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Abstract

In the instrumental variables (IV) regression model, weak instruments can lead to

bias in estimators and size distortion in hypothesis tests. This paper examines how

weak instruments affect the identification of the elasticity of intertemporal substitution

(EIS) through the linearized Euler equation. Conventional IV methods result in an

empirical puzzle that the EIS is significantly less than one while its inverse is not

different from one. This paper shows that weak instruments can explain the puzzle

and reports valid confidence intervals for the EIS using pivotal statistics. The EIS is

less than one and not significantly different from zero for eleven developed countries.
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I Introduction

The elasticity of intertemporal substitution (EIS) in consumption is a parameter of central

importance in macroeconomics and finance. In a basic model of the effects of monetary

policy, the EIS is the parameter that relates current and expected future real interest rates

to the current level of aggregate demand in the “intertemporal IS relation” (Woodford 2003,

Chapter 4). In the consumption and portfolio choice problem of an infinitely lived investor

with Epstein and Zin (1989) preferences, the EIS is the key parameter in the optimal con-

sumption rule (Campbell and Viceira 1999).

To estimate the EIS, denoted by ψ, one typically uses the regression equation

∆ct+1 = τi + ψri,t+1 + ξi,t+1, (1)

where ∆ct+1 is the consumption growth at time t + 1, ri,t+1 is the real return on asset i at

t + 1, and τi is a constant. The error ξi,t+1, which is linear in the innovation to consumption

growth and asset return, is correlated with the regressor ri,t+1. However, given a vector of

instruments Zt uncorrelated with the error, ψ can be identified by the moment restriction

E[Ztξi,t+1] = 0. (2)

Zt typically consists of economic variables known at time t, such as lagged consumption

growth and asset return. Equation (1) can be estimated by two stage least squares (TSLS) if

the error is homoskedastic, or by linear generalized method of moments (GMM) if the error

is heteroskedastic.

Regression equation (1) can be written in the reversed form as

ri,t+1 = µi +
1

ψ
∆ct+1 + ηi,t+1, (3)

where µi is a constant and ηi,t+1 is the error. The inverse of the EIS, which is also the

coefficient of relative risk aversion under power utility, is then identified by the moment

restriction

E[Ztηi,t+1] = 0. (4)

Moment restrictions (2) and (4) are equivalent up to a linear transformation.
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Using equation (1) or (3), numerous papers have estimated the EIS with US data (e.g.

Hansen and Singleton (1983), Hall (1988), and Campbell and Mankiw (1989)) and interna-

tional data (e.g. Campbell (2003)). The general empirical finding is that the EIS estimated

by equation (1) is small (Hall 1988), while its inverse estimated by equation (3) is also small

(Hansen and Singleton 1983). For instance, Campbell (2003, Table 9) reports a 95% con-

fidence interval of [-0.14,0.28] for ψ, using quarterly US data (1947–1998) on nondurable

consumption and T-bill returns. On the other hand, he reports a 95% confidence interval of

[-0.73,2.14] for 1/ψ.

Therefore, one rejects the null hypothesis ψ = 1 using equation (1), which instruments for

T-bill return, but fails to reject ψ = 1 using equation (3), which instruments for consumption

growth. Whether ψ < 1 is of economic interest because it has important implications on

the relative magnitudes of income and substitution effects in the intertemporal consumption

decision of an investor facing time-varying expected returns. Campbell and Viceira (1999)

show that when the EIS is less (greater) than one, the investor’s optimal consumption-wealth

ratio is increasing (decreasing) in expected returns.

Although equations (1) and (3) correspond to the same moment restriction up to a linear

transformation, GMM is not invariant to such transformations. Therefore, the choice of

normalization for the moment restriction can affect point estimates and confidence intervals.

According to conventional first-order asymptotic theory, the choice of normalization should

be negligible in large samples, leading to the same (at least approximately) inference of

the EIS. In practice, however, equations (1) and (3) give very different (even contradictory)

confidence intervals for the EIS as discussed above.

The leading explanation for this apparent failure of first-order asymptotics is weak in-

struments. In order for a vector of instruments Zt to be valid, it must not only be exogenous

but relevant, that is correlated with the endogenous variable ri,t+1 in equation (1) or ∆ct+1

in equation (3). As Neely, Roy and Whiteman (2001) and Campbell (2003) note, weak in-

struments is a problem in estimating the EIS because both consumption growth and asset

returns are notoriously difficult to predict. Weak instruments can cause estimators to be

severely biased and the finite-sample distribution of test statistics to depart sharply from

the limiting distribution, leading to large size distortions in hypothesis tests (see Nelson
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and Startz (1990), Staiger and Stock (1997), or Stock, Wright and Yogo (2002) for a recent

survey).

The purpose of this paper is to estimate and make valid inference of the EIS for the

eleven developed countries in Campbell’s (2003) dataset, carefully accounting for problems

caused by weak instruments. The idea that weak instruments is a problem in estimating the

EIS is not new, and the paper that is closest to this is Neely et al. (2001). Showing that

weak instruments may account for the discrepancy between small values of ψ estimated by

equation (1) and small values of 1/ψ estimated by equation (3), Neely et al. (2001, p. 403)

conclude that “prior beliefs grounded in economic theory seem to be necessary to settle the

consumption CAPM debate over small versus large risk aversion” because of identification

failure.1

Compared to Neely et al. (2001), this paper goes a step further to estimate the EIS

despite near identification failure. I am able to make progress on the EIS debate due to

recent methods that have been developed to handle weak instruments. Stock and Yogo

(2003) have developed a pretest, based on the first-stage F -statistic, to formally test whether

given instruments are weak. Some instrumental variables (IV) estimators, such as the limited

information maximum likelihood (LIML) estimator, provide more reliable point estimates

and inferences with weak instruments, compared to TSLS (Hausman, Hahn and Kuersteiner

2001, Stock and Yogo 2003). Kleibergen (2002) and Moreira (2001, 2003) have developed

pivotal statistics to test coefficients in the structural equation, which result in tests with

correct size regardless of the strength of identification. Using these methods, I conclude

that the EIS is small across the eleven developed countries, which agrees with Hall’s (1988)

finding for the US.

The rest of the paper is organized as follows. Section II reviews the assumptions necessary

to derive regression equations (1) and (3) from the Euler equation for Epstein and Zin

(1989) preferences. Section III outlines the relevant econometric methods when instruments

are weak. Section IV applies these econometric methods to data from eleven developed

countries and discusses the empirical findings. Section V concludes.

1Neely et al. assume power utility, so the risk aversion is the inverse of the EIS.
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II Linearized Euler Equation

Let δ be the subjective discount factor, γ be the coefficient of relative risk aversion, and

define θ = (1−γ)/(1−1/ψ). The Epstein and Zin (1989, 1991) objective function is defined

recursively by

Ut = [(1 − δ)C
(1−γ)/θ
t + δ(EtU

1−γ
t+1 )1/θ]θ/(1−γ), (5)

where Ct is consumption at time t. In the special case γ = 1/ψ, (5) reduces to the familiar

time separable power utility model with period utility U(Ct) = C1−γ
t /(1 − γ). The repre-

sentative household maximizes objective function (5) subject to the intertemporal budget

constraint

Wt+1 = (1 + Rw,t+1)(Wt − Ct), (6)

where Wt+1 is the household’s wealth and 1 + Rw,t+1 is the gross real return on the portfolio

of all invested wealth at t + 1. Epstein and Zin (1991) show that (5) and (6) together imply

an Euler equation of the form

Et

(
δ

(
Ct+1

Ct

)−1/ψ
)θ (

1

1 + Rw,t+1

)1−θ

(1 + Ri,t+1)

 = 1, (7)

where 1 + Ri,t+1 is the gross real return on asset i.

