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Abstract

We present an econometric method for estimating the parameters of a di�usion
model from discretely sampled data. The estimator is transparent, adaptive,
and inherits the asymptotic properties of the generally unattainable maximum
likelihood estimator. We use this method to estimate a new continuous-time
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1 Introduction

Many theoretical models in economics and �nance are formulated in continuous time as a

di�usion or a system of di�usions, although the data these models describe can only be

sampled at discrete points in time.1 This popularity of di�usions creates a need for e�ective

econometric methods for estimating continuous-time models. In this paper, we present a

simulation-based estimator of the parameters of a di�usion or a system of di�usions from

discretely sampled data. The estimator is transparent, adaptive, and inherits the asymptotic

properties of the generally unattainable maximum likelihood estimator.

Theorists in various areas like the continuous-time di�usion setting because of the

tractability o�ered by Itô calculus. Furthermore, in �nancial models the continuous-time

setting also plays a conceptual role. Since Black and Scholes (1973) and Merton (1971), many

asset pricing models have assumed dynamic trading in continuous-time to allow markets to

be complete and hence derivative payo�s or consumption trajectories to be spanned, even

when there exists a continuum of states and only a few traded securities. Finally, di�usions

are attractive from a statistical perspective because they are fully characterized by their

instantaneous mean and variance. The continuous-time setting breaks the link between the

model and the sampling frequency of the data, which is particularly important for nonlinear

models that have di�erent distributional characteristics at di�erent sampling frequencies.2

As for any parametric model, maximum likelihood is the preferred method for estimating

the parameters of a di�usion. Unfortunately, exact maximum likelihood estimation is only

possible in a few special cases when the distribution of the discretely sampled data is known.3

In most cases, exact maximum likelihood estimation is impossible because the likelihood

function of the model cannot be evaluated explicitly, and the alternative of approximating

the likelihood function has until recently proven diÆcult.

We show how to estimate the parameters of virtually any di�usion model by simulated

maximum likelihood (SML). The SML method works as follows. We construct consistent

approximations to the transition densities of the di�usion and use these approximations to

evaluate the likelihood function. We then maximize this approximated likelihood function.

Since the approximations to the transition densities are consistent, so is the approximation

1We loosely refer to Itô stochastic di�erential equations as di�usions.
2As an example, consider a GARCH model [Bollerslev (1987)], which is a nonlinear process with Gaussian

transitions, speci�ed at a daily frequency. With daily data, maximum likelihood estimation of the model
is straightforward. With weekly data, in contrast, the transitions between observations are not Gaussian
anymore and maximum likelihood estimation is more complicated.

3The distribution of the discretely sampled data is known explicitly only for di�usions with linear mean
and constant or proportional variance [see, for example, Chen and Scott (1993) and Pearson and Sun (1994)].
It is known up to an inversion of the characteristic function for all aÆne jump-di�usions [Singleton (1999)].
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to the likelihood function. This implies that asymptotically the SML estimator behaves just

like the unattainable exact maximum likelihood estimator.

To approximate the transition densities, we apply an Euler discretization to the di�usion.

We split the time interval between any two consecutive observations into smaller intervals and

construct a high-frequency discrete time process with Gaussian transitions that converges to

the di�usion as the discretization becomes �ner. The transition densities of the discretization

between observations are convolutions of Gaussian densities and are still unknown in closed

form. Therefore, we use an intuitive and computationally eÆcient simulation scheme to

numerically evaluate the transition densities of the Euler discretization. Since both the

Euler discretization and our simulation scheme are consistent, so are also the resulting

approximations to the transition densities of the di�usion.

The SML method was originally developed by Santa-Clara (1995) in an earlier version

of this paper and independently by Pedersen (1995a,1995b). It has since been successfully

implemented by Honor�e (1997,1998), Piazzesi (2000), and Durham (2000) to estimate a

variety of continuous-time term structure models, including models with jumps and with

stochastic volatility. Elerian (1998) and Durham and Gallant (2000) develop extensions of

the basic SML method described in this paper (based on re�ned numerical techniques), to

further improve the performance of the estimator.

