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Abstract

Characterizing the instantaneous investment opportunity set by the real interest

rate and the maximum Sharpe ratio, a simple model of time varying investment oppor-

tunities is posited in which these two variables follow correlated Ornstein-Uhlenbeck

processes, and the implications for stock and bond valuation are developed. The

model suggests that the prices of certain portfolios that are related to the Fama-

French HML and SMB hedge portfolios will carry information about investment

opportunities, which provides a potential justification for the risk premia that have

been found to be associated with these hedge portfolios. Evidence that the FF port-

folios are in fact associated with variation in the investment opportunity set is found

from an analysis of stock returns. Further evidence of time variation in the invest-

ment opportunity set is found by analyzing bond yields, and the time variation in

investment opportunities that is identified from bond yields is shown to be associ-

ated both with the time-variation in investment opportunities that is identified from

stock returns and with the returns on the Fama-French hedge portfolios. Finally, both

pricing kernel and tracking portfolio approaches are used to provide estimates of the

magnitude of the HML and SMB risk premia implied by our simple model.



1 Introduction

In the short run, investment opportunities depend only on the real interest rate and

the slope of the capital market line, or Sharpe ratio, as in the classic Sharpe-Lintner

Capital Asset Pricing Model. The slope of the capital market line depends in turn on

the risk premium and volatility of the market return, and there is now strong evidence

of time variation both in the equity risk premium and in market volatility, implying

variation in the market Sharpe ratio, as well as in the real interest rate. Kandel and

Stambaugh (1990), Whitelaw (1994, 1997), and Perez-Quiros and Timmermann (2000) all

demonstrate significant cyclical variation in the market Sharpe ratio.1 Given the evidence

of time variation in short-run investment opportunities, four questions present themselves.

First, how should future cash flows be valued when the investment opportunity set varies

over time? Since Merton (1973) it has been clear that the empirically challenged single

period CAPM is unlikely to provide reliable guidance under these circumstances although,

as Cornell et al. (1997, p12) point out, the CAPM is the only asset pricing model that

has been applied widely in practice. Secondly, is it possible that it is time variation in

investment opportunities that accounts largely for the empirical failure of the single period

CAPM as Merton’s analysis would suggest,2 and is it possible that the empirical success

of the Fama-French three factor model3 is related to the ability of this model to capture

the risk premia associated with time variation in investment opportunities?4 Thirdly, to

what extent is variation in stock prices due to variation in investment opportunities rather

1Other studies that identify significant predictors of the equity risk premium include: Lintner (1975),

Fama and Schwert (1977) for interest rates; Campbell and Shiller (1988) and Fama and French (1988) for

dividend yield; Fama and French (1989) for term spread and junk bond yield spread; Kothari and Shanken

(1999) for Book-to-Market ratio.
2It is possible for the single period CAPM to hold even with time-varying investment opportunities. See

Rubinstein (1976) and Constantinides (1980).
3Daniel and Titman (1997) question the role of the FF portfolios, but Davis et al. (2000) confirm the

original FF findings using a larger data set.
4Lewellen (2000, p38) remarks that “the risk factors captured by the size and B/M mimicking portfolios

have not been identified. The rational pricing story will remain incomplete, and perhaps unconvincing,

until we know more about the underlying risks.”
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than to variation in cash flow expectations?5 Fourthly, can consideration of time variation

in investment opportunities account for the finding that individual stock betas show little

dependence on earnings or cash flow covariances with the market (Campbell and Mei,

1993), but are strongly related to the duration of equity cash flows (Cornell, 1999)?

In this paper, we are concerned with the first two issues: how cash flows should be

valued when there is time-variation in investment opportunities, and the relation between

time variation in investment opportunities and the Fama-French three factor model. First,

we develop a parsimonious model of cash flow valuation that takes account of time-

variation in investment opportunities and show how this can be used to value both equity

claims and bonds within an integrated framework.

To address the second issue, we use the model to show that the (scaled) prices of the

portfolios that Fama and French use to construct their HML and SMB hedge portfolio

returns, as well as the term spread, are likely to contain information about investment

opportunities. Using data on US stock returns, we find that these variables do indeed

have predictive power for both the real interest rate and the Sharpe ratio. This finding

is consistent with the existence of risk premia associated with loadings on these hedge

portfolio returns, if risk premia are determined by a Merton (1973) type Intertemporal

Capital Asset Pricing Model (ICAPM). We also estimate the model by applying a Kalman

filter to the yields of pure discount Treasury bonds and find further evidence of time

variation in the estimated market Sharpe ratio as well as in the real interest rate, which

is further confirmed when we re-estimate the model using a time series of Sharpe ratio

estimates from equity returns in addition to the Treasury bond yields. We also show

that the estimates of the investment opportunity set statistics that are derived from the

bond yield data are related, both to estimates of these statistics that are derived from

the equity market data, and to the scaled prices of the Fama-French portfolios, and that

innovations in the estimated opportunity set statistics are correlated with the returns on

5This issue has been examined by Campbell using a VAR framework in a series of papers including

Campbell and Ammer (1993) and Campbell and Shiller (1988).

2



the Fama-French hedge portfolios, HML and SMB. All this evidence is consistent with

the ICAPM accounting for the existence of the risk premia on these portfolios. Finally,

we provide quantitative estimates of the HML and SMB risk premia that are implied by

the model, using both the pricing kernel and the tracking portfolio approach. When we

use the tracking protfolio approach we conclude that about 30-50% of the risk premia

associated with these portfolios can be attributed to their role as investment opportunity

set hedges.

Explanations that have been offered previously for the empirical success of the Fama-

French three-factor model are based, first, on problems in the measurement of beta,

secondly, on the ICAPM, and thirdly on the APT. Berk, Green and Naik (1999) and

Gomes, Kogan, and Zhang (2000) develop models that explain the Fama-French results

on the basis of problems in the measurement of beta. In these models firm betas are

stochastic,6 and there is a statistical relation between average returns, unconditional betas

and other firm characteristics such as size and book-to-market ratio, which could be

captured by a model such as the Fama-French three-factor model. The ICAPM has been

suggested by Fama and French (FF) themselves as one possible reason for the premia that

they find to be associated with loadings on the SMB and HML hedge portfolios that are

formed on the basis of firm size and book-to-market ratio. In FF (1995) they argue that the

premia, “are consistent with a multi-factor version of Merton’s (1973) intertemporal asset

pricing model in which size and BE/ME proxy for sensitivity to risk factors in returns.”

An APT interpretation has also been suggested by Fama and French who argue that “if

the size and BE/ME risk factors are the results of rational pricing, they must be driven

by common factors in shocks to expected earnings that are related to size and BE/ME.”

In contrast to the ICAPM, the APT interpretation provides an essentially single period

rationale for the premia associated with these portfolios. FF find little support for the

APT interpretation.7

6In these papers betas are measured with respect to the pricing kernel.
7However, in results not reported here, we also provide some supportive evidence for the APT inter-
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Other authors have also suggested that the Fama-French portfolios may be related to

the investment opportunity set and that their risk premia may therefore be justified by

appeal to the ICAPM. For example, Liew and Vassalou (2000) report that annual returns

on the HMB and SML hedge portfolios predict GDP growth in several countries, and

Vassalou (2002) shows that a portfolio designed to track news about future GDP growth

captures much of the explanatory power of the Fama French portfolios.8

While previous authors have suggested that scaled asset prices may have predictive

power for returns,9 we suggest in this paper that ratios of scaled asset prices have predic-

tive power. We also construct a simple valuation model with time-varying riskless rates

and risk premia, and relate this to cross-sectional asset pricing results,10 and relate bond

market based estimates of the Sharpe ratio and real interest rate to the FF hedge portfolio

returns.

Papers that are related to our general valuation framework in allowing for time-

variation in interest rates and risk premia include Ang and Liu (2001) and Bekaert and

Grenadier (2000). The valuation model in this paper differs from the models presented

in these papers chiefly in its parsimonious specification of the relevant state variables. In

this paper, the state is completely described by the real interest rate and the instantaneous

Sharpe ratio: this is a natural starting point for the choice of state variables in intertem-

poral asset pricing since, in a diffusion setting, these two variables provide a complete

description of the instantaneous investment opportunity set.11

petation, by showing that the FF portfolio returns are associated with returns on assets that are not included

in the conventional measure of the (stock) market portfolio. Consistent with this, Heaton and Lucas (2000)

find evidence that the inclusion of entrepreneurial income in an asset pricing model reduces the importance

of the FF portfolios. See also Polk (1998), Jagannathan and Wang (1996), and Jagannathan et al. (1998).
8See also Chen (2001).
9See Ball (1978), Miller and Scholes (1982), Berk (1995), and Kothari and Shanken (1997).
10Campbell (1993) also points out that state variables that are priced in the cross-section must, in a

rational model, have predictive power - in his case for future consumption.
11Nielsen and Vassalou (2001) demonstrate that investors hedge only against stochastic changes in the

slope and the intercept of the instantaneous capital market line, which implies that only variables that

forecast the real interest rate and the Sharpe ratio will be priced.
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The remainder of the paper is organized as follows. In Section 2, we construct a

simple valuation model with a stochastic interest rate and a stochastic Sharpe ratio. In

Section 3, we specialize the model to the ICAPM and show that ratios of security prices

can be used as instruments for the state variables that describe the short term investment

opportunity set. In Section 4, we describe the estimation approaches and the construction

of the data that are used in the subsequent empirical tests. Empirical results are reported

in Section 5. Section 6 concludes.

2 Valuation with Stochastic Investment Opportunities

The value of a claim to a future cash flow depends on both the characteristics of

the cash flow itself, its expected value, time to realization, and risk, and on the macro-

economic environment as represented by interest rates and risk premia. Holding the risk

characteristics of the cash flow constant, unanticipated changes in claim value will be

driven by changes in both the expected value of the cash flow and in interest rates and

risk premia. Most extant valuation models place primary emphasis on the role of cash

flow related risk. However, Campbell and Ammer (1993) estimate that only about 15%

of the variance of aggregate stock returns is attributable to news about future dividends.

Their results further show that news about real interest rates plays a relatively minor role,

leaving about 70% of the total variance of stock returns to be explained by news about

future excess returns or risk premia. Fama and French (1993)12 demonstrate that there is

considerable common variation between bond and stock returns, which is also consistent

with common variation in real interest rates and risk premia. In this section we construct

an explicit model for the valuation of stochastic cash flows, taking account of stochastic

variation in interest rates and risk premia.

12See also Cornell (1999).
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Let V denote the value of a non-dividend paying asset. Then a pricing kernel is a

random variable, m, such that E[d(mV )] = 0.13 This implies that the expected return on

the asset is given by:

E

[
dV

V

]
= −E

[
dm

m

]
− cov

(
dm

m
,
dV

V

)
(1)

Assume that the dynamics of the pricing kernel can be written as a diffusion process:

dm

m
= −r(X)dt− η(X)dzm (2)

where X is a vector of variables that follow a vector Markov diffusion process:

dX = µXdt+ σXdzX (3)

Then equations (1) and (2) imply that the expected return on the asset is given by:

E

[
dV

V

]
≡ µV dt = r(X)dt+ η(X)ρV mσV dt (4)

where ρV mdt = dzV dzm, and σV is the volatility of the return on the asset. It follows that

r(X) is the riskless rate since it is the return on an asset with σV = 0, and η(X) is the risk

premium per unit of covariance with the pricing kernel. It is immediate from equation (4),

that the Sharpe ratio for any asset V is given by SV ≡ (µV −r)/σV = ηρVm. Recognizing

that ρV m is a correlation coefficient, it follows that η is the maximum Sharpe ratio for

any asset in the market - it is the “market” Sharpe ratio. An investor’s instantaneous

investment opportunities then are fully described by the vector of the instantaneously

riskless rate and the Sharpe ratio of the capital market line, (r, η)′.

