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1 The relevant literature includes Garman and Klass (1980), Parkinson (1980), Beckers (1983), Ball and Torous
(1984), Rogers and Satchell (1991), Kunitomo (1992), and Yang and Zhang (2000).

1. Introduction

The price range, defined as the difference between the highest and lowest log asset prices over a fixed sampling

interval (for concreteness, we focus on a one-day interval), has a long, colorful, and distinguished history of use

as a volatility estimator.1 As emphasized most recently by Alizadeh, Brandt and Diebold (2002), the range is a

highly efficient volatility proxy, distilling volatility information from the entire intraday price path, in contrast

to volatility proxies based on the daily return, such as the daily squared return, which use only the opening and

closing prices. Moreover, data on the range are widely available for individual stocks and for exchange-traded

futures contracts (including currencies, Treasury securities, and stock indices), not only presently but also, in

many cases, over long historical spans. In fact, the range has been reported for many decades in business

newspapers through so-called “candlestick plots,” showing the daily high, low, and close.

Despite these appealing properties of the range, one cannot help but notice a large and striking gap in

the range-based volatility estimation literature: it is entirely univariate. That is, although range-based variance

estimation has been extensively discussed and refined, range-based covariance estimation remains uncharted

territory. The reason is that it is not at all obvious how to construct an appropriate range-based covariance

estimator. Hence the range would seem to join the ranks of other famously obvious and intuitive univariate

statistics, such as the median, that have no similarly obvious or intuitive multivariate generalization.

The apparent failure of range-based volatility estimation to generalize to the multivariate case is

particularly unfortunate because financial economics is intimately concerned with multivariate interactions.

Consider, for example, three pillars of modern finance: asset pricing, asset allocation, and risk management.

Asset prices depend on covariance with the market and perhaps other risk factors. Similarly, optimal portfolio

shares depend on the variances and covariances of asset returns, as does portfolio vale at risk.

We attempt to remedy the situation by proposing a simple and intuitive range-based covariance

estimator. Our approach is not merely statistical; rather, it relies appealingly on a key financial economic

consideration, the absence of arbitrage. In particular, we use no-arbitrage conditions to express covariances in

terms of variances, which may then be estimated by standard range-based methods.

2. Range-Based Variance and Covariance Estimation

Before considering the range-based estimation of covariances, we must set the stage by considering certain

aspects of univariate volatility estimation. Consider a univariate stochastic volatility diffusion for the log of an
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asset price pt with instantaneous volatility σt. Suppose we sample this process discretely at m regular times

throughout the day, which lasts from time t to t+1, to obtain the intraday returns , forr(m), t%k/m'pt%k/m&pt%(k&1)/m

. Under conditions given in Andersen, Bollerslev and Diebold (2003), the variance of the discrete-k'1,...,m

time returns over the one-day interval conditional on the sample path is{σt%τ}
1
τ'0

The integrated volatility thus provides a canonical and natural measure of return volatility, and it featuresσ̄t

prominently in the financial economics literature (e.g., Hull and White, 1987). Because the integrated volatility

is inherently unobservable, several estimators have been proposed, including estimators based on daily returns

(e.g., daily squared or absolute returns), high-frequency intraday returns (e.g., the “realized volatility” of

Andersen, Bollerslev, Diebold and Labys, 2003), and the daily range. In particular, Parkinson’s (1980)

celebrated range-based estimator of the daily integrated variance is given by

The univariate range-based volatility estimator has several appealing properties. First, it is of course trivial to

compute. Second it is unbiased and highly efficient relative to competitors such as the squared or absolute

daily return (Andersen and Bollerslev, 1998). Finally, it is robust to certain types of microsrtucture noise, such

as bid-ask bounce (Alizadeh, Brandt and Diebold, 2002).

