now subscripted by ¢ to account for conditional heteroskedasticity in

consumption, which represents precautionary savings. As long as the vector of instruments



Z,; is uncorrelated with the innovation to the conditional variance of consumption, that is
E[Z(prt — 11f)] = 0, the inverse of the EIS (the coefficient of relative risk aversion in this
case) is identified by moment restriction (4). In this case, TSLS is consistent but is no longer
the efficient two-step GMM estimator.

This suggests that even if instruments Z; are correlated with the conditional variance
and covariance terms that appear in p;, a vector of twice lagged instruments Z;,_; satisfies

the moment restriction E[Z;_17; ;1] = 0, where

1
Migs1 = Mg — Mi + Vi1 — Eeripp — @(Actﬂ — EAciiq).

In other words, the inverse of the EIS can still be identified by regression equation (3)
although inference must now account for conditional heteroskedasticity in the error 7;41.
A similar point has been made by Attanasio and Low (2000) in the context of estimating
the linearized Euler equation on household data. They argue that the coefficient of relative
risk aversion can be identified with sufficiently long time series data in response to Carroll’s

(2001) criticism that it cannot be estimated consistently on a cross section of households.

C. Estimation of the Nonlinear Euler Equation

This paper focuses on estimation of the EIS based on the linearized Euler equation. In this
section, I briefly compare this approach to estimation based on the nonlinear Euler equation.

Given a vector of instruments, the preference parameters 9, v, and ¢ can be estimated by
GMM through the nonlinear Euler equation (7). This is the approach taken by Hansen and
Singleton (1982) for the power utility case and by Epstein and Zin (1991) for Epstein-Zin
preferences. As noted by Epstein and Zin (1991), the difficulty with this approach is that
it requires knowledge of returns on the wealth portfolio, which includes returns on human
capital. Hence, Roll’s (1977) critique on the testability of CAPM applies. In contrast, the
EIS can be estimated from the linearized Euler equation (8) without knowledge of returns
on the wealth portfolio.

Aside from this practical advantage, the reason for focusing on the linearized Euler equa-
tion is that much more is known about weak instruments in the linear IV regression model.

Many of the recent econometric methods that handle weak instruments (e.g. Stock and
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Yogo (2003), Kleibergen (2002), and Moreira (2003)) apply to the linear IV model with
conditional homoskedasticity. I therefore impose the assumption of conditional homoskedas-
ticity for most of the empirical work in Section IV, although I also check that the results are
robust to heteroskedasticity.

The main disadvantage of the linearized Euler equation is that the discount factor ¢
cannot be identified since it enters additively in the intercept (10), along with unknown
second moments of innovations to consumption and asset returns (Attanasio and Low 2000).
Nevertheless, the study of weak instruments in the linear model is interesting because of
the large existing literature that uses this methodology, starting with Hansen and Singleton
(1983) and Hall (1988). For those interested in the nonlinear model, I refer to a related
study by Stock and Wright (2000). They develop GMM asymptotic theory under weak
identification and apply it to estimation of preference parameters through the nonlinear

Euler equation.

III Econometric Methods for Weak Instruments
Following the notation in Staiger and Stock (1997), the linear IV regression model is

y = Y@+ Xvy+u, (14)

Y = ZI+X®+V, (15)

where (14) is the structural equation of interest and (15) is the reduced form for the n
endogenous regressors. ¥y is a T x 1 vector of T observations, Y is a T' x n matrix of
endogenous regressors, X is a 7" x K; matrix of included exogenous regressors, and Z is a
T x K, matrix of instruments excluded from the structural equation. All matrices have full
rank, and the order condition Ky > n is satisfied. u and V are T x 1 vector and T' X n matrix
of errors, respectively, whose rows are assumed to be serially uncorrelated with mean zero

and covariance matrix

Uy Ouu E/\/u
E (u, V)| =%= ) (16)
Vi Yvu vy



Let Z = [X,Z], where 7; denotes its tth row. Then the identifying assumption is
E(Z(u, V})] = 0.