13See Cochrane (2001) for a complete treatment.
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In order to construct a tractable model, we shall simplify by identifying the vector

X with (r, η)′, and assume that r and η follow simple correlated Ornstein-Uhlenbeck

processes.14 Then, since the expected returns on all securities are functions only of

(r, η)′, the dynamics of the investment opportunity set are fully captured by:

dm

m
= −rdt− ηdzm (5.1)

dr = κr(r − r)dt+ σrdzr (5.2)

dη = κη(η − η)dt+ σηdzη (5.3)

The structure (5) implies that the riskless interest rate is stochastic, and that all risk

premia are proportional to the stochastic Sharpe ratio η. To analyze the asset pricing

implications of the system (5), consider a claim to a (real) cash flow, x, which is due

at time T . Let the expectation at time t of the cash flow be given by y(t) ≡ E [x|Λt]
where Λt is the information available at time t, and y(t) follows the driftless geometric

Brownian motion with constant volatility, σy:
15

dy

y
= σydzy (6)

Letting ρij denote the correlation between dzi and dzj , the value of the claim to the cash

flow is given in the following theorem.

Theorem 1 In an economy in which the investment opportunity set is described by (5),

14Kim and Omberg (1996) also assume an O-U process for the Sharpe ratio. For a structural model of

time variation in investment opportunities that relies on habit formation see Campbell and Cochrane (1999).
15The assumption of constant volatility is for convenience only. For example, as Samuelson (1965) has

shown, the volatility of the expectation of a future cash flow will decrease monotonically with the time to

maturity if the cash flow has a mean-reverting component.
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the value at time t of a claim to a real cash flow x at time T , whose expectation, y,

follows the stochastic process (6), is given by:

V (y, τ, r, η) = EQ
t

[
xT exp− ∫ T

t r(s)ds
]
= EQ

t

[
yT exp− ∫ T

t r(s)ds
]
= yv(τ, r, η) (7)

where Q denotes the risk neutral probability measure, and

v(τ, r, η) = exp[A(τ) − B(τ)r −D(τ)η] (8)

with

B(τ) = κr
−1(1 − e−κrτ ) (9)

D(τ) = d1 + d2e
−κ∗

ητ + d3e
−κrτ (10)

A(τ) = a1τ + a2
1 − e−κrτ

κr
+ a4

1 − e−κ∗
ητ

κ∗η
+ a5

1 − e−2κrτ

2κr

+ a7
1 − e−2κ∗

ητ

2κ∗η
+ a8

1 − e−(κ∗
η+κr)τ

κ∗η + κr
. (11)

where κ∗η ≡ κη + σηρmη, d1, d2, d3 are given in equations (A16)-(A18) by setting ρmP =

ρmπ = 0, and a1, . . . , a8 are given in equations (A24)-(A31) by setting σP , σπ, and π̄ to

zero.

Theorem 1 implies that the value per unit of expected payoff of the claim is a function

of the maturity τ , and the covariance with the pricing kernel, or systematic risk, φy ≡
σyρym, of the underlying cash flow, as well as of the two stochastic state variables that

8



determine the investment opportunity set, r and η.

Lemma 1 In the “positive cash flow beta” case in which ρym > 0,16 B(τ) and D(τ) are

positive and increase with τ , the time to maturity of the cash flow for a given systematic

risk φy, provided that there is a positive risk premium for interest rate risk (ρmr < 0).17

Lemma 1 characterizes the dependence of the state-variable sensitivities (measured by

the semi-elasticities of claim value) on the cash flow maturity, τ . The longer the cash

flow maturity, the more sensitive is the value of the claim to shocks in the interest rate r

and risk premium η.

Following Theorem 1 and applying Ito’s Lemma, the return on a claim can be written

as:

dV

V
= µ(r, η, τ)dt+

dy

y
− B(τ)σrdzr −D(τ)σηdzη. (12)

The expected return is shown in the Appendix to be given by:

µ ≡ µ(r, η, τ) = r + (Dτ (τ) + κηD(τ))η = r + h(τ)η, (13)

where h(τ) is the asset’s risk premium expressed relative to the market Sharpe ra-

tio. The form of the risk premium expression (13) can be understood by noting that,

under the assumptions we have made, the claim value can also be written as V =

E
[
yT e

− ∫ T
t

(rs+h(T−s)ηs)ds
]
. Noting that D = −Vη

V
, differentiation of this expression with

respect to ηt implies D =
∫ T

t
h(T − s)e−κη(s−t)ds, which then leads to the expression for

h(τ) in equation (13).

16This is the condition for the risk premium associated with innovations in y to be positive.
17This condition for bonds that are more exposed to interest rate risk to have higher risk premia is

satisfied by the empirical estimates reported in Table 4 below.
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Lemma 2 In the positive cash flow beta case (ρym > 0), if ρmr < 0 and ρmη < 0, then

the expected return on the claim increases with the cash flow maturity;

The restrictions imposed on the pricing kernel (ρmr < 0 and ρmη < 0) of the Lemma

are sufficient for the risk premia associated with exposure to real interest rate and Sharpe

ratio risk to be positive.18 However, the restriction ρmη < 0 is not satisfied by the

empirical estimates reported in Table 4 below, so that the direction of the effect of cash

flow duration on the expected return of the cash flow claim depends on model parameters

and is therefore an empirical issue.

Lemma 3 In the “zero cash flow beta” case in which ρym = 0, the value of the claim

is given by V (y, τ, r, η) ≡ yv(τ, r, η), and

v(τ, r, η) = exp[A∗(τ) − B(τ)r −D∗(τ)η] (14)

where A∗(τ) and D∗(τ) are obtained by setting ρym equal to zero in expressions (11)

and (10).

A special case of Lemma 3 applies for a real discount bond for which x ≡ y ≡ 1.

Then expression (14) generalizes the Vasicek (1977) model for the price of a (real) unit

discount bond of maturity τ to the case in which the risk premium as well as the interest

rate, is stochastic. In order to value nominal bonds, it is necessary to specify the stochastic

process for the price level, P . We assume that the price level follows the diffusion:

dP

P
= πdt+ σPdzP , (15)

18We are assuming here that the claim values decrease with an increase in the real interest rate or Sharpe

ratio.
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where the volality of inflation, σP , is constant, while the expected rate of inflation, π,

follows an Ornstein-Uhlenbeck process:

dπ = κπ(π − π)dt+ σπdzπ. (16)

Then, noting that the real payoff of the nominal bond is 1/PT , the nominal price of a

zero coupon bond with a face value of $1 and maturity of τ , N(P, r, π, η, τ), and the

corresponding real price, n(P, r, π, η, τ), are stated in the following theorem.

Theorem 2 If the stochastic process for the price level P is as described by (15) and

(16), the nominal and the real prices of a zero coupon bond with face value of $1 and

maturity τ , are:

N(P, r, π, η, τ) ≡ Pn(r, π, η, τ) = exp[Â(τ) − B(τ)r − C(τ)π − D̂(τ)η] (17)

where B(τ) is given in equation (9) and

C(τ) = κ−1
π

(
1− e−κπτ

)
(18)

D̂(τ) = d̂1 + d̂2e
−κ∗

ητ + d̂3e
−κrτ + d̂4e

−κπτ (19)

Â(τ) = â1τ + â2
1 − e−κrτ

κr
+ â3

1 − e−κπτ

κπ
+ â4

1 − e−κ∗
ητ

κ∗η

+â5
1 − e−2κrτ

2κr
+ â6

1 − e−2κπτ

2κπ
+ â7

1 − e−2κ∗
ητ

2κ∗η

+â8
1 − e−(κ∗

η+κr)τ

κ∗η + κr
+ â9

1− e−(κ∗
η+κπ)τ

κ∗η + κπ
+ â10

1− e−(κr+κπ)τ

κr + κπ
(20)

κ∗η ≡ κη + σηρmη , and d̂1, . . . , d̂4, â1, . . . , â10 are constants whose values are given in
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equations (A16)-(A19) and (A24)-(A33) by setting σy = 0.

In addition, the yield of the bond is given by:

− lnN

τ
= −Â(τ)

τ
+
B(τ)

τ
r +

C(τ)

τ
π +

D̂(τ)

τ
η. (21)

Finally, Theorem 1 can also be generalized to value a security with a continuous

(nominal) cash flow stream. Suppose that the growth rate of the nominal cash flow rate,

X , follows an Ornstein-Uhlenbeck process so that:

dX

X
= gdt+ σXdzX , (22)

dg = κg(ḡ − g)dt+ σgdzg, (23)

then the (real) value of the security at time t is given by the following theorem:

Theorem 3 In an economy in which the investment opportunity set is described by (5),

the (real) value at time t of a security whose (nominal) dividend follows the stochastic

process (22)-(23), is given by:

V (X, r, π, η, g) = EQ

[∫ ∞

t

Xs

Ps
e−

∫ s
t
r(u)duds

]
=
Xt

Pt

∫ ∞

t

v(s− t, r, π, η, g)ds (24)

where Q denotes the risk neutral probability measure, and

v(s, r, π, η, g) = exp[Ã(s− t) −B(s− t)r − C(s− t)π − D̃(s− t)η − F (s− t)g] (25)

12



with expressions for Ã to F given in Appendix A.

Theorem 3 implies that the security return now depends on innovations in g, the cash

flow process growth rate, as well as in r, π, and η. Expression (24) cannot, however, be

further simplified, and numerical or approximation techniques must be used to value the

security. To avoid this complication, we will base our empirical analysis on Theorem 1

instead of on Theorem 3.

3 Intertemporal Asset Pricing and the FF Portfolios

While the valuation model (5) explicitly allows for time-variation in the investment

opportunity set, it is not equivalent to Merton’s ICAPM without further specification of

the covariance characteristics of the pricing kernel. For example, the valuation model will

satisfy the simple CAPM if the innovation in the pricing kernel is perfectly correlated

with the return on the market portfolio. A specific version of the ICAPM is obtained by

specializing the pricing system (5) so that the innovation in the pricing kernel is an exact

linear function of the market return and the innovations in r and η:

dm

m
= −rdt− ωηζ ′dz (26)

where ζ ′ = (ζM , ζη, ζr)
′, dz = (dzM , dzη, dzr)

′, ω ≡ (ζ ′Ωζ)−1/2, and Ωdt = (dz)(dz)′,

where M denotes the market portfolio.

Then, using the definition of the pricing kernel (1), and equation (26), the expected

return on security i, µi may be written as:

µi = r + ηωζ ′σi (27)

13



where σi is the (3× 1) vector of covariances of the security return with the market return

and the innovations in the state variables, r and η. This is simply a restatement of the

ICAPM.