Several other approaches to approximating the likelihood function have been suggested

in the literature. Lo (1988) proposes numerically solving the forward Kolmogorov partial

di�erential equation (PDE), subject to the appropriate boundary conditions, to obtain the

unknown transition densities of the di�usion. To approximate the likelihood function, this

PDE must be solved for every data point, which is not only computationally demanding,

especially for multivariate di�usions, but also requires a certain level of expertise in

numerically solving PDEs.4 A��t-Sahalia (2000) suggests using analytical expansions, rather

than simulations, to approximate the transition densities. The advantage of analytical

expansions is that for the same level of accuracy, it is computationally less demanding

than simulations. The disadvantage is that, for the expansions to converge, the di�usion

must �rst be transformed to be suÆciently Gaussian. The need for this transformation

limits the transparency and adaptability of the method. Finally, Ogawa (1995), Hurn and

Lindsay (1999), and Nicolau (2000) apply nonparametric density estimation to simulated

data from the Euler discretizations to approximate the transition densities of the di�usion.

This approach su�ers from the usual problems with nonparametric density estimation: a

slower convergence rate (in the number of simulations) and the curse of dimensionality.5

4Lo's approach has been implemented by Mella-Barral and Perraudin (1993).
5The curse of dimensionality refers to the fact that as the number of variables increases, the convergence
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The SML approach relates also to the Markov chain Monte Carlo (MCMC) approach

described by Eraker (1998), Jones (2000a), and Elerian, Chib, and Shephard (2000). Aside

from the Bayesian interpretation, the MCMC method uses a di�erent simulation scheme to

evaluate the transition densities of the Euler discretization. Nevertheless, with suÆciently


at priors, the two methods lead to similar inferences.

The method of moments is the most popular alternative to maximum likelihood. This

approach includes estimators based on unconditional moments from an Euler discretization

[Chan, Karolyi, Longsta�, and Sanders (1992)], conditional moments from a binomial

discretization [He (1990)], simulated unconditional moments [DuÆe and Singleton (1993),

Gallant and Tauchen (1997)], intentionally misspeci�ed moments [Gouri�eroux, Monfort, and

Renault (1993)], moments generated from the in�nitesimal generator of the di�usion [DuÆe

and Glynn (1997), Hansen and Scheinkman (1995), Stanton (1997)], and moments that

match the unconditional density to an empirical density [A��t-Sahalia (1996a,1996b)]. Most

of these estimators are consistent and asymptotically normal. However, except for Gallant

and Tauchen's \eÆcient method of moments," which asymptotically emulates maximum

likelihood estimation, they are less eÆcient than maximum likelihood estimation.

We use the SML method to estimate a new continuous-time model of the joint dynamics

of interest rates in two countries and of the exchange rate between the two currencies. The

innovation of our model is that it allows for �nancial markets to be incomplete and speci�es

the degree of incompleteness as a stochastic process.

The setup of the model is as follows. Each country has its own instantaneous interest rate

process. The absence of arbitrage in currency markets determines the drift of the exchange

rate between the two currencies. Speci�cally, the drift consists of the usual interest rate

di�erential and a currency risk premium. We decompose this currency risk premium into a

premium that compensates investors for interest rate risk, which arises from the correlation

between the exchange rate and the domestic interest rate, and a premium that compensates

investors for currency risk orthogonal to interest rate risk. The magnitudes of both of these

premia depend on the volatility of the exchange rate. The volatility of the exchange rate,

however, can only be identi�ed through the no-arbitrage condition if the �nancial markets

are complete. If markets are incomplete, the volatility of the exchange rate may contain

an element that is orthogonal to the priced sources of risk in both countries. This element

contributes to what we term the \excess volatility" of exchange rates. To capture this excess

volatility, we specify a stochastic process for the degree of market incompleteness.

We estimate a parsimonious parameterization of the model. Like Cox, Ingersoll, and

rate of most nonparametric estimators to their asymptotic distribution deteriorates exponentially.
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Ross (CIR, 1985), we assume that the interest rates follow square-root processes and that

the market prices of interest rate risk are proportional to the square-root of the interest

rates, which allows us to estimates the market prices of interest rate risk from bond prices.