The reduced form for y is
y =216+ X(P6+7) +v, (17)

where v = u + V3. The rows of V = [v,V] are serially uncorrelated with mean zero and

covariance matrix

'Y + 208y, F'E
B U (o, V)| =0=%+ BEvvB+ 208y, B'Evy ' (18)

Vi Yyvi 0

A. k-Class Estimators

Let Y = [y,Y] and X = [Y, X]. Define the matrices Px = X(X'X)™'X’ and Mx = I — Px.
(Analogous notation is used for projection onto matrices other than X.) Let the superscript
L denote the residual from the projection onto X (e.g. Y+ = MxY). The k-class estimator
of (3 is

-~

Blk) = Y (I = kMz)Y -] Y (I = kMgo)yt]. (19)
The three special cases of interest in this paper are

1. TSLS with k = 1;

2. LIML with k£ = %LIML, where %LIML is the smallest root of the determinantal equation

V' MxY — kY MyY| = 0;
3. Fuller-k (Fuller 1977) with k = kpryp — 1/(T — K1 — Ka).

The Wald statistic for testing the null hypothesis § = [, is

(B(k) — Bo) [Y (I — kM) Y (B(k) — fy)

Wik) = 0 ’

(20)

where G, (k) = u(k)u(k) /(T — K; —n) and a(k) = y* — Ylg(k).
Under conventional first-order asymptotics, the three k-class estimators and the corre-
sponding Wald statistics have the same asymptotic distribution (see Amemiya (1985, pp.

236-238)). However, first-order asymptotics is a poor approximation in finite samples when
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instruments are weak (Nelson and Startz 1990). Staiger and Stock (1997) develop an alterna-

)

tive asymptotic framework, “weak-instrument asymptotics,” which accurately approximates
the sampling distribution of estimators and test statistics even when instruments are weak.

Under weak-instrument asymptotics, the three estimators and the corresponding Wald
statistics have nonstandard limiting distributions that differ from one another. Both TSLS
and Fuller-k are biased, but the bias of Fuller-£ is less severe for given population parameters.
Similarly, the size distortion of the LIML Wald test is less severe than that of the TSLS Wald
test (Stock and Yogo 2003). Hence, Fuller-k and LIML can be thought of as estimators that

are more robust to weak instruments than TSLS (see Stock et al. (2002, Section 6)).

B. Test for Weak Instruments

Suppose there is only one endogenous regressor in the structural equation (i.e. n = 1).
Then the key population parameter that measures the relevance of the instruments is the

concentration parameter,
trzlrrz
2 _ 'z~ z-11

S 2

I

Following the discussion in Rothenberg (1984, Section 6), u* can be thought of as the “sample
size” in simultaneous equations models. When u? is large, the TSLS estimator is approxi-
mately unbiased, and the distribution of the its t-statistic is approximately standard normal.
When g2 is small, the TSLS estimator can be badly biased, and the distribution of the its
t-statistic can be highly skewed (see Stock et al. (2002, Figure 1)).

This suggests that one can test whether instruments are weak by testing whether p? is
sufficiently small to cause bias or size distortion. To test the null hypothesis that instruments
are weak, Stock and Yogo (2003) propose using the first-stage F-statistic,

'z 7'

F —
KyXyy

(22)

)

where II = [Z+ 217124V L and Syy = Y'M,Y/(T — K| — K,). Note that the F-statistic
is the sample analog of the concentration parameter (21), scaled by K,. The null hypotheses

that I consider in this paper are:
1. The bias of TSLS as a fraction of OLS bias is greater than 10%. (10.27)
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2. The actual size of the TSLS t-test at 5% significance can be greater than 10%. (24.58)
3. The bias of Fuller-k as a fraction of OLS bias is greater than 10%. (6.37)

4. The actual size of the LIML ¢-test at 5% significance can be greater than 10%. (5.44)

The numbers in parentheses are the critical values of the test at 5% significance when K, = 4,
taken from Stock and Yogo (2003, Tables 1-4). For instance, to assure that TSLS relative
bias is no greater than 10%, the F-statistic must be greater than 10.27. That the critical
value for TSLS is greater than the critical value for Fuller-k is a reflection of the fact that
the latter is more robust to weak instruments. Likewise, LIML is less prone to size distortion

than TSLS for the same level of instrument relevance, which results in a lower critical value.

