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Abstract

Estimates of standard performance measures can be improved by using returns on
assets not used to deÞne those measures. Alpha, the intercept in a regression of a
fund�s return on passive benchmark returns, can be estimated more precisely by using
information in returns on non-benchmark passive assets, whether or not one believes
those assets are priced by the benchmarks. A fund�s Sharpe ratio can be estimated
more precisely by using returns on other assets as well as the fund. New estimates
of these performance measures for a large universe of equity mutual funds exhibit
substantial differences from the usual estimates.
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1. Introduction

A mutual fundÕs historical performance is often summarized by an estimate of its alpha

or its Sharpe ratio. Alpha is deÞned as the intercept in a regression of the fundÕs excess

return on the excess return of one or more passive benchmarks, while the Sharpe ratio is

the fundÕs expected excess return divided by the standard deviation of the fundÕs return.

These measures are usually estimated with historical returns on the assets that deÞne them.

That is, alpha is estimated using excess returns on the fund and the benchmarks, and the

Sharpe ratio is estimated using the excess returns on the fund. This study demonstrates

that an estimate of either performance measure can typically be made more precise by using

historical returns on Òseemingly unrelatedÓ assets not used in the deÞnition of that measure.

Alpha, for example, is usually estimated by applying ordinary-least-squares (OLS) to the

regression

rA,t = αA + β
0
ArB,t + ²A,t, (1)

where rA,t is the fundÕs return in month t, rB,t is a k × 1 vector containing the benchmark
returns, and αA denotes the fundÕs alpha. (Henceforth we use ÒreturnsÓ to denote rates of

return in excess of a riskless interest rate or payoffs on zero-investment spread positions.) The

choice of benchmarks is often guided by a pricing model, as in JensenÕs (1969) pioneering

use of the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) to

investigate mutual fund alphas relative to a single market-index benchmark. Other studies,

beginning with Lehmann and Modest (1987), examine fund alphas with respect to a set of

multiple benchmarks viewed as the relevant factors for pricing in a multifactor model, such

as the Arbitrage Pricing Theory of Ross (1976).

As one special case, assume that the benchmark assets used to deÞne alpha do indeed

exactly price other passive assets. Consider the regression of a non-benchmark passive return

rn,t on the benchmark returns,

rn,t = αn + β
0
nrB,t + ²n,t, (2)

where the correlation between ²A,t and ²n,t is positive. If the benchmarks price other passive

assets, then αn = 0. Now suppose that over the same sample period used to obtain the

OLS estimate of αA, the OLS estimate of αn is less than zero. Since the true value of αn

is zero, the negative estimate of αn is fully attributed to sampling error. Given the positive

correlation between ²A,t and ²n,t, the OLS estimate of αA is expected to contain negative

sampling error as well, and this additional information can be used in estimating αA.
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As another special case, assume that the benchmarks used to deÞne alpha have no pricing

ability. To see how non-benchmark assets provide additional information about αA in this

case, consider a fund whose available return history is shorter than the histories of rn,t and

rB,t. The explosive growth of the mutual fund industry in recent years presents investors

with many funds that have relatively short histories. Suppose that the OLS estimate of αn

computed for the sample period of the fundÕs available history is less than the OLS estimate

of αn computed for a longer sample period. Since the latter estimate is more precise, the Þrst

estimate is more likely to be less than the true (unknown) value of αn. Given the positive

correlation between ²A,t and ²n,t, the same can be said of the OLS estimate of αA relative to

its true value, and this information can be used in estimating αA. The additional information

comes not through a pricing model, as in the previous case, but through the longer histories

of the passive asset returns.

In the two special cases described above, αn is assumed to be either zero or completely

unknown. One may well prefer an intermediate version in which the benchmarks are be-

lieved to be relevant for pricing other passive assets, but not without error. In that general

case, which we implement in a Bayesian framework, non-benchmark assets play a role that

combines aspects of both previous cases. Additional information about αA is provided by

the extent to which the short-history estimate of αn differs from zero as well as from its long-

history estimate. If the prior distribution for αn is concentrated around zero, then most of

the additional information is extracted from the difference of the short-history estimate from

zero. As the prior spreads out, relatively more information is extracted from the difference

between the short- and long-history estimates of αn.

Similar arguments apply when estimating a fundÕs Sharpe ratio. That is, a more precise

estimate can be obtained using historical returns on more than just the fund. Perhaps the

simplest setting in which returns on other assets can help estimate the mean and standard

deviation of the fund return is that of Stambaugh (1997), who shows how assets with longer

histories provide information about the moments of short-history assets. That principle

enters the methods developed here, but so does the role of a pricing model. Consider the

expected return on the fund, which can be written as

EA = αA + β
0
AEB, (3)

where EA and EB denote the means of rA,t and rB,t. The sample mean of the fundÕs return,

the usual estimate of EA, can be obtained by replacing αA and βA with their OLS estimates

from (1) and by replacing EB with the sample mean of the benchmarks over the same sample

period. To obtain a more precise estimate of EA, we essentially use (3) and couple a longer-
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history estimate of EB with the more precise estimate of αA discussed above. The estimate

of αA, and hence the estimate of the fundÕs Sharpe ratio, relies on additional information

provided by the return histories of the non-benchmark assets and incorporates beliefs about

the degree to which those assets are priced by the benchmarks.

Our study does not recommend a particular set of benchmarks for deÞning alpha. Recent

academic studies compute mutual fund alphas with respect to a single market benchmark

(e.g., Malkiel (1995)) as well as sets of multiple benchmarks (e.g., Carhart (1997) and Elton,

Gruber, and Blake (1996)). We compute alphas in both single-benchmark and multiple-

benchmark settings. Alphas deÞned with respect to a single market benchmark may be of

interest whether or not one believes in the CAPM. We offer just two of many examples of

their use in practice: Morningstar, the leading provider of mutual fund information, reports

alphas computed with respect to one of several broad market indexes; Capital Resource

Advisors, one of the largest providers of performance information to institutional clients,

reports alphas computed with respect to the S&P 500 Index. Our approach allows one to

estimate alpha under various assumptions about whether the benchmarks that deÞne alpha

price other passive investments. A common interpretation of alpha, one that implicitly

places conÞdence in the benchmarksÕ pricing ability, is that it represents the skill of the

fundÕs manager in selecting mispriced securities. A more general interpretation is that a

positive alpha simply indicates that an investor can combine the fund and the benchmarks

to obtain a Sharpe ratio higher than what can obtained by combining the benchmarks alone.

We investigate the performance of a large sample of equity mutual funds and Þnd that

the additional information about a fundÕs alpha and Sharpe ratio provided by seemingly

unrelated assets can be substantial. Suppose, for example, that one has no conÞdence in

the CAPMÕs pricing ability but nevertheless wishes to report a small-company growth fundÕs

traditional alpha deÞned with respect to a single market benchmark. The absolute difference

between the OLS estimate and an alternative estimate that incorporates information in non-

benchmark returns has a median value across such funds of 8.3% per annum. If instead one

has complete conÞdence in the CAPMÕs pricing ability, then the median absolute difference

in estimates is 7.2%. In both cases, the alternative estimate is about three times more precise

than the OLS estimate for the median small-company growth fund.

Across all funds in our sample, the median Sharpe ratio estimated the usual way, using

the return history of just the fund, is 0.68 (annualized). When estimated using the additional

information in seemingly unrelated passive assets, the median Sharpe ratio is no more than

half that value. The new Sharpe-ratio estimates are typically four to Þve times more precise

3



than the usual estimates. We also compare the rankings of funds based on the usual Sharpe-

ratio estimates to the rankings based on the new estimates. Of the funds with return histories

of at least three years, only about 2% enter the top decile in both rankings. Of the funds

that rank in the top decile based on the usual estimates, about 30% fall into the bottom

two-thirds of the rankings based on the new estimates.

A number of studies observe that OLS estimates of mutual fund alphas are sensitive to

the speciÞcation of the benchmarks that deÞne those alphas.1 When the estimation of a

fundÕs alpha incorporates non-benchmark assets, the deÞnition of alpha typically becomes

less important and, in some cases, even irrelevant. We estimate alphas deÞned with respect

to the CAPM and with respect to the three Fama and French (1993) benchmark factors,

which include size and value factors in addition to the market factor. When estimated using

OLS, the median difference in alphas between the two models is 2.3% per annum for all

funds and 8.1% for small-company growth funds. When the estimation incorporates non-

benchmark assets but does not rely on the benchmarks to price them, those values fall to

1.2% and 2.0%.

If the benchmarks are assumed to price the non-benchmarks exactly, the estimates of

a fundÕs alpha are identical under the CAPM and Fama-French models, even though the

deÞnitions of the alphas differ. This illustrates a general result. If alphas are deÞned with

respect to different benchmarks but estimated using the same set of passive assets (bench-

mark and non-benchmark), then the estimates are identical if in each case the benchmarks

are assumed to price the non-benchmark assets exactly. Loosely speaking, if you believe that

some pricing model holds exactly and want a fundÕs alpha with respect to it, you need not

identify the model. The appropriate estimate of alpha is then simply the estimated inter-

cept in a regression of the fundÕs return on all of the passive assets. Such a regression can

be likened to Òstyle analysis,Ó (e.g., Sharpe (1992)), in that the right-hand-side assets are

included to capture multiple sources of variation (styles) in returns, regardless of whether

only a subset of them might serve as the benchmarks in a pricing model. The intuition for

the result is straightforward: adding to the right-hand side of the regression assets that are

priced by others already included there lowers the residual standard deviation but leaves the

true regression intercept unchanged.

As in numerous previous studies, we Þnd that estimated alphas for the majority of equity

mutual funds are negative.2 For each investment objective and each age group, we Þnd a

1Examples include Lehmann and Modest (1987) and Grinblatt and Titman (1994). Roll (1978) provides
a theoretical discussion of the potential sensitivity of alphas to benchmark speciÞcation.

2Grinblatt and Titman (1995) review the literature on mutual fund performance.
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posterior probability near 100% that the average of the fundsÕ CAPM alphas is negative when

the non-benchmark assets are excluded. Alphas for most funds remain negative when deÞned

with respect to multiple benchmarks as well as when the information in the non-benchmark

assets is used the estimation.

Section 2 discusses the econometric issues involved in obtaining our estimates of a fundÕs

alpha and Sharpe ratio. Section 3 then reports results from computing alternative estimates

of those measures for 2,609 equity mutual funds. Section 4 brießy reviews our conclusions.

2. Estimating performance measures

This section begins with some basic concepts underlying the use of seemingly unrelated assets

to estimate a fundÕs performance measures. We then describe the details of our methodology,

including our selection of the seemingly unrelated assets. Although the Bayesian framework

we develop can accommodate informative prior beliefs about a fundÕs performance, all of

the estimates we report in the next section are obtained using prior beliefs about a fundÕs

performance that are Òdiffuse,Ó or completely non-informative. That is, to be consistent

with most of the academic literature as well as current practice, we allow the fundÕs track

record to determine its estimated performance without any adjustment for prior beliefs about

what one might think to be reasonable magnitudes for the performance measures. Such an

approach is maintained here in order to focus on the contribution of seemingly unrelated

assets. When considering fund performance in the context of fund selection or investment,

an informative prior about performance is a sensible alternative. Baks, Metrick, and Wachter

(2001) investigate the degree to which informative priors can preclude at least one actively

managed fund from having a positive posterior mean for alpha and thereby looking attractive

to an investor who can also invest in the passive benchmarks. P«astor and Stambaugh (2001)

investigate the role of informative priors about fund performance, as well as pricing models,

in selecting a portfolio of mutual funds.