Note that, while the state variables of the ICAPM described by equations (5) and (26),

the Sharpe ratio, η, and the real interest rate, r, are not directly observable,19 the pricing

model expressed in equations (7) and (8) implies that the log of the ratio of the values of

any two claims i and j can be expressed as the sum of the log ratio of the expected (real)

cash flows, a time and risk-dependent constant, and linear functions of the investment

opportunity set parameters r and η:

ln

(
Vi
Vj

)
= ln

(
yi
yj

)
+ [Ai −Aj ]− [Bi − Bj ] r − [Di −Dj] η (28)

Moreover, equation (21) implies that the yield to maturity on a nominal bond of

maturity τ , R(τ) ≡ − lnN(τ, r, η)/τ is also a linear function of r, and η, as well as

the expected rate of inflation, π. Thus, corresponding to equation (28), the yield spread

between bonds with maturities τ1 and τ2 can be written as:

R(τ1) −R(τ2) =

[
Â(τ2)

τ2
− Â(τ1)

τ1

]
+

[
B(τ1)

τ1
− B(τ2)

τ2

]
r

+

[
C(τ1)

τ1
− C(τ2)

τ2

]
π +

[
D̂(τ1)

τ1
− D̂(τ2)

τ2

]
η (29)

Since the (log) value ratios are functions of the state variables, (r, η), covariances with

innovations in the value ratios will correspond to covariances with linear combinations

of innovations in the state variables. Therefore, under the ICAPM, covariances with

innovations in the price ratios should be priced.

19r would be observable if short term indexed bonds were traded.
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Equation (28) provides a theoretical rationale for the empirical importance of the

HML and SMB hedge portfolios in the FF three-factor model since it implies a relation

between the returns on these portfolios and innovations in r and η. Thus, letting H

and L denote portfolios of high and low book-to-market firms, and letting RH denote the

(discrete time) return on portfolio H etc., equation (28) implies the following approximate

relation between the return on HML, RHML, the changes in the values of the H and L

portfolios, and innovations in r and η:

RHML ≈ −(BH − BL)�r − (CH − CL)�π − (DH −DL)�η + u (30)

where u ≡ � ln yH−� ln yL is the noise introduced by the difference between the changes

in cash flow expectations for the two portfolios. Hence, if BH 	= BL, CH 	= CL, and

DH 	= DL,
20 the covariance of a security return with RHML will be a linear combination

of its covariances with the state variable innovations �η, �r, and �r, plus a term related

to the noise component, u. Similarly, the covariance with RSMB will provide a second

noisy linear combination of covariances with the state variable innovations. Therefore, if

the prices of portfolios of large and small firms and of high and low B/M firms show

reliable predictive power for the real interest rate, r, and equity premium or Sharpe ratio,

η, we should expect a cross-sectional relation between expected returns and factor loadings

on the corresponding hedge portfolio returns as FF have found. In Section 5 we shall

examine the predictive power of these portfolio price ratios.

20Since the B/M ratio is associated with growth, or the duration of firm cash flows, we should expect from

Lemma 1 that firms with different B/M ratios will have different sensitivities to r and η. Moreover, Perez-

Quiros and Timmermann (2000) show that portfolios of large and small firms have different sensitivities to

credit conditions, so that we should expect them to have different loadings on r at least.
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4 Data and Estimation

We shall adopt two distinct approaches to determining whether the Fama-French hedge

portfolio returns are related to innovations in the investment opportunity set, as they must

be if the risk premia associated with them are to be explained by the ICAPM. First, we

shall test whether portfolio price ratios that are related to the FF hedge portfolio returns

(together with the term spread) predict real riskless returns and the Sharpe ratio: these

tests, while motivated by the model developed in the previous section, do not rely on

the specific functional forms derived there. Secondly, we shall apply the exact model of

equation (21) to bond yields and extract the time series of the state variables, r, η, and

π, using a Kalman filter, and then test whether these state variable estimates are related

to the Fama-French hedge portfolio returns.

The first approach is based on equations (28) and (29) which suggest that linear

combinations of pairs of log value ratios or term spreads can be regarded as (noisy)

instruments of the (real) investment opportunity set state variables, r and η. In the case

of the log value ratios, noise is introduced by the omission of the log expected cash flow

ratios, ln(yi/yj), and in empirical applications approximation error will be introduced by

the use of prices of assets that are claims to streams of cash flows rather than to single

dated cash flows. In the case of empirical term spreads, noise will be introduced if the

bonds are nominal rather than real, and approximation error will be introduced if coupon

bonds are used in place of the theoretically required discount bond yields. Given these

errors, it is natural to think of using several price ratios or yield spreads as instruments

for the state vector (r, η). Therefore we estimate the investment opportunity set variables,

r and η, by regressing the realized values of the real interest rate and (normalized) market

excess return on the state variable instruments and calculating the fitted values from these

regressions. Since the portfolio prices (values) are non-stationary, we shall scale the prices

by the book values of the portfolios; this should also alleviate the problem caused by the

non-observability of the expected cash flow ratio.
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The second approach to estimating the dynamics of the investment opportunity set

is to employ a Kalman filter to data on inflation and bond yields using the theoretical

relation (21) to estimate the unobservable state variables, r, π and η, and their dynamics.

Details of the estimation are presented in Appendix C. In summary, there are n observation

equations based on the yields at time t, yτj ,t, on bonds with maturities τj , j = 1, · · · , n.
The observation equations are derived from equation (21) by the addition of measurement

errors, ετj :

yτj ,t ≡ − lnN(t, t+ τj)

τj
= −Â(t, τj)

τj
+
B(τj)

τj
rt +

C(τj)

τj
πt +

D̂(τ)

τ
ηt + ετj (t). (31)

The measurement errors, ετj (t), are assumed to be serially and cross-sectionally un-

correlated, and uncorrelated with the innovations in the transition equations, and their

variance is assumed to be of the form: σ2(ετj ) = σ2
b/τj where σb is a parameter to be

estimated. The final observation equation uses the realized rate of inflation,
Pt−Pt−∆t

Pt−∆t
,

Pt − Pt−∆t

Pt−∆t

= π∆t+ εP (t). (32)

The data set for the first approach consists of monthly returns on the value weighted

market portfolio, and the returns and (estimated) book-to-market (B/M) ratios on four

portfolios sorted according to the B/M ratio and firm size for the period from May 1953

to September 1996. Portfolios are formed at the beginning of July each year based on

the B/M ratio at the end of the previous year and the firm size at the end of June. The

portfolios are the Big and Small, Growth and Value portfolios which were constructed

by Fama and French.21 The Small (Big) firm portfolio contains the NYSE, AMEX and

NASDAQ stocks with market equity below (above) the median of NYSE stocks in June.

The Growth (Value) High (Low) B/M portfolios include the top (bottom) 30% of NYSE

21We are grateful to Eugene Fama and Ken French for providing us with these data.
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stocks ranked according to the B/M ratio at the end of December of the previous year.

Sorting stocks according to both size and B/M yields four portfolios which we denote

by V B,GB, V S,GS, where G, V , B, and S stand for Growth, Value, Big and Small,

respectively.

Monthly values for the B/M ratio for each portfolio are constructed from the Fama-

French annual book-to-market data by a two stage process. First, the book value is

assumed to be constant during the year and the Book-to-Market ratio for the beginning of

July (when the portfolio composition is revised) is calculated by taking the B/M ratio at

the end of December of the previous year as reported by Fama and French and updating it

by dividing by the cumulative returns from January to June. Then B/M ratios for August

through December are calculated by dividing the previous month’s ratio by the portfolio

return for the month. The second stage is to adjust the monthly figures to smooth out

the “splicing error” which appears as the new B/M ratio for the portfolio is reported at

the end of December. There are now two B/M ratios for each December, the one that is

calculated by updating the previous year’s value by the portfolio returns (B/M)old, and

the one that is calculated for the portfolio using the new balance sheet data, (B/M)new.

We replace the (B/M)old with (B/M)new for December, and update the B/M ratios for

the previous eleven months by spreading the cumulative error linearly over this period.

The nominal risk free interest rate is approximated by the return on a one month

Treasury Bill and the market return is the return on the value-weighted index, both taken

from CRSP. The inflation rate is calculated from the Consumer Price Index. The realized

real interest rate for each month is calculated by subtracting the realized rate of inflation

from the riskless nominal return.

Table 1 reports summary statistics on the Market-to-Book ratios and returns for the

four portfolios, as well as for the (realized) monthly real interest rate and market return.

Both the mean and the variability of the Market-to-Book ratios are approximately five

times as high for the two growth portfolios as for the value portfolios. The highest
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correlation is between the ratios of big and small value firms (0.98), while the lowest is

between value small firms and growth big firms (0.87). The correlations for the returns

are generally lower, with the highest for value and growth small firms and the lowest for

small growth firms and big value firms. The big growth firm portfolio has the highest

correlation with the market return (0.97).

State variable instruments are constructed by taking the log of the ratios of the portfolio

Book-to-Market ratios which are defined as PB
GV ≡ ln

[
(B/M)V B

(B/M)GB

]
, P S

GV ≡ ln
[

(B/M)V S

(B/M)GS

]
,

P V
BS ≡ ln

[
(B/M)V S

(B/M)V B

]
, and PG

BS ≡ ln
[

(B/M)GS
(B/M)GB

]
, where PB

GV is the (log scaled) price ratio

of growth to value for big firms; PS
GV is the corresponding ratio for small firms, PV

BS

is the ratio of prices of big to small (value) firms, and PG
BS is the ratio of prices of big

to small (growth) firms. The fifth state variable proxy is TS, the term spread between

the yields on the 10 and 1 year Treasury Bonds, taken from CRSP. Only three of the

four log price ratios are independent; therefore PG
BS is omitted from the regressions that

are reported below. Table 2 reports summary statistics for the state variable proxies, and

Figure 1 plots the time series of the proxies. The correlations between the state variable

proxies are low, suggesting that all four proxies may be useful in predicting the investment

opportunity set. The variability of the (scaled) price ratio between growth and value firms

is 50% higher for large firms than for small firms, and three times as large as the price

ratio between big and small value firms. Not surprisingly, all four state variable proxies

are highly autocorrelated. The augmented Dickey-Fuller statistics reported in Table 2

strongly reject the null hypothesis of non-stationarity for three out of the four variables.

Figure 1 shows that the growth-value ratios for big and small firms diverge for long

periods of time while their mean values are quite close.

The data set for the second approach consists of monthly data on inflation and yields

on eight constant maturity zero coupon U.S. treasury bonds with maturities of 3, 6 months,

and 1, 2, 3, 4, 5, and 10 years for the same period from May 1953 to September 1996.22

22We thank Luis Viceira for providing the data. We use data after May 1953 because the Federal-Treasury

Accord was adopted in 1952.
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Table 1 reports summary statistics for the bond yield data. The sample mean of the bond

yields increases slightly with maturity, while the standard deviation remains relatively

constant across maturities. The inflation rate during the same sample period is calculated

from the CPI and has a sample mean of 4.1% and a sample standard deviation of 1.1%.