Now consider the multivariate case. In parallel with our univariate discussion, consider a stochastic

volatility diffusion for a vector of log asset prices with diffusion matrix , whose ij-th element we denote .Σ σ
2
ij

Then, again under conditions given in Andersen, Bollerslev and Diebold (2003), the one-day conditional

covariance of the discrete-time returns on assets I and j is just the integrated instantaneous covariance,

The attractive blend of convenience, efficiency and robustness achieved by the range-based estimator in the

univariate estimation of integrated volatility (1) makes one hungry for extension to a range-based estimator of

the integrated covariance (3) in the multivariate case. We now proceed to do so. The basic idea is very simple,

and the implementation varies slightly depending on whether the application is to foreign exchange, bonds or

stocks. We consider each in turn.



∆ln A/B ' ∆ln A/$ & ∆ln B/$. (4)

Var[∆ln A/B] ' Var[∆ln A/$] % Var[∆ln B/$] & 2 Cov[∆ln A/$,∆ln B/$], (5)

Cov[∆ln A/$,∆ln B/$] ' 1
2

Var[∆ln A/$] % Var[∆ln B/$] & Var[∆ln A/B] . (6)

ˆCov[∆ln A/$,∆ln B/$] ' 1
2

V̂ar[∆ln A/$] % V̂ar[∆ln B/$] & V̂ar[∆ln A/B] , (7)

Σ̂ '

V̂ar[∆ln A/$] ˆCov[∆ln A/$,∆ln B/$]

ˆCov[∆ln A/$,∆ln B/$] V̂ar[∆ln B/$]
. (8)

First consider foreign exchange. In foreign exchange markets, absence of triangular arbitrage implies a

deterministic relationship between any pair of dollar rates and the corresponding cross rate. Consider two

dollar exchange rates, denoted A/$ and B/$. Then, in the absence of triangular arbitrage, the cross-rate is

and hence the continuously compounded A/B return isA/B'(A/$)/(B/$)

Taking variances gives

and solving for the covariance yields

This suggests a natural covariance estimator,

where can in principle be any return variance estimator. Given the desirable properties of range-basedV̂ar[∆ @]

volatility estimation discussed above, we advocate the use of Parkinson’s (1980) range-based estimator in

equation (2). We then assemble the estimated variance-covariance matrix as

In higher dimensional cases, we proceed in analogous fashion, estimating each pairwise covariance as above,

and then assembling the results into an estimated covariance matrix.

Now consider fixed income markets, in which the absence of arbitrage implies a deterministic

relationship among any two zero-coupon bond prices and the corresponding forward contract. Specifically,



Var[rf (T1,T2)] ' Var[r(T2)] % Var[r(T1)] & 2Cov[r(T1),r(T2)]. (9)

ˆCov[r(T1,r(T2)] '
1
2

V̂ar[r(T2)] % V̂ar[r(T1)] & V̂ar[rf(T1,T2)] , (10)

Var[rp] ' λ2 Var[r1] % (1&λ)2 Var[r2] % 2λ(1&λ)Cov[r1,r2], (11)

ˆCov[r1,r2] '
1

2λ(1&λ)
V̂ar[rp]&λ

2V̂ar[r1]&(1&λ)2V̂ar[r2] .
(12)

consider two bonds with maturities T1 and T2 and prices P(T1) and P(T2), with T1 <T2. The price of a forward

contract between times T1 and T2 is Taking logs gives andF(T1,T2) ' P(T2) / P(T1). f(T1,T2) ' p(T2) & p(T1),

then taking first differences gives and finally taking variances givesrf (T1,T2)'r(T2)&r(T1),

Hence we can form the covariance estimator,

and assemble the estimated variance-covariance matrix precisely as in the foreign exchange case.

Finally, consider equities. The return on a two-equity portfolio with shares and , denotedλ 1&λ

, has a variance ofrp'λr1%(1&λ)r2

which suggests the covariance estimator,

This method of estimating the covariance via the range of the two-asset portfolio return is generally applicable

to any two assets – not just equities – if data on the portfolio return range are available.