The market price of currency risk orthogonal to interest rate risk (or pure currency risk)

is assumed either to be constant, or to depend on the exchange rate, the interest rate

di�erential, and the volatility of the exchange rate. A novel aspect of our empirical approach

is that, in order to identify the degree of market incompleteness, we make the instantaneous

volatility of the exchange rate observable, rather than treat it as a latent state variable. In

particular, we use the implied volatility of an at-the-money option with only one-week to

maturity as a proxy for the instantaneous volatility of the exchange rate.

We present empirical results for the US dollar per British pound and US dollar per

Deutsche mark exchange rates. For both currencies we �nd that the interest rate risk

premium is negligible relative to the risk premium for currency risk orthogonal to interest

rate risk. We present evidence that the market prices of pure currency risk are time-varying

as a function of the exchange rate and, more importantly, the volatility of the exchange

rate. However, even with time-varying market prices of currency risk, a large fraction of the

exchange rate volatility is attributed to market incompleteness.

The structure of this paper is as follows. We describe the SML method in Section 2. In

Section 3, we present our theoretical model of exchanges rates in incomplete markets. The

empirical results are in Section 4 and we conclude in Section 5.

2 Simulated Likelihood Estimation of Di�usions

In this section, we develop the SML method for estimating the parameters of a multivariate

di�usion model. We formulate the generic inference problem, describe the estimator, provide

its asymptotic properties, and then discuss some practical considerations.6 The focus is on

the underlying intuition. Mathematic details and proofs are in Appendix A.

2.1 The Generic Inference Problem

Consider a K-dimensional continuous-time process Yt characterized by the following system

of stochastic di�erential equations:

dYt = �(Yt; t; �)dt+ �(Yt; t; �)dWt; (1)

6The SML method was �rst described by Santa-Clara (1995) in an earlier version of this paper and,
independently, by Pedersen (1995a,1995b).
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with initial value Y0 2 IRK. Wt denotes a vector of independent Brownian motions, de�ned

in a complete probability space f
;F ; Pg. The drift vector � : IRK � IR+ 7! IRK and the

di�usion matrix � : IRK � IR+ 7! IRK � IRK are functions of the vector Yt, time t, and an

L-dimensional parameter vector �, whose true value is �0.
7

The objective is to estimate the parameters �0, to ultimately draw inferences about the

dynamics of Yt. The following three assumptions make this a well-speci�ed problem:

Assumption 1: The drift � and di�usion � functions are in�nitely di�erentiable with

continuous and bounded derivatives of all orders.

This assumption is far stronger than the usual linear growth and uniform Lipschitz continuity

conditions that are suÆcient to guarantee the existence of a unique strong solution to the

system of stochastic di�erential equations (1) [Karatzas and Shreve (1988)].8 The extreme

degree of smoothness is suÆcient, but most likely not necessary, to bound the asymptotic

error of the density approximations introduced in Section 2.2.

Assumption 2: The covariance matrix ��0 is positive de�nite.

This assumption guarantees that both the di�usion model and its approximation below have

well-de�ned and smooth densities.

Assumption 3: Let �2��IRL, where � is a compact set that contains the true �0.

For practical reasons, the continuous-time process is sampled only at N+1 equally spaced

points in time, denoted t0; t1; : : : tN .
9 Notice that although we assume equal spacing of the

data for simplicity and ease of notation, our estimator extends trivially to unequally or even

randomly spaced observations. Indeed, this is one of the strengths of our method.

Let p(Yt0; Yt1 ; : : : YtN ; �) denote the joint density of the discrete-time data, generated

by the continuous-time di�usion model. As a function of the parameters �, this density

7Although, the setup we use to present the method does not allow for discrete jumps, the estimator does
generalize to jump-di�usion processes. See Piazzesi (2000) for details.