2.1. The role of seemingly unrelated assets

Let rN,t denote the m× 1 vector of returns in month t on m non-benchmark passive assets,

so the multivariate version of the regression in (2) is written as

rN,t = αN +BNrB,t + ²N,t, (4)
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where the variance-covariance matrix of ²N,t is denoted by Σ. Let σ
2
² denote the variance of

the disturbance ²A,t in (1). Also deÞne the regression of the fundÕs return on all p (= m+ k)

passive assets,

rA,t = δA + c
0
ANrN,t + c

0
ABrB,t + uA,t, (5)

where the variance of uA,t is denoted by σ
2
u. Substituting the right-hand side of (4) for rN,t

in (5) gives

rA,t = δA + c
0
ANαN| {z }
αA

+ (c0ANBN + c
0
AB)| {z }

β 0A

rB,t + c0AN²N,t + uA,t| {z }
²A,t

. (6)

That is, using (1) and the fact that rB,t is uncorrelated with both ²N,t and uA,t gives

αA = δA + c
0
ANαN , (7)

and

βA = B
0
NcAN + cAB. (8)

As explained below, the equality in (7) provides the key to understanding how additional

information about αA is provided by the m non-benchmark assets, which are seemingly

unrelated to αA in that they are not required for its deÞnition. Additional information about

EA and SA is then provided, using (3), by the information about αA as well as additional

information about the expected returns of the k benchmark assets, which are seemingly

unrelated to SA.

2.1.1. Information about alpha: Intuition

To see how additional information about αA is provided by non-benchmark assets, consider

initially a simpliÞed setting in which the second-moment parameters βA, cAN , and cAB are

viewed as known. Let S denote the number of observations in the fundÕs return history, and

deÞne estimators of the intercepts in (1), (4), and (5) as

øαA = (1/S)
SX
t=1

(rA,t − β 0ArB,t), (9)

øαN = (1/S)
SX
t=1

(rN,t − BNrB,t), (10)

and

øδA = (1/S)
SX
t=1

(rA,t − c0ANrN,t − c0ABrB,t). (11)
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Note using (8) that øαA is also equal to the result from substituting øδA and øαN into the

right-hand side of (7):

øδA + c
0
AN øαN = (1/S)

SX
t=1

(rA,t − (B0NcAN + cAB)0rB,t)
= øαA. (12)

Suppose Þrst that αN is treated as a vector of unknown parameters, so that the bench-

marks have no assumed pricing ability. Then αN can be estimated more precisely than in

(10) if the available history of rN,t and rB,t is longer than the S observations in the fundÕs

history. Substituting øαN and øδA into the right-hand side of (7) gives øαA as an estimator of

αA. Substituting the more precise estimator of αN (along with øδA) produces a more precise

estimator of αA, since øδA is uncorrelated with either estimator of αN . (Note that, by con-

struction, uA,t is uncorrelated with ²N,t.) Suppose instead that the benchmarks are assumed

to price the non-benchmark assets exactly, so αN = 0 and thus αA = δA. Then both øαA and
øδA are unbiased estimators of αA, but the sampling variance of øδA, σ

2
u/S, is less than or equal

to the sampling variance of øαA, σ
2
²/S. In this case, the non-benchmark asset returns explain

additional variance of the fundÕs return and thereby provide a more precise estimator of its

alpha.

The basic idea is that a more precise estimator of αA is obtained by evaluating the right-

hand side of (7) at øδA and a more precise estimator of αN than øαN . A more precise estimator

of αN can be obtained by using a longer sample period, as in the case where the benchmarks

are not assumed to have any pricing ability, or by simply setting αN = 0, as in the case

where the benchmarks are assumed to price the non-benchmark assets perfectly. When ²A,t

is correlated with the elements of ²N,t (i.e. when cAN 6= 0), then the difference between

øαN and a more precise estimator of αN supplies information about the likely difference

between øαA and αA. When the more precise estimator of αN relies on a longer history, the

additional information about αA is provided in essentially the same way that sample means

of long-history assets provide information about expected returns on short-history assets, as

in Stambaugh (1997).

2.1.2. Estimating alpha: General methodological issues

A Bayesian approach permits a range of prior beliefs about the ability of the k benchmark

assets to price the m non-benchmark assets. A Bayesian setting is not required, however,

to understand the basic issues governing the role of non-benchmark assets in estimating αA.
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We discuss here a number of those issues in the special cases where αN is either restricted

to be zero or left totally unrestricted.

Much of the intuition developed above when the slope coefficients βA, cAN , and cAB are

known extends to the actual setting in which those parameters must be estimated. Equation

(7) also holds when all quantities are replaced by OLS estimators based on the sample of S

observations. That is,

öαA = öδA + öc
0
AN öαN , (13)

where öαA, öαN , and öδA are the OLS estimates of the intercepts in (1), (4), and (5), respectively,

and öcAN is the OLS estimate in (5). As before, the information in non-benchmark assets is

incorporated by replacing öαN with a more precise estimator based either on a longer history

or some degree of belief in a pricing model. When all parameters are unknown, substituting

a more precise estimator of αN can in some cases produce an estimator of αA that is less

precise than the usual estimator of the fundÕs alpha, öαA. For example, if one assumes that

αN = 0 and substitutes that value into (13) in place of öαN , the resulting alternative estimator

of αA is simply öδA. The mean of öδA is αA, but the variance of öδA can exceed that of öαA. Since

cAN must be estimated and öδA and the elements of öcAN are correlated, replacing öαN with a

lower-variance quantity need not lower the variance of öαA. Such an outcome is most likely

to occur as the number of non-benchmark assets increases without a sufficient increase in

the R-squared in (5). In essence, the degrees-of-freedom effect can outweigh the additional

explanatory power. We use between Þve and seven non-benchmark assets, depending on the

number of benchmarks, and we Þnd that the information provided by those assets produces

a more precise estimate of αA for most funds in our sample. In the Bayesian framework

explained below, we also apply a moderate degree of shrinkage to the slope coefficients in

(5) to increase their precision and thereby enhance the information provided by the non-

benchmark assets. A potential direction for future research is the use of higher frequency

data to increase the precision of the slope coefficients.

Suppose two researchers agree on an overall set of p passive assets to include when

estimating αA, but they disagree about the subset of those passive assets to designate as

benchmarks for deÞning αA. Their chosen benchmark subsets might not even have any

members in common. Moreover, suppose each researcher believes his benchmarks price the

remaining passive assets perfectly. Then those researchersÕ estimates of αA will be identical,

even though their deÞnitions of αA are not. That is, the deÞnition of αA is irrelevant to its

estimation if, for whatever benchmarks might be designated for deÞning αA, the remaining

non-benchmark assets would be assumed to be priced exactly by those benchmarks. Perhaps

ironically, if the benchmarks are not assumed to have perfect pricing ability, their designation

8



becomes relevant not only for deÞning αA but also for estimating it.

To understand the above statements, consider Þrst the maximum-likelihood estimator

(MLE) of αA under the restriction that αN = 0. If all regression disturbances are assumed

to be normally distributed, independently and identically across t, then that estimator is

given by öδA, the OLS estimator of the intercept in (5), which does not depend on which of

the p assets are designated as the benchmarks. To see this, note that the disturbances ²N,t

and uA,t are uncorrelated and, given the normality assumption, independent. The likelihood

function can therefore be expressed as a product of two factors, one for each regression.

The restriction on αN does not affect the MLE of δA, which is öδA, since αN appears in the

other factor. Substituting δA along with the restricted MLE of αN (the zero vector) into the

functional relation in (7) gives öδA as the MLE of αA as well.

It can also be veriÞed that öδA arises as the restricted estimator in a seemingly-unrelated-

regression model, or SURM.3 That is, let regressions (1) and (4) jointly constitute a SURM,

and consider the estimation of the model subject to the restriction αN = 0. The restricted

coefficient estimator requires the unknown joint covariance matrix of (²A,t ²
0
N,t). If that matrix

is replaced by the sample covariance matrix of the residuals from the Þrst-pass unrestricted

OLS estimation, the resulting ÒfeasibleÓ restricted SURM estimator of αA is again simply
öδA. With no restriction on αN , then of course both the MLE and SURM estimator of αA

is simply the usual estimator öαA. When shrinkage is applied to the slope coefficients in (5),

as in the Bayesian setting described below, the same type of result obtains. That is, the

assumption αN = 0 implies that the posterior mean of αA is equal to the posterior mean of

δA, which doesnÕt depend on the designation of the benchmarks.

The principles governing the role of non-benchmark assets also apply when αA is esti-

mated by the generalized method of moments (GMM) of Hansen (1982). Let the parameter

vector γ contain the elements of δA, cAN , cAB, αN , and BN . The GMM estimator of γ is

obtained by minimizing g(γ)0Wg(γ), where g(γ) denotes the vector of (1+m+k)+m(1+k)

moment conditions,

g(γ) ≡


1
S

P
t∈F (rA,t − δA − c0ANrN,t − c0ABrB,t)

 1
rN,t
rB,t


vec

(
1
T

PT
t=1 (rN,t − αN − BNrB,t)

Ã
1
rB,t

!0)
 , (14)

and F denotes the subset of the periods {1, . . . , T} representing the fundÕs return history of
3Zellner (1962) introduces methods for estimating seemingly unrelated regressions. For a textbook treat-

ment, including estimation under linear restrictions, see Theil (1971).
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length S. The Þrst set of moment conditions in (14) corresponds to the regression in (5),

and the second set corresponds to the regression in (4). The weighting matrix W is block

diagonal, since the disturbance in (4) is uncorrelated with that in (5). Consider the GMM

estimates of the fundÕs alpha under the two cases discussed earlier. In the Þrst case, with no

restriction on αN , the above moment conditions exactly identify γ. Using the GMM estimate

ÿγ, the fundÕs estimated alpha is then ÿαA = ÿδA + ÿc
0
AN ÿαN . Observe that ÿαN is based on the

data for all T periods, whereas ÿδA and ÿcAN are based on only the observations corresponding

to the fundÕs history. In the second case, with the pricing restriction αN = 0, the second set

of moment conditions can be dropped and the fundÕs alpha is estimated simply as ÿαA = ÿδA.

2.1.3. Estimating the Sharpe ratio

The k benchmark assets as well as the m non-benchmark assets are seemingly unrelated to

a fundÕs Sharpe ratio, SA, in that neither set of assets is related to the deÞnition or usual

estimate of SA. The sample mean return on the fund obeys the relation,

ørA = öαA + öβ
0
AørB, (15)

where the OLS estimators öαA and öβA and the sample mean vector of the benchmarks,

ørB, are computed using observations for the same S periods used to estimate ørA. A more

precise estimator of EA can be obtained by replacing öαA with the more precise estimator

of αA described above and by replacing ørB with the sample mean computed over a longer

sample period. For example, when αN is restricted to be zero, and hence αA = δA, a

simple alternative estimator of EA is öδA+ öβ
0
A
öEB, where öEB is the sample mean vector of the

benchmarks over a longer sample period of length T . In that case, additional information

about EA, and thus SA, is provided both by the application of the pricing relation to the

non-benchmark assets as well as by the longer history of the benchmark returns. This

alternative estimator of EA differs somewhat from the Bayesian estimator we actually use,

which uses shrinkage techniques to obtain a more precise estimator of βA, but it illustrates

simply the main sources of additional precision in estimating EA. When no restriction is

placed on αN , then the longer histories of both the benchmark and non-benchmark assets

provide additional information about EA in the same manner as in Stambaugh (1997), with

the additional feature that shrinkage techniques are again applied to slope coefficients.