3. Discussion

Our no-arbitrage approach to range-based covariance estimation is widely applicable in the foreign exchange

context because daily ranges of all legs of many currency triangles are available. For example, Datastream

provides as much as 40 years of historical data on the daily high, low, and closing prices of 37 British pound

denominated currencies and 14 Swiss franc denominated currencies. The International Monetary Market, a

subsidy of the Chicago Mercantile Exchange, recently introduced futures and options contracts on Euro/British

pound, Euro/Swiss franc, and Euro/Japanese yen cross rates. Finally, the New York Board of Trade offers

futures contracts on 14 cross-currencies, including seven Euro denominated contracts.



2 Some notable exceptions are the TSE 100, TSE 200, and TSE 300 indices of the Toronto stock exchange and
the ASX 100, ASX 200, and ASX 300 indices of the Australian stock exchange.

3 Other ways to guarantee positive definiteness include the shrinkage approach of Ledoit and Wolf (2001) or
the perturbation methods of Gill, Murray and Wright (1981) and Schnabel and Eskow (1999).

We hasten to add, however, that the practical applicability of our approach in other contexts is far more

limited. For fixed income, our approach is only directly applicable to select maturities for which liquid bonds

are aligned with liquid forward or futures contracts, such as the three- and six-month Eurodollar deposits and

the three-month Eurodollar futures. For equities, our approach will rarely be applicable, because historical data

on the range of two-asset portfolios are typically not available.2

Thus far we have said little about the theoretical properties of the range-based covariance estimator.

One obvious point is that the covariance estimator is unbiased under the same conditions that deliver

unbiasedness of Parkinson’s (1980) variance estimator because it is a linear combination of variances.

Conversion to correlation, however, will introduce bias due to the nonlinearity of the transformation.

A similarly obvious and related point is that is in general not guaranteed to be positive definite. InΣ̂

our experience, however, positive definiteness is rarely violated in practice. If desired, positive definiteness

can be imposed by estimating the Cholesky factor P of , rather than itself, where P is the unique lower-Σ Σ

triangular matrix defined by . Note that the elements of P are functions of the elements of . HenceΣ'PP ) Σ

we insert our range-based estimators of the relevant variances and covariances into P (computed analytically)

to obtain an estimator of the Cholesky factor and then form the estimator of the covariance matrix.P̂ P̂P̂
)

Because the estimated Cholesky factor will be complex when is not positive definite, we define as theP̂ Σ̂ P̂
)

conjugate transpose, which guarantees that is real.3P̂P̂
)

Ultimately, however, the interesting questions for financial economists center not on the theoretical

properties of range-based covariance and correlation estimates under abstract conditions surely violated in

practice, but rather on their performance in realistic situations involving small samples, discrete sampling, and

market microstructure noise. As we argued above, we have reason to suspect good performance of the range-

based approach, both because of its high efficiency due to the use of the information in the intraday sample

path, and because of its robustness to microstructure noise. We now turn to a brief Monte Carlo analysis

designed to illuminate precisely those issues.

4. Monte Carlo Exploration

We initially ignore market microstructure issues. We assume that two dollar-denominated exchange rates P1

and evolve as driftless diffusions with annualized volatilities σ of 15 percent, a covariance of 0.9, and henceP2



4 Since and follow the same stochastic process, we analyze only the volatility estimates for .p1 p2 p1

pi,t%k/m'pi,t%(k&1)/m%σ 250/mεi,t%k/m , for i'{1,2}, and p3,t'p1,t&p2,t , (13)

a correlation ρ of 0.4. We further assume that at each instant the cross-rate is determined by the absence ofP3

triangular arbitrage as the ratio of the two dollar rates. Starting at , we simulate 24 hours worthP1,0' P2,0' 1

of regularly spaced intraday log price observations using:m

where , are standard normal innovations with correlation ρ, and there are 250 trading days perpi' lnPi [ε1,ε2]

year. We consider sampling frequencies m ranging from m=18 (one observation every 1 hour and 20 minutes)

to m=1440 (one observation every minute) and use the resulting data to compute the daily range and intraday

returns. We then construct three estimates of the volatilities, covariance, and correlation of the two dollar

rates. Specifically, we construct range-based covariance matrix estimates using Parkinson’s variance estimator

(2) and equation (7), and, for comparison, we compute the realized covariance matrix using two different

approaches. First, in parallel fashion to the range-based estimator, we use the three realized variances

constructed from the sum of squared intraday returns to obtain an estimate of the covariance. Second, we

compute the realized covariance directly using the cross-products of intraday returns. We repeat this procedure

10,000 times and report the means, standard deviations, and root mean squared errors of the resulting sampling

distributions in Table 1.