A. Conditional Homoskedasticity

Let lowercase letters denote the log of the corresponding uppercase variables (e.g. ri,t+1 =

log(1+Ri,t+1)). Assuming that asset returns and consumption are homoskedastic and jointly

lognormal conditional on information at time t, the Euler equation (7) can be linearized as

Etri,t+1 = µi +
1

ψ
Et∆ct+1, (8)

µf = − log δ +
θ − 1

2
Var(rw,t+1 − Etrw,t+1) −

θ

2ψ2
Var(∆ct+1 − Et∆ct+1), (9)

µi = µf −
1

2
Var(ri,t+1 − Etri,t+1) +

θ

ψ
Cov(ri,t+1 − Etri,t+1, ∆ct+1 − Et∆ct+1)

+(1 − θ)Cov(ri,t+1 − Etri,t+1, rw,t+1 − Etrw,t+1). (10)

(See Campbell (2003) or Campbell and Viceira (2002, Chapter 2) for a textbook treatment.)

Without the assumption of lognormality, equation (8) holds as a second-order loglinear

5



approximation of (7). For a conditionally riskfree asset, equation (8) reduces to

rf,t+1 = µf +
1

ψ
Et∆ct+1. (11)

Regression equation (3) is obtained from equation (8) by setting

ηi,t+1 = ri,t+1 − Etri,t+1 −
1

ψ
(∆ct+1 − Et∆ct+1).

The error ηi,t+1 is conditionally homoskedastic by the same assumption used to linearize the

Euler equation. It is straightforward to show that ηi,t+1 is serially uncorrelated and satisfies

the moment restriction (4). The efficient two-step GMM estimator is TSLS in this case.

In order for the instruments to be relevant (i.e. not weak), they must be correlated with

consumption growth ∆ct+1.

Regression equation (1) is obtained by rearranging (3), which implies that

ξi,t+1 = ∆ct+1 − Et∆ct+1 − ψ(ri,t+1 − Etri,t+1).

Since moment restriction (2) is satisfied, ψ can be estimated by TSLS. In this normalization,

the instruments are weak if they are weakly correlated with asset return ri,t+1.

B. Conditional Heteroskedasticity

If asset returns and consumption are conditionally heteroskedastic, Euler equation (7) can

still be linearized as equation (8). The only difference is that the variance and covariance

terms that appear in the intercept µi must be replaced by conditional variances and co-

variances. In this section, I show that the EIS can still be identified by the same moment

restrictions.

To simplify the notation, consider the linearized Euler equation for the riskfree asset (11)

in the special case of power utility (i.e. γ = 1/ψ and θ = 1),

rf,t+1 = µf,t + γEt∆ct+1, (12)

µf,t = − log δ − γ2

2
Vart(∆ct+1 − Et∆ct+1). (13)

The intercept µf,t is now subscripted by t to account for conditional heteroskedasticity in

consumption, which represents precautionary savings. As long as the vector of instruments
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Zt is uncorrelated with the innovation to the conditional variance of consumption, that is

E[Zt(µf,t − µf )] = 0, the inverse of the EIS (the coefficient of relative risk aversion in this

case) is identified by moment restriction (4). In this case, TSLS is consistent but is no longer

the efficient two-step GMM estimator.

This suggests that even if instruments Zt are correlated with the conditional variance

and covariance terms that appear in µi,t, a vector of twice lagged instruments Zt−1 satisfies

the moment restriction E[Zt−1ηi,t+1] = 0, where

ηi,t+1 = µi,t − µi + ri,t+1 − Etri,t+1 −
1

ψ
(∆ct+1 − Et∆ct+1).

In other words, the inverse of the EIS can still be identified by regression equation (3)

although inference must now account for conditional heteroskedasticity in the error ηi,t+1.

A similar point has been made by Attanasio and Low (2000) in the context of estimating

the linearized Euler equation on household data. They argue that the coefficient of relative

risk aversion can be identified with sufficiently long time series data in response to Carroll’s

(2001) criticism that it cannot be estimated consistently on a cross section of households.

C. Estimation of the Nonlinear Euler Equation

This paper focuses on estimation of the EIS based on the linearized Euler equation. In this

section, I briefly compare this approach to estimation based on the nonlinear Euler equation.

Given a vector of instruments, the preference parameters δ, γ, and ψ can be estimated by

GMM through the nonlinear Euler equation (7). This is the approach taken by Hansen and

Singleton (1982) for the power utility case and by Epstein and Zin (1991) for Epstein-Zin

preferences. As noted by Epstein and Zin (1991), the difficulty with this approach is that

it requires knowledge of returns on the wealth portfolio, which includes returns on human

capital. Hence, Roll’s (1977) critique on the testability of CAPM applies. In contrast, the

EIS can be estimated from the linearized Euler equation (8) without knowledge of returns

on the wealth portfolio.

Aside from this practical advantage, the reason for focusing on the linearized Euler equa-

tion is that much more is known about weak instruments in the linear IV regression model.

Many of the recent econometric methods that handle weak instruments (e.g. Stock and
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Yogo (2003), Kleibergen (2002), and Moreira (2003)) apply to the linear IV model with

conditional homoskedasticity. I therefore impose the assumption of conditional homoskedas-

ticity for most of the empirical work in Section IV, although I also check that the results are

robust to heteroskedasticity.

The main disadvantage of the linearized Euler equation is that the discount factor δ

cannot be identified since it enters additively in the intercept (10), along with unknown

second moments of innovations to consumption and asset returns (Attanasio and Low 2000).

Nevertheless, the study of weak instruments in the linear model is interesting because of

the large existing literature that uses this methodology, starting with Hansen and Singleton

(1983) and Hall (1988). For those interested in the nonlinear model, I refer to a related

study by Stock and Wright (2000). They develop GMM asymptotic theory under weak

identification and apply it to estimation of preference parameters through the nonlinear

Euler equation.

III Econometric Methods for Weak Instruments

Following the notation in Staiger and Stock (1997), the linear IV regression model is

y = Y β + Xγ + u, (14)

Y = ZΠ + XΦ + V, (15)

where (14) is the structural equation of interest and (15) is the reduced form for the n

endogenous regressors. y is a T × 1 vector of T observations, Y is a T × n matrix of

endogenous regressors, X is a T × K1 matrix of included exogenous regressors, and Z is a

T ×K2 matrix of instruments excluded from the structural equation. All matrices have full

rank, and the order condition K2 ≥ n is satisfied. u and V are T ×1 vector and T ×n matrix

of errors, respectively, whose rows are assumed to be serially uncorrelated with mean zero

and covariance matrix

E

 ut

Vt

 ( ut V ′
t

)

 = Σ =

 σuu Σ′
V u

ΣV u ΣV V

 . (16)
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Let Z = [X,Z], where Z
′
t denotes its tth row. Then the identifying assumption is

E[Zt(ut, V
′
t )] = 0.

The reduced form for y is

y = ZΠβ + X(Φβ + γ) + v, (17)

where v = u + V β. The rows of V = [v, V ] are serially uncorrelated with mean zero and

covariance matrix

E

 vt

Vt

 ( vt V ′
t

)

 = Ω = Σ +

 β′ΣV V β + 2β′ΣV u β′ΣV V

ΣV V β 0

 . (18)

A. k-Class Estimators

Let Y = [y, Y ] and X = [Y,X]. Define the matrices PX = X(X ′X)−1X ′ and MX = I − PX .

(Analogous notation is used for projection onto matrices other than X.) Let the superscript

⊥ denote the residual from the projection onto X (e.g. Y ⊥ = MXY ). The k-class estimator

of β is

β̂(k) = [Y ⊥′(I − kMZ⊥)Y ⊥]−1[Y ⊥′(I − kMZ⊥)y⊥]. (19)

The three special cases of interest in this paper are

1. TSLS with k = 1;

2. LIML with k = k̂LIML, where k̂LIML is the smallest root of the determinantal equation

|Y ′
MXY − kY

′
MZY | = 0;

3. Fuller-k (Fuller 1977) with k = kLIML − 1/(T − K1 − K2).

The Wald statistic for testing the null hypothesis β = β0 is

W (k) =
(β̂(k) − β0)

′[Y ⊥′(I − kMZ⊥)Y ⊥](β̂(k) − β0)

nσ̂uu(k)
, (20)

where σ̂uu(k) = û(k)′û(k)/(T − K1 − n) and û(k) = y⊥ − Y ⊥β̂(k).

Under conventional first-order asymptotics, the three k-class estimators and the corre-

sponding Wald statistics have the same asymptotic distribution (see Amemiya (1985, pp.