5 Empirical Results

In Section 5.1 we show that time variation in investment opportunities is tracked by

the term spread and the scaled price ratios whose innovations correspond to the returns

on the Fama-French hedge portfolios. We then estimate the investment opportunity set

state variables, (r, η), as the fitted variables from the regression of normalized stock and

T-bill returns on the log price ratios and term spread; these fitted values are referred to as

the ‘return-based’ estimates of the state variables since they are obtained as projections

of equity returns on the state variable instruments. In Section 5.2 we show that the time

series of nominal bond yields and inflation also provide strong evidence of time variation

in the real interest rate and the Sharpe ratio; the filtered estimates of the state variables

obtained from the yield data are referred to as the ‘yield-based’ estimates. Finally in

Section 5.3, we show that the yield-based estimates are reflected in the prices of the

Fama-French portfolios, that innovations in the yield-based estimates are correlated with

the returns on the Fama-French hedge portfolios, and that the yield-based estimates are

correlated with the return-based estimates. All of this evidence suggests an integrated

bond-stock market in which the Fama-French hedge portfolio returns are correlated with

innovations in the state variables that describe the investment opportunity set. This is

consistent with the ICAPM rationale for the empirical success of the Fama-French three

factor model. In Section 5.4 we consider the the quantitative implications of our model

estimates for the Fama-French portfolio risk premia.
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5.1 Return-based Estimates of the State Variables

We assume initially that the market volatility, σM , is constant. Then it follows from

equation (4) that the Sharpe ratio, η, is proportional to µM − r, the equity market risk

premium.23 Then, in order to determine whether the proposed state variable proxies (the

log value ratios and the term spread) have predictive power for the investment opportunity

set variables (r, η), the market excess return and real interest rate were regressed on the

state variable proxies in OLS regressions, using the Newey-West (1987) adjustment for

heteroscedasticity and autocorrelation to compute the standard errors. The regressions

were estimated both with and without the term spread variable, TS, because, while the

model of Section 2 suggests that TS is a useful state variable proxy, it does not correspond

to any of the Fama-French portfolios. The results are reported in the first eight lines of

Table 3.

As predicted, the proposed state variable proxies have significant predictive power for

both the market excess return and the real interest rate. Both PS
GV and P V

BS are significant

in predicting the market excess return, and all three state variable proxies are significant

in the regression for the real interest rate. When TS is included in the market excess

return regression, it is significant, and PS
GV and P V

BS remain significant, while in the real

interest rate regression TS is not significant but all three state variable proxies remain

significant. In order to determine whether the state variable proxies remain significant

in the presence of other potential predictors whose innovations are perfectly correlated

with the market return,24 the regressions were repeated with the market dividend yield

and book-to-market ratio as additional regressors.25 While the dividend yield and book

to market ratio are significant for the market excess return, the coefficients of the state

23Note that equation (4) implies that the conditional Sharpe ratio of any portfolio is proportional to η
provided that the portfolio has constant correlation with the pricing kernel.

24The CAPM is indistinguishable from the ICAPM if the relevant state variables are perfectly correlated

with the market return. See Chamberlain (1988).
25For dividend yield, see Campbell and Shiller (1988) and Fama and French (1988); for book-to-market,

see Pontiff and Schall (1998) and Kothari and Shanken (1999).
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variable proxies are largely unchanged as shown in lines (3 )and (4) of Table 3. Neither

variable is significant in the real interest rate regression. These results provide strong

evidence that the portfolio price ratios whose innovations correspond to the returns on the

Fama-French SMB and HML portfolios, along with the term spread, are state variables

in the Merton (1973) sense in that they predict the instantaneous investment opportunity

set.

To this point we have assumed that the volatility of the market return is constant, so that

the expected market excess return is proportional to the Sharpe ratio which, together with

the real interest rate, are the sufficient statistics for the current investment opportunity

set. Since there is evidence that market volatility is not constant,26 the analysis was

repeated using two estimates of the Sharpe ratio. The first, the “realized” Sharpe ratio, was

constructed as the ratio of the realized excess market return to a volatility estimate derived

under a GARCH specification using a set of instruments.27 The second “Whitelaw” Sharpe

ratio was constructed as the ratio of the projected excess market return to the estimated

volatility, both using the same set of instruments.

The results for the “realized” Sharpe ratio are qualitatively similar to those obtained for

the market excess return: the state variable proxies PS
GV , P

V
BS and TS remain significant

in the presence of the market dividend yield and book-to-market ratio, both of which are

significant. When the dependent variable is the “Whitelaw” Sharpe ratio, we again find

that three state variable proxies are significant, with PB
GV instead of PV

BS now significant.

The much higher R2 and t−ratios in these regressions reflect the use of the projected

instead of the realized excess return in constructing the dependent variable.

In summary, the results reported in Table 3 show that all three price-ratio state variable

26See French et al. (1987).
27See Whitelaw (1994, 1997). The instruments were the default premium, the dividend yield on the S

& P 500 Index, and the Treasury bill rate. Two alternative approaches were also used to obtain market

volatility estimates. The first approach, which used daily returns to compute monthly volatility estimates,

significantly reduced the sample size since daily return data were available only from July 1962. Under

the second approach, the volatility estimate is the square root of the fitted value from a regression of the

squared demeaned excess returns on the set of instruments. All three approaches yield very similar results.
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proxies are highly significant in predicting the real interest rate, while TS is not significant.

They also show that two out of three of the price ratio state variable proxies together with

TS are significant in predicting the Sharpe ratio even in the presence of the market

dividend yield and book-to-market ratio. These results provide empirical support for an

ICAPM-based rationale for the Fama-French finding that covariances with returns on

the HML and SMB portfolios are priced. They also suggest that covariances with a

portfolio whose returns are correlated with innovations in the term spread will also be

priced.28 Finally, the time series of fitted values of the real interest rate and Sharpe ratio

from the regressions including TS were calculated. These are referred to as the ‘return-

based’ estimates of the state variables since they are derived directly from the real T-bill

return and market excess return. The parameters of the joint stochastic process of r and

η that were estimated using the filtered values of the return-based estimates are reported

in Columns (2) and (3) of Table 4 and will be discussed in Section 5.3.

5.2 Yield-based Estimates of the State Variables

In this section we report the results of using a Kalman filter to estimate the dynamics

of the state variables, r and η, from data on nominal bond yields and inflation. In order

to identify the process for the Sharpe ratio, η, it is necessary to impose a restriction

that determines the overall favorableness of investment opportunities.29 For purposes

of identification we set η̄ equal to 0.7, which is approximately the value obtained by

estimating equation (5.3) using the return-based estimate of the time series of η obtained

in Section 5.1.30 To improve the efficiency of estimation, the long run means for r and

π were set equal to the corresponding historical mean values. As a result, the standard

28Chen, Roll and Ross (1986).
29Equation (4) shows that the structure of risk premia is invariant up to a scalar multiplication of η and

the vector of inverse security correlations with the pricing kernel with typical element, 1/ρV m.
30Mackinlay (1995) reports an average Sharpe ratio of around 0.40 for the S&P500 for the period

1981-1992.
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errors of all other parameters reported in Columns (1) ands (4) of Table 4 are understated

because r̄ and π̄ are treated as known parameters.

The variance of the yield measurement error was assumed to be inversely proportional

to maturity τ . The estimated measurement error parameter, σb, implies that the standard

deviation of the measurement error varies from 30 basis points for the three month maturity

to 5 basis points for the ten year maturity, so that the model fits the yield data quite well.

The volatility of unexpected inflation, σP , is fixed at the CPI inflation sample volatility

of 1.12% while the volatility of expected inflation, σπ, is estimated to be around 0.6% per

year. The standard deviation of the estimated real interest rate process, σr, is 1.9% per

year, so that the real interest rate is much more volatile than the expected inflation rate.

The estimated mean reversion intensity for the interest rate, κr, is 0.13 per year which

implies a half life of about 5 years. The expected rate of inflation rate follows almost

a random walk. The volatility of the Sharpe ratio process, ση , is 0.19 per year which

compares with the imposed long run mean value of 0.70. The Wald statistic to test the

null hypothesis that ση = κη = 0 (so that η is a constant) is highly significant so that,

given the pricing model, there is strong evidence from the bond yield data that the Sharpe

ratio is time varying. Finally, the t-statistics on ρηm and ρrm strongly reject the null that

the opportunity set state variables, r and η, are unpriced, providing strong evidence in

favor of the ICAPM.

5.3 Evaluation of the State Variable Estimates

In the absence of model and estimation error, we should expect the yield-based esti-

mates and return-based estimates of (r, η) to be identical.31 Therefore in this section we

first compare the two sets of state variable estimates and consider the effect of adding the

31Note that any subset of assets can yield estimates of η only up to a constant of proportionality. The

yield-based estimates of η have been scaled by setting η̄ equal to the sample mean of the return-based

estimates of η.
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time series of the realized (equity market) excess return normalized by its volatility as an

additional observation equation for the Sharpe ratio in the Kalman filter algorithm used

in the previous section in order to obtain ‘hybrid” estimates. We then examine whether

the yield-based estimates are reflected in the prices of the Fama-French portfolios, and

whether innovations in the yield-based state variable estimates are correlated with the

returns on the Fama-French hedge portfolios.

Figure 2 plots the time series of the yield-based and return-based estimates of the

real interest rate. There is only limited correspondence between the two series, the yield-

based estimate being much more variable than the return-based estimate. The correlation

between the levels of the two series of estimates is −0.07, which is not supportive of

our conjecture; however the correlation between the monthly innovations in the series is

slightly positive (0.08). Figure 3 plots the time series of the yield-based and return-based

estimates of the Sharpe ratio.32 These results are much more encouraging. The correlation

between the levels of the two series of estimates is 0.56, and the correlation between their

monthly innovations is 0.31. Table 5, which reports the results of simple regressions of

the return-based estimates on the yield-based estimates, confirms that the relation between

the two Sharpe ratio (η) estimates is much stronger than that between the two real interest

rate (r) estimates. In view of the radically different approaches and data sets (bond yields

on the one hand, and equity and bill returns on the other) used to generate these two sets

of estimates, the correspondence between them is highly encouraging.

“Hybrid” model estimates were obtained by adding an additional observation equation

for η to the Kalman filter that was used to obtain the yield-based estimates:

η̂return(t) = a + bη(t) + εη(t), (33)

32The return based estimate is the predicted value using “Whitelaw” estimate of the Sharpe ratio. See

line 14 of Table 3.
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where η̂return is the fitted value of η from the regression of SHWhitelaw (SHW ) on the

price ratio state variable proxies and TS reported in line 14 of Table 3. The “hybrid”

parameter estimates reported in Column (4) of Table 4 are little changed by this addi-

tional observation equation from the yield-based estimates in Column (1) . Moreover, the

estimates of a(0.13) and b(0.73) are quite close to their theoretical values of zero and

one although it is possible to reject the null that they are equal to their theoretical values.

This provides encouraging support for our simple valuation approach, given that η̂return

is estimated from realized stock returns while the other eight observation equations for η

are based on bond yields.

The shaded areas in the Figures 2 and 3 correspond to periods of U.S. recession as

determined by the National Bureau of Economic Research.33 For the yield-based estimates,

the correlation between r and η is about -0.22, while the correlation is about -0.48 between

the return-based estimates of r and η. The recessions are generally associated with a

declining real interest rate but increasing Sharpe Ratio. Whitelaw (1997) and Perez-

Quiros and Timmermann (2000) have found similar cyclical patterns in the Sharpe ratio.