The results for the volatilities are familiar from Alizadeh, Brandt, and Diebold (2002).4 The range-

based estimates are downward biased because the range of the discretely sampled process is strictly less than

the range of the underlying diffusion. The magnitude of the bias decreases as the sampling frequency

increases. But, even in the limit as , the range is still only a noisy volatility proxy, which means that them64

standard deviation and RMSE of the range-based volatility estimator settle down to non-zero values. The

realized volatility behaves quite differently because it converges not only in expectation but also in realization

to the true volatility. The more frequently the underlying diffusion is sampled, the more precise the realized

volatility gets, until, in the limit, the standard deviation and RMSE of the estimator are zero.

The results for the range-based covariance estimates follow from the properties of the range-based

volatility estimates. The estimator involves three volatilityCov[∆p1,∆p2]'1/2(Var[∆p1]%Var[∆p2]&Var[∆p3])

estimates, each of which is downward biased by an amount that depends on the level of volatility (the higher

the volatility the more likely that the true extremes are far from the observed extremes). Because the variance

of is less than the variance of and due to the positive covariance, the covariance estimates are alsop3 p1 p2

downward biased because the downward bias of dominates the upward bias of .Var[∆p1]%Var[∆p2] &Var[∆p3]



As with the volatility estimates, the bias vanishes as we increase the sampling frequency, and the standard

deviation and RMSE stabilize. The realized covariances, computed either through the no-arbitrage condition or

with return cross-products, yield identical estimates that inherit the outstanding properties of the realized

volatility estimates.

Finally, the range-based correlation is downward biased, although, by construction, the covariance in

the numerator is less down-ward biased than the product of volatilities in the denominator (the correlation

evaluated at the average covariance and volatilities with is 0.4336). The source of this bias is them'1440

sampling variation of the covariance and volatility estimates through Jensen’s inequality. Because the

sampling variation does not vanish as , the range-based correlation estimator remains downward biasedm64

even in the limit. The realized correlation does not suffer from this bias.

Bid-ask bounce is a well-known reality of financial market data. To examine its effect on the

covariance and correlation estimates, we augment the Monte Carlo experiment with a simple model of bid-ask

bounce and price discreteness taken from Hasbrouck (1999b). Specifically, we take the dollar rates from the

original experiment as the true prices and compute the bid and ask quotes andBi,t' floor[Pi,t&1/2spread, tick]

, where and are functions that round down or upAi,t'ceiling[Pi,t%1/2spread, tick] floor[x,tick] ceiling[x,tick] x

to the nearest tick, respectively. For the cross rate, we compute the bid and ask quotes by imposing no-

arbitrage given the bid and ask quotes of the dollar rates. We then take the observed prices as

, where . To capture the fact that the two base currencies areP obs
i,t 'qi,t Bi,t%(1&qi,t )Ai,t qi,t~Bernoulli[1/2]

denominated in dollars, which means that the sale or purchase of the dollar might involve a simultaneous

purchase or sale of the two currencies, we allow the buy-sell indicators and to be correlated withq1,t q2,t

. The indicator is independent.Corr[q1,t,q2,t]'η q3,t

Table 2 presents the results for a bid-ask spread of 0.0005 and a tick size of 0.0001, which are realistic

values for currencies (see Hasbrouck, 1999b). In Panel A the correlation η is set to zero and in Panels B the

correlation is 0.5. The effect of bid-ask bounce on the range-based estimates is relatively minor. In contrast,

the effect on the realized volatilities, covariance, and correlation is striking. Consistent with the intuition

outlined above, the realized volatilities are upward biased when the data is sampled more frequently than once

every three hours. By the time the data is sampled every minute, the bias inflates the true volatility by almost