236–238)). However, first-order asymptotics is a poor approximation in finite samples when
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instruments are weak (Nelson and Startz 1990). Staiger and Stock (1997) develop an alterna-

tive asymptotic framework, “weak-instrument asymptotics,” which accurately approximates

the sampling distribution of estimators and test statistics even when instruments are weak.

Under weak-instrument asymptotics, the three estimators and the corresponding Wald

statistics have nonstandard limiting distributions that differ from one another. Both TSLS

and Fuller-k are biased, but the bias of Fuller-k is less severe for given population parameters.

Similarly, the size distortion of the LIML Wald test is less severe than that of the TSLS Wald

test (Stock and Yogo 2003). Hence, Fuller-k and LIML can be thought of as estimators that

are more robust to weak instruments than TSLS (see Stock et al. (2002, Section 6)).

B. Test for Weak Instruments

Suppose there is only one endogenous regressor in the structural equation (i.e. n = 1).

Then the key population parameter that measures the relevance of the instruments is the

concentration parameter,

µ2 =
Π′Z⊥′Z⊥Π

ΣV V

. (21)

Following the discussion in Rothenberg (1984, Section 6), µ2 can be thought of as the “sample

size” in simultaneous equations models. When µ2 is large, the TSLS estimator is approxi-

mately unbiased, and the distribution of the its t-statistic is approximately standard normal.

When µ2 is small, the TSLS estimator can be badly biased, and the distribution of the its

t-statistic can be highly skewed (see Stock et al. (2002, Figure 1)).

This suggests that one can test whether instruments are weak by testing whether µ2 is

sufficiently small to cause bias or size distortion. To test the null hypothesis that instruments

are weak, Stock and Yogo (2003) propose using the first-stage F -statistic,

F =
Π̂′Z⊥′Z⊥Π̂

K2Σ̂V V

, (22)

where Π̂ = [Z⊥′Z⊥]−1Z⊥′Y ⊥ and Σ̂V V = Y ′MZY/(T − K1 − K2). Note that the F -statistic

is the sample analog of the concentration parameter (21), scaled by K2. The null hypotheses

that I consider in this paper are:

1. The bias of TSLS as a fraction of OLS bias is greater than 10%. (10.27)
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2. The actual size of the TSLS t-test at 5% significance can be greater than 10%. (24.58)

3. The bias of Fuller-k as a fraction of OLS bias is greater than 10%. (6.37)

4. The actual size of the LIML t-test at 5% significance can be greater than 10%. (5.44)

The numbers in parentheses are the critical values of the test at 5% significance when K2 = 4,

taken from Stock and Yogo (2003, Tables 1–4). For instance, to assure that TSLS relative

bias is no greater than 10%, the F -statistic must be greater than 10.27. That the critical

value for TSLS is greater than the critical value for Fuller-k is a reflection of the fact that

the latter is more robust to weak instruments. Likewise, LIML is less prone to size distortion

than TSLS for the same level of instrument relevance, which results in a lower critical value.

C. Similar Tests

The pretest described in the last section can detect weak instruments, protecting the re-

searcher from biased estimates and misleading inferences. However, a researcher may be

interested in making valid inference of the structural parameter β despite having weak instru-

ments. In this section, I outline methods fully robust to weak instruments that accomplish

this task.

Moreira (2001, 2003) has characterized the family of similar tests in the IV regression

model when instruments are fixed (i.e. Z is nonrandom), the reduced-form errors V t are

independently and identically distributed normal, and the reduced-form covariance matrix Ω

is known. Under these assumptions, he showed that there is a pair of independent sufficient

statistics, S and T , for the unknown parameters β and Π. Under the null hypothesis

β = β0, S is pivotal (i.e. its distribution does not depend on Π), and T is sufficient for

nuisance parameter Π. Hence, any nonpivotal statistic φ(S, T , β0) becomes a pivotal statistic

conditional on T = τ . Let c(τ, β0, α) be the upper α-quantile of the null distribution of

φ(S, τ, β0). The test that rejects the null if φ(S, τ, β0) > c(τ, β0, α) is similar at the level α

(see Moreira (2003, Theorem 1)).

In the general IV regression model (i.e. stochastic regressors, non-Gaussian errors,

and unknown Ω), Moreira’s exact finite-sample results hold asymptotically under weak-

instrument asymptotics (Moreira 2003, Theorem 2). This result is not surprising since
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weak-instrument asymptotics corresponds to the finite-sample distribution theory for the si-

multaneous equations model with fixed regressors, Gaussian errors, and known reduced-form

covariance matrix. Consequently, the family of similar tests forms a basis for fully robust

inference in the presence of weak instruments.2

To characterize these tests, define the vectors a0 = (β0, 1)′ and b0 = (1,−β0)
′ and the

statistics

S =
(Z⊥′Z⊥)−1/2Z⊥′Y

⊥
b0

(b′0Ω̂b0)1/2
, (23)

T =
(Z⊥′Z⊥)−1/2Z⊥′Y

⊥
Ω̂−1a0

(a′
0Ω̂

−1a0)1/2
, (24)

where Ω̂ = Y
′
MZY /(T − K1 − K2) is a consistent estimator of Ω. In this paper, I consider

three Gaussian similar tests:

1. The Anderson-Rubin (AR) test (Anderson and Rubin 1949) based on the statistic

AR(β0) =
S ′S
K2

, (25)

which is asymptotically distributed χ2
K2

/K2 under the null (Staiger and Stock 1997,

Theorem 5).

2. The Lagrange multiplier (LM) test (Kleibergen 2002) based on the statistic

LM(β0) =
(S ′T )2

T ′T , (26)

which is asymptotically distributed χ2
1 under the null (Kleibergen 2002, Theorem 1).

3. The conditional likelihood ratio (LR) test (Moreira 2003) based on the statistic

LR(β0) =
1

2
(S ′S − T ′T +

√
(S ′S + T ′T )2 − 4[(S ′S)(T ′T ) − (S ′T )2]), (27)

whose critical values can be computed as a function of K2 and T ′T by Monte Carlo

simulation.

2For simplicity, I use the terminology “similar test” instead of “asymptotically similar test,” hopefully

without confusion.
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It is well known that the AR test is invariant to linear transformations of the GMM

moment restriction. In the context of moment restrictions (2) and (4), the AR test rejects

the null hypothesis ψ = ψ0 based on (2) if and only if it rejects 1/ψ = 1/ψ0 based on

(4). It can be readily verified that the LM and the conditional LR tests share this invariance

property. In contrast, two-step GMM is not invariant to linear transformations of the moment

restriction, which results in contradictory inference about the EIS depending on whether one

uses moment restriction (2) or (4).

These similar tests can be inverted to construct confidence regions for β. For instance,

one can construct a (1 − α)100% confidence region based on the AR test as

{β0 ∈ B|AR(β0) < χ2
K2,α/K2},

where B is the parameter space for β and χ2
K2,α is the upper α-quantile of the χ2

K2
distribution.

If the parameter space is unrestricted, B is the set of reals; if β is restricted to be positive,

which may be the case for the EIS, B is the set of positive reals. In general, these confidence

regions can consist of disjoint intervals. By taking the minimum and maximum values of

β in the confidence region, one obtains a confidence interval that has coverage of at least

(1 − α)100%.

D. Power of Similar Tests

Because more powerful tests lead to tighter confidence intervals, one would like to use the

most powerful similar test to construct confidence intervals that are robust to weak instru-

ments. Unfortunately, there is no uniformly most powerful test (Moreira 2001), so the three

similar tests have relative power advantages in different regions of the parameter space. In

this section, I discuss their power properties.

A natural way to evaluate the power of similar tests is to consider their asymptotic power

under weak-instrument asymptotics. Asymptotically, the power functions depend on the

scaled concentration parameter µ2/K2 and the degree of endogeneity ρ = ΣV u/(ΣV V σuu)
1/2.

In an earlier version of this paper, I reported the power functions, which have since been

published in Stock et al. (2002, Figure 2). To avoid redundancy, I refer to their figures in the
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following discussion.3 The Appendix details the asymptotic results used to plot the power

functions, which were omitted from Stock et al. (2002) to save space.