C. Similar Tests

The pretest described in the last section can detect weak instruments, protecting the re-
searcher from biased estimates and misleading inferences. However, a researcher may be
interested in making valid inference of the structural parameter  despite having weak instru-
ments. In this section, I outline methods fully robust to weak instruments that accomplish
this task.

Moreira (2001, 2003) has characterized the family of similar tests in the IV regression
model when instruments are fized (i.e. Z is nonrandom), the reduced-form errors V; are
independently and identically distributed normal, and the reduced-form covariance matrix €2
is known. Under these assumptions, he showed that there is a pair of independent sufficient
statistics, S and 7, for the unknown parameters § and II. Under the null hypothesis
B = P, S is pivotal (i.e. its distribution does not depend on II), and 7 is sufficient for
nuisance parameter I1. Hence, any nonpivotal statistic ¢(S, 7, 5y) becomes a pivotal statistic
conditional on 7 = 7. Let ¢(7, By, ) be the upper a-quantile of the null distribution of
d(S,7,0). The test that rejects the null if ¢(S, 7, 5y) > (7, fo, ) is similar at the level «
(see Moreira (2003, Theorem 1)).

In the general IV regression model (i.e. stochastic regressors, non-Gaussian errors,
and unknown €2), Moreira’s exact finite-sample results hold asymptotically under weak-

instrument asymptotics (Moreira 2003, Theorem 2). This result is not surprising since
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weak-instrument asymptotics corresponds to the finite-sample distribution theory for the si-
multaneous equations model with fixed regressors, Gaussian errors, and known reduced-form
covariance matrix. Consequently, the family of similar tests forms a basis for fully robust
inference in the presence of weak instruments.?

To characterize these tests, define the vectors ag = (0o, 1)’ and by = (1,—/p)" and the

statistics

ZJ./zJ_ 71/ZZL/?J-b
s - L2 ] (23)
(Do) /2

_ (ZJ_/ZL)—l/QZy?J-@—lao 24)
(a{]ﬁ*lao)l/? ’

where () = VIMZY/ (T — K; — K3) is a consistent estimator of €2. In this paper, I consider

three Gaussian similar tests:

1. The Anderson-Rubin (AR) test (Anderson and Rubin 1949) based on the statistic

AR(G) = 52, 29

which is asymptotically distributed X%{z /K3 under the null (Staiger and Stock 1997,
Theorem 5).

2. The Lagrange multiplier (LM) test (Kleibergen 2002) based on the statistic

(8'T)?

LM(BO) = Wa

(26)
which is asymptotically distributed x? under the null (Kleibergen 2002, Theorem 1).

3. The conditional likelihood ratio (LR) test (Moreira 2003) based on the statistic

LR(fo) = %(3’5 CTT 4SS TTR —A[(SS)TT) — (STR),  (27)

whose critical values can be computed as a function of Ky and 7’7 by Monte Carlo

simulation.

2For simplicity, I use the terminology “similar test” instead of “asymptotically similar test,” hopefully

without confusion.
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It is well known that the AR test is invariant to linear transformations of the GMM
moment restriction. In the context of moment restrictions (2) and (4), the AR test rejects
the null hypothesis v = 1 based on (2) if and only if it rejects 1/¢) = 1/1y based on
(4). It can be readily verified that the LM and the conditional LR tests share this invariance
property. In contrast, two-step GMM is not invariant to linear transformations of the moment
restriction, which results in contradictory inference about the EIS depending on whether one
uses moment restriction (2) or (4).