100 percent (an average estimate of 29.7 percent as opposed to a true volatility of 15 percent). The results for

the realized covariance depend on whether we construct the estimator using the no-arbitrage condition or return

cross-products and on the correlation of the bid-ask indicators. If we use the no-arbitrage condition, the

realized covariance inherits the biases of the realized volatilities, to the point where for five-minute sampling

the average estimate is negative. In contrast, if we use return cross-products and if the bid-ask indicators are



independent (in Panel A), the realized covariance is unbiased. The reason is that if the bid-ask indicators are

independent, then the expectation of the product of observed returns is equal to the expectation of the product

of true returns. The bid-ask bounce therefore only increases the variability of the estimator. However, if the

bid-ask indicators are correlated (in Panel B), this argument no longer holds and the realized covariance is

severely positively biased because each cross-product of returns contains an upward bias due to the common

component of the bid-ask indicators. Finally, the realized correlation, computed from the biased realized

volatilities and biased covariance, is unreliable, ranging from -0.89 to 0.66.

Finally, asynchronous trading is another market microstructure effect that is likely to affect differently

the range-based and realized covariance and correlation estimates. With infrequent trading, a security has a

latent true price that is only revealed when a trade occurs. Between trades, the observed price is stale at the last

traded price and therefore does not reflect the true price. In a univariate setting, infrequent trading induces

positive serial-correlation in the intraday returns, which, in turn, causes a downward bias in the realized

volatility. In a bivariate setting, asynchronous infrequent trading, when the trades for the two assets do not take

place at the same time, also creates a misalignment of the return-cross products that may lead to a downward

bias of the realized covariance.

To capture the effect of asynchronous infrequent trading in our Monte Carlo experiment, we use the

discretization (13) with (one observation per second) to simulate the latent “true” price processes.m'17280

We then assign for each process trade times randomly throughout the day and construct stale price processesn

for which the price is equal to the price at the previous trade time until it is reset to the latent true price at the

next trade time. Hence the true prices look like continuous diffusions while the stale prices look like discrete

steps that occur at different times for the different currencies. Finally, we sample these stale price processes at

a regular frequency ranging again from four to 1440 and proceed just as in Table 1 (i.e., there is no bid-askm

bounce in this experiment).

We present the results for (an average of one trade every minute) in Table 3. The range-basedn'1440

estimates are slightly downward biased because the infrequent trading magnifies the discretization bias. The

realized volatilities are slightly downward biased due to the positive serial correlation induced by infrequent

trading. Finally, when we compute the realized covariance and correlation using the no-arbitrage condition, the

estimates inherit only the slight bias from infrequent trading, but when we instead use return cross-products,

the estimates are severely downward biased. In particular, the average realized covariance and correlation

computed with return cross-products are close to zero in both panels. This extreme bias is due to the

asynchronous price revelation.



5. Conclusion

We have extended the important idea of range-based volatility estimation to the multivariate case. In

particular, we proposed a range-based covariance estimator motivated by financial economic considerations

(the absence of arbitrage), in addition to statistical considerations. We showed that, unlike other univariate and

multivariate volatility estimators, the range-based estimator is highly efficient yet robust to market

microstructure noise arising from bid-ask bounce and asynchronous trading. Many extensions and applications

of the ideas developed here are possible, and Brunetti and Lildolt (2002) take up several.

An intriguing application, which to the best of our knowledge has not yet been explored, involves

constructing range-based volatility and covariance bets via a portfolio of lookback options. The payoff of a

lookback straddle (a lookback call plus a lookback put) is equal to the range of the underlying asset over the

life of the option. Therefore, lookback straddles are ideal for placing bets on the range-based volatility of an

asset: their payoffs are high (low) when volatility as measured by the range is high (low). Our no-arbitrage

approach to covariance estimation suggests an analogous way of placing bets on the covariance between two

assets. Consider a portfolio of a long A/$ lookback straddle, a long B/$ lookback straddle, and a short A/B

lookback straddle. Since each of the straddles is a variance bet, the payoffs of this portfolio are high (low)

when covariance between the two dollar rates is high (low) over the life of the option.
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Table 1: Range-Based and Realized Estimates in Merton’s Utopia