The denominator of a fundÕs Sharpe ratio is σA, the standard deviation of the fundÕs

return. The seemingly unrelated assets provide additional information about that parameter

as well. As in Stambaugh (1997), the longer histories of those assets provide information
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about the volatility of the fundÕs return beyond what is provided by the fundÕs shorter return

history. Although the Bayesian posterior mean of SA cannot quite be viewed as a ratio of

separate estimates of EA and σA, the seemingly unrelated assets provide information about

the latter parameters largely through the channels just described.

2.2. The benchmark and non-benchmark assets

Our set of benchmark and non-benchmark assets consists of eight portfolios constructed

passively, in that their composition is determined using mechanical rules applied to simple,

publicly available information. Monthly returns on these passive assets are constructed for

the 351
2
-year period from July 1963 through December 1998. The sample period for any

given fund, typically much shorter, is a subset of that overall period. We specify up to three

benchmark series, consisting of the three factors constructed by Fama and French (1993),

updated through December 1998.4 The Þrst of these, MKT, is the excess return on a broad

market index. The other two factors, SMB and HML, are payoffs on long-short spreads

constructed by sorting stocks according to market capitalization and book-to-market ratio.

We estimate ÒFama-FrenchÓ alphas, deÞned with respect to all three benchmarks, as well as

ÒCAPMÓ alphas, deÞned with respect to just MKT.

When estimating CAPM alphas, SMB and HML become two of the non-benchmark

series. Five additional non-benchmark series are used in the estimation of both CAPM and

Fama-French alphas. The Þrst of these, denoted as CMS, is the payoff on a characteristic-

matched spread in which the long position contains stocks with low HML betas (in a multiple

regression including MKT and SMB) and the short position contains stocks with high HML

betas. The long and short positions are matched in terms of market capitalization and book-

to-market ratio, and the overall spread position is formed from a set of triple-sorted equity

portfolios constructed as in P«astor and Stambaugh (2000), who closely follow the procedures

of Daniel and Titman (1997) and Davis, Fama, and French (2000). At the end of June of

each year s, all NYSE, AMEX, and NASDAQ stocks in the intersection of the CRSP and

Compustat Þles are sorted and assigned to three size categories and, independently, to three

book-to-market categories. The nine groups formed by the intersection can be denoted by

two letters, designating increasing values of size (S, M, B) and book-to-market (L, M, H). We

then construct beta spreads within the four extreme groups of size and book-to-market: SL,

SH, BL, and BH. The stocks within each group are sorted by their HML betas and assigned

4We are grateful to Ken French for supplying these data.
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to one of three value-weighted portfolios.5 A spread within each group is constructed each

month (from July of year s through June of year s + 1) by going long $1 of the low-beta

portfolio and short $1 of the high-beta portfolio, and the value of CMS in month t is the

equally weighted average of the four spread payoffs in month t.

The second non-benchmark series, denoted as MOM, is the ÒmomentumÓ factor con-

structed by Carhart (1997). At the end of each month t − 1, all stocks in the CRSP Þle
with return histories back to at least month t − 12 are ranked by their cumulative returns
over months t− 12 through t− 2. The value of MOM in month t is the payoff on a spread

consisting of a $1 long position in an equally weighted portfolio of the top 30% of the stocks

in that ranking and a corresponding $1 short position in the bottom 30%.

The remaining three non-benchmark assets, whose returns are denoted as IP1, IP2,

and IP3, are portfolios constructed from a universe of 20 value-weighted industry portfo-

lios formed using the same classiÞcation scheme as Moskowitz and Grinblatt (1999). The

three portfolios mimic the Þrst three principal components of the disturbances in multiple

regressions of the 20 industry returns on the other passive returns: MKT, SMB, HML, CMS,

and MOM. The vector of weights for IP1 is proportional to the eigenvector for the largest

eigenvalue of the sample covariance matrix of the residuals in those regressions, and the other

two portfolios are similarly formed using eigenvectors for the second and third eigenvalues.

The speciÞcation of non-benchmark assets must be somewhat arbitrary, but our selection

of the Þve described above is based on several considerations. Recall that non-benchmark

assets supply information about αA, the fundÕs alpha, when they explain additional variance

of the fundÕs returns, i.e. when cAN 6= 0. Also, except when the benchmarks are assumed
to price the non-benchmark assets perfectly, the latter assets also provide information about

αA when they are mispriced by the benchmarks, i.e. when αN 6= 0. Our inclusion of

the three industry portfolios is motivated primarily by the Þrst consideration, explaining

variance. Although we donÕt dismiss the possibility of their being mispriced, those portfolios

are constructed to capture the most important sources of industry-related variation that is

not accounted for by the other passive assets. On the other hand, our inclusion of CMS and

MOM is motivated chießy by the second consideration, mispricing. Evidence in other studies

indicates that those spread positions may not be priced completely by the three benchmark

5Using up to 60 months of data through December of year s − 1, the �pre-formation� HML betas are
computed in a regression of the stock�s excess returns on �Þxed-weight� versions of the FF factors, which
hold the weights on the constituent stocks constant at their June-end values of year s. Using the Þxed-weight
factors, as suggested by Daniel and Titman (1997), increases the dispersion in the �post-formation� betas
of the resulting portfolios.
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factors, MKT, SMB, and HML. For example, Daniel and Titman (1997) conclude that,

during the post-1963 period, characteristic-matched spreads in HML beta produce nonzero

alphas with respect to the Fama-French three-factor model.6 Fama and French (1996) report

a large three-factor alpha for the momentum strategy of Jegadeesh and Titman (1993). Of

course, to be useful in estimating αA, CMS and MOM also have to explain additional variance

of the fundÕs returns, and we Þnd that to be the case for many funds.

Parsimony is a consideration limiting our number of non-benchmark assets to Þve. As

discussed earlier, the degrees-of-freedom effect in Þnite samples argues against indiscrimi-

nately specifying a large number of non-benchmark assets. One might instead include a

larger number of the characteristic-matched spreads, say one for each size/book-to-market

subgroup, or include all 20 industry portfolios instead of constructing the smaller set of three.

We tried such alternatives and found that they quite often produce estimates of αA similar

to those obtained using the smaller set of Þve, but the precision of the estimates based on the

larger set is lower. The OLS estimators of δA and cAN are undeÞned, or essentially inÞnitely

imprecise, when the total number of passive assets exceeds the length of the fundÕs history.

The shrinkage estimator (explained below) can still be computed in that case, but it often

yields a less precise inference than when fewer non-benchmark assets are used.

It is likely that future research could reÞne the selection of non-benchmark assets and

further increase the precision of estimated alphas. A different set of non-benchmark assets

could be speciÞed for each fund, so that the assets have a high correlation with the speciÞc

fund at hand. With sector funds, for example, a passive index for the same sector could be

included. A larger number of non-benchmark assets could be used for a fund with a longer

history, since the degrees-of-freedom problem is then less severe. In general, some optimiza-

tion over the set of non-benchmark assets would almost certainly increase the precision of

our alpha estimates. Our speciÞcation of non-benchmark assets, motivated chießy by sim-

plicity, understates the potential gains from using non-benchmark assets to help estimate

fund performance.

6Davis, Fama, and French (2000) Þnd that a hypothesis of zero mispricing for such spreads cannot be
rejected within the longer 1929�97 period. In response to a referee�s concern that some of the characteristic-
related evidence could have been data-mined, we repeated our analysis with CMS excluded from the set of
non-benchmark assets. The results are very close to those with CMS included.
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2.3. The Bayesian framework

We compute the posterior means and variances of both αA and SA. The posterior moments

of αA can be obtained analytically, whereas the moments of SA must be evaluated numer-

ically be making repeated draws from the joint posterior distribution of the parameters.

Derivations of the posterior moments of αA as well as the details of computing the posterior

moments of SA are provided in the Appendix. The stochastic setting and speciÞcation of

prior beliefs is discussed below.

The regression disturbances in (4) and (5) are assumed to be normally distributed, in-

dependently and identically across t. Recall from an earlier discussion that the likelihood

function for each fund can then be expressed as a product of two factors, one for each regres-

sion. We assume that the disturbances in (5) are uncorrelated across funds, which implies

that the likelihood functions across funds are independent.7 Non-benchmark assets thus play

yet another role, in that they account for covariance in fund returns that is not captured fully

by the benchmarks. We also specify prior beliefs in which the parameters of the regression

in (5) are independent across funds. The independence of the prior and the likelihood across

funds allows us to conduct the analysis fund by fund.

First consider the parameters of the regression in (4). The prior distribution for Σ, the

covariance matrix of ²N,t, is speciÞed as inverted Wishart,

Σ−1 ∼W (H−1, ν). (16)

We set the degrees of freedom ν = m + 3, so that the prior contains very little information

about Σ. From the properties of the inverted Wishart distribution (e.g., Anderson (1984)),

the prior expectation of Σ equals H/(ν − m − 1). We specify H = s2(ν − m − 1)Im, so
that E(Σ) = s2Im. Following an Òempirical BayesÓ approach, the value of s

2 is set equal

to the average of the diagonal elements of the sample estimate of Σ obtained using OLS.

Conditional on Σ, the prior for αN is speciÞed as a normal distribution,

αN |Σ ∼ N(0, σ2αN (
1

s2
Σ)). (17)

P«astor and Stambaugh (1999) introduce the same type of prior for a single element of αN ,

and P«astor (2000) and P«astor and Stambaugh (2000, 2001) apply the multivariate version in

(17) to portfolio-choice problems. Having the conditional prior covariance matrix of αN be

7Our mutual fund data, discussed in Section 3, are consistent with this assumption. The average correla-
tion of the disturbances in (5), calculated across all pairs of funds whose return histories overlap for at least
12 months, is less than 0.02.
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proportional to Σ is motivated by the recognition that there exist portfolios of the passive

assets with high Sharpe ratios if the elements of αN are large when the elements of Σ are

small (MacKinlay, 1995.) Such combinations receive lower prior probabilities under (17)

than when each element of αN has standard deviation σαN but is distributed independently

of Σ. The prior distribution for BN is diffuse and independent of αN and Σ.

Our earlier discussion focuses on the cases in which the benchmarksÕ ability to price the

non-benchmark assets is assumed to be either perfect or nonexistent. That is, either αN is

set to the zero vector or the prior beliefs about αN are diffuse. These two cases represent

the opposite extremes on a continuum characterized by σαN , the marginal prior standard

deviation of each element in αN . Specifying σαN = 0 is equivalent to setting αN = 0,

corresponding to perfect conÞdence in the benchmarksÕ pricing ability. A diffuse prior for

αN corresponds to σαN = ∞. With a nonzero Þnite value of σαN , prior beliefs are centered
on the pricing restriction, but some degree of mispricing is entertained. We refer to σαN as

Òmispricing uncertainty.Ó

Next consider the parameters of the regression in (5). The prior for σ2u, the variance of

uA,t, is speciÞed as inverted gamma, or

σ2u ∼
ν0s

2
0

χ2ν0
, (18)

where χ2ν0 denotes a chi-square variate with ν0 degrees of freedom. DeÞne cA = (c
0
AN c

0
AB)

0.