These similar tests can be inverted to construct confidence regions for 5. For instance,

one can construct a (1 — «)100% confidence region based on the AR test as

{0 € BIAR(Bo) < XFy.0/ K2},

where B is the parameter space for g and X%(%a is the upper a-quantile of the X%(Q distribution.
If the parameter space is unrestricted, B is the set of reals; if § is restricted to be positive,
which may be the case for the EIS, B is the set of positive reals. In general, these confidence
regions can consist of disjoint intervals. By taking the minimum and maximum values of
0 in the confidence region, one obtains a confidence interval that has coverage of at least

(1 —«)100%.

D. Power of Similar Tests

Because more powerful tests lead to tighter confidence intervals, one would like to use the
most powerful similar test to construct confidence intervals that are robust to weak instru-
ments. Unfortunately, there is no uniformly most powerful test (Moreira 2001), so the three
similar tests have relative power advantages in different regions of the parameter space. In
this section, I discuss their power properties.

A natural way to evaluate the power of similar tests is to consider their asymptotic power
under weak-instrument asymptotics. Asymptotically, the power functions depend on the
scaled concentration parameter u?/K, and the degree of endogeneity p = Xy, / (Evvauu)l/ 2,

In an earlier version of this paper, I reported the power functions, which have since been

published in Stock et al. (2002, Figure 2). To avoid redundancy, I refer to their figures in the
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following discussion.> The Appendix details the asymptotic results used to plot the power
functions, which were omitted from Stock et al. (2002) to save space.

Stock et al. plot the power functions for two levels of instrument relevance p?/K, = 1,5
and two levels of endogeneity p = 0.5,0.99. When instruments are very weak (i.e. u?/Ky =
1), all three similar tests have poor power in the sense that the power is far less than one even
at distant alternatives. As a consequence, confidence intervals based on similar tests can be
unbounded when instruments are very weak. When p = 0.5, the AR and conditional LR tests
have better power than the LM test. When p = 0.99, the LM and conditional LR tests have
better power than the AR test. When instruments are moderately weak (i.e. u?/K, = 5),
the similar tests have much better power; their power approaches one for distant alternatives.
Among the three similar tests, the conditional LR test has the best power properties; its
power function comes close to the power envelope for similar tests at both values of p. This
suggests that the conditional LR test should usually result in confidence intervals that are

tightest among the three similar tests.

E. Heteroskedasticity and Simultaneous Estimation

In this section, I discuss econometric methods for the more general GMM setting. This
generalization allows for conditional heteroskedasticity and simultaneous estimation. For
instance, if the linearized Euler equation (8) holds for both the interest rate and stock return,
GMM allows for simultaneous estimation of the EIS using both moment restrictions. The
cost of going to the more general setup is that methods designed to handle weak instruments
are much less developed. Generalizations of the test for weak instruments or similar tests to
GMM are topics of ongoing research.

To be concrete with notation, suppose there are two Ky X 1 vectors of linear moment
restrictions, which is the relevant case for this paper. Let y;, 3o, Y1, and Y5 be T x 1
vectors of T' observations on jointly endogenous variables. As before, Z is a T" x K5 matrix

of instruments, and superscript L denotes the residual from projection onto the included

3Figure 2 in Stock et al. (2002) is for Ko = 5 instruments, whereas Ko = 4 in the empirical application
of this paper. However, this is not a substantive difference since the power functions for Ky =4 and Ky =5

are essentially the same.
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exogenous regressors X. To simplify notation, let X include a column of ones so that the

residuals from the projection have mean zero. Define the 2K, x 1 vector

ZJ_(yJ_ _ YJ_ )
op) = | A0 | 29
Zi (Yo — Y5 3)
The moment restriction is E[¢:(5y)] = 0.