8This assumption generates an unpleasant gap between the di�usion models for which we can generically
establish consistency and the ones commonly used in economics and �nance. However, such gap between
abstract asymptotic theory and practice is not uncommon. For example, the popular class of aÆne di�usions
[DuÆe and Kan (1996)] does not generally satisfy the regularity conditions required for consistency of Euler
discretizations. Nevertheless, variants of the simulated method of moments [DuÆe and Singleton (1993)]
based on Euler discretizations are, according to simulation studies, quite e�ective for estimating these models.

9The sampling frequency often depends on the availability of data. However, sometimes it is better to
sample the data less frequently than possible to reduce the market microstructure contamination of the data.
See Alizadeh, Brandt, and Diebold (2000) for a discussion of this issue in the context of volatility estimation.
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represents the likelihood function:

LN(�) � p(Yt0 ; Yt1 ; : : : YtN ; �) = p(Yt0 ; t0; �)
N�1Y
n=0

p(Ytn+1; tn+1jYtn ; tn; �): (2)

The equality follows from the fact that Yt is Markovian. It shows that, in order to evaluate

the likelihood function, we require the initial unconditional density p(Yt0 ; t0; �) and the N

transition densities p(Ytn+1; tn+1jYtn ; tn; �), for n = 0; 1; : : :N � 1.

The parameter vector that maximizes the log likelihood function lnLN(�) is the maximum

likelihood estimator b�N of �0. In our setting, the following two assumptions guarantee that

the maximum likelihood estimator has the usual desirable asymptotic properties:10

Assumption 4: The likelihood function LN(�) is twice continuously di�erentiable in � in

a neighborhood of the true parameter vector �0. Furthermore, E
�
[@LN (�)=@�][@LN (�)=@�0]

�
has full rank and is bounded for all parameters � 2 �.

With this assumption the true parameters �0 are identi�ed through the likelihood function.

Assumption 5: For every vector � 2 IRK, �0IN (�)�!1, where:

IN(�) = E

�N�1X
n=0

@

@�
ln p(Ytn+1 ; tn+1jYtn; tn; �)

@

@�0
ln p(Ytn+1; tn+1jYtn ; tn; �)

�
: (3)

This assumption is required to establish that the maximum likelihood estimator b�N is

consistent. For it to hold, it is suÆcient that the gradients of the transition densities

are bounded. The matrix IN is the so-called Fisher information matrix. Its inverse gives

the Cram�er-Rao lower bound on the covariance matrix of any consistent estimator of the

parameter vector. The maximum likelihood estimator typically attains this lower bound.

The classic problem with maximum likelihood estimation of di�usion models is that in

most cases a closed form expression for the likelihood function does not exist. This is because

the functional forms of the unconditional density and of the transition densities implied by

the model are typically unknown. To overcome this problem, we construct an estimator

based on a sequence of consistent approximations to the likelihood function.

2.2 The SML Estimator

We use an eÆcient simulation scheme to construct consistent approximations of the transition

densities p(Ytn+1 ; tn+1jYtn; tn; �) and, if the di�usion is stationary, of the initial unconditional

10The maximum likelihood estimator is consistent, asymptotically eÆcient, and asymptotically normal.
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density p(Yt0 ; t0; �). We then use these approximations to evaluate the likelihood function.

The parameter vector that maximizes the resulting approximate log likelihood function is

the SML estimator. Although the asymptotic properties of the estimator depend on the

accuracy of the initial approximations, in the limit, as the approximations become exact,

they are identical to the properties of the exact maximum likelihood estimator.

2.2.1 Approximating the Transition Densities

To construct a consistent approximation of the transition density p(Ytn+1 ; tn+1jYtn; tn; �) for
two adjacent discrete time observations Ytn and Ytn+1, we �rst discretize the process Yt

between times tn and tn+1. There exists an in�nite number of discrete-time processes that

approximate the di�usion process in this interval. We choose the popular Euler discretization

scheme because it is both notationally and computationally convenient.11

Without loss of generality, we normalize the length of the interval [tn; tn+1] to one and

divide this interval into M subintervals of length h = 1=M . The Euler discretization of Yt

in [tn; tn+1], denoted bYtn+mh, for m = 0; 1; : : :M � 1, is a Gaussian process:

bYtn+(m+1)h = bYtn+mh + �
�bYtn+mh; tn +mh; �

�
h+ �

�bYtn+mh; tn +mh; �
�p

h �tn+(m+1)h; (4)

where �tn is a vector of independent standard normal random variates. The recursion starts at

the initial condition bYtn � Ytn. Kloeden and Platen (1992) show that, under our assumptions,

the Euler approximation converges weakly to the stochastic process Yt as M !1.