Conditional on σ2u, the priors for δA and cA are speciÞed as normal distributions, independent

of each other:

δA|σ2u ∼ N(δ0,
Ã
σ2u
E(σ2u)

!
σ2δ ), (19)

and

cA|σ2u ∼ N(c0,
Ã
σ2u
E(σ2u)

!
Φc). (20)

The marginal prior variance of δA is σ
2
δ , and the marginal prior covariance matrix of cA is

Φc. We set σ
2
δ = ∞ (or, computationally, a very large value), which implies that the prior

for αA is diffuse and that the prior mean δ0 is irrelevant.
8

Values for s0, ν0, c0, and Φc in (18) through (20) are speciÞed using an empirical-Bayes

procedure. The basic idea is that a given fund is viewed as a draw from a cross-section of

funds with the same investment objective, so the prior uncertainty about a parameter for the

fund is governed by the cross-sectional dispersion of that parameter. The empirical-Bayes

8In an analysis of mutual-fund investment, Pástor and Stambaugh (2001) set σ2δ to Þnite values and
specify δ0 to reßect a fund�s costs.
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procedure uses the data to infer those properties of the cross-section. The prior mean and

covariance matrix of cA, denoted by c0 and Φc, are set equal to the corresponding sample

cross-sectional moments of öcA, the OLS estimate of cA, for all funds with at least 60 months

of data and the same investment objective as the fund at hand. (The investment objectives

are displayed in Table 1.) Setting Φc equal to the sample covariance matrix of öcA, without

adjusting for the sampling variation in those estimates, overstates the dispersion across

funds in the true values of cA. In that sense, our use of this empirical-Bayes procedure is

conservative, in that it applies an intentionally modest degree of shrinkage toward the cross-

sectional mean of öcA when computing the posterior moments of cA for a given fund. With a

diffuse prior on cA, or no shrinkage, the estimator (posterior mean) of cA is simply the OLS

value öcA. The degree of shrinkage applied here, albeit conservative, gives a more precise

estimator of cA, especially for a short-history fund, and thereby allows the non-benchmark

assets to reveal more of their information about the fundÕs alpha.

The inverted gamma prior density for σ2u implies (e.g., Zellner (1971, p. 372)),

E(σ2u) =
ν0s

2
0

ν0 − 2 , (21)

and

ν0 = 4 +
2(E(σ2u))

2

Var(σ2u)
. (22)

We substitute the cross-sectional mean and variance of öσ2u for E(σ
2
u) and Var(σ

2
u) in (21)

and (22). The value of ν0 is set to the next largest integer of the resulting value on the

right-hand side of (22), and then that value of ν0 implies the value of s
2
0 using (21). Here

again, using the cross-sectional variance of öσ2u without adjusting for sampling error produces

a conservative amount of shrinkage toward the cross-sectional mean of öσ2u for funds with the

same objective.

Our framework assumes fund managers have no ability to time the benchmark or non-

benchmark assets. More generally, our framework models a fundÕs sensitivities to passive

assets as constant over time. One way of relaxing this assumption is to model these coeffi-

cients as linear functions of state variables, as suggested by Shanken (1990) and applied by

Ferson and Schadt (1996) in a mutual-fund context. In such a modiÞcation, passive asset

returns scaled by the state variables can be viewed as returns on additional passive assets

(dynamic passive strategies). The GMM formulation in (14) easily accommodates scaled

returns, and the Bayesian approach developed here could be extended to such a setting as

well. Another approach to dealing with temporal variation in parameters could employ data

on fund holdings. Daniel, Grinblatt, Titman, and Wermers (1997) and Wermers (2000), for

example, use such data in characteristic-based studies of fund performance.
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3. Empirical Analysis

The mutual-fund data come from the 1998 CRSP Survivor Bias Free Mutual Fund Database.9

Our sample contains 2,609 domestic equity mutual funds with more than a year of available

returns. Three quarters of our funds are still alive at the end of 1998. The funds are assigned

to one of seven broad investment objectives, as described in the Appendix. Table 1 lists the

number of funds in each objective, further classifying funds within each objective by the

number of months in the fundÕs available return history. For each fund we compute the

monthly return in excess of that on a one-month Treasury bill.

3.1. Estimates of funds� alphas.

Table 2 reports medians, within various fund classiÞcations, of CAPM alphas (Panel A) and

Fama-French alphas (Panel B). The posterior mean of αA, denoted as ÷αA, is computed for σαN
equal to zero, two percent (annualized), and inÞnity. Recall that the usual OLS estimator,

denoted as öαA, makes no use of seemingly unrelated non-benchmark assets. Also reported

are median absolute differences between öαA and ÷αA. Not surprisingly, non-benchmark assets

play a greater role in the estimation of CAPM alphas, since two of the non-benchmark assets

in that case, SMB and HML, are already included as benchmarks when estimating Fama-

French alphas. Across all funds, the median value of |öαA − ÷αA| is two percent per annum
for CAPM alphas but about one percent or less, depending on σαN , for Fama-French alphas.

Note also that |öαA − ÷αA| is typically smaller for the funds with longer histories. With a
longer history, öαA becomes more precise, so the additional information in non-benchmark

returns has a smaller impact.

The manner by which non-benchmark assets provide information is illustrated most dra-

matically in the case of CAPM alphas for small-company growth funds. For such funds,

incorporating the information in non-benchmark assets typically makes a difference of be-

tween 7.2% and 8.3% per annum when estimating the CAPM alpha, depending on σαN .

Nearly half of those 413 funds have track records of three years or less (see Table 1), and

the bulk of their track records fall toward the end of the overall period. In recent years,

small-Þrm indexes have underperformed their CAPM predictions, which is relevant when

σαN = 0, and they have also underperformed their long-run historical averages, which is rel-

evant when σαN = ∞. (Both statements are relevant when σαN = 2%.) Incorporating that
9CRSP, Center for Research in Security Prices, Graduate School of Business, The University of Chicago

1999, crsp.com. Used with permission. All rights reserved.
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information is accomplished in either case largely by including as a non-benchmark asset

the size factor SMB, which is positively correlated with the small-company growth fundsÕ

non-market-related returns.

An important issue in performance evaluation is whether the mutual fund industry adds

value beyond standard passive benchmarks. We address this issue by computing posterior

probabilities that average fund alphas within various fund classiÞcations are negative. These

probabilities are computed based on 100,000 draws of the average alpha from its posterior

distribution. The probabilities are reported in Table 3, together with posterior means of

average CAPM alphas (Panel A) and Fama-French alphas (Panel B). Some differences be-

tween the average alphas in Table 3 and the median alphas in Table 2 reßect skewness in the

cross-sectional distribution of fund alphas. For example, the average of the OLS estimates

of the CAPM alphas across all funds is −3.83%, compared to their median of −2.13%.

With few exceptions, Table 3 supports the inference that average fund alphas are negative.

For example, for each investment objective and each age group, the average of the OLS

estimates of the CAPM alphas is negative with 100% probability. The averages of the

OLS estimates of the Fama-French alphas are mostly negative, although they are reliably

positive for funds with histories longer than 10 years. When the non-benchmark assets are

included, the average performance across all funds remains signiÞcantly negative, although

the performance of long-history funds and aggressive growth funds improves with skeptical

prior beliefs about pricing (σαN = ∞). The importance of beliefs about pricing can be
illustrated by the average Fama-French alpha for small-cap growth funds. When the non-

benchmark assets are not used, there is a 50% probability that the average alpha for those

funds is negative. When the non-benchmark assets are included, the probability that the

average alpha is negative rises to 100% when those assets are believed to be exactly priced

by the benchmarks, but it drops to 9% when no pricing relation is used.

Our universe of funds includes those that ceased existence before the end of the overall

sample period in December 1998 (a quarter of our funds). The alpha estimates in Tables 2

and 3 are generally higher for funds with longer histories. This age-related pattern is not

surprising, since funds with poor track records are less likely to be long lived. One might

therefore ask whether the estimate of a fundÕs alpha should be adjusted according to whether

or not it survived to the end of the sample. The posterior mean of alpha is conditioned on the

returns of the fund and the passive assets. If one assumes that, conditional on those realized

returns, the probability of survival is unaffected by conditioning on the true parameters as

well, then conditioning on survival has no incremental effect on the posterior mean of the
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fundÕs alpha. This observation is made by Baks, Metrick and Wachter (2001), and their

assumption that realized returns determine survival probabilities seems reasonable.10 For

this reason, a survival-based adjustment to our estimates is unnecessary.

When interpreting the age-related patterns in Tables 2 and 3, recall that our estimates are

based on non-informative prior beliefs, so as to make our approach comparable to the stan-

dard practice in which a fundÕs performance measure is computed without an adjustment for

prior beliefs about reasonable values. When the prior is non-informative, poor performance,

whether or not it contributed to a fundÕs death, is translated fully to an inference that the

fundÕs alpha is low. Readers who think that our estimated alphas for the short-history funds

seem too low essentially have informative prior beliefs, which is a reasonable alternative.

For example, with a prior that each fundÕs alpha is drawn from a distribution with a Þnite

variance and a common mean, the alphas of short-history funds are shrunk more toward

the grand mean than the alphas of long-history funds, thereby reducing the age-related dif-

ferences. (The prior exerts more inßuence in a shorter sample.) That shrinkage is not an

adjustment for survival, however. By the earlier argument, no such adjustment is necessary,

whether or not the prior is informative.

To investigate whether including the non-benchmark assets leads to a more precise in-

ference about a fundÕs alpha, in Table 4 we examine the ratio of two posterior variances.

The numerator of the ratio is the posterior variance of αA under our model in which non-

benchmark assets are used and the prior variance for the elements of αN is as given in the

column heading. Recall that the posterior mean of αA in that case is denoted as ÷αA. The

denominator of the ratio is the posterior variance of αA when the non-benchmark assets are

not used and diffuse priors are assigned to all parameters. The posterior mean of αA in that

case is the OLS estimate öαA. For ease of discussion, we commit a slight abuse of notation

and refer to the posterior variances in the numerator and denominator as the ÒvariancesÓ of

10Let R denote the returns over a given period, let s denote a random variable indicating whether or not
a given fund dies at the end of that period, and let θ denote the vector of true (unknown) parameters of the
return distribution. As observed by Baks, Metrick, and Wachter (2001), the assumption

p(s|R, θ) = p(s|R)

implies, using Bayes� rule, that

p(θ|R, s) = p(s|R, θ)p(θ|R)
p(s|R) = p(θ|R).

Our assumption of independence across funds of the disturbances in (5) permits a fund-by-fund treatment,
as discussed earlier, so the above holds when R includes the returns on all funds in our universe. Therefore,
a fund�s survival probability can depend not only on its performance relative to benchmarks but relative to
other funds as well.
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÷αA and öαA. These variances reßect the precision of inferences about αA in the sense generally

associated with standard errors in a frequentist setting. In fact, the denominator of the ratio

equals the squared standard error computed in the usual regression model.