Define the heteroskedasticity robust weighting matrix

V() =T" Z ¢(8)b:(B) (29)

and the objective function
/

S(8,8) = V()™

T
T2 " ()
t=1

TN W)] : (30)

The efficient two-step GMM estimator 32 minimizes S([3, /ﬂ\l) for some consistent first-step
estimator B\l. For example, the first-step estimator can be obtained by minimizing (30) using
the weighting matrix V(3) = I, ® (Z+'Z1). Since the objective function is quadratic in this

case, the two-step estimator has the closed form

/ —1 12

ZJ./}/IJ_ ~ ZJ_/Y'IJ_ ZJ_/}/IJ_ N ZJJyf_

By = V(5h) V(B! . (31
ZJ_/Y'2J_ ZJ_/Y'QJ_ ZJ_/Y'QJ_ ZJJy;‘

An alternative to two-step GMM is the continuous updating estimator (CUE), which
minimizes the objective function S(/3, 3). In a Monte Carlo experiment designed to simulate
estimation of the linearized Euler equation, Hansen, Heaton and Yaron (1996) find that CUE
is less biased and its confidence intervals have better coverage rates than two-step GMM. The
intuition for this result is that CUE is a generalization of LIML to GMM, just as two-step
GMM is a generalization of TSLS.

In the GMM setting, the analog of weak instruments is weak identification (Stock and
Wright 2000), which, loosely speaking, occurs if E[¢;(5)] ~ 0 even when 3 # [y. Confi-
dence intervals for § with the correct coverage can be constructed by inverting the objective
function (30) evaluated at . By Stock and Wright (2000, Theorem 2), S(fy, (o) is asymp-

totically distributed 3 K, Lhis test, which I refer to as the S-test, is a generalization of the
AR test to GMM.
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IV Empirical Results

A. Data

The dataset that I use is from Campbell (2003). It consists of quarterly data on equity
markets at an aggregate level and macroeconomic variables for eleven developed countries:
Australia (AUL), Canada (CAN), France (FR), Germany (GER), Italy (ITA), Japan (JAP),
Netherlands (NTH), Sweden (SWD), Switzerland (SWT), the United Kingdom (UK), and
the United States (USA). In addition, a longer time series is available at annual frequency for
Sweden, the UK, and the US. The primary sources of international data are Morgan Stanley
Capital International and International Financial Statistics of the International Monetary
Fund. The sample periods vary by country and frequency, which are reported in Table 1.
With exception of the US, quarterly data is only available starting in 1970. For the quarterly
US series, I report the results for both the full sample, which starts in 1947, and a truncated
sample that starts in 1970. For a full description of the dataset, see Campbell (2003) and
the accompanying data appendix Campbell (1998).

For each country, I estimate the EIS using two asset returns: the real interest rate,
denoted by r¢, and the real aggregate stock return, denoted by r.. The real stock return
is constructed as log of the gross stock return deflated by the consumer price index. The
real interest rate is constructed in the same way, using an available proxy for the short-
term interest rate. Real consumption growth is the first difference in log real consumption
per capita. For all quarterly series except for the US, the consumption measure is total
consumption rather than nondurables and services due to data availability. The timing
convention used for consumption is “beginning of the period,” following Campbell (2003).
In other words, I assume that the consumption data for a given time period is the flow

measured at the beginning of the period rather than at the end.

B. Test for Weak Instruments

The coefficients of interest are the EIS 1, estimated by equation (1), and its inverse 1/1),

estimated by equation (3). The instruments that I use for the endogenous regressor Ac;; 1 in
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equation (3) and 7,41 in equation (1) are the nominal interest rate, inflation, consumption
growth, and log dividend-price ratio.* All instruments are lagged twice to avoid problems
with time aggregation in consumption data (Hall 1988). As discussed in Section II, this also
assures that instruments are exogenous even if consumption or asset returns are conditionally
heteroskedastic.

Assuming that the error is conditionally homoskedastic, equations (1) and (3) can be
estimated by TSLS. In Table 1, I report the first-stage F-statistic for each of the possible
endogenous regressors (consumption growth, interest rate, and stock return), which is the
relevant statistic to test for weak instruments. Next to the F-statistic, I report the p-values
of the test. A p-value less than 0.05 means that the test would reject the null hypothesis
of weak instruments at the 5% significance level. As explained in Section III, the p-value

depends on the type of estimator (TSLS, Fuller-%, or LIML) used for 