By assumption, the one-step ahead transition densities of the Euler discretization are

Gaussian. This means that the probability of bYtn+(m+1)h = y, conditional on bYtn+mh = x, is:

qM
�
y; tn + (m+ 1)h

��x; tn +mh; �
�
= �

�
y; x+ �

�
x; tn +mh; �

�
h; V

�
x; tn +mh; �

�
h
�
; (5)

where �(y; mean; variance) denotes a multivariate normal density and V = ��0. The

density qM is an approximation of p
�
y; tn + (m + 1)h

��x; tn +mh; �
�
. The accuracy of this

approximation depends on how much time h elapses between the points x and y. In the

limit, as h! 0, the approximation is exact.

The multi-step ahead transition densities of the Euler discretization are unknown in

closed form. However, they can be evaluated through recursive integration. In particular,

11Kloeden and Platen (1992) describe a number of higher-order discretization schemes that are more
eÆcient than the Euler scheme, such as the Milstein and Platen-Wagner schemes. The SML estimator
extends immediately to any discretization with closed-form transitions, including the Milstein scheme. See
Elerian (1998) and Durham and Gallant (2000) for details.
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the probability that bYtn+(m+j)h = y, conditional on bYtn+mh = x, for j = 2; 3; : : :M �m, is:

qM
�
y; tn + (m + j)h

��x; tn +mh; �
�
=Z

IR

qM
�
y; tn + (m+ j)h

��z; tn + (m + j � 1)h; �
�� (6)

qM
�
z; tn + (m + j � 1)h

��x; tn +mh; �
�
dz:

From equation (5), the �rst term in the integrand is a Gaussian density and is therefore

known in closed form. The second term is itself a multi-step ahead transition density that

can be computed from the recursion for j � 1.

With y = Ytn+1 , x = Ytn , and j = M �m, equations (5) and (6) then yield an intuitive

approximation of the continuous-time transition density p
�
Ytn+1; tn+1

��Ytn; tn; ��. For the

Euler discretization, the probability that bYtn+1 = Ytn+1, conditional on bYtn = Ytn , is:

qM
�
Ytn+1; tn+1

��Ytn; tn; �� =Z
IR

�
�
Yn+1; z + �

�
z; tn + (M � 1)h; �

�
h; V

�
z; tn + (M � 1)h; �

�
h
�
� (7)

qM
�
z; tn + (M � 1)h

��Yn; tn�dz:
Lemma 1 in Appendix A shows that as the accuracy of the Euler discretization increases, or

formally as M ! 1 and thereby h ! 0, the transition density of the Euler discretization

converges to the corresponding transition density of the continuous-time process.

The approximate transition density qM
�
Ytn+1; tn+1

��Ytn; tn; �� is still a convolution of M

Gaussian densities that involves solving M � 1 integrals. In general, these integrals cannot

be computed analytically and quadrature-based numerical integration techniques quickly

become computationally infeasible as M increases. This means that the Euler discretization

by itself is not suÆcient to facilitate maximum likelihood estimation.

The innovation of the SML method is to interpret the integral in equation (7) as an

expectation of the function � of a random variable z. The distribution of this variable z is

f(z) � qM(z; tn+(M � 1)hjYtn; tn). Although we cannot easily evaluate the expectation, we

can use the Euler discretization to generate a large number of independent random draws zs,

for s = 1; 2; : : : S, from the distribution f(z). Then, we approximate the expectation, and

ultimately the corresponding continuous-time transition density p, with a sample average of

the function � evaluated at these random draws of z.12

12This approximation can be viewed as Rao-Blackwellization. Suppose that we are interested in the
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In more detail, the method works as follows. Starting at time tn with bYtn = Ytn , we iterate

on the Euler recursion (4) exactlyM �1 times. This results in a single draw zs = bYtn+(M�1)h
of the discrete time process at time tn+(M �1)h from the distribution f(z). We repeat this

procedure S times, which yields the random sample fz1; z2; : : : zSg. Finally, we average the
function � over this random sample of z to approximate the expectation in equation (7).13