Their approach to estimation of the Sharpe ratio is similar to that employed to obtain

our return-based estimates except that, instead of using Fama-French portfolio price ratios

as predictors, they use the more conventional dividend yield, default spread, and yield

variables.34

The return-based estimates for the Sharpe ratio and the real interest rate were used to

estimate the parameters of the corresponding Ornstein-Uhlenbeck processes and the results

are reported in Columns (2) and (3) of Table 4, while the parameter estimates obtained

from the bond yield data using the Kalman filter are reported in Column (1). The estimated

mean reversion coefficients for the Sharpe ratio and the real interest rate using the return-

based estimates of η and r are about 0.91 (SHW ) and 0.44: the corresponding half-lives

33The period of recession is measured from peak to trough.
34Fama and French (1989) have also documented common variation in expected returns on bonds and

stocks that is related to business conditions.
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are about 0.76 and 1.58 years. In contrast, for the much smoother series of the Sharpe

ratio and the real interest rate obtained from the bond yield data, the mean reversion

coefficients are 0.15 and 0.13, implying half-lives of 4.62 and 5.33 years. The estimated

long term (annualized) Sharpe ratio is about 0.70 for the return-based estimates.35

As a further check on the relation between the yield-based estimates of the state

variables and the FF hedge portfolios, the log portfolio price ratios were regressed on

the yield-based estimates of r, η and π, and the results are reported in Panel A of Table

6. All four price ratios are negatively related to the estimated real interest rate. For the

“growth-value” ratios this is consistent with Lemma 1: high real interest rates depress

the prices of growth firms relative to value firms. High real interest rates also appear to

depress the prices of big firms relative to small firms. The Sharpe ratio has a significant

positive effect on the “growth-value” price ratio for small firms, and significant negative

effects on the “big-small” price ratio for both value and growth firms, but insignificant

negative impact on the “growth-value” price ratio for big firms. The direction of the effect

implied by the model developed in Section 2 depends on both the relative durations of

the firm cash flows and their correlations with the pricing kernel, ρym. Expected inflation

also has a significant effect on two of the price ratios which suggests that this variable has

information about the relative real cash flows of the different portfolios. In summary, there

is strong evidence that the portfolio price ratios, which are the basis of the Fama-French

hedge portfolio returns, are related to the state variables which determine the investment

opportunity set.

If the ICAPM is to provide an explanation for the risk premia on the FF hedge portfo-

lios it must be the case that innovations in the investment opportunity set state variables

are correlated with the returns on these portfolios. We have already seen evidence of this

in that the equity market state variable proxies (the price ratios of the portfolios corre-

sponding to the FF hedge portfolio returns) do have predictive power for the investment

35For the bond yield estimates η̄ was set at 0.7.
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opportunity set. As a further test of this we examine whether the innovations in the

yield-based state variable estimates are correlated with the returns on the FF portfolios.36

To this end we calculate the innovations, ε̂r, ε̂π and ε̂η , in the yield-based state variable

estimates using the parameter values reported in Table 4, and then regress these estimated

innovations on the returns on the three FF portfolios. The results are reported in Panel B

of Table 6. The innovation in r is significantly related to the excess return on the market

portfolio and to the return on the HML portfolio. The innovation in η is significantly

related to the returns on both the SMB and HML portfolios. Once again, these results

point to a link between the FF portfolio returns and innovations in the investment opportu-

nity set. Given the ICAPM, we should expect to find risk premia associated with loadings

on these portfolio returns. In the next section, we provide some simple calculations of

the risk premia on the Fama-French SMB and HML portfolios that are implied by the

parameter estimates reported in Table 4.

5.4 Implications for Fama-French Portfolio Risk Premia

We consider two separate approaches to estimation of risk premia on the HML and

SMB portfolios that are implied by our simple ICAPM. The first, “pricing kernel”, ap-

proach exploits the fact that risk premia37 are equal to the covariances between portfolio

returns and the pricing kernel as shown in equation (4). Under this approach, the un-

conditional risk premium for asset i is equal to η̄ρimσi. Under the simplified version of

the ICAPM described in Section 3, the pricing kernel is a linear function of the excess

return on the market portfolio and the innovations in the state variables r and η. Then

36Since the return-based state variable estimates are linear functions of the price ratios, their innovations

are correlated with the returns on the FF portfolios by construction.
37Note that since HML and SMB are arbitrage portfolios, their expected returns are equal to their risk

premia.
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the unconditional risk premium on asset i is

η̄ (biMρmMσM + birρmrσr + biηρmηση) (34)

where biM etc. are coefficients from the regression of asset returns on market excess

returns and state variable innovations:

Ri = bi0 + biM (RM − Rf ) + biη∆η + bir∆r + εi. (35)

Table 7 reports estimates of equation (35) for HML and SMB portfolio returns. The

coefficient on ∆η is positive and significant for both HML and SMB. The coefficient on

∆r is negative and significant for HML but positive and insignificant for SMB. Given

that two of the four FF price ratios are significantly related to yield-based estimates of π

as reported in Panel A Table 6, we also estimate an extended version of equation (35) by

including ∆π as an additional state variable. The results in Table 7 (Rows (2) and (4))

indicate that ∆π is not significantly related to RHML but is significantly and positively

related to RSMB.

The second and third columns of Panel B Table 9 report the “pricing kernel” estimates

of the portfolio risk premia with and without π as an additional state variable. These are

constructed from expression (34) using the estimates of biM etc. that are reported in Table

7: the market risk premium (η̄ρmMσM ) was taken as the sample mean excess return on

the CRSP value-weighted index (7.07% p.a.); η̄ was taken as 0.7 and the other parameter

values were taken from Table 4. It is apparent that these pricing kernel estimates of the

risk premia fall far short of the historical premia which are reported in the first column,

and the inclusion of ∆π does not have any significant effect on the risk premium estimates.

It seems likely that one reason for the failure of the pricing kernel approach is error in the

estimates of the innovations in r, π and η, which would bias the estimated factor loadings
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reported in Table 7, and therefore, our estimates of the portfolio risk premia.

The second approach deals with the errors-in-variable problem by using returns on

“tracking portfolios” as instrumental variables. Following Breeden, Gibbons, and Litzen-

berger (1989) and Lamont (2001), we first construct “tracking” portfolios which have

maximal correlations with the estimated innovations in r, π, and η, and then use the

returns on these portfolios as instruments for ∆r, ∆π and ∆η. This allows us to estimate

both the sensitivity of the FF portfolios to innovations in the state variables and to estimate

the risk premia on the portfolios that are most highly correlated with the state variable

innovations.38 Tracking portfolios are constructed by estimating a set of tracking portfolio

formation regressions in which the innovations in the state variables are regressed on the

excess returns on a set of base assets and a set of variables to control for the expected

excess returns on the base assets. The six size and value sorted portfolios of Fama and

French were used as the base assets. The model implies that ηt−1 is a sufficient control

variable. However, since η is measured with error, tracking portfolios were constructed

both with and without η as a control.

It follows from the properties of tracking portfolios that asset risk premia are related

to the expected returns on the tracking portfolios by:

E [Ri] = b
∗
iME [RM − Rf ] + b

∗
iηE [Rη] + b

∗
irE [Rr] , (36)

where Rη and Rr are the returns on the tracking portfolios, and b
∗
iM etc. are the coefficients

from the regressions of asset i returns on the market and tracking portfolio returns.

The tracking portfolio formation regressions that were used to determine the composi-

tion of the tracking portfolios are reported in Table 8 Panel A. For both ∆r and ∆η, the

coefficients of the base assets are jointly significant at better than the 1% level, and the

inclusion of η as a control variable has little effect on the coefficients. In addition, we

38Vassalou (2002) uses a similar approach.
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also regress innovations in π on the six base assets, and the results are reported in columns

(5) and (6) in Table 8 Panel A. The coefficients are not jointly or individually significant.

Although the control variable ηt−1 enters significantly, the coefficients in front of the six

base assets have only small changes. Therefore, the tracking portfolios were constructed

using the coefficients reported in columns (1), (3) and (5).

Panel B of Table 8 reports estimates of b∗iM etc. from regressions of the HML and

SMB portfolio returns on the market excess return and the tracking portfolio returns. The

regressions explain around 72% of the HML and SMB portfolio returns without Rπ , the

return on the inflation tracking portfolio return, and they explain about 82% and 84%

of the HML and SMB returns with Rπ included. The coefficients of all the tracking

portfolio returns are highly significant, and their signs correspond to those in regression

(35) reported in Table 7.

The estimated risk premia of the tracking portfolios and the market portfolio together

with their t-statistics are reported in Panel A of Table 9. The estimated market risk

premium is 7.1% per year, and the η tracking portfolio has an estimated risk premium of

7.3% per year. The estimated r and π tracking portfolio risk premia, -0.44% and -0.03%

respectively, are negative and much smaller in magnitude. The estimated risk premia for

the market portfolio and for the r and η tracking portfolios are highly significant while

that for the π tracking portfolio returns is not significant.

The coefficients from the regressions of the HML and SMB portfolio returns on the

market excess return and the tracking portfolio returns, together with the sample means

of the tracking portfolio returns, were used to calculate conditional estimates of the risk

premia given by equation (36), which are reported in the fourth and fifth columns of Panel

B Table 9.39 Now the simplified ICAPM predicts risk premia of 5.09% for HML and

2.02% for SMB, which compare with the sample mean estimates of these risk premia of

39The risk premium estimates are conditional on risk premium estimates for the tracking portfolios.
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10.32% and 7.08%, respectively.40

Thus, the tracking portfolio results imply that about 50% (30%) of the sample estimates

of the risk premia on HML (SMB) can be attributed to their covariation with innovations

in the ICAPM state variables, r and η. Although these results still leave a significant

part of risk premia on HML and SMB unexplained, they are quite encouraging given

the simplified nature of our ICAPM and the fact that the state variables were identified

using only data on bond yields. Moreover, as mentioned in footnote 7, there is evidence

that returns on these portfolios are related to the returns on extra-market components of

wealth such as human capital and investments in unincorporated businesses. Therefore,

it is possible that the part of their risk premia which is not accounted for by ICAPM type

risk premia could be due to their role as proxies for the return on components of aggregate

wealth.41

6 Conclusion

In this paper we have developed a simple model of asset valuation for a setting in

which real interest rates and risk premia vary stochastically. The model implies, first,

that the ratios of the prices of Fama-French size and value portfolios, as well as the term

spreads, will carry information about the real interest rate and the Sharpe ratio. This

provides a justification in the context of the ICAPM for the risk premia that Fama and

French have found to be associated with the HML and SMB portfolio returns. We find

40It is possible that there is a risk premium associated with innovations in π since this variable will

be associated with returns on the component of wealth which is fixed in nominal terms and which is not

captured by the return on the (equity) market portfolio. However, allowing for a risk premium associated

with this variable has an insignificant effect on both the pricing kernel and tracking portfolio estimates of

the risk premia associated with HML and SMB.
41Jagannathan and Wang (1996) report that the performance of (a conditional specification of) a simple

CAPM is significantly improved by including estimates of the return to human capital. Jagannathan et al.

(1998) find similar results for Japan, and report that the inclusion of human capital can account for the risk

premium associated with SMB (but not with HML).
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strong empirical evidence that the FF portfolios do predict the real interest rate and the

Sharpe ratio. The model also implies that zero-coupon bond yields are linearly related to

the state variables r and η, and data on bond yields are used to provide a second set of

estimates of the state variables. We find that these yield-based estimates are related to the

first set of estimates, as well as to the returns on the Fama-French portfolios. Both sets

of estimates of the Sharpe ratio display strong cyclical variation, rising during recessions

and falling during expansions. The yield-based estimates were used to calculate the risk

premia on HML and SMB portfolio using both the pricing kernel and the tracking portfolio

approaches. We find that at least 30-50% of the historical risk premia on SMB and HML

portfolio can be attributed to their association with the simple ICAPM state variables.
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Appendix

A. Proof of Theorems 1 and 2

The real part of the economy is described by the processes for the real pricing kernel,

the real interest rate, and the maximum Sharpe ratio (5.1)-(5.3), while the nominal part of

the economy is described by the processes for the price level and the expected inflation

rate (15)-(16). Under the risk neutral probability measure Q, we can write these processes

as:

dr = κr(r̄ − r)dt− σrρmrηdt+ σrdz
Q
r (A1)

dπ = κπ(π̄ − π)dt− σπρmπηdt+ σπdz
Q
π (A2)

dη = κ∗η(η̄
∗ − η)dt+ σηdzQη (A3)

where κ∗η = κη + σηρmη and η̄∗ = κη η̄

κ∗
η
.