Stock et al. plot the power functions for two levels of instrument relevance µ2/K2 = 1, 5

and two levels of endogeneity ρ = 0.5, 0.99. When instruments are very weak (i.e. µ2/K2 =

1), all three similar tests have poor power in the sense that the power is far less than one even

at distant alternatives. As a consequence, confidence intervals based on similar tests can be

unbounded when instruments are very weak. When ρ = 0.5, the AR and conditional LR tests

have better power than the LM test. When ρ = 0.99, the LM and conditional LR tests have

better power than the AR test. When instruments are moderately weak (i.e. µ2/K2 = 5),

the similar tests have much better power; their power approaches one for distant alternatives.

Among the three similar tests, the conditional LR test has the best power properties; its

power function comes close to the power envelope for similar tests at both values of ρ. This

suggests that the conditional LR test should usually result in confidence intervals that are

tightest among the three similar tests.

E. Heteroskedasticity and Simultaneous Estimation

In this section, I discuss econometric methods for the more general GMM setting. This

generalization allows for conditional heteroskedasticity and simultaneous estimation. For

instance, if the linearized Euler equation (8) holds for both the interest rate and stock return,

GMM allows for simultaneous estimation of the EIS using both moment restrictions. The

cost of going to the more general setup is that methods designed to handle weak instruments

are much less developed. Generalizations of the test for weak instruments or similar tests to

GMM are topics of ongoing research.

To be concrete with notation, suppose there are two K2 × 1 vectors of linear moment

restrictions, which is the relevant case for this paper. Let y1, y2, Y1, and Y2 be T × 1

vectors of T observations on jointly endogenous variables. As before, Z is a T × K2 matrix

of instruments, and superscript ⊥ denotes the residual from projection onto the included

3Figure 2 in Stock et al. (2002) is for K2 = 5 instruments, whereas K2 = 4 in the empirical application

of this paper. However, this is not a substantive difference since the power functions for K2 = 4 and K2 = 5

are essentially the same.
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exogenous regressors X. To simplify notation, let X include a column of ones so that the

residuals from the projection have mean zero. Define the 2K2 × 1 vector

φt(β) =

 Z⊥
t (y⊥

1t − Y ⊥
1t β)

Z⊥
t (y⊥

2t − Y ⊥
2t β)

 . (28)

The moment restriction is E[φt(β0)] = 0.

Define the heteroskedasticity robust weighting matrix

V (β) = T−1

T∑
t=1

φt(β)φt(β)′ (29)

and the objective function

S(β, β) =

[
T−1/2

T∑
t=1

φt(β)

]′

V (β)−1

[
T−1/2

T∑
t=1

φt(β)

]
. (30)

The efficient two-step GMM estimator β̂2 minimizes S(β, β̂1) for some consistent first-step

estimator β̂1. For example, the first-step estimator can be obtained by minimizing (30) using

the weighting matrix V (β) = I2 ⊗ (Z⊥′Z⊥). Since the objective function is quadratic in this

case, the two-step estimator has the closed form

β̂2 =

 Z⊥′Y ⊥
1

Z⊥′Y ⊥
2

′

V (β̂1)
−1

 Z⊥′Y ⊥
1

Z⊥′Y ⊥
2

−1  Z⊥′Y ⊥
1

Z⊥′Y ⊥
2

′

V (β̂1)
−1

 Z⊥′y⊥
1

Z⊥′y⊥
2

 . (31)

An alternative to two-step GMM is the continuous updating estimator (CUE), which

minimizes the objective function S(β, β). In a Monte Carlo experiment designed to simulate

estimation of the linearized Euler equation, Hansen, Heaton and Yaron (1996) find that CUE

is less biased and its confidence intervals have better coverage rates than two-step GMM. The

intuition for this result is that CUE is a generalization of LIML to GMM, just as two-step

GMM is a generalization of TSLS.

In the GMM setting, the analog of weak instruments is weak identification (Stock and

Wright 2000), which, loosely speaking, occurs if E[φt(β)] ≈ 0 even when β �= β0. Confi-

dence intervals for β with the correct coverage can be constructed by inverting the objective

function (30) evaluated at β0. By Stock and Wright (2000, Theorem 2), S(β0, β0) is asymp-

totically distributed χ2
2K2

. This test, which I refer to as the S-test, is a generalization of the

AR test to GMM.
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IV Empirical Results

A. Data

The dataset that I use is from Campbell (2003). It consists of quarterly data on equity

markets at an aggregate level and macroeconomic variables for eleven developed countries:

Australia (AUL), Canada (CAN), France (FR), Germany (GER), Italy (ITA), Japan (JAP),

Netherlands (NTH), Sweden (SWD), Switzerland (SWT), the United Kingdom (UK), and

the United States (USA). In addition, a longer time series is available at annual frequency for

Sweden, the UK, and the US. The primary sources of international data are Morgan Stanley

Capital International and International Financial Statistics of the International Monetary

Fund. The sample periods vary by country and frequency, which are reported in Table 1.

With exception of the US, quarterly data is only available starting in 1970. For the quarterly

US series, I report the results for both the full sample, which starts in 1947, and a truncated

sample that starts in 1970. For a full description of the dataset, see Campbell (2003) and

the accompanying data appendix Campbell (1998).

For each country, I estimate the EIS using two asset returns: the real interest rate,

denoted by rf , and the real aggregate stock return, denoted by re. The real stock return

is constructed as log of the gross stock return deflated by the consumer price index. The

real interest rate is constructed in the same way, using an available proxy for the short-

term interest rate. Real consumption growth is the first difference in log real consumption

per capita. For all quarterly series except for the US, the consumption measure is total

consumption rather than nondurables and services due to data availability. The timing

convention used for consumption is “beginning of the period,” following Campbell (2003).

In other words, I assume that the consumption data for a given time period is the flow

measured at the beginning of the period rather than at the end.

B. Test for Weak Instruments

The coefficients of interest are the EIS ψ, estimated by equation (1), and its inverse 1/ψ,

estimated by equation (3). The instruments that I use for the endogenous regressor ∆ct+1 in
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equation (3) and ri,t+1 in equation (1) are the nominal interest rate, inflation, consumption

growth, and log dividend-price ratio.4 All instruments are lagged twice to avoid problems

with time aggregation in consumption data (Hall 1988). As discussed in Section II, this also

assures that instruments are exogenous even if consumption or asset returns are conditionally

heteroskedastic.

Assuming that the error is conditionally homoskedastic, equations (1) and (3) can be

estimated by TSLS. In Table 1, I report the first-stage F -statistic for each of the possible

endogenous regressors (consumption growth, interest rate, and stock return), which is the

relevant statistic to test for weak instruments. Next to the F -statistic, I report the p-values

of the test. A p-value less than 0.05 means that the test would reject the null hypothesis

of weak instruments at the 5% significance level. As explained in Section III, the p-value

depends on the type of estimator (TSLS, Fuller-k, or LIML) used for estimation or inference.

[Table 1 about here]

At the quarterly frequency, consumption growth and stock return both have low pre-

dictability as evidenced by low F -statistics, so the test fails to reject the null of weak in-

struments. Hence, a researcher should suspect that the TSLS estimator is biased and the

TSLS t-test is size distorted. In fact, instruments are so weak in this case that estimation

or inference based on Fuller-k or LIML are also suspect. On the other hand, the interest

rate appears to be more predictable for all countries. The F -statistic is large enough that

the Fuller-k estimator is approximately unbiased. In addition, the LIML t-test leads to

approximately correct inference, although the TSLS t-test may be size distorted.

For the annual series, none of the regressors appear to be sufficiently predictable to avoid

problems with weak instruments. The only possible exceptions are the UK and the US,

where the instruments are somewhat relevant in predicting the interest rate. The LIML

t-test should lead to approximately correct inference since the test for weak instruments

rejects at the 10% level.

4Campbell (2003) uses the real interest rate, instead of the nominal interest rate and inflation, for a total

of three instruments. For many countries, the nominal interest rate appears to contain important information

about future real asset returns.
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C. Estimates of the EIS Using the Interest Rate

In the first three columns of Table 2, I report the point estimate and standard error of 1/ψ

with the interest rate as the dependent variable in equation (3). I report results using TSLS,

Fuller-k, and LIML. The first fact to note is that the three estimators give very different

results. Under conventional first-order asymptotics, the three estimators have the same

asymptotic distribution. Therefore, the fact that the three estimators give very different

results is indirect evidence for weak instruments. In general, the magnitude of both the

coefficient and standard error increases from TSLS to Fuller-k and from Fuller-k to LIML.