For most funds, a more precise inference about alpha is obtained by including non-

benchmark assets. Table 4 reports the median ratio of the variance of ÷αA to the variance

of öαA. Also reported is the fraction of those ratios that are less than one. For the CAPM

alpha estimates, the median variance ratio across all funds is approximately 0.7, and the

ratio is less than one for roughly 90% of the funds. For Fama-French alphas, the ratio has

a median of about 0.85 and is less than one for roughly 80% of the funds. In general, the

median ratio is higher for the funds with longer histories. Note from Table 1 that funds with

track records of at least 20 years represent only about 5% or our sample (139 out of 2609).

For those funds, the OLS estimates of Fama-French alphas are typically about as precise

as the estimates that incorporate the non-benchmark assets: the median variance ratios are

1.00 or just slightly less, and the ratios cluster fairly tightly around that value. At the other

extreme lies the variance ratio associated with estimating CAPM alphas for small-company

growth funds. That variance ratio has a median between 0.33 and 0.39, depending on σαN ,

and the ratio is less than one for all such funds in our sample. Thus, for small-company

growth funds in particular, not only is the CAPM ÷αA substantially higher than the CAPM

öαA, it is also substantially more precise.

Recall that estimates of αA are identical across different speciÞcations of the benchmarks

when one assumes the non-benchmark assets are priced exactly under each speciÞcation.

In Table 2, note that the median values of ÷αA are indeed the same in Panels A and B

when σαN = 0 (which sets αN = 0). Table 5 compares estimates of CAPM and Fama-French

alphas when σαN = 2% (Panel A) and σαN =∞ (Panel B). As expected, the median absolute

differences between models are typically larger in the second case, but those differences are

still substantially less than the median absolute differences between OLS estimates (Panel

C). In other words, even when the non-benchmark assets are not believed to be priced

whatsoever by either modelÕs benchmarks, their presence in the estimation still makes the

deÞnition of αA substantially less important than when they are not used at all. Across all

funds, the median absolute difference between estimated CAPM and Fama-French alphas is

0.42% (per annum) under σαN = 2% and 1.24% under σαN =∞, as compared to 2.28% for

the OLS estimates. For small-company growth funds, the median difference is 0.69% under

σαN = 2% and 2.03% under σαN =∞, as compared to 8.07% for the OLS estimates.

Table 6 compares alphas deÞned for a given set of benchmarks and estimated with or
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without the pricing restriction imposed on the non-benchmark assets. That is, for αA deÞned

with respect to a given pricing model, we compare estimates under σαN = 0 to estimates

under σαN = ∞. Across all funds, the median difference is 0.94% for CAPM alphas and

0.68% for Fama-French alphas. Interestingly, the median differences display little if any

relation to the length of the fundÕs history. Most of the median differences in the two-way

sort (by objective and age) are 2% or less, with the exception of sector funds. For the funds

with the longest histories, the effect of imposing the pricing restriction on the non-benchmark

assets is often as large as the effect of not including the non-benchmark assets at all (shown

earlier in Table 2). The latter effect is more important for history lengths of ten years or less

when estimating CAPM alphas and Þve years or less when estimating Fama-French alphas.

Note from Table 1 that about 85% of the equity funds in our sample have history lengths

less than 10 years, and about 60% have histories of Þve years or less.

3.2. Estimates of funds� Sharpe ratios.

Table 7 reports medians of fundsÕ Sharpe ratios, within various fund classiÞcations, in a

manner analogous to Table 2 for fundsÕ alphas. The usual sample estimate of a fundÕs

Sharpe ratio SA, denoted as öSA, is computed using only the fundÕs excess returns. In contrast,

the posterior mean of SA, denoted as ÷SA, also reßects information in returns of seemingly

unrelated assets. The posterior means of SA for the CAPM and the Fama-French model are

reported for prior beliefs in which the pricing relations are assumed to hold exactly (σαN = 0).

For the ÓNo ModelÓ results, prior beliefs in any pricing model are diffuse (σαN =∞).

The median value of öSA across all funds is 0.68, but the median value of ÷SA is only about

half of that, ranging from 0.31 for the CAPM to 0.34 for ÒNo ModelÓ. Since a typical fund

in our sample has been around only during the bull market in the 1990s, the median öSA is

quite high. The values of ÷SA reßect additional information in the longer histories of returns

on seemingly unrelated assets. Those returns are on average lower than the returns in the

1990s, resulting in lower values for ÷SA. Also note that ÷SA is not very sensitive to the choice

of the pricing model. The model benchmarks are not used to deÞne the Sharpe ratio; the

only role for the model is to determine the long-run expected returns on the non-benchmark

assets. When estimating Sharpe ratios, including the long histories of seemingly unrelated

assets is clearly more important than choosing a pricing model.

Table 7 also reports the median absolute differences between öSA and ÷SA. The median

value of | öSA − ÷SA| across all funds is large, about 0.4. The median absolute differences are
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the smallest for the longest-history funds, because, with a longer history, öSA becomes more

precise and any additional information has a smaller effect. The long histories of returns

on seemingly unrelated passive assets clearly contain a lot of information about the fundsÕ

Sharpe ratios, especially (but not exclusively) for funds with relatively short track records.

We examine the precision of the estimated Sharpe ratios in the same manner as reported

previously in Table 4 for the precision of alphas. Table 8 reports the median ratio of the

posterior variances of ÷SA and öSA as well as the fraction of those ratios that are less than

one. The numerator of the ratio is the posterior variance of SA under our model in which

returns on all passive assets are used, with prior beliefs corresponding either to exact pricing

(CAPM, Fama-French models) or to no pricing (ÒNo ModelÓ). This posterior variance is

computed from a large number of independent draws of each fundÕs Sharpe ratio from its

posterior distribution, as described in the Appendix. The denominator of the ratio is the

posterior variance of SA when only the fund returns are used and diffuse priors are assigned

to all parameters.

The results in Table 8 indicate that seemingly unrelated assets provide more precise

Sharpe ratio estimates for over 99% of the funds in our universe. The median of the variance

ratios across all funds is about 0.23, with little dependence on the choice of the pricing model.

The precision of our Sharpe ratio estimates is therefore four to Þve times higher on average

than the precision of the usual estimates. The median variance ratios increase uniformly

with fundsÕ history lengths, from about 0.16 for the funds with less than two years of data to

about 0.88 for the funds with at least twenty years of data. Comparing the results in Table

8 to those in Table 4 reveals that seemingly unrelated assets help increase the precision of

the fundsÕ Sharpe ratios even more than the precision of their alphas. For Sharpe ratios,

the set of seemingly unrelated assets includes all passive assets, not only non-benchmark

assets, so the additional information contributed by seemingly unrelated assets is even more

important.

Morningstar, Inc., a leading provider of mutual fund information, ranks funds into Þve

categories (one to Þve stars) based on a risk-adjusted rating in which a measure of the fundÕs

downside volatility is subtracted from a measure of the fundÕs average excess return. Al-

though the Sharpe ratio and the Morningstar rating are deÞned differently, they share the

same basic risk-adjustment concept and often provide similar rankings of funds, as demon-

strated by Sharpe (1997, 1998). Moreover, the principles underlying the increase in precision

in our Sharpe ratio estimates can clearly be used to improve the precision of MorningstarÕs

22



risk-adjusted ratings, especially the component based on the fundÕs average-excess return.11

Since Morningstar rankings are known to be inßuential to mutual-fund investors, an impor-

tant question is whether the fund rankings are affected by including seemingly unrelated

assets. To explore this question, we examine rankings based on estimated Sharpe ratios.

SpeciÞcally, we sort all 1,585 funds with at least three years of data into Þve categories,

using the same breakpoints as Morningstar (top 10%, next 22.5%, next 35%, next 22.5%,

bottom 10%). The funds are ranked Þrst by their öSAÕs and then separately by their ÷SAÕs,

with the latter computed using prior beliefs that are noninformative about pricing.

Table 9 reports, in a Þve-by-Þve matrix, the numbers of funds in the intersection of the

two independent rankings. For example, the (1, 3) cell contains the number of funds that are

ranked in the top group based on ÷SA and in the third group based on öSA. Large off-diagonal

numbers in the matrix reveal that the ÷SA ranking is quite different from the öSA ranking. At

the extreme, there are three funds that are classiÞed in the bottom 10% using the traditional
öSA but in the top 10% using the more precise ÷SA. Only 526 out of the 1,585 funds are ranked

in the same category under both öSA and ÷SA, and the rank correlation is only 0.53. With

informative prior beliefs about pricing, the differences between the two rankings are even

slightly larger. Clearly, the information in returns on seemingly unrelated assets has an

important impact on fund rankings.

4. Conclusions

This study develops and applies methods for improved estimation of performance measures

using information in returns on Òseemingly unrelatedÓ assets not used to deÞne those mea-

sures. A fundÕs alpha is deÞned relative to a set of passive benchmarks. The typically

reported OLS estimate of alpha ignores information provided by returns on non-benchmark

assets. The non-benchmark assets help estimate alpha if they are priced to some extent by

the benchmarks or if their return histories are longer than the fundÕs. A fundÕs Sharpe ratio

can be estimated more precisely by using information in returns on assets other than just

the fund.

Using a sample of 2,609 U.S. equity mutual funds, we demonstrate that the returns on

seemingly unrelated assets contain substantial information about fund performance. For

11Whenever the average excess return on the fund�s broad investment class is positive, the Morningstar
rating uses essentially the same average excess fund return generally used to compute the fund�s Sharpe
ratio.
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most funds, the estimates of alpha that incorporate the information in non-benchmark re-

turns are more precise than the standard estimates. In the case of small-company growth

funds, for example, the non-benchmark assets allow alphas deÞned with respect to the mar-

ket benchmark to be estimated with only one third of the variance associated with the usual

OLS estimates of those alphas. Across all funds, Sharpe ratios estimated using seemingly

unrelated assets have a median only about half that of the usual estimates and are generally

four to Þve times more precise. Moreover, fund rankings based on the improved Sharpe-ratio

estimates differ substantially from those based on the usual estimates.

Compared to the usual estimates, the estimates of alpha that incorporate the information

in the non-benchmark assets tend to exhibit less variation across different speciÞcations of

the benchmarks. At the extreme, if one believes that some subset of the passive assets used in

the estimation prices the other passive assets exactly, then the estimate of alpha is the same

regardless of which subset is designated as the benchmarks that deÞne alpha. In other words,

if one believes dogmatically in a pricing model, it does not matter which model that is when

estimating alpha. For most funds, we Þnd that including information in non-benchmark

assets is more important than specifying the degree to which the non-benchmark assets are

priced by the benchmarks. We also Þnd that, across different beliefs about pricing, most

funds have underperformed the CAPM and Fama-French benchmarks.
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Appendix

This Appendix derives the posterior moments of αA and SA. The prior for the parameters of

the regression in (5) is independent of the prior for the parameters of the regression in (4). In

addition, both of those priors are assumed to be independent of the (diffuse) prior for EB and

VBB, the mean and covariance matrix of the normal distribution for rB,t. The independence

of the priors and the independence of uA,t and ²N,t imply that the posterior distributions for

the parameters of the regression in (4) depend only on the sample of passive asset returns,

not the fund returns. We Þrst provide the moments of those distributions, relying on the

derivations in P«astor and Stambaugh (2000), henceforth referred to as PS. Those moments

are then combined with the posterior moments of δA and cA to obtain the posterior moments

of αA. The posterior distribution of αN is independent of δA and cAN , so the posterior mean

of αA is obtained simply by evaluating the right-hand side of (7) at the posterior means of

αN , δA and cAN . The posterior variances of αA can also be computed using the posterior Þrst

and second moments of αN , δA and cAN . These results are then used to compute numerically,

using simulation, the posterior moments of SA. The Appendix concludes with an explanation

of how funds are classiÞed by investment objectives.