Let y, whose stochastic process is given by (6), denote the expectation of a nominal

cash flow at a future date T , XT . The process for ξ ≡ y/P , the deflated expectation of

the nominal cash flow, under the risk neutral probability measure can be written as:

dξ

ξ
=

[−π − σyσPρyP + σ2
P − η(σyρym − σP ρPm)

]
dt+ σydz

Q
y − σPdzQP . (A4)

The real value at time t of the claim to the nominal cash flow at time T , XT , is given by

expected discounted value of the real cash flow under Q:

V (ξ, r, π, η, T − t) = EQ
t

[
XT

PT
exp− ∫ T

t r(s)ds

]
= EQ

t

[
yT
PT

exp− ∫ T
t r(s)ds

]
= EQ

t

[
ξT exp− ∫ T

t
r(s)ds

]
(A5)
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Using equation (A4), we have

ξT = ξt exp

{(
−1

2
σ2
y +

1

2
σ2
P

)
(T − t) − (σyρym − σPρPm)

∫ T

t

η(s)ds

−
∫ T

t

π(s)ds+ σy

∫ T

t

dzQy − σP
∫ T

t

dzQP

}
. (A6)

A tedious calculation from equations (A1), (A2), and (A3) gives us the following

results:

∫ T

t

η(s)ds = ηt
1 − e−κ∗

η(T−t)

κ∗η
+ η̄∗

[
T − t− 1 − e−κ∗

η(T−t)

κ∗η

]
+ ση

∫ T

t

1 − e−κ∗
η(T−s)

κ∗η
dzQη (s), (A7)

∫ T

t

π(s)ds = πt
1 − e−κπ(T−t)

κπ
+

(
π̄ − σπρmπ η̄

∗

κπ

) [
T − t− 1 − e−κπ(T−t)

κπ

]
+

(
σπρmπηt
κ∗η − κπ

− σπρmπ η̄
∗

κ∗η − κπ

) [
1 − e−κ∗

η(T−t)

κ∗η
− 1 − e−κπ(T−t)

κπ

]
+

σπρmπση
κ∗η − κπ

∫ T

t

[
1 − e−κ∗

η(T−s)

κ∗η
− 1 − e−κπ(T−s)

κπ

]
dzQη (s)

+ σπ

∫ T

t

1 − e−κπ(T−s)

κπ
dzQπ (s) (A8)
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and

∫ T

t

r(s)ds = rt
1 − e−κr(T−t)

κr
+

(
r̄ − σrρmrη̄

∗

κr

) [
T − t− 1 − e−κr(T−t)

κr

]
+

(
σrρmrηt
κ∗η − κr

− σrρmrη̄
∗

κ∗η − κr

) [
1− e−κ∗

η(T−t)

κ∗η
− 1 − e−κr(T−t)

κr

]
+

σrρmrση
κ∗η − κr

∫ T

t

[
1 − e−κ∗

η(T−s)

κ∗η
− 1 − e−κr(T−s)

κr

]
dzQη (s)

+ σr

∫ T

t

1 − e−κr(T−s)

κr
dzQr (s) (A9)

Substituting equations (A6)-(A9) into equation (A5) yields

V (ξ, r, π, η, T − t) = ξtGEQ
t

[
expψ

]
, (A10)

where G is given by

G = exp {E(τ) − B(τ)rt − C(τ)πt −D(τ)ηt} (A11)

and

B(τ) =
1 − e−κr(T−t)

κr
(A12)

C(τ) =
1 − e−κπ(T−t)

κπ
(A13)

D(τ) = d1 + d2e
−κ∗

ητ + d3e
−κrτ + d4e

−κπτ (A14)

E(τ) =

(
−1

2
σ2
y +

1

2
σ2
P − r̄ − π̄ − d1κ

∗
ηη̄

∗
)
τ +

(
r̄ − d3κ

∗
ηη̄

∗)B(τ)

+
(
π̄ − d4κ

∗
η η̄

∗)C(τ) − d2κ
∗
ηη̄

∗d(τ) (A15)
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with d(τ) =
(
1 − e−κ∗

η(T−t)
)
/κ∗η, and finally

d1 = −σPρmP − σyρmy

κ∗η
− σrρmr

κr κ∗η
− σπρmπ

κπκ∗η
(A16)

d2 = −σyρmy

κ∗η
− σrρmr

(κ∗η − κr)κ∗η
− σπρmπ

(κ∗η − κπ)κ∗η
(A17)

= −d1 − d3 − d4

d3 =
σrρmr

(κ∗η − κr)κr
(A18)

d4 =
σπρmπ

(κ∗η − κπ)κπ
(A19)

The stochastic variable ψ is a linear function of the Brownian motions:

ψ = ση

∫ T

t

[
d2

(
1 − e−κ∗

η(T−s)
)
+ d3

(
1 − e−κr(T−s)

)
+ d4

(
1 − e−κπ(T−s)

)]
dz∗η(s)

− σr
κr

∫ T

t

(
1 − e−κr(T−s)

)
dz∗r (s) −

σπ
κπ

∫ T

t

(
1− e−κπ(T−s)

)
dz∗π(s)

+ σy

∫ T

t

dz∗y(s) − σP
∫ T

t

dz∗P (s). (A20)

Since ψ is normally distributed with mean zero, V is given by

V (ξ, r, π, η, T − t) = ξtG1 exp

{
1

2
Vart(ψ)

}
(A21)

Calculating Vart(ψ) and collecting terms, we get that

V (ξ, r, π, η, T − t) = ξt exp {A(τ) −B(τ)rt − C(τ)πt −D(τ)ηt} (A22)
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where

A(τ) = a1τ + a2
1 − e−κrτ

κr
+ a3

1 − e−κπτ

κπ
+ a4

1 − e−κ∗
ητ

κ∗η

+a5
1 − e−2κrτ

2κr
+ a6

1− e−2κπτ

2κπ
+ a7

1 − e−2κ∗
ητ

2κ∗η

+a8
1 − e−(κ∗

η+κr)τ

κ∗η + κr
+ a9

1 − e−(κ∗
η+κπ)τ

κ∗η + κπ
+ a10

1 − e−(κr+κπ)τ

κr + κπ
. (A23)

Define a0 ≡ σrη
κr

+ σπη
κπ

+ σPη − σyη − κ∗ηη̄∗, r̄∗ ≡ r̄− σPr−σyr
κr

, and π̄∗ ≡ π̄− σPπ−σyπ
κπ

,

then a1, . . . , a10 are expressed as

a1 = σ2
P − σyP +

σ2
r

2κ2
r

+
σ2
π

2κ2
π

+
σrπ
κrκπ

+
σ2
η

2
d2

1 − r̄∗ − π̄∗ + a0d1 (A24)

a2 = r̄∗ − σ2
r

κ2
r

− σrπ
κrκπ

− σrη
κr
d1 + a0d3 + σ2

ηd1d3 (A25)

a3 = π̄∗ − σ2
π

κ2
π

− σrπ
κrκπ

− σπη
κπ
d1 + a0d4 + σ2

ηd1d4 (A26)

a4 = a0d2 + σ2
ηd1d2 (A27)

a5 =
σ2
r

2κ2
r

+
σ2
η

2
d2

3 −
σrη
κr
d3 (A28)

a6 =
σ2
π

2κ2
π

+
σ2
η

2
d2

4 −
σπη
κπ
d4 (A29)

a7 =
σ2
η

2
d2

2 (A30)

a8 = −σrη
κr
d2 + σ2

ηd2d3 (A31)

a9 = −σπη
κπ
d2 + σ2

ηd2d4 (A32)

a10 =
σrπ
κrκπ

− σπη
κπ
d3 − σrη

κr
d4 + σ2

ηd3d4 (A33)

Theorems 1 and 2 follow as special cases of equation (A22). Theorem 1 is obtained

by setting σP and the parameters in the expected inflation process (A2) to zero. Theorem

2 is obtained by setting σy to zero.
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Theorem 3 is more complicated because of the additional state variable g. Using the

same approach as above, we can derive that an equity value at time t is given by

V (X, r, π, η, g) = EQ

[∫ ∞

t

Xs

Ps

e−
∫ s
t
r(u)duds

]
=
Xt

Pt

∫ ∞

t

v(s− t, r, π, η, g)ds (A34)

where Q denotes the risk neutral probability measure, and

v(s, r, π, η, g) = exp[Ã(s− t) −B(s− t)r − C(s− t)π − D̃(s− t)η − F (s− t)g](A35)

where

B(s− t) = κ−1
r

(
1 − e−κr(s−t)

)
(A36)

C(s− t) = κ−1
π

(
1 − e−κπ(s−t)

)
(A37)

D̃((s− t)) = d̃1 + d̃2e
−κ∗

η(s−t) + d̃3e
−κr(s−t) + d̃4e

−κπ(s−t) + d̃5e
−κg(s−t) (A38)

Ã((s− t)) = ã1(s− t) + ã2
1 − e−κr(s−t)

κr
+ ã3

1 − e−κπ(s−t)

κπ
+ ã4

1 − e−κ∗
η(s−t)

κ∗η

+ã5
1 − e−2κr(s−t)

2κr
+ ã6

1 − e−2κπ(s−t)

2κπ
+ ã7

1 − e−2κ∗
η(s−t)

2κ∗η

+ã8
1 − e−(κ∗

η+κr)(s−t)

κ∗η + κr
+ ã9

1− e−(κ∗
η+κπ)(s−t)

κ∗η + κπ
+ ã10

1 − e−(κr+κπ)(s−t)

κr + κπ

+ã11
1 − e−(κ∗

η+κg)(s−t)

κ∗η + κg
+ ã12

1 − e−(κg+κπ)(s−t)

κg + κπ
+ ã13

1 − e−(κr+κg)(s−t)

κr + κg

+ã14
1 − e−κg(s−t)

κg
+ ã5

1 − e−2κg(s−t)

2κg
(A39)

κ∗η ≡ κη + σηρmη , and d̃1, . . . , d̃4, ã1, . . . , ã10 are constants whose values are available

upon request.
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B. Proof of Lemmas 1 and 2

Proof of Lemma 1:

It is immediate that B(τ), ∂B(τ)
∂τ

> 0. From equations (A14) and (A16-A19), we note that

D(0) = d1 + d2 + d3 = 0

Taking the derivative of (A14) with respect to τ ,

Dτ = σyρyme
−κ∗

ητ +
σrρmr

κ∗η − κr
(e−κ∗

ητ − e−κrτ ). (B1)

Then the assumptions ρym > 0 and ρmr < 0 imply that Dτ ≥ 0, so that D(τ) ≥ 0 ∀τ .