The 95% confidence intervals for 1/ψ based on these estimators include rather large values

of the EIS. In particular, one cannot reject the null hypothesis ψ = 1, except for Canada

and Switzerland.

[Table 2 about here]

In the last three columns of Table 2, I report estimates of the EIS using equation (1) with

the interest rate as the endogenous regressor. In contrast to inference based on equation (3),

which requires that the instruments predict consumption growth, weak instruments is not

a problem because the interest rate is sufficiently predictable, as documented in Table 1.

Consequently, the three estimators give very similar coefficients and standard errors. The

point estimates of ψ are small, although sometimes negative. The 95% confidence intervals

based on these estimators reject large values of the EIS, in particular one.

To summarize the results in Table 2, one would conclude the EIS is small and significantly

less than one while its inverse is not significantly different from one. The hypothesis ψ = 1 is

of economic interest because with Epstein-Zin preferences, an investor’s optimal consumption

choice is a constant fraction of wealth when the EIS is equal to one. Moreover, in the special

case of power utility where the EIS is equal to the inverse of risk aversion, γ = 1/ψ =

1 leads to myopic portfolio choice (see Campbell and Viceira (2002, Chapter 2)). This

apparent empirical puzzle, emphasized by Neely et al. (2001), can be accounted for by weak

instruments. Regression equation (3) leads to biased estimates and confidence intervals with

poor coverage because the instruments cannot predict consumption growth adequately to
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identify 1/ψ. On the other hand, estimation by equation (1) leads to valid inference since

instruments are not weak for the interest rate.

The sensitivity of inference to the particular normalization of the moment restriction is

an unattractive property of k-class estimators.5 In contrast, confidence intervals based on the

similar tests (AR, LM, and conditional LR) are invariant to this normalization. Moreover,

since these methods are fully robust to weak instruments, there is no need for a pretest to

make sure that the instruments are relevant.

In Table 3, I report the 95% confidence intervals for the EIS constructed from the similar

tests. Of the three similar tests, the conditional LR test tends to give the tightest confidence

intervals, consistent with the fact that it has the best power properties. Focusing on the

quarterly series and the conditional LR confidence interval, the EIS is less than 0.5 across

all eleven countries. For the annual series, the EIS is similarly small for Sweden and the

UK. There appears to be identification failure for the annual US series as evidenced by the

uninformative confidence intervals [−∞,∞] for both the LM and the conditional LR tests,

although the AR test gives small estimates of the EIS. In summary, the weak instrument

robust confidence intervals indicate that the EIS is small and not significantly different from

zero for the eleven developed countries.

[Table 3 about here]

D. Estimates of the EIS Using the Stock Return

In Tables 4 and 5, I report the same set of results as Tables 2 and 3 using the stock return

instead of the interest rate. As demonstrated in Table 1, both consumption growth and

stock return are difficult to predict, so either normalization of the moment restriction, (2)

or (4), runs into problems with weak instruments. This is evidenced by the fact that most

of the weak instrument robust confidence intervals in Table 5 are uninformative. For few

of the countries (Canada, France, and Japan at quarterly frequency and the UK at annual

frequency), the confidence intervals are informative. Note that these are precisely the series

for which the first-stage F -statistics for stock return were relatively large in Table 1, ranging

5The point estimate of LIML is invariant to normalization, but its confidence interval is not.
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from 2.51 to 4.18. The confidence intervals indicate that the EIS is small, agreeing with the

results for the interest rate in Table 3.

[Table 4 about here]

[Table 5 about here]

In Tables 3 and 5, I have reported the unconstrained confidence intervals. Constrained

confidence intervals that restrict the EIS to be nonnegative can usually be obtained by

truncating the unconstrained confidence intervals at zero. Although the truncated confidence

interval has the correct coverage rate provided that ψ ≥ 0, it may be conservative when

identification is sufficiently weak so that the confidence region is disjoint. In other words,

the truncated confidence interval may not coincide with the actual constrained confidence

interval. In Table 5, this occurs only for the quarterly (1970.3-1998.4) US series, where the

actual constrained confidence intervals are [0.05,∞] and [0.02,∞] for the AR and conditional

LR tests, respectively, since these tests reject ψ = 0.

E. Heteroskedasticity and Simultaneous Estimation

In the first two columns of Table 6, I report GMM and CUE estimates of the EIS using

moment restriction (2) for the interest rate. These estimates are heteroskedasticity robust

versions of the estimates by TSLS and LIML, reported in Table 2. Comparing GMM and

TSLS, the point estimates and standard errors are quite similar, so heteroskedasticity does

not appear to be a dominant feature of the data. Likewise, the LIML and CUE estimates

are quite similar. In the third column, I report weak instrument robust confidence intervals

computed by inverting the S-test. These are heteroskedasticity robust versions of the AR

confidence intervals reported in Table 3. In general, these confidence intervals are comparable

to those reported in Table 3, indicating that the EIS is small and less than one. The only

exceptions are the US, which contains only negative values in the confidence interval, and

Germany, whose confidence interval cannot exclude one.

[Table 6 about here]
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The last three columns of Table 6 report the same set of results using the moment re-

striction (2) for both the interest rate and the stock return. With four instruments and two

assets, the moment restriction has dimension eight. Note that GMM gives point estimates

and standard errors that are very small. This appears to be a consequence of weak identi-

fication from the low correlation between the instruments and the stock return. The CUE,

which is more robust to weak instruments than GMM, gives estimates that are similar to

those obtained using just the interest rate. Likewise, the weak instrument robust confidence

intervals based on the S-test are similar to those obtained using just the interest rate. The

confidence intervals are actually slightly wider for many of the series. This is not surprising

in light of Table 5, which showed that the moment restriction implied by the stock return

contains little information that is useful for identifying the EIS.

For the US, the model is entirely rejected as indicated by empty confidence intervals. One

potential explanation of this result is that the Euler equation for stock return does not hold

for the representative consumer because of limited participation in asset markets. Vissing-

Jørgensen (2002) has found some evidence for this theory using the Consumer Expenditure

Survey.

F. Implications for the Equity Premium Puzzle

In the power utility model, the coefficient of relative risk aversion is equal to the inverse of

the EIS. In that case, the small estimates of the EIS reported in this paper is evidence for

large values of risk aversion. For instance, the confidence intervals in Table 3 indicate that

the EIS is in the range [0,0.5] across the eleven countries, which implies that risk aversion is

in the range [2,∞]. While this is consistent with evidence from the large literature on the

equity premium puzzle (Mehra and Prescott 1985), I hesitate to draw conclusions about risk

aversion based on the estimates of the EIS.

V Conclusion

The econometric lesson to take away from this paper is that weak instruments are relevant

in practice and that conventional t-tests can lead to misleading inference. There are now
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various methods available for handling weak instruments, from the simple pretest based on

the first-stage F -statistic to fully robust confidence intervals based on similar tests. These

methods are not necessarily a “cure” for weak instruments since the resulting confidence

intervals are often uninformative when identification is poor, but they prevent the researcher

from making erroneous inferences.

The economic lesson to take away from this paper is that the EIS is small and not

significantly different from zero. In particular, the EIS appears to be less than one, which

implies that an investor’s optimal consumption-wealth ratio is increasing in expected returns.

In my preferred estimates, reported in Table 3, the upper end of the 95% confidence interval

for the EIS is never greater than 0.5 across eleven developed countries. For the US, the value

is about 0.2, which remarkably agrees with Hall (1988, p. 350): “My overall conclusion... is

that the evidence points in the direction of a low value for the intertemporal elasticity. The

value may even be zero and is probably not above .2.”
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Appendix

This appendix derives the asymptotic distributions of similar tests under weak-instrument

asymptotics (Staiger and Stock 1997). The asymptotic representations can then be used to

plot the power functions for the similar tests that appear in Stock et al. (2002, Figures

2–3). Let
p→ denote convergence in probability and

d→ denote convergence in distribution.

Following Staiger and Stock, I make the following assumptions.

Assumption 1 (Local-to-Zero). Π = C/
√

T , where C is a fixed K2 × 1 vector.