A.1. Posterior distribution for the passive-asset parameters

DeÞne Y = (rN,1, . . . , rN,T )
0, X = (rB,1, . . . , rB,T )

0, and Z = (ιT X), where ιT denotes a

T -vector of ones. Also deÞne the (k + 1) ×m matrix G = (αN BN)
0, and let g = vec (G).

For the T observations t = 1, . . . , T , the regression model in (4) can be written as

Y = ZG+ U, vec (U) ∼ N(0,Σ⊗ IT ), (A.1)

where U = (²N,t, . . . , ²N,T )
0. DeÞne the statistics öG = (Z 0Z)−1Z 0Y , ög = vec ( öG), öΣ =

(Y − Z öG)0(Y − Z öG)/T , öEB = X 0ιT/T , and öVBB = (X − ιT öE0B)0(X − ιT öE0B)/T . Let θP
denote the parameters of the joint distribution of the passive asset returns (G, Σ, EB, and

VBB), and deÞne the T × p sample matrix of passive returns, RP = (X Y ). The likelihood

function for the passive returns can be factored as

p(RP |θP ) = p(Y |θP , X) p(X|θP ), (A.2)

where

p(Y |θP , X) ∝ |Σ|−T
2 exp

½
−1
2
tr (Y − ZG)0(Y − ZG)Σ−1

¾
(A.3)

p(X|θP ) ∝ |VBB|−T
2 exp

½
−1
2
tr (X − ιTE0B)0(X − ιTE0B)V −1BB

¾
. (A.4)
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The joint prior distribution of all passive-return parameters is

p(θP ) = p(αN |Σ) p(Σ) p(BN) p(EB) p(VBB), (A.5)

where

p(αN |Σ) ∝ |Σ|− 1
2 exp

(
−1
2
α0N(

σ2αN
s2
Σ)−1αN

)
(A.6)

p(Σ) ∝ |Σ|− ν+m+1
2 exp

½
−1
2
trHΣ−1

¾
(A.7)

p(BN ) ∝ 1 (A.8)

p(EB) ∝ 1 (A.9)

p(VBB) ∝ |VBB|−k+1
2 . (A.10)

The priors of BN , EB, and VBB are diffuse. The prior of Σ is inverted Wishart with a small

number of degrees of freedom, so that it is essentially noninformative. The prior on αN

given Σ is normal and centered at the pricing restriction. Let D denote a (k + 1)× (k + 1)
matrix whose (1, 1) element is s2

σ2αN
and all other elements are zero. Also let F = D + Z 0Z

and Q = Z 0(IT − ZF−1Z 0)Z. Applying the analysis in PS, the likelihood and the prior are
combined to obtain the posteriors of the parameters of interest. The posterior distributions

of the slopes and the residual covariance matrix from regression (A.1) are

g|Σ, RP ∼ N(÷g,Σ⊗ F−1) (A.11)

Σ−1|RP ∼ W ((H + T öΣ+ öG0Q öG)−1, T + ν − k), (A.12)

where W denotes the Wishart distribution, and the posterior moments are

÷g = E(g|RP ) = (Im ⊗ F−1Z 0Z)ög (A.13)

÷Σ = E(Σ|RP ) = 1

T + ν −m− k − 1(H + T
öΣ+ öG0Q öG) (A.14)

Var(g|RP ) = ÷Σ⊗ F−1. (A.15)

The posteriors of the mean and the covariance matrix of the benchmark returns are

EB|VBB, RP ∼ N( öEB,
1

T
VBB) (A.16)

V −1BB|RP ∼ W ((T öVBB)
−1, T − 1), (A.17)

and the posterior moments are

÷EB = E(EB|RP ) = öEB (A.18)

÷VBB = E(VBB|RP ) = T

T − k − 2
öVBB (A.19)

Var(EB|RP ) =
1

T − k − 2
öVBB. (A.20)

Posterior means are denoted using tildes for the remainder of the Appendix.
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A.2. Posterior distribution for the parameters of (5)

Let rA (S×1) contain S observations of rA,t, the return on a given fund A. We assume S ≤ T
and that the (consecutive) months in which rA,t is observed form a subset of those in which

rN,t and rB,t are observed. The assumption that the disturbances in (5) are independent

across funds, coupled with the assumption that the priors of that regressionÕs parameters

are independent across funds, implies that the posterior distribution for a given fundÕs pa-

rameters of the regression in (5) does not depend on the observed returns of the other funds

(conditional on the passive return sample RP ). Let θA denote the set of parameters δA, cA,

and σ2u. Our various modeling assumptions give

p(θA, θP |RP , rA) ∝ p(θA, θP )p(RP , rA|θA, θP )
= p(θA)p(θP )p(rA|RP , θA, θP )p(RP |θA, θP )
= p(θA)p(rA|RP , θA)p(θP )p(RP |θP )
∝ p(θA|RP , rA)p(θP |RP ). (A.21)

The second factor in (A.21) is the posterior derived previously. The Þrst factor, the posterior

for θA, combines the priors given in (18) through (20) with the likelihood,

p(rA|RP , θA) ∝ 1

σTu
exp

(
− 1

2σ2u
(rA − ZAφA)0(rA − ZAφA)

)
, (A.22)

where RP,A denotes the S rows of RP corresponding to the months in which rA,t is observed,

ZA = (ιS RP,A), and φA = (δA c
0
A)
0. The prior densities corresponding to (18) through (20)

are given by

p(σu) ∝ 1

σν0+1u

exp

(
−ν0s

2
0

2σ2u

)
(A.23)

and

p(φA|σu) ∝ 1

σp+1u

exp

(
− 1

2σ2u
(φA − φ0)0Λ0(φA − φ0)

)
, (A.24)

where φ0 = (δ0 c
0
0)
0 and

Λ0 =

Ã
ν0s

2
0

ν0 − 2
!"

σ2δ 0
0 Φc

#−1
. (A.25)

The product of (A.22), (A.23), and (A.24) gives, after simplifying,12

p(φA, σu|RP , rA) ∝ 1

σp+1u

exp

(
− 1

2σ2u
(φA − ÷φA)

0(Λ0 + Z 0AZA)(φA − ÷φA)
)

× 1

σT+ν0+1u

exp

(
− hA
2σ2u

)
, (A.26)

12See Zellner (1971, pp. 75-76) for a similar derivation.
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where

÷φA = (Λ0 + Z
0
AZA)

−1(Λ0φ0 + Z 0ArA) (A.27)

hA = ν0s
2
0 + r

0
ArA + φ

0
0Λ0φ0 − ÷φ0A(Λ0 + Z

0
AZA)

÷φA. (A.28)

It follows from (A.26) that

φA|RP , rA,σu ∼ N(÷φA, σ
2
u(Λ0 + Z

0
AZA)

−1) (A.29)

σ2u|RP , rA ∼ hA
χ2T+ν0

, (A.30)

and hence

÷σ2u = E(σ
2
u|RP , rA) =

hA
T + ν0 − 2 (A.31)

Var(φA|RP , rA) = ÷σ2u(Λ0 + Z
0
AZA)

−1, (A.32)

where the last equation follows from variance decomposition.

A.3. Posterior moments of a fund�s alpha

Let ÷αN and VαN denote the posterior mean and covariance matrix of αN , given by the ap-

propriate submatrices of the moments in (A.13) and (A.15), and let VφA denote the posterior

covariance matrix of φA given in (A.32). From the previous discussion recall that the pos-

teriors of φA and αN are independent. Thus, from equation (7), the posterior mean of the

fundÕs alpha is given by

÷αA = ÷δA + ÷c
0
AN ÷αN , (A.33)

where ÷δA and ÷cAN are subvectors of the posterior mean of φA given in (A.27).

To obtain the posterior variance of αA, rewrite (7) as

αA = φ
0
Ad, (A.34)

where d = (1 α0N 0)
0, and the posterior mean and covariance matrix of d are given by

÷d =

 1
÷αN
0

 , Vd =

 0 0 0
0 VαN 0
0 0 0

 . (A.35)

Let D denote the data, RP and rA, and note that by the variance-decomposition rule,

Var(αA|D) = E[Var(φ0Ad|D, d)|D] + Var[E(φ0Ad|D, d)|D]. (A.36)
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Using the independence of φA and d, the Þrst term in (A.36) can expressed as

E[Var(φ0Ad|D, d)|D] = E[d0VφAd|D]
= E[tr (VφAdd

0)|D]
= tr [VφAE(dd

0|D)]
= tr (VφAVd) +

÷d0VφA ÷d, (A.37)

and the second term can be expressed as

Var[E(φ0Ad|D, d)|D] = Var[÷φAd|D]
= ÷φ0AVd ÷φA. (A.38)

A.4. Posterior distribution of a fund�s Sharpe ratio

A fundÕs Sharpe ratio, SA, is deÞned as

SA =
EA
σA
. (A.39)

The fundÕs expected return, EA, is calculated from equation (5) as

EA = δA + c
0
AEP = φ

0
A

"
1
EP

#
, (A.40)

where

EP =

"
αN +BNEB

EB

#
(A.41)

is the vector of expected returns on all passive assets. The fundÕs standard deviation of

returns, σA, is calculated from the same equation as

σ2A = c
0
AVP cA + σ

2
u, (A.42)

where

VP =

"
BNVBBB

0
N + Σ BNVBB

VBBB
0
N VBB

#
(A.43)

is the covariance matrix of returns on all passive assets. Independent posterior draws of

EA and σA are constructed by drawing parameters from their posterior distributions in

equations (A.11), (A.12), (A.16), (A.17), (A.29), and (A.30). Using equation (A.39), these

draws are then used to construct a large number of independent draws of SA from its posterior

distribution.