Proof of Lemma 2:

Applying Ito’s lemma to the V function from Theorem 1, the expected return on the claim

can be written as:

µ ≡ µ(r, η, τ) = −Aτ + rBτ + ηDτ +
1

2
D2σ2

η +BDρηrσησr +
1

2
B2σ2

r

−Dρyησyση − Bρyrσyσr −Dκη(η̄ − η) − Bκr(r̄ − r)
= Dτη +Bτr +Dκηη + Bκrr

= r + (Dτ +Dκη)η, (B2)

then

∂µ

∂τ
= (Dττ +Dτκη)η

= η

[
σyρymκη − σrρmre

−κrτ +
σrρmrσηρmη

κr − κ∗η
(e−κ∗

ητ − e−κrτ )

]
, (B3)
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form which, it follows that ∂µ
∂τ

≥ 0 when ρmr, ρmη ≤ 0 and ρym ≥ 0.

Lemma 3 is straightforward and the proof is omitted.

C. Details of Kalman Filter

The yield-based estimates of the state variable dynamics are derived by applying a

Kalman filter to data on bond yields and inflation using equations (31) and (32). The

transition equations for the state variables, r, π and η are derived by discretizing equations

(5.2), (5.3), and (16):


rt

πt

ηt

 =


e−κr∆t 0 0

0 e−κπ∆t 0

0 0 e−κη∆t



rt−∆t

πt−∆t

ηt−∆t

 +


r̄
[
1 − e−κr∆t

]
π̄

[
1 − e−κπ∆t

]
η̄

[
1 − e−κη∆t

]
 +


εr(t)

επ(t)

εη(t)

 ,(C1)

where the vector of innovations is related to the standard Brownian motions, dzr, dzπ and

dzη, by


εr(t)

επ(t)

εη(t)

 =


σre

−κr(t−∆t)
∫ t

t−∆t
e−κrτdzr(τ)

σπe
−κπ(t−∆t)

∫ t

t−∆t
e−κπτdzπ(τ)

σηe
−κη(t−∆t)

∫ t

t−∆t
e−κητdzη(τ)

 , (C2)

and the variance-covariance matrix of the innovations is

Q =


σ2
r

2κr

[
1 − e−2κr∆t

]
σrσπρrπ
κr+κπ

[
1 − e−(κr+κπ)∆t

] σrσηρrη
κr+κη

[
1 − e−(κr+κη)∆t

]
σrσπρrπ
κr+κπ

[
1 − e−(κr+κπ)∆t

]
σ2
π

2κπ

[
1 − e−2κπ∆t

] σπσηρπη
κπ+κη

[
1 − e−(κπ+κη)∆t

]
σrσηρrη
κr+κη

[
1 − e−(κr+κη)∆t

] σπσηρπη
κπ+κη

[
1 − e−(κπ+κη)∆t

] σ2
η

2κη

[
1 − e−2κη∆t

]
 .

(C3)
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The first n observation equations assume that the observed yields at time t, yτj ,t, on

bonds with maturities τj , j = 1, · · · , n, are given by equation (31) plus a measurement

error terms, ετj :

yτj ,t ≡ − lnV (t, t+ τj)

τj
= −A(t, τj)

τj
+
B(τj)

τj
rt +

C(τj)

τj
πt +

D(τj)

τj
η + ετj (t). (C4)

The measurement errors, ετj (t), are assumed to be serially and cross-sectionally uncorre-

lated and are uncorrelated with the innovations in the transition equations.

The n+ 1 observation equation uses the realized rate of inflation:

Pt − Pt−∆t

Pt−∆t
= π∆t+ εP (t), (C5)

where εP = σP
∫ t

t−∆t
dzP with variance σ2

P∆t, and is assumed to be uncorrelated with

the yield measurement errors and the innovations in the transition equation.

The hybrid estimates discussed in Section 5.3 include an additional observation equa-

tion on the Sharpe ratio of the form:

η̂return(t) = a+ bη(t) + εη(t) (C6)

where η̂return is the estimate of η based on equity returns.
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Table 1

Summary Statistics on Four Fama-French Portfolios and Bond Yields

Returns are in percent per month. rf , the real interest rate, is obtained by subtractng the realized rate of inflation from

the one month T-bill rate. rM is the excess return on the CRSP value-weighted index. Portfolio GS is the Fama-French low

book-to-market portfolio of small firms; V S the high book-to-market portfolio of small firms; GB the low book-to-market portfolio

of big firms; V B the high book-to-market portfolio of big firms. The sample is from January 1950 to December 1999. The bond

data are monthly constant maturity zero coupon U.S. Treasury yields for the period from March 1953 to September 1996. Inflation is

calculated using CPI data for the same sample period.

A.Distribution of Returns and Market to Book (M/B) ratios
M/B Return

Portfolio GS V S GB V B GS V S GB V B rf rM

Mean 2.89 0.62 3.07 0.69 1.06 1.49 1.11 1.34 0.08 0.71

Minimum 1.15 0.25 1.47 0.28 -32.09 -27.98 -23.07 -18.95 -1.5 -22.83

Median 2.86 0.58 2.88 0.68 1.25 1.83 1.35 1.57 0.11 1.00

Maximum 5.82 1.20 6.28 1.18 24.94 29.60 21.43 20.95 1.12 16.00

Std.Dev 0.98 0.19 1.03 0.20 6.05 5.07 4.45 4.39 0.29 4.17

Autocorrelation 0.97 0.98 0.99 0.99 0.17 0.17 0.05 0.04 0.48 0.06

B. Correlations

Market to Book Ratios Portfolio and Market Returns

GS V S GB V B GS V S GB V B rM

GS 1 GS 1

V S 0.96 1 V S 0.89 1

GB 0.89 0.87 1 GB 0.83 0.74 1

V B 0.95 0.98 0.89 1 V B 0.75 0.88 0.78 1

rM 0.88 0.84 0.97 0.87 1

C. Bond Yields and Inflation (% per year)

Bond Maturity (years) 0.25 0.5 1 2 3 4 5 10 Inflation

Mean 5.62 5.85 6.06 6.29 6.44 6.55 6.63 6.84 4.10

Std. Dev. 2.96 3.00 2.98 2.91 2.87 2.84 2.82 2.78 1.12
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Table 2

Summary Statistics for State Variable Instruments

PB
GV is the (log of the) ratio of the market-to-book ratios for large growth and value firms; PSGV is the (log of the) ratio

of the market-to-book ratios for small growth and value firms; PVBS is the (log of the) ratio of the market-to-book ratios for value

big and small firms; TS is the term spread as measured by the difference between the yields on the 10 and 1 year Treasury Bonds

(% per year). The sample period is from May 1953 to September 1996.

A.Distribution of log of Market to Book ratios and Term Spread

PB
GV PS

GV PV
BS TS

Mean 1.471 1.531 0.114 0.662

Minimum 1.157 1.270 -0.018 -3.856

Median 1.501 1.530 0.105 0.714

Maximum 1.800 1.802 0.270 3.268

Std.Dev 0.151 0.108 0.055 0.948

Autocorrelation 0.985 0.959 0.908 0.923

B. Correlations

PB
GV PS

GV PV
BS TS

PB
GV 1

PS
GV 0.373 1

PV
BS 0.196 0.363 1

TS 0.054 0.300 0.164 1

C. Unit Root Test

ADF Statistic

PB
GV −2.06

PS
GV −3.14∗

PV
BS −4.81∗∗

TS −3.35∗

** Significant at the 1% level

* Significant at the 5% level
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Table 3

State Variable Predictive Regressions

Monthly regressions of the realized market excess return, rM , real interest rate, rf , Sharpe ratio constructed by following

Whitelaw’s specification, SHwhitelaw , and Sharpe ratio constructed by using the realized excess market returns scaled by the fitted

volatility, SHrealized, on state variable proxies: PBGV , the (log of the) ratio of the market-to-book ratios for large growth and value

firms; PS
GV , the (log of the) ratio of the market-to-book ratios for small growth and value firms; PVBS , the (log of the) ratio of the

market-to-book ratios for value big and small firms; TS, the term spread measured by the difference between the yields of 10 year and 1

year Treasury Bonds (% per year), log of the dividend yields on S& P 500 Index, SPDivyld, and log of the Book to market ratio of S&

P 500 Index, SP BM . The sample period is from May 1953 to September 1996. t-ratios adjusting for HAC errors are in parentheses.

Dependent Const. PB
GV (−1) PS

GV (−1) PV
BS(−1) TS(−1) SP Divyld(−1) SP BM(−1) R2

Variables

(1) rM 7.336 -0.511 -4.600 9.200 0.01

(2.34) (0.32) (2.10) (2.48)

(2) rM 9.580 -0.158 -6.678 8.285 0.791 0.04

(3.11) (0.11) (3.02) (2.27) (3.78)

(3) rM 13.639 0.400 -5.437 9.206 0.830 2.077 0.05

(3.83) (0.28) (2.32) (2.46) (3.87) (1.95)

(4) rM 8.911 -0.185 -5.652 9.422 0.899 1.554 0.05

(2.77) (0.14) (2.47) (2.50) (4.14) (1.99)

(5) rf -0.369 -0.634 0.968 -0.742 0.18

(1.23) (5.13) (5.41) (3.33)

(6) rf -0.337 -0.629 0.939 -0.755 0.011 0.18

(1.15) (5.18) (5.25) (3.27) (0.72)

(7) rf -0.286 -0.622 0.954 -0.744 0.012 0.026 0.18

(0.87) (5.14) (5.06) (3.23) (0.76) (0.33)

(8) rf -0.349 -0.630 0.957 -0.735 0.013 0.028 0.18

(1.17) (5.19) (5.23) (3.21) (0.85) (0.51)

(9) SHrealized 1.458 0.067 -1.065 2.203 0.01

(1.86) (0.17) (1.97) (2.40)

(10) SHrealized 2.039 0.159 -1.604 1.966 0.205 0.04

(2.64) (0.47) (2.87) (2.16) (3.92)

(11) SHrealized 3.245 0.325 -1.235 2.239 0.217 0.617 0.05

(3.59) (0.92) (2.18) (2.42) (4.09) (2.40)

(12) SHrealized 1.847 0.151 -1.309 2.293 0.236 0.447 0.05

(2.30) (0.46) (2.34) (2.45) (4.37) (2.36)

(13) SHwhitelaw -0.015 0.626 -0.439 0.292 0.10

(0.05) (3.16) (1.82) (0.76)

(14) SHwhitelaw 0.422 0.695 -0.843 -0.471 0.154 0.34

(1.42) (4.22) (3.41) (1.41) (6.34)

(15) SHwhitelaw 1.750 0.877 -0.437 -0.169 0.167 0.680 0.58

(5.07) (6.31) (2.21) (0.65) (7.85) (7.10)

(16) SHwhitelaw 0.212 0.686 -0.521 -0.114 0.188 0.488 0.56

(0.77) (5.01) (2.63) (0.44) (8.08) (6.95)
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Table 4

Return Based, Yield Based, and Hybrid Parameter Estimates

This table reports estimates of the parameters of the stochastic process of the investment opportunity set. The yield-based

estimates (Column (1)) are derived from the Kalman filter applied to the inflation and bond yield data with r̄ = 1.24%, π̄ = 4.1%
and η̄ = 0.7. r̄ and π̄ are the sample means, and η̄ is slightly above the returned-based estimate of this parameter. For yield-based

estimates, the Wald test is for H0 : κη = ση = 0. Asymptotic t-ratios are in parenthesis.