Assumption 2 (Moment Conditions). The following limits hold jointly:

1. (u′u/T, V ′u/T, V ′V/T )
p→ (σuu, ΣV u, ΣV V );

2. Z
′
Z/T

p→ Q =

 QXX QXZ

QZX QZZ

;

3. (X ′u/
√

T , Z ′u/
√

T ,X ′V/
√

T , Z ′V/
√

T )
d→ (ΨXu, ΨZu, ΨXV , ΨZV ), where

Ψ = (Ψ′
Xu, Ψ

′
Zu, Ψ

′
XV , Ψ′

ZV )′ ∼ N(0, Σ ⊗ Q).

As noted by Staiger and Stock, Assumption 2 can be derived from weak primitive assump-

tions that are reasonable in the present context of estimating the linearized Euler equation.

Let Υ = QZZ − QZXQ−1
XXQXZ and λ = Υ1/2CΣ

−1/2
V V . Define the vector zu

zV

 =

 Υ−1/2(ΨZu − QZXQ−1
XXΨXu)σ

−1/2
uu

Υ−1/2(ΨZV − QZXQ−1
XXΨXV )Σ

−1/2
V V


∼ N

0,

 1 ρ

ρ 1

 ⊗ IK2

 . (32)

Under Assumptions 1 and 2, Staiger and Stock (1997, Theorem 1(e)) show that F
d→ (λ +

zV )′(λ + zV )/K2. In other words, the first-stage F -statistic is asymptotically Op(1) under

weak-instrument asymptotics. In contrast, the F -statistic becomes arbitrarily large under

the conventional first-order asymptotics with fixed Π.

The following lemma derives the weak instrument asymptotic distributions of the statis-

tics S and T (see (23) and (24)).
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Lemma 1. Suppose that Assumptions 1 and 2 hold. Let ∆ = σ
−1/2
uu Σ

1/2
V V (β0−β) and S1(s) =

1 − 2ρs + s2 for any scalar s. Then

S d→ S∗ =
zu − (λ + zV )∆

S1(∆)1/2

∼ N

(
−λ∆

S1(∆)1/2
, IK2

)
, (33)

T d→ T ∗ =
(λ + zV ) + zu∆ − ρ[zu + (λ + zV )∆)]

(1 − ρ2)1/2S1(∆)1/2

∼ N

(
λ(1 − ρ∆)

(1 − ρ2)1/2S1(∆)1/2
, IK2

)
, (34)

where S∗ and T ∗ are independent.

Proof. Applying Staiger and Stock (1997, Lemma A1), Ω̂
p→ Ω and (Z⊥′Z⊥)−1/2Z⊥′Y

⊥ d→ w′,

where

w = σ1/2
uu

 zu + σ
−1/2
uu Σ

1/2
V V β(λ + zV )

σ
−1/2
uu Σ

1/2
V V (λ + zV )

 .

This then implies that

S d→ S∗ =
w′b0

(b′0Ωb0)1/2
, (35)

T d→ T ∗ =
w′Ω−1a0

(a′
0Ω

−1a0)1/2
. (36)

Establishing the equivalence of these expressions to those that appear in the statement of the

lemma requires the intermediate steps b′0Ωb0 = σuuS1(∆), a′
0Ω

−1a0 = [(1− ρ2)ΣV V ]−1S1(∆),

and

Ω−1a0 =
1

(1 − ρ2)ΣV V

 σ
−1/2
uu Σ

1/2
V V (∆ − ρ)

1 − ρ∆ − σ
−1/2
uu Σ

1/2
V V β(∆ − ρ)

 .

Note that S is asymptotically pivotal and independent of T under the null hypothesis

(i.e. ∆ = 0). A straightforward application of Lemma 1 to the AR statistic (25) results in

AR(β0)
d→ S∗′S∗

K2

∼
χ2

K2
(∆λ′λ∆/S1(∆))

K2

, (37)

which was shown by Staiger and Stock (1997, Theorem 5). The asymptotic distributions of

the LM and LR statistics can similarly be obtained by application of Lemma 1 to (26) and

(27), respectively.
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Note that the asymptotic distributions of AR, LM, and LR statistics are completely

determined by the matrix [S∗, T ∗]′[S∗, T ∗], which has a noncentral Wishart distribution

W2(K2, I2, Λ) (see Phillips (1983)) with noncentrality matrix

Λ = λ′λ

 ∆
2

S1(∆)

−∆(1−ρ∆)

(1−ρ2)1/2S1(∆)

−∆(1−ρ∆)

(1−ρ2)1/2S1(∆)

(1−ρ∆)2

(1−ρ2)S1(∆)

 . (38)

Hence, the asymptotic distributions only depend on the number of instruments K2, the

concentration parameter λ′λ, the degree of simultaneity ρ, and ∆. The parameter ∆ has a

natural interpretation as the distance between the null hypothesis β0 and the true value β

when the IV regression model, (14) and (15), is normalized to have unit variance.
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Table 1: Test for Weak Instruments

p-value

Country Sample Period Variable F TSLS Bias TSLS Size Fuller-k LIML

USA 1947.3–1998.4 ∆c 2.93 0.93 1.00 0.53 0.37

rf 15.53 0.00 0.66 0.00 0.00

re 2.88 0.93 1.00 0.54 0.39

AUL 1970.3–1998.4 ∆c 1.79 0.99 1.00 0.81 0.69

rf 21.81 0.00 0.14 0.00 0.00

re 1.82 0.99 1.00 0.80 0.68

CAN 1970.3–1999.1 ∆c 3.03 0.92 1.00 0.50 0.35

rf 15.37 0.00 0.67 0.00 0.00

re 2.51 0.96 1.00 0.64 0.48

FR 1970.3–1998.3 ∆c 0.17 1.00 1.00 1.00 1.00

rf 38.43 0.00 0.00 0.00 0.00

re 3.09 0.91 1.00 0.49 0.34

GER 1979.1–1998.3 ∆c 0.83 1.00 1.00 0.97 0.93

rf 17.66 0.00 0.45 0.00 0.00

re 0.69 1.00 1.00 0.98 0.95

ITA 1971.4–1998.1 ∆c 0.73 1.00 1.00 0.98 0.95

rf 19.01 0.00 0.33 0.00 0.00

re 1.10 1.00 1.00 0.94 0.88

JAP 1970.3–1998.4 ∆c 1.18 1.00 1.00 0.93 0.86

rf 8.64 0.14 0.99 0.01 0.00

re 3.49 0.87 1.00 0.40 0.25

NTH 1977.3–1998.4 ∆c 0.89 1.00 1.00 0.96 0.92

rf 12.05 0.01 0.91 0.00 0.00

re 0.73 1.00 1.00 0.98 0.95

(continued on next page)
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p-value

Country Sample period Variable F TSLS Bias TSLS Size Fuller-k LIML

SWD 1970.3–1999.2 ∆c 0.48 1.00 1.00 0.99 0.98

rf 17.08 0.00 0.51 0.00 0.00

re 2.24 0.97 1.00 0.70 0.56

SWT 1976.2–1998.4 ∆c 0.97 1.00 1.00 0.95 0.90

rf 8.55 0.14 0.99 0.01 0.00

re 0.11 1.00 1.00 1.00 1.00

UK 1970.3–1999.1 ∆c 2.52 0.96 1.00 0.63 0.48

rf 17.04 0.00 0.51 0.00 0.00

re 2.62 0.95 1.00 0.61 0.45

USA 1970.3–1998.4 ∆c 3.53 0.86 1.00 0.39 0.25

rf 11.92 0.02 0.92 0.00 0.00

re 2.16 0.97 1.00 0.72 0.58

SWD 1921–1994 ∆c 1.02 1.00 1.00 0.95 0.89

rf 5.50 0.55 1.00 0.10 0.05

re 1.67 0.99 1.00 0.84 0.72

UK 1921–1994 ∆c 1.93 0.98 1.00 0.78 0.65

rf 4.87 0.66 1.00 0.16 0.08

re 4.18 0.77 1.00 0.26 0.15

USA 1891–1995 ∆c 1.55 0.99 1.00 0.86 0.76

rf 2.87 0.93 1.00 0.54 0.39

re 1.00 1.00 1.00 0.95 0.90

The table reports the first-stage F -statistic from a regression of the endogenous variable

onto the instruments. The endogenous variables are consumption growth (∆c), real interest

rate (rf ), and real stock return (re). The instruments are twice lagged nominal interest

rate, inflation, consumption growth, and log dividend-price ratio. The table also reports the

p-value of the test for weak instruments. The null hypotheses are: (1) TSLS relative bias

is greater than 10%, (2) the size of 5% TSLS t-test can be greater than 10%, (3) Fuller-k

relative bias is greater than 10%, and (4) the size of 5% LIML t-test can be greater than