29



A.5. Fund ClassiÞcation by Objectives

We select domestic equity funds from the 1998 CRSP Survivor Bias Free Mutual Fund

Database, based on the information that the database provides about fund holdings, fund

objectives, and fund names. In addition to international funds, money market funds, and

bond funds, we exclude balanced funds, ßexible funds, and funds of funds. We also exclude

multiple share classes for the same fund, funds with at most 12 months of (continuous) return

data, funds with unknown objectives, funds with no expense, turnover, or load data, and a

small number of funds with apparent data errors.13

The resulting 2,609 domestic equity funds are assigned to one of seven broad investment

objectives, using the information that the CRSP database provides about classiÞcations

by Wiesenberger (ÒOBJÓ), ICDI (ÒICDI OBJÓ), and Strategic Insight (ÒSI OBJÓ). Our

classiÞcation is as follows:14

1. Small company growth Ñ OBJ: SCG; SI OBJ: SCG

2. Other aggressive growth Ñ OBJ: AGG; ICDI OBJ: AG, AGG; SI OBJ: AGG

3. Growth Ñ OBJ: G, G-S, S-G, GRO, LTG; ICDI OBJ: LG; SI OBJ: GRO

4. Income Ñ OBJ: I, I-S, IEQ, ING; ICDI OBJ: IN; SI OBJ: ING

5. Growth and income Ñ OBJ: GCI, G-I, G-I-S, G-S-I, I-G, I-G-S, I-S-G, S-G-I, S-I-G,

GRI; ICDI OBJ: GI; SI OBJ: GRI

6. Maximum capital gains Ñ OBJ: MCG

7. Sector funds Ñ OBJ: ENR, FIN, HLT, TCH, UTL; ICDI OBJ: SF, UT; SI OBJ: ENV,

FIN, HLT, TEC, UTI, RLE, NTR, SEC

A fund is included in a particular category in any given year if at least one of the objective

classiÞcations OBJ, ICDI OBJ, SI OBJ satisÞes the above criterion. Funds are assigned to

the categories in ascending order, beginning with category one. For example, if a fund is

13We made various corrections to the CRSP mutual fund data and also incorporated a number of correc-
tions generously provided by Thomas Knox and the authors of Baks, Metrick, and Wachter (2001).
14Note that the Wiesenberger objective IEQ stands for �Income-Equity�, not �International Equity� as

stated in the 1998 CRSP manual. Also, the Wiesenberger objective LTG stands for �Long-term growth�, not
�Long-term government�. The Strategic Insight codes �GMC� and �FOF�, not mentioned in the manual,
apparently denote �Growth: Mid-Cap� and �Fund of Funds�, respectively. These corrections are easily
conÞrmed by browsing the fund names.
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classiÞed as small-company growth by Wiesenberger and as aggressive growth by ICDI, it is

counted as small company growth, since that category comes before the aggressive growth

category. If a fundÕs objective is not the same in each year, the fund is assigned to the

category into which it is classiÞed most often.
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Table 1

Number of Equity Mutual Funds ClassiÞed by
History Length and Investment Objective

The sample contains domestic equity mutual funds in the CRSP database with continuous return histories
longer than one year. Multiple share classes for the same fund are excluded. Funds are assigned to one of
seven broad investment objectives using information that the CRSP database provides about classiÞcations
by Wiesenberger, ICDI, and Strategic Insight.

Length of fundÕs return history (months)
Investment objective 13Ñ23 24Ñ35 36Ñ59 60Ñ119 120Ñ239 ≥ 240 All

Small-company growth 128 60 95 109 21 0 413
Other aggressive growth 40 30 41 32 10 0 153
Growth 213 130 226 251 92 60 972
Income 36 35 38 47 14 4 174
Growth and income 154 80 119 153 36 34 576
Maximum capital gains 9 10 17 16 13 41 106
Sector funds 61 37 45 68 4 0 215

All funds 641 382 581 676 190 139 2609
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Table 2
Estimates of Alpha for Equity Mutual Funds

Each value in the table is the median across the set of designated funds, expressed in percent per annum.
Fund performance, denoted by αA, is deÞned as the intercept in the regression of the fund�s excess return,
rA,t, on either the market benchmark index, MKTt, (Panel A) or that benchmark index plus the size and
value benchmark indexes, SMBt and HMLt (Panel B). The OLS estimate of αA, denoted by �αA, is based
on the fund�s available history and the corresponding history of the benchmarks. The posterior mean of
αA, denoted by �αA, is based on the fund�s available history as well as the returns from July 1963 through
December 1998 on the benchmarks and additional non-benchmark indexes. The quantity σαN , expressed
in percent per annum, denotes the prior standard deviation of the intercept αN in a regression of a non-
benchmark return on the benchmark indexes. The prior for αA is diffuse.

History length or ÷αA for σαN of |öαA − ÷αA| for σαN of
investment objective öαA 0 2% ∞ 0 2% ∞

A. rA,t = αA + βAMKTt + ²A,t
13Ñ23 months -4.81 -2.07 -1.87 -1.34 3.27 3.29 3.33
24Ñ35 months -2.85 -1.64 -1.53 -1.17 2.53 2.47 2.72
36Ñ59 months -2.87 -1.61 -1.35 -1.13 2.44 2.24 2.10
60Ñ119 months -1.49 -0.97 -0.91 -0.56 1.35 1.29 1.42
120Ñ239 months -0.84 -0.09 -0.08 0.03 1.29 1.04 0.96
240 months and greater -0.53 -0.17 -0.26 -0.14 0.70 0.53 0.17

Small-company growth -8.45 -1.59 -0.97 -0.05 7.20 7.66 8.30
Other aggressive growth -5.41 -0.97 -0.74 -1.06 4.80 4.65 4.58
Growth -2.17 -0.97 -1.01 -1.17 1.64 1.48 1.52
Income -0.39 -1.84 -1.40 -0.45 1.27 1.07 0.83
Growth and income -0.51 -0.97 -0.87 -0.59 0.93 0.89 1.02
Maximum capital gains -2.29 -1.47 -1.53 -1.95 2.16 1.75 1.34
Sector funds -1.06 -3.96 -2.70 0.09 4.95 3.48 2.95

All funds -2.13 -1.25 -1.07 -0.74 2.05 1.87 1.90

B. rA,t = αA + bA,1MKTt + bA,2SMBt + bA,3HMLt + ηA,t
13Ñ23 months -1.68 -2.07 -1.96 -1.43 1.66 1.55 1.59
24Ñ35 months -1.63 -1.64 -1.52 -1.38 1.40 1.25 1.01
36Ñ59 months -1.29 -1.61 -1.46 -1.14 1.05 0.95 0.78
60Ñ119 months -0.92 -0.97 -0.94 -0.66 0.76 0.57 0.39
120Ñ239 months 0.07 -0.09 -0.06 0.08 0.64 0.42 0.24
240 months and greater 0.12 -0.17 -0.13 0.17 0.76 0.50 0.05

Small-company growth -0.41 -1.59 -1.16 -0.08 1.45 1.15 0.92
Other aggressive growth -0.37 -0.97 -0.45 0.08 1.76 1.34 0.96
Growth -0.88 -0.97 -0.86 -0.72 0.90 0.78 0.59
Income -2.03 -1.84 -1.90 -1.74 0.74 0.61 0.47
Growth and income -1.19 -0.97 -1.00 -1.11 0.79 0.68 0.44
Maximum capital gains -0.28 -1.47 -1.32 -0.34 1.40 1.03 0.45
Sector funds -1.84 -3.96 -3.51 -2.48 3.18 2.44 1.35

All funds -1.07 -1.25 -1.14 -0.86 1.09 0.91 0.65

33



Table 3
Average Equity-Fund Alphas: Are They Negative?

The table reports the posterior mean of ᾱA, the average αA across the set of designated funds, expressed in
percent per annum. Also reported is the posterior probability (expressed in percent) that ᾱA is negative.
Fund performance, denoted by αA, is deÞned as the intercept in the regression of the fund�s excess return,
rA,t, on either the market benchmark index, MKTt, (Panel A) or that benchmark index plus the size and
value benchmark indexes, SMBt and HMLt (Panel B). The OLS estimate of αA, denoted by �αA, is based
on the fund�s available history and the corresponding history of the benchmarks. The posterior mean of
αA, denoted by �αA, is based on the fund�s available history as well as the returns from July 1963 through
December 1998 on the benchmarks and additional non-benchmark indexes. The quantity σαN , expressed
in percent per annum, denotes the prior standard deviation of the intercept αN in a regression of a non-
benchmark return on the benchmark indexes. The prior for αA is diffuse.

Posterior mean of øαA Prob( øαA < 0)
History length or ÷αA for σαN of ÷αA for σαN of
investment objective öαA 0 ∞ öαA 0 ∞

A. rA,t = αA + βAMKTt + ²A,t
13Ñ23 months -6.31 -1.67 -1.19 100 100 98
24Ñ35 months -4.77 -1.67 -1.29 100 100 98
36Ñ59 months -4.12 -1.78 -1.39 100 100 100
60Ñ119 months -2.13 -0.99 -0.66 100 100 94
120Ñ239 months -1.07 -0.08 0.11 100 72 42
240 months and greater -0.50 -0.27 -0.26 100 99 70

Small-company growth -9.29 -1.28 0.01 100 100 50
Other aggressive growth -6.79 -0.99 -1.39 100 98 89
Growth -3.06 -1.00 -1.27 100 100 100
Income -0.84 -1.56 -0.36 100 100 80
Growth and income -1.02 -1.25 -1.01 100 100 100
Maximum capital gains -4.74 -2.85 -3.01 100 100 100
Sector funds -4.14 -2.45 -0.54 100 100 78

All funds -3.83 -1.33 -0.97 100 100 98

B. rA,t = αA + bA,1MKTt + bA,2SMBt + bA,3HMLt + ηA,t
13Ñ23 months -1.54 -1.67 -1.06 100 100 100
24Ñ35 months -1.22 -1.67 -1.02 100 100 100
36Ñ59 months -1.32 -1.78 -1.10 100 100 100
60Ñ119 months -0.66 -0.99 -0.44 100 100 99
120Ñ239 months 0.38 -0.08 0.46 0 72 1
240 months and greater 0.15 -0.27 0.21 10 99 17

Small-company growth -0.00 -1.28 0.50 50 100 9
Other aggressive growth 0.27 -0.99 0.29 30 98 30
Growth -0.78 -1.00 -0.61 100 100 99
Income -2.04 -1.56 -1.64 100 100 100
Growth and income -1.76 -1.25 -1.43 100 100 100
Maximum capital gains -1.67 -2.85 -1.64 100 100 100
Sector funds -1.43 -2.45 -1.25 99 100 99

All funds -0.99 -1.33 -0.72 100 100 100
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Table 4
Relative Precision of Estimates of Alpha for Equity Mutual Funds

Fund performance, denoted by αA, is deÞned as the intercept in the regression of the fund�s excess return,
rA,t, on either the market benchmark index, MKTt, (Panel A) or that benchmark index plus the size and
value benchmark indexes, SMBt and HMLt (Panel B). The OLS estimate of αA, denoted by �αA, is based
on the fund�s available history and the corresponding history of the benchmarks. The posterior mean of
αA, denoted by �αA, is based on the fund�s available history as well as the returns from July 1963 through
December 1998 on the benchmarks and additional non-benchmark indexes. The quantity σαN , expressed
in percent per annum, denotes the prior standard deviation of the intercept αN in a regression of a non-
benchmark return on the benchmark indexes. The prior for αA is diffuse.