The return-based estimates (Columns (2) and (3)) are obtained from the non-linear least squares regressions of the following

discretized version of equations (5.2) and (5.3):

rt = r̄
(
1 − e−κr∆t

)
+ e−κr∆trt−∆t + εr,t,

ηt = η̄
(
1 − e−κη∆t

)
+ e−κη∆tηt−∆t + εη,t,

where r and η are the fitted state variables from the regressions in Table 3. Results related to η in column (2) apply to SHWhitelaw

(Row (14) of Table 3) while results in column (3) apply to SHrealized (row (10) of Table 3). Results related to r apply to rf (row

(5) of Table 3).

The hybrid estimates (column (4)) are derived in a similar way as the yield-based estimates except that SHWhitelaw is used to

provide an observation equation in addition to those provided by the data on inflation and bond yields.

(1) (2) (3) (4)

Yield Based Return Based Return Based Hybrid

Estimates Estimate (SHR) Estimate (SHW) Estimate

σb 0.15% 0.12%

(82.58) (87.84)

σr 1.94% 1.27% 1.58%

(26.91) n.a. (36.13)

σπ 0.62% 1.14%

(10.42) (21.65)

ση 0.19 1.23 0.74 0.16

(31.44) n.a. n.a. (25.03)

κr 0.13 0.44 0.13

(69.06) (2.98) (88.85)

κπ 0.00 0.00

(0.79) (0.76)

κη 0.15 1.36 0.91 0.19

(6.74) (5.10) (4.31) (8.30)
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Table 4 (continued)

(1) (2) (3) (4)

Yield Based Return Based Return Based Hybrid

Estimates Estimate (SHR) Estimate (SHW) Estimate

ρrπ -0.07 -0.08

(0.78) (1.58)

ρrη -0.17 -0.05 -0.20

(1.82) n.a. (2.57)

ρrm -0.65 -0.70

(14.69) (10.35)

ρπη -0.17 -0.21

(2.06) (3.83)

ρπm 0.25 0.17

(3.03) (4.39)

ρηm 0.72 0.76

(11.60) (22.46)

ρPm 0.23 0.19

(2.53) (6.49)

r̄ 1.50% 1.26% 1.50%

n.a. (2.81) n.a.

π̄ 4.10% 4.10%

n.a. n.a.

η̄ 0.70 0.61 0.68 0.70

n.a. (4.19) (5.31) n.a.

σP 1.12% 1.12%

n.a. n.a.

aSH 0.13

(3.76)

bSH 0.73

(18.37)

σSH 30.06%

(39.72)

ML 26,617.71 25,158.62

Wald 1,072.82 750.73
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Table 5

Relation Between Return-Based and Yield-Based State Variables Estimates

ηSHR is the return-based estimate of the Sharpe ratio using the realized equity premium as the input while ηSHW is the

return-based estimate of the Sharpe ratio using the Whitelaw-fitted equity premium as the input. ryield and ηyield are the

corresponding yield-based estimates. rp and rp,ts are the return-based estimates of the real interest rate using the FF price ratios or

the FF price ratios and the term spread as proxies. t-ratios adjusting for HAC errors are in parentheses..

Dependent Constant ηyield ryield Adj. R2 S.E.
Variable

(1) ηSHR 0.33 0.56 0.31 0.47

(5.1) (6.8)

(2) ηSHW 0.22 0.60 0.19 0.71

(2.3) (5.1)

(3) rp 0.01 -0.04 -0.00 0.01

(5.3) (0.5)

(4) rp,ts 0.01 -0.07 0.005 0.01

(5.8) (0.9)
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Table 6

FF Portfolio Price Ratios, Returns, and Yield-Based State Variable Estimates

Panel A reports regressions of FF portfolio price ratios on the yield-based state variable estimates. Panel B reports regres-

sions of innovations in r, π, and η on the Fama-French portfolio returns. t-ratios, reported in parentheses, are calculated using the

Newey-West adjustment for heterogeneity and serial correlation.

A. FF Portfolio Price Ratios vs. Yield Based State Variable Estimates

Dependent Const. ryield πyield ηyield Adj. R2 S.E.

Variables

(1) P B
GV 1.63 -1.22 -3.24 -0.02 0.34 0.12

(54.2) (2.3) (10.0) (0.6)

(2) P S
GV 1.52 -1.01 0.10 0.04 0.08 0.10

(47.4) (1.8) (0.2) (2.0)

(3) P V
BS 0.16 -1.33 -0.24 -0.01 0.14 0.05

(11.9) (4.6) (1.5) (2.0)

(4) P G
BS 0.27 -1.54 -3.59 -0.07 0.42 0.12

(9.7) (2.9) (11.5) (3.4)

B. Innovations in the Yield Based State Variable Estimates vs. FF Portfolio Returns

Dependent Const. rm − rf SMB HML Adj. R2 S.E.

Variables

(1) ε̂r 0.001 -0.028 0.010 -0.038 0.04 0.006

(1.7) (3.7) (1.0) (2.6)

(2) ε̂π -0.000 -0.006 0.005 0.008 0.01 0.003

(0.0) (1.7) (1.1) (1.4)

(3) ε̂η -0.010 0.123 0.533 0.726 0.04 0.103

(1.6) (0.8) (2.8) (3.4)
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Table 7

Regressions of FF portfolio returns on market return and estimated state variable
innovations

This table reports regressions of HML and SMB monthly portfolio returns on market excess returns and innovations in the

yield-based estimates of the state variables r, π, and η for the period May 1953 to September 1996. The t-ratios, reported in

parentheses, are calculated using the Newey-West adjustment for heterogeneity and serial correlation.

Dep. Variable Const. Rm − Rf ∆η ∆r ∆π R̄2

(1) RHML 0.97% -0.19 2.88 -47.72 12.95%

(8.33) (5.80) (2.54) (2.34)

(2) RHML 0.97% -0.19 3.05 -40.67 30.06 12.85%

(8.31) (5.67) (2.55) (1.81) (0.67)

(3) RSMB 0.49% 0.18 3.44 30.37 8.95%

(3.83) (4.59) (3.16) (1.59)

(4) RSMB 0.47% 0.19 4.20 63.64 141.83 10.15%

(3.76) (4.85) (3.68) (2.87) (2.91)
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Table 8

Tracking Portfolios for Innovations in r and η

Panel A reports two sets of estimates of tracking portfolios for the yield-based estimates of the innovations in r, π, and η

for the sample period from May 1953 to September 1996. Variables XSG through XBV are excess returns on six size and

book-to-market sorted portfolios formed by Fama and French. r, π, and η are the yield-based estimates of the real interest rate and

the maximum Sharpe ratio. The coefficients reported in Panel A are multiplied by 1,000.

Panel B reports the regressions of HML and SMB portfolio returns on the market risk premium, RM − Rf , and the returns on the

r, π, and η tracking portfolios, Rr , Rπ , and Rη .

The t-ratios, reported in parentheses, are calculated using the Newey-West adjustment for heterogeneity and serial correlation.

A. Tracking Portfolio Formation Regressions

(1) (2) (3) (4) (5) (6)

∆r ∆r ∆η ∆η ∆π ∆π
Const. 5.15 -2.67 -63.82 126.42 1.17 6.58

(1.84) (0.61) (1.01) (0.83) (0.78) (2.57)

XSG 4.90 5.27 -79.79 -92.70 0.16 -0.34

(2.95) (3.13) (2.42) (2.92) (0.15) (0.34)

XSN -4.29 -4.71 96.66 109.91 0.27 0.78

(1.30) (1.42) (1.66) (1.89) (0.17) (0.51)

XSV -0.59 -0.55 56.65 56.22 -0.02 -0.03

(0.23) (0.22) (1.42) (1.38) (0.01) (0.02)

XBG -0.44 -0.58 10.41 15.96 -1.21 -0.98

(0.29) (0.38) (0.45) (0.74) (1.52) (1.29)

XBN -2.85 -2.74 -72.08 -72.68 -0.14 -0.15

(1.53) (1.48) (2.16) (2.16) (0.14) (0.15)

XBV -0.10 -0.09 3.06 2.56 0.23 0.20

(0.06) (0.06) (0.10) (0.08) (0.28) (0.25)

η−1 11.29 -332.54 -9.08

(1.80) (1.58) (3.08)

R̄2 3.77% 3.86% 4.31% 5.81% 0.67% 4.52%

B. Regressions of FF portfolio returns on market and tracking portfolio returns

(1) (2) (3) (4)

RHML RHML RSMB RSMB

Const. 0.43% 0.49% 0.42% 0.49%

(6.72) (9.49) (5.48) (9.37)

Rm − Rf -0.47 -0.14 0.42 0.82

(23.06) (5.88) (13.11) (31.62)

Rη 35.45 11.01 85.80 56.19

(10.63) (3.41) (21.41) (16.46)

Rr -1318.17 -1366.83 1653.57 1594.62

(19.64) (25.11) (20.53) (28.02)

Rπ 4586.86 5557.31

(20.66) (16.91)

R̄2 71.88% 81.84% 71.89% 84.30%
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Table 9

Risk Premium Estimates for the HML and SMB Portfolios

Panel A of the table reports the risk premia and its standard deviation and the t-statistics of the zero-investment market

(long in the market portfolio and short the same amount in the riskless asset) r, π and η factor-tracking portfolios. The sample

period is from June 1953 to September 1996 with 521 observations. Panel B of the table reports for HML and SMB the sample

mean returns, the ICAPM pricing kernel estimates of the risk premia with and without π as the additional state variable, and the

ICAPM tracking portfolio estimates of the risk premia with and without π as an additional state variable.

Panel A: Summary Statistics of the r, π, and η Tracking Portfolios

Zero-Invesment r Tracking η Tracking π Tracking

Market Portfolio Portfolio Portfolio Portfolio

(1) Risk Premium 7.07% -0.44% 7.30% -0.03%

(2) Standard Deviation 4.18% 0.13% 2.44% 0.04%

(3) t-Statistics 3.22 6.28 5.69 1.67

Panel B: Risk Premia for the HML and SMB Portfolios

Sample Pricing Kernel Pricing Kernel Tracking Portfolio Tracking Portfolio

Mean (without π) (with π) (without π) (with π)
(1) HML 10.32% -0.65% -0.65% 5.09% 4.37%

(2) SMB 7.08% 1.31% 1.35% 2.02% 1.13%
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Figure 1

Time Series of State Variable Proxies

PB
GV is the (log of the) ratio of the market-to-book ratios for large growth and value firms; PSGV is the (log of the) ratio of the

market-to-book ratios for small growth and value firms; PVBS is the (log of the) ratio of the market-to-book ratios for value big and

small firms; TS is the term spread as measured by the difference between the yields on the 10 and 1 year Treasury Bonds (% per

year). The log price ratios are plotted off the left Y-Axis and TS is plotted off the right Y-Axis.
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Figure 2

Time Series of Real Interest Rate Estimates

The figure plots two estimated real interest rate series from May 1953 to September 1996: the yield-based estimates are filtered out

from the bond yield and inflation data and the return-based estimates are fitted values from predictive regressions of real bill returns

on the log of ratio of the market-to-book ratios. Shaded area indicates periods of U.S. recessions.

Return based estimates - solid line; Yield based estimates - dashed line.
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Figure 3

Time Series of Sharpe Ratio Estimates

The figure plots two estimated Sharpe ratio series from May 1953 to September 1996: the yield-based estimates are filtered out from

the bond yield and inflation data and the return-based estimates are fitted values from predictive regressions of market excess return.

Shaded area indicates periods of U.S. recessions.

Return based estimates - solid line; Yield based estimates - dashed line.
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