10%. 30



Table 2: Estimates of the EIS Using the Interest Rate

1/ψ ψ

Country Sample Period TSLS Fuller-k LIML TSLS Fuller-k LIML

USA 1947.3–1998.4 0.68 3.30 34.11 0.06 0.03 0.03

(0.48) (3.20) (112.50) (0.09) (0.10) (0.10)

AUL 1970.3–1998.4 0.50 2.37 30.03 0.05 0.04 0.03

(0.48) (2.45) (107.71) (0.11) (0.12) (0.12)

CAN 1970.3–1999.1 -1.04 -2.40 -2.98 -0.30 -0.33 -0.34

(0.39) (1.13) (1.54) (0.16) (0.17) (0.17)

FR 1970.3–1998.3 -3.12 -1.83 -12.38 -0.08 -0.08 -0.08

(3.75) (1.72) (29.61) (0.19) (0.19) (0.19)

GER 1979.1–1998.3 -1.05 -1.38 -2.29 -0.42 -0.43 -0.44

(0.62) (0.90) (1.87) (0.35) (0.35) (0.36)

ITA 1971.4–1998.1 -3.34 -5.82 -14.81 -0.07 -0.07 -0.07

(1.98) (4.47) (18.55) (0.08) (0.08) (0.08)

JAP 1970.3–1998.4 -0.18 -0.86 -21.56 -0.04 -0.04 -0.05

(0.43) (1.23) (106.53) (0.21) (0.23) (0.23)

NTH 1977.3–1998.4 -0.53 -1.41 -6.94 -0.15 -0.15 -0.14

(0.41) (1.33) (13.96) (0.28) (0.29) (0.29)

SWD 1970.3–1999.2 -0.10 -0.21 -399.86 0.00 0.00 0.00

(1.10) (1.54) (16075.06) (0.10) (0.10) (0.10)

SWT 1976.2–1998.4 -1.56 -1.51 -2.00 -0.49 -0.49 -0.50

(0.83) (0.79) (1.18) (0.29) (0.29) (0.29)

UK 1970.3–1999.1 1.06 3.76 6.21 0.17 0.16 0.16

(0.45) (2.42) (5.17) (0.13) (0.13) (0.13)

USA 1970.3–1998.4 0.53 2.19 47.66 0.06 0.02 0.02

(0.50) (2.60) (249.47) (0.09) (0.11) (0.11)

(continued on next page)
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1/ψ ψ

Country Sample Period TSLS Fuller-k LIML TSLS Fuller-k LIML

SWD 1921–1994 1.17 3.30 17.77 0.06 0.06 0.06

(1.13) (3.34) (38.67) (0.11) (0.12) (0.12)

UK 1921–1994 2.40 2.99 3.52 0.26 0.27 0.28

(1.01) (1.33) (1.65) (0.12) (0.13) (0.13)

USA 1891–1995 -0.38 -1.17 -39.71 -0.03 -0.03 -0.03

(1.12) (2.90) (257.54) (0.11) (0.15) (0.16)

The inverse of the EIS is estimated from rf,t+1 = µf + (1/ψ)∆ct+1 + ηf,t+1, and the EIS

is estimated from ∆ct+1 = τf + ψrf,t+1 + ξf,t+1. The instruments are twice lagged nominal

interest rate, inflation, consumption growth, and log dividend-price ratio. Standard error in

parentheses.
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Table 3: Weak Instrument Robust Confidence Intervals for the EIS Using the Interest Rate

Country Sample Period AR LM Cond LR

USA 1947.3–1998.4 ∅ [-0.21,0.23] [-0.19,0.22]

AUL 1970.3–1998.4 [-0.16,0.21] [-0.22,13.74] [-0.22,0.27]

CAN 1970.3–1999.1 [-0.54,-0.14] [-0.73,14.15] [-0.71,0.00]

FR 1970.3–1998.3 [-0.68,0.53] [-0.47,0.31] [-0.48,0.33]

GER 1979.1–1998.3 [-1.57,0.54] [-1.21,0.26] [-1.23,0.28]

ITA 1971.4–1998.1 [-0.29,0.18] [-0.24,0.11] [-0.24,0.12]

JAP 1970.3–1998.4 [-0.60,0.49] [-∞,∞] [-0.56,0.45]

NTH 1977.3–1998.4 [-0.91,0.64] [-∞,∞] [-0.76,0.48]

SWD 1970.3–1999.2 [-0.30,0.29] [-∞,∞] [-0.22,0.21]

SWT 1976.2–1998.4 [-1.69,0.37] [-1.19,0.07] [-1.22,0.09]

UK 1970.3–1999.1 [0.04,0.28] [-∞,∞] [-0.12,0.43]

USA 1970.3–1998.4 ∅ [-∞,∞] [-0.23,0.23]

SWD 1921–1994 [-0.30,0.40] [-∞,∞] [-0.25,0.35]

UK 1921–1994 [-0.05,0.88] [0.01,0.70] [0.01,0.70]

USA 1891–1995 [-0.49,0.46] [-∞,∞] [-∞,∞]

The table reports 95% confidence intervals for the EIS, constructed from AR, LM, and

conditional LR tests. ∅ indicates an empty confidence interval. The instruments are twice

lagged nominal interest rate, inflation, consumption growth, and log dividend-price ratio.
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Table 4: Estimates of the EIS Using the Stock Return

1/ψ ψ

Country Sample Period TSLS Fuller-k LIML TSLS Fuller-k LIML

USA 1947.3–1998.4 -1.33 -10.04 -14.18 -0.01 -0.05 -0.07

(4.48) (9.63) (12.68) (0.02) (0.05) (0.06)

AUL 1970.3–1998.4 6.63 9.19 11.24 0.05 0.07 0.09

(4.55) (6.15) (7.57) (0.04) (0.05) (0.06)

CAN 1970.3–1999.1 7.86 7.46 7.99 0.12 0.11 0.13

(3.12) (2.96) (3.17) (0.05) (0.05) (0.05)

FR 1970.3–1998.3 -19.92 -11.10 -50.48 -0.02 -0.02 -0.02

(24.66) (11.32) (97.01) (0.04) (0.04) (0.04)

GER 1979.1–1998.3 -1.63 -2.83 -5.83 -0.03 -0.05 -0.17

(4.91) (6.52) (10.51) (0.07) (0.10) (0.31)

ITA 1971.4–1998.1 3.25 8.48 40.70 0.01 0.01 0.02

(9.94) (16.68) (82.89) (0.03) (0.04) (0.05)

JAP 1970.3–1998.4 10.16 12.75 17.20 0.05 0.05 0.06

(5.73) (7.52) (11.13) (0.03) (0.04) (0.04)

NTH 1977.3–1998.4 1.29 2.18 4.20 0.03 0.07 0.24

(3.76) (5.15) (8.06) (0.08) (0.13) (0.46)

SWD 1970.3–1999.2 -8.57 -13.35 -64.89 -0.01 -0.01 -0.02

(11.19) (16.60) (127.62) (0.03) (0.03) (0.03)

SWT 1976.2–1998.4 -0.35 -0.40 -0.29 -0.05 -0.03 -3.45

(4.10) (3.82) (4.35) (0.19) (0.12) (51.80)

UK 1970.3–1999.1 -0.68 -5.54 -9.24 -0.01 -0.07 -0.11

(2.76) (6.51) (10.10) (0.04) (0.08) (0.12)

USA 1970.3–1998.4 6.92 7.77 8.05 0.03 0.08 0.12

(4.86) (6.61) (7.11) (0.02) (0.05) (0.11)

(continued on next page)
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1/ψ ψ