History length or σαN = 0 σαN = 2% σαN =∞
investment objective median % < 1 median % < 1 median % < 1

A. rA,t = αA + βAMKTt + ²A,t
13Ñ23 months 0.62 83 0.62 83 0.63 82
24Ñ35 months 0.63 88 0.62 88 0.63 89
36Ñ59 months 0.65 90 0.65 92 0.68 91
60Ñ119 months 0.70 93 0.69 97 0.73 96
120Ñ239 months 0.76 93 0.77 97 0.84 98
240 months and greater 0.84 88 0.87 92 0.98 74

Small-company growth 0.33 100 0.34 100 0.39 100
Other aggressive growth 0.54 90 0.55 90 0.59 90
Growth 0.76 87 0.76 89 0.80 87
Income 0.75 84 0.75 89 0.77 89
Growth and income 0.77 83 0.77 85 0.80 85
Maximum capital gains 0.70 92 0.73 95 0.85 88
Sector funds 0.62 96 0.63 96 0.66 95

All funds 0.68 89 0.68 91 0.72 89

B. rA,t = αA + bA,1MKTt + bA,2SMBt + bA,3HMLt + ηA,t
13Ñ23 months 0.70 81 0.69 81 0.69 81
24Ñ35 months 0.79 76 0.78 79 0.78 77
36Ñ59 months 0.85 80 0.84 83 0.83 82
60Ñ119 months 0.89 80 0.88 84 0.89 83
120Ñ239 months 0.95 75 0.93 88 0.94 91
240 months and greater 1.00 53 0.98 71 0.99 83

Small-company growth 0.80 84 0.79 86 0.80 86
Other aggressive growth 0.81 86 0.79 88 0.78 88
Growth 0.88 78 0.86 82 0.88 82
Income 0.88 79 0.87 83 0.86 82
Growth and income 0.91 67 0.89 72 0.90 73
Maximum capital gains 0.96 66 0.94 75 0.96 83
Sector funds 0.74 95 0.74 95 0.76 95

All funds 0.86 78 0.84 82 0.85 82
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Table 5

Comparison of Estimated CAPM and Fama-French Alphas under
Alternative Roles for Non-Benchmark Assets

Each entry in Panels A and B is the median across funds of the absolute difference between posterior means
of a fund�s CAPM alpha and its Fama-French alpha, in percent per annum, under alternative prior beliefs
about the degree to which each model prices the non-benchmark assets. Each entry in Panel C is the median
absolute difference of the OLS alpha estimates. Fund performance, denoted by αA, is deÞned as the intercept
in the regression of the fund�s excess return, rA,t, on either the market benchmark index, MKTt, (CAPM)
or that benchmark index plus the size and value benchmark indexes, SMBt and HMLt (Fama-French). The
OLS estimate of αA, denoted by �αA, is based on the fund�s available history and the corresponding history
of the benchmarks. The posterior mean of αA, denoted by �αA, is based on the fund�s available history as
well as the returns from July 1963 through December 1998 on the benchmark and additional non-benchmark
indexes. The quantity σαN denotes the prior standard deviation of the intercept αN in a regression of
a non-benchmark return on the benchmark returns, and the table compares �αA under a given non-zero
σαN but different speciÞcations of the set of benchmark indexes. (The posterior means of the CAPM and
Fama-French alphas are identical under σαN = 0.) The prior for αA is diffuse.

Length of fundÕs return history (months)
Investment objective 13Ñ23 24Ñ35 36Ñ59 60Ñ119 120Ñ239 ≥ 240 All

A. Mispricing uncertainty for the non-benchmark assets (σαN ) equal to 2% per annum
Small-company growth 0.58 1.01 0.74 0.67 0.70 na 0.69
Other aggressive growth 0.69 0.43 0.74 0.60 0.69 na 0.67
Growth 0.43 0.38 0.41 0.41 0.40 0.35 0.40
Income 0.48 0.38 0.47 0.49 0.57 0.41 0.47
Growth and income 0.18 0.20 0.26 0.19 0.33 0.23 0.20
Maximum capital gains 0.64 0.35 0.43 0.66 0.46 0.37 0.45
Sector funds 0.96 0.85 1.36 0.93 1.11 na 0.98

All funds 0.42 0.41 0.47 0.43 0.40 0.32 0.42

B. No reliance on the model to price the non-benchmark assets (σαN =∞)
Small-company growth 1.69 2.72 2.11 1.89 2.02 na 2.03
Other aggressive growth 2.10 1.29 2.38 1.75 2.20 na 1.89
Growth 1.25 1.11 1.18 1.13 1.13 1.02 1.14
Income 1.31 1.07 1.29 1.27 1.52 1.17 1.27
Growth and income 0.53 0.63 0.74 0.54 0.89 0.61 0.59
Maximum capital gains 2.00 1.16 1.64 2.15 1.30 1.12 1.34
Sector funds 2.43 2.41 3.40 2.37 2.91 na 2.47

All funds 1.18 1.18 1.38 1.26 1.20 0.99 1.24

C. No use of non-benchmark assets (OLS estimates)
Small-company growth 11.21 11.33 7.98 4.72 3.96 na 8.07
Other aggressive growth 8.97 6.79 6.43 4.47 3.52 na 6.35
Growth 3.60 1.97 1.91 1.28 1.33 1.13 1.81
Income 1.80 1.43 1.30 1.44 1.62 0.93 1.44
Growth and income 1.79 1.73 1.54 1.01 0.85 0.68 1.25
Maximum capital gains 5.45 5.67 3.04 3.61 2.30 1.46 2.60
Sector funds 5.08 5.08 1.51 2.90 3.60 na 3.29

All funds 3.88 2.93 2.47 1.67 1.53 1.07 2.28
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Table 6

Comparison of Estimated Alphas With and Without the Pricing-Model
Restriction Applied to the Non-benchmark Assets

Each entry in the table is the median across funds of the absolute difference between posterior means
of a fund�s alpha, in percent per annum, under alternative prior beliefs about whether the pricing-model
restriction applies to the non-benchmark assets. Fund performance, denoted by αA, is deÞned as the intercept
in the regression of the fund�s excess return, rA,t, on either the market benchmark index, MKTt, (Panel
A) or that benchmark index plus the size and value benchmark indexes, SMBt and HMLt (Panel B). The
posterior mean of αA, denoted by �αA, is based on the fund�s available history as well as the returns from
July 1963 through December 1998 on the benchmarks and additional non-benchmark indexes. The quantity
σαN denotes the prior standard deviation of the intercept αN in a regression of a non-benchmark return on
the benchmark indexes, and the table compares �αA under σαN = 0 versus σαN = ∞. The prior for αA is
diffuse.

Length of fundÕs return history (months)
Investment objective 13Ñ23 24Ñ35 36Ñ59 60Ñ119 120Ñ239 ≥ 240 All

A. rA,t = αA + βAMKTt + ²A,t
Small-company growth 1.69 1.40 1.46 1.57 1.08 na 1.55
Other aggressive growth 0.72 0.67 0.88 0.82 0.92 na 0.77
Growth 0.78 0.75 0.85 0.84 0.91 0.83 0.83
Income 1.32 1.00 1.30 1.23 1.56 1.19 1.28
Growth and income 0.48 0.56 0.69 0.52 0.64 0.48 0.54
Maximum capital gains 0.85 0.93 1.36 1.35 1.45 0.95 1.07
Sector funds 3.31 2.94 6.22 3.61 4.78 na 4.31

All funds 0.90 0.89 1.01 1.00 0.99 0.80 0.94

B. rA,t = αA + bA,1MKTt + bA,2SMBt + bA,3HMLt + ηA,t
Small-company growth 1.58 2.05 1.39 1.62 1.76 na 1.62
Other aggressive growth 1.88 1.20 1.90 1.78 1.19 na 1.63
Growth 0.56 0.63 0.55 0.57 0.65 0.67 0.59
Income 0.33 0.40 0.51 0.41 0.84 0.67 0.40
Growth and income 0.34 0.37 0.41 0.36 0.46 0.36 0.37
Maximum capital gains 1.49 1.33 1.91 1.41 0.89 1.30 1.29
Sector funds 1.25 1.30 2.85 2.16 2.01 na 1.93

All funds 0.66 0.66 0.68 0.66 0.73 0.74 0.68

37



Table 7
Estimates of Sharpe Ratios for Equity Mutual Funds

Each value in the table is the median across the set of designated funds. A fund�s Sharpe ratio is denoted as
SA. The estimate �SA is based solely on the fund�s available history. The posterior mean of SA, denoted by
�SA, is based on the fund�s available history as well as the returns from July 1963 through December 1998 on
benchmark and non-benchmark passive indexes. All results are reported in annualized terms. The results
for the CAPM and the Fama-French model are reported for prior beliefs in which the pricing relations are
assumed to hold exactly. For the �No Model� results, prior beliefs in any pricing model are diffuse.

History length or CAPM Fama-French No Model

investment objective öSA ÷SA | öSA − ÷SA| ÷SA | öSA − ÷SA| ÷SA | öSA − ÷SA|
13Ñ23 months 0.59 0.26 0.39 0.29 0.37 0.30 0.37
24Ñ35 months 0.72 0.28 0.46 0.30 0.45 0.31 0.43
36Ñ59 months 0.82 0.29 0.56 0.31 0.52 0.32 0.52
60Ñ119 months 0.79 0.33 0.47 0.35 0.43 0.35 0.43
120Ñ239 months 0.61 0.38 0.23 0.39 0.20 0.39 0.21
240 months and greater 0.36 0.38 0.07 0.37 0.06 0.37 0.03

Small-company growth 0.51 0.29 0.23 0.27 0.25 0.36 0.17
Other aggressive growth 0.68 0.31 0.32 0.26 0.39 0.33 0.30
Growth 0.71 0.34 0.41 0.33 0.43 0.32 0.42
Income 0.87 0.26 0.61 0.41 0.48 0.36 0.53
Growth and income 0.91 0.34 0.58 0.42 0.51 0.36 0.58
Maximum capital gains 0.14 0.30 0.17 0.22 0.15 0.27 0.12
Sector funds 0.65 0.08 0.49 0.23 0.37 0.31 0.32

All funds 0.68 0.31 0.41 0.33 0.39 0.34 0.38
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Table 8
Relative Precision of Estimates of Sharpe Ratios for Equity Mutual Funds

The table reports statistics for the ratio of variances, var( �SA)/var( �SA). A fund�s Sharpe ratio is denoted as
SA. The estimate �SA is based solely on the fund�s available history. The posterior mean of SA, denoted by
�SA, is based on the fund�s available history as well as the returns from July 1963 through December 1998
on benchmark and non-benchmark passive indexes. The results for the CAPM and the Fama-French model
are reported for prior beliefs in which the pricing relations are assumed to hold exactly. For the �No Model�
results, prior beliefs in any pricing model are diffuse.

History length or CAPM Fama-French No Model
investment objective median % < 1 median % < 1 median % < 1

13Ñ23 months 0.16 100 0.18 100 0.16 100
24Ñ35 months 0.18 100 0.19 100 0.18 100
36Ñ59 months 0.20 100 0.22 100 0.21 100
60Ñ119 months 0.25 100 0.27 100 0.26 100
120Ñ239 months 0.42 100 0.44 100 0.44 100
240 months and greater 0.87 89 0.88 91 0.88 93

Small-company growth 0.19 100 0.21 100 0.21 100
Other aggressive growth 0.23 100 0.24 100 0.24 100
Growth 0.23 100 0.25 100 0.23 100
Income 0.22 100 0.24 100 0.22 100
Growth and income 0.19 98 0.21 98 0.19 99
Maximum capital gains 0.47 100 0.46 100 0.46 99
Sector funds 0.33 100 0.37 100 0.35 100

All funds 0.22 99 0.24 99 0.23 100
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Table 9
Comparison of Fund Rankings by Alternative Estimates of Sharpe Ratios

The table compares rankings for 1585 equity mutual funds with at least three years of return history. Each
entry in the table is the total number of funds satisfying the given ranking classiÞcations for both estimates.
A fund�s Sharpe ratio is denoted as SA. The estimate �SA is based solely on the fund�s available history. The
posterior mean of SA, denoted by �SA, is based on the fund�s available history as well as the returns from
July 1963 through December 1998 on benchmark and non-benchmark passive indexes. Prior beliefs in any
pricing model are diffuse.

Rankings Rankings using öSA
using ÷SA Top 10% Next 22.5% Next 35% Next 22.5% Bottom 10%
Top 10% 35 54 63 4 3
Next 22.5% 75 93 142 44 2
Next 35% 43 160 192 142 18
Next 22.5% 6 47 135 120 49
Bottom 10% 0 2 23 47 86
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