Two dollar denominated exchange rates and evolve as drift-less diffusions with annualized volatilityP1 P2
σ of 15 percent, covariance of 0.9, and correlation ρ of 0.4. At each instant the cross-currency is givenP3
by the absence of triangular arbitrage as the ratio of the two base currencies. Starting at , weP1,0'P2,0'1
simulate 24 hours worth of regularly spaced intraday log prices using ,m pi,t%k/m'pi,t%(k&1)/m%σ 250/mεi,t%k/m

, and , for k=1,...m, where and are standard-normal innovations withi'{1,2} p3,t'p1,t&p2,t pi' lnPi [ε1,ε2]
correlation ρ. The sampling frequency m ranges from 18 (one observation every hour and 20 minutes) to
1440 (on observation every minute). We use this observed data to compute the daily range and intraday
returns and then construct three estimates of the volatilities, covariance, and correlation. We construct
range-based covariance estimates using Parkinson’s variance estimator and

. We construct realized covariance estimates using eitherCov[∆p1,∆p2]'1/2(Var[∆p1]%Var[∆p2]&Var[∆p3])
the realized variance estimator and the same expression for the covariance or using the cross-products of
intraday returns. We repeat this procedure 10,000 times and report the means, standard deviations, and root
mean squared errors.

Sampling
Frequency

Standard Deviation Covariance Correlation
Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.099 4.279 4.373 0.862 1.084 1.085 0.371 0.341 0.342
5-min 13.746 4.277 4.457 0.823 1.061 1.064 0.369 0.351 0.352
10-min 13.477 4.274 4.537 0.794 1.043 1.048 0.368 0.359 0.360
20-min 13.090 4.266 4.674 0.753 1.016 1.026 0.366 0.370 0.372
40-min 12.525 4.255 4.923 0.695 0.977 0.998 0.363 0.389 0.391
1hr 20-min 11.701 4.236 5.369 0.615 0.918 0.961 0.358 0.420 0.422

Realized Estimates with No-Arbitrage Condition
1-min 14.997 0.280 0.280 0.900 0.064 0.064 0.400 0.022 0.022
5-min 14.985 0.623 0.624 0.900 0.143 0.143 0.400 0.050 0.050
10-min 14.971 0.883 0.883 0.901 0.202 0.202 0.399 0.070 0.070
20-min 14.943 1.249 1.250 0.900 0.285 0.285 0.398 0.099 0.099
40-min 14.888 1.758 1.762 0.898 0.404 0.404 0.395 0.142 0.142
1hr 20-min 14.788 2.475 2.484 0.896 0.570 0.570 0.389 0.203 0.203

Realized Estimates with Cross-Products
1-min 14.997 0.280 0.280 0.900 0.064 0.064 0.400 0.022 0.022
5-min 14.985 0.623 0.624 0.900 0.143 0.143 0.400 0.050 0.050
10-min 14.971 0.883 0.883 0.901 0.202 0.202 0.399 0.070 0.070
20-min 14.943 1.249 1.250 0.900 0.285 0.285 0.398 0.099 0.099
40-min 14.888 1.758 1.762 0.898 0.404 0.404 0.395 0.142 0.142
1hr 20-min 14.788 2.475 2.484 0.896 0.570 0.570 0.389 0.203 0.203



Table 2: Range-Based and Realized Estimates with Bid-Ask Bounce

We simulate two currency prices as described in Table 1 and then compute the bid and ask quotes
and , where andBi,t' floor[Pi,t&1/2spread, tick] Ai,t'ceiling[Pi,t%1/2spread, tick] floor[x,tick] ceiling[x,tick]

are functions that round down or up to the nearest tick, respectively. The spread is set to 0.0005 and thex
tick size is 0.0001. For the cross-currency, we compute the bid and ask quotes by imposing no-arbitrage
given the bid and ask quotes of the base currencies. We then take the observed prices as