Country Sample Period TSLS Fuller-k LIML TSLS Fuller-k LIML

SWD 1921–1994 -1.75 -5.37 -12.94 -0.03 -0.05 -0.08

(3.57) (6.79) (16.63) (0.06) (0.08) (0.10)

UK 1921–1994 5.28 13.95 29.64 0.04 0.03 0.03

(3.05) (10.62) (33.96) (0.03) (0.04) (0.04)

USA 1891–1995 0.47 -1.06 -2.47 0.02 -0.08 -0.41

(2.27) (3.33) (4.46) (0.08) (0.18) (0.73)

The inverse of the EIS is estimated from re,t+1 = µe + (1/ψ)∆ct+1 + ηe,t+1, and the EIS

is estimated from ∆ct+1 = τe + ψre,t+1 + ξe,t+1. The instruments are twice lagged nominal

interest rate, inflation, consumption growth, and log dividend-price ratio. Standard error in

parentheses.
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Table 5: Weak Instrument Robust Confidence Intervals for the EIS Using the Stock Return

Country Sample Period AR LM Cond LR

USA 1947.3–1998.4 [-0.21,-0.02] [-∞,∞] [-∞,∞]

AUL 1970.3–1998.4 [-∞,∞] [-∞,∞] [-∞,∞]

CAN 1970.3–1999.1 [0.02,4.03] [0.05,0.35] [0.04,0.41]

FR 1970.3–1998.3 [-0.28,0.20] [-∞,∞] [-0.16,0.11]

GER 1979.1–1998.3 [-∞,∞] [-∞,∞] [-∞,∞]

ITA 1971.4–1998.1 [-∞,∞] [-∞,∞] [-∞,∞]

JAP 1970.3–1998.4 [-0.05,0.32] [-1.01,0.20] [-0.02,0.21]

NTH 1977.3–1998.4 [-∞,∞] [-∞,∞] [-∞,∞]

SWD 1970.3–1999.2 [-∞,∞] [-∞,∞] [-∞,∞]

SWT 1976.2–1998.4 [-∞,∞] [-∞,∞] [-∞,∞]

UK 1970.3–1999.1 [-0.51,-0.02] [-∞,∞] [-∞,∞]

USA 1970.3–1998.4 [-∞,∞] [-∞,∞] [-∞,∞]

SWD 1921–1994 [-∞,∞] [-∞,∞] [-∞,∞]

UK 1921–1994 [-0.04,0.10] [-∞,∞] [-0.10,0.14]

USA 1891–1995 [-∞,∞] [-∞,∞] [-∞,∞]

See notes to Table 3.
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Table 6: Heteroskedasticity Robust Estimates of the EIS

Interest Rate Interest Rate & Stock Return

Country Sample Period GMM CUE 95% CI GMM CUE 95% CI

USA 1947.3–1998.4 0.05 -0.11 [-0.14,-0.08] 0.00 -0.36 ∅
(0.09) (0.11) (0.00) (0.09)

AUL 1970.3–1998.4 0.09 0.08 [-0.17,0.30] 0.01 0.12 [-0.12,0.35]

(0.12) (0.12) (0.00) (0.04)

CAN 1970.3–1999.1 -0.34 -0.33 [-0.77,0.11] 0.02 -0.19 [-0.71,0.34]

(0.17) (0.17) (0.01) (0.06)

FR 1970.3–1998.3 -0.12 -0.12 [-0.57,0.36] 0.00 -0.16 [-0.53,0.22]

(0.14) (0.14) (0.00) (0.05)

GER 1979.1–1998.3 -0.44 -0.48 [-1.95,1.63] 0.00 -0.55 [-2.06,1.90]

(0.43) (0.43) (0.00) (0.20)

ITA 1971.4–1998.1 -0.08 -0.07 [-0.34,0.20] 0.00 -0.09 [-0.46,0.32]

(0.08) (0.08) (0.00) (0.05)

JAP 1970.3–1998.4 -0.18 -0.21 [-0.93,0.39] 0.00 -0.25 [-0.81,0.24]

(0.21) (0.21) (0.00) (0.08)

NTH 1977.3–1998.4 -0.25 -0.28 [-0.57,0.09] 0.00 -0.25 [-0.59,0.33]

(0.20) (0.20) (0.00) (0.09)

SWD 1970.3–1999.2 0.01 0.00 [-0.28,0.28] 0.00 -0.02 [-0.38,0.33]

(0.09) (0.09) (0.00) (0.01)

SWT 1976.2–1998.4 -0.39 -0.41 [-1.42,0.50] -0.22 -0.44 [-2.38,1.13]

(0.25) (0.25) (0.21) (0.24)

UK 1970.3–1999.1 0.22 0.28 [-0.45,0.51] 0.00 0.17 [-1.04,0.65]

(0.12) (0.12) (0.00) (0.07)

USA 1970.3–1998.4 0.02 -0.09 [-0.14,-0.02] 0.01 -0.05 ∅
(0.08) (0.09) (0.00) (0.02)

(continued on next page)
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Interest Rate Interest Rate & Stock Return

Country Sample Period GMM CUE 95% CI GMM CUE 95% CI

SWD 1921–1994 0.00 -0.09 [-0.51,0.51] 0.00 -0.07 [-0.61,0.74]

(0.10) (0.10) (0.00) (0.04)

UK 1921–1994 0.25 0.27 [0.01,0.64] 0.03 0.39 [-0.05,0.82]

(0.09) (0.09) (0.01) (0.08)

USA 1891–1995 -0.02 -0.01 [-0.21,0.15] 0.00 0.00 ∅
(0.06) (0.06) (0.00) (0.00)

The table reports the EIS estimated by two-step GMM and CUE with standard error in

parentheses. The 95% confidence interval is constructed from the S-test. ∅ indicates an

empty confidence interval. The instruments are twice lagged nominal interest rate, inflation,

consumption growth, and log dividend-price ratio.

38



The Rodney L. White Center for Financial Research 
The Wharton School 

University of Pennsylvania 
3254 Steinberg Hall-Dietrich Hall 

3620 Locust Walk 
Philadelphia, PA  19104-6367 

 
(215) 898-7616 

(215) 573-8084 Fax 
http://finance.wharton.upenn.edu/~rlwctr 

 
 
 

The Rodney L. White Center for Financial Research is one of the oldest financial research centers in the 
country.  It was founded in 1969 through a grant from Oppenheimer & Company in honor of its late 
partner, Rodney L. White.  The Center receives support from its endowment and from annual 
contributions from its Members. 
 
The Center sponsors a wide range of financial research.  It publishes a working paper series and a reprint 
series.  It holds an annual seminar, which for the last several years has focused on household financial 
decision making. 
 
The Members of the Center gain the opportunity to participate in innovative research to break new ground 
in the field of finance.  Through their membership, they also gain access to the Wharton School’s faculty 
and enjoy other special benefits. 

 
 
 

Members of the Center 
2004 – 2005 

 
Directing Members 

 
Geewax, Terker & Company 

Goldman, Sachs & Co. 
Hirtle, Callaghan & Co. 

Morgan Stanley 
Merrill Lynch 

The Nasdaq Educational Foundation 
The New York Stock Exchange, Inc. 

 
Members 

 
Aronson + Johnson + Ortiz, LP 

Twin Capital 
 

Founding Members 
 

Ford Motor Company Fund 
Merrill Lynch, Pierce, Fenner & Smith, Inc. 

Oppenheimer & Company 
Philadelphia National Bank 

Salomon Brothers 
Weiss, Peck and Greer 

http://finance.wharton.upenn.edu/~rlwctr

	23-04.cover
	The Rodney L. White Center for Financial Research
	The Rodney L. White Center for Financial Research
	The Wharton School
	Members of the Center
	Directing Members
	Members
	Aronson + Johnson + Ortiz, LP
	Twin Capital

	Founding Members
	Ford Motor Company Fund
	Salomon Brothers





	23-04.cover
	The Rodney L. White Center for Financial Research
	The Rodney L. White Center for Financial Research
	The Wharton School
	Members of the Center
	Directing Members
	Members
	Aronson + Johnson + Ortiz, LP
	Twin Capital

	Founding Members
	Ford Motor Company Fund
	Salomon Brothers