Figure 1 further illustrates the mechanics of the approximation. The solid line that

connects the two adjacent discrete-time observations Y0 and Y1 represents the unobserved

continuous-time sample path of a univariate di�usion. The four dashed lines represent

incomplete ten-step discretizations of this di�usion. Each discretization is generated by

starting the Euler recursion at bY0 = Y0 = 4:00 and iterating on it nine times. The end

points bY9=10 of these discretizations represent the random sample zs, for s = f1; 2; 3; 4g.
The approximation amounts to averaging the function � over the random draws of zs from

f(z). Graphically, we average the probabilities that the �nal step of the Euler discretization

connects the points zs and Y1 = 4:03 along the four dotted lines.

Formally, our approximation to the transition density qM of the Euler discretization is:

bqM;S

�
Ytn+1 ; tn+1

��Ytn ; tn; �� =
(8)

1

S

SX
s=1

�
�
Ytn+1; zs + �

�
zs; tn + (M � 1)h; �

�
h; V

�
zs; tn + (M � 1)h; �

�
h
�
;

where the zs, for s = 1; 2; : : : S, represent independent realizations of an M -step Euler

discretization after M � 1 iterations, bYtn+(M�1)h. Each discretization starts at bYtn = Ytn .

The Strong Law of Large Numbers guarantees that the approximation bqM;S converges

to the transition density qM of the Euler discretization as S ! 1. Since the transition

density of the Euler discretization converges to the transition density p of the continuous-time

process as M ! 1, the approximation bqM;S also converges to the transition density of the

continuous-time process as S !1 and M !1. Lemmas 2 and 3 in Appendix A formally

establish the consistency and asymptotic distribution of the approximation, respectively.

marginal distribution of a scalar summary statistic x (in our case the discrete-time transition probability)
of a multivariate random variable y (in our case the continuous sample path) with density p(y) and that the
conditional density p(xjy-x) is known in closed form (in our case Brownian increments), where y-x denotes
all elements of y except for x. The marginal distribution of x can then be obtained by averaging p(xjy-x)
over simulated y-x, or bp(x) = 1=S

PS

s=1 p(xjys-x).
13Footnote 11 states that the estimator extends to any discretization scheme with closed-form transitions.

The simulation approach described here shows that we actually only need the �nal step of the scheme to have
closed-form transitions. One could therefore attempt to capture the bene�ts of a higher-order discretization
scheme with unknown transitions, such as the Platen-Wagner scheme, by iterating on this scheme M� 1
times and using for the �nal transition the Euler or Milstein scheme.
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2.2.2 Approximating the Initial Unconditional Density

If the di�usions are stationary and ergodic, the unconditional density can also be evaluated

with simulations. Under the assumption of stationarity and ergodicity, the unconditional

density does not depend on time, or p(y; t0; �) = p(y; �) with p(y; �) = limt!1 p(y; tjx; 0; �).
This implies that we can start with any initial x and use the Euler discretization to simulate

a long continuous sample path of the di�usion. Then, we can approximate the unconditional

probability of y = Y0 from the simulated data using standard density estimation tools.

If the di�usions are non-stationary, we need to assume a deterministic Y0. Fortunately,

this assumption has a negligible e�ect on the likelihood function for suÆciently large samples.

In fact, even if the di�usions are stationary and ergodic, estimates that assume Y0 to be

deterministic are often almost identical to estimates that allow Y0 to be stochastic.

2.2.3 Maximum Likelihood Estimation

Given the above approximations of the transition densities and of the initial unconditional

density, we construct a consistent approximation of the likelihood function LN(�). We de�ne

the simulated maximum likelihood estimator b�N;M;S as the parameters that maximize:14

ln bLN;M;S(�) = ln bqM;S

�
Y0; t0; �

�
+

N�1X
n=0

ln bqM;S

�
Yn+1