, where . The buy-sell indicators and are correlated withP obs
i,t 'qi,t Bi,t%(1&qi,t )Ai,t qi,t~Bernoulli[1/2] q1,t q2,t

but the indicator is independent. In panel A and in panel B . We use thisCorr[q1,t,q2,t]'η q3,t η'0 η'0.5
observed data to compute the daily range and intraday returns and then construct three estimates of the
volatilities, covariance, and correlation. We construct range-based covariance estimates using Parkinson’s
variance estimator and . We construct realizedCov[∆p1,∆p2]'1/2(Var[∆p1]%Var[∆p2]&Var[∆p3])
covariance estimates using either the realized variance estimator and the same expression for the covariance
or using the cross-products of intraday returns. We repeat this procedure 10,000 times and report the means,
standard deviations, and root mean squared errors.

Panel A: Independent Bid-Ask Bounce with η'0
Sampling
Frequency

Standard Deviation Covariance Correlation
Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.512 4.278 4.306 0.826 1.121 1.124 0.327 0.344 0.352
5-min 14.006 4.274 4.388 0.779 1.087 1.093 0.327 0.357 0.365
10-min 13.671 4.272 4.474 0.754 1.063 1.073 0.331 0.366 0.373
20-min 13.228 4.263 4.617 0.721 1.032 1.047 0.335 0.378 0.384
40-min 12.622 4.256 4.875 0.672 0.989 1.015 0.339 0.397 0.402
1hr 20-min 11.767 4.236 5.328 0.600 0.928 0.975 0.340 0.428 0.432

Realized Estimates with No-Arbitrage Condition
1-min 29.645 0.490 14.653 -5.578 0.462 6.495 -0.636 0.060 1.037
5-min 18.849 0.760 3.924 -0.395 0.341 1.339 -0.114 0.100 0.524
10-min 17.010 0.990 2.241 0.253 0.351 0.736 0.082 0.118 0.339
20-min 15.994 1.327 1.658 0.578 0.396 0.511 0.217 0.141 0.231
40-min 15.422 1.820 1.868 0.736 0.486 0.513 0.296 0.177 0.206
1hr 20-min 15.058 2.515 2.516 0.815 0.629 0.635 0.335 0.232 0.241

Realized Estimates with Cross-Products
1-min 29.645 0.490 14.653 0.900 0.263 0.263 0.102 0.030 0.299
5-min 18.849 0.760 3.924 0.900 0.223 0.223 0.253 0.057 0.158
10-min 17.010 0.990 2.241 0.901 0.256 0.256 0.309 0.076 0.119
20-min 15.994 1.327 1.658 0.901 0.322 0.322 0.347 0.104 0.117
40-min 15.422 1.820 1.868 0.898 0.429 0.429 0.368 0.145 0.149
1hr 20-min 15.058 2.515 2.516 0.896 0.588 0.588 0.376 0.205 0.207



Panel B: Correlated Bid-Ask Bounce with η'0.5
Sampling
Frequency

Standard Deviation Covariance Correlation
Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.512 4.278 4.306 0.810 1.123 1.127 0.318 0.347 0.356
5-min 14.006 4.274 4.388 0.764 1.089 1.097 0.319 0.360 0.369
10-min 13.671 4.272 4.474 0.741 1.065 1.077 0.323 0.369 0.377
20-min 13.228 4.263 4.617 0.710 1.033 1.051 0.329 0.380 0.387
40-min 12.622 4.256 4.875 0.664 0.990 1.018 0.333 0.399 0.405
1hr 20-min 11.767 4.236 5.328 0.595 0.929 0.978 0.335 0.430 0.435

Realized Estimates with No-Arbitrage Condition
1-min 29.645 0.490 14.653 -7.812 0.548 8.729 -0.890 0.073 1.292
5-min 18.849 0.760 3.924 -0.842 0.375 1.782 -0.241 0.114 0.651
10-min 17.010 0.990 2.241 0.029 0.375 0.949 0.004 0.130 0.417
20-min 15.994 1.327 1.658 0.465 0.414 0.601 0.172 0.151 0.273
40-min 15.422 1.820 1.868 0.679 0.500 0.547 0.270 0.185 0.226
1hr 20-min 15.058 2.515 2.516 0.786 0.640 0.650 0.321 0.238 0.251

Realized Estimates with Cross-Products
1-min 29.645 0.490 14.653 4.140 0.265 3.251 0.471 0.024 0.075
5-min 18.849 0.760 3.924 1.549 0.230 0.688 0.435 0.050 0.061
10-min 17.010 0.990 2.241 1.225 0.262 0.418 0.421 0.070 0.073
20-min 15.994 1.327 1.658 1.062 0.328 0.366 0.410 0.099 0.099
40-min 15.422 1.820 1.868 0.979 0.433 0.440 0.401 0.141 0.141
1hr 20-min 15.058 2.515 2.516 0.937 0.591 0.592 0.393 0.202 0.202



Table 3: Range-Based and Realized Estimates with Asynchronous Trading

We simulate 24 hours worth of regularly spaced intraday log prices (one price every second) form'17280
three currencies as described in Table 1. We then assign to each log price process n=1440 trade times (an
average of one trade every minute) randomly throughout the day and construct stale price processes for
which the price is equal to the price at the previous trade time until it is reset to the latent true price at the
next trade time. We then sample these stale price processes at a regular frequency m ranging from 18 (one
observation every hour and 20 minutes) to 1440 (one observation every minute). We use this observed data
to compute the daily range and intraday returns and then construct three estimates of the volatilities,
covariance, and correlation. We construct range-based covariance estimates using Parkinson’s variance
estimator and . We construct realized covarianceCov[∆p1,∆p2]'1/2(Var[∆p1]%Var[∆p2]&Var[∆p3])
estimates using either the realized variance estimator and the same expression for the covariance or using
the cross-products of intraday returns. We repeat this procedure 10,000 times and report the means,
standard deviations, and root mean squared errors.

Sampling
Frequency

Standard Deviation Covariance Correlation
Mean StdDev RMSE Mean StdDev RMSE Mean StdDev RMSE

Range-Based Estimates
1-min 14.037 4.333 4.436 0.894 1.115 1.115 0.382 0.341 0.341
5-min 13.743 4.335 4.511 0.858 1.098 1.098 0.379 0.350 0.351
10-min 13.472 4.315 4.575 0.826 1.078 1.079 0.377 0.359 0.359
20-min 13.096 4.308 4.708 0.789 1.050 1.055 0.377 0.367 0.368
40-min 12.531 4.280 4.939 0.730 1.017 1.030 0.374 0.391 0.392
1hr 20-min 11.674 4.250 5.395 0.646 0.958 0.991 0.368 0.428 0.429

Realized Estimates with No-Arbitrage Condition
1-min 14.989 0.405 0.405 0.898 0.097 0.097 0.399 0.034 0.034
5-min 14.952 0.678 0.680 0.888 0.163 0.163 0.395 0.057 0.057
10-min 14.940 0.932 0.934 0.891 0.222 0.222 0.396 0.079 0.079
20-min 14.923 1.292 1.294 0.882 0.315 0.315 0.390 0.113 0.113
40-min 14.898 1.773 1.775 0.898 0.433 0.433 0.394 0.158 0.158
1hr 20-min 14.836 2.463 2.468 0.913 0.591 0.591 0.391 0.220 0.220

Realized Estimates with Cross-Products
1-min 14.989 0.405 0.405 0.096 0.096 0.810 0.043 0.042 0.360
5-min 14.952 0.678 0.680 0.266 0.212 0.668 0.119 0.094 0.296
10-min 14.940 0.932 0.934 0.387 0.257 0.574 0.173 0.112 0.253
20-min 14.923 1.292 1.294 0.545 0.317 0.476 0.243 0.133 0.206
40-min 14.898 1.773 1.775 0.700 0.402 0.449 0.310 0.161 0.185
1hr 20-min 14.836 2.463 2.468 0.824 0.558 0.563 0.356 0.210 0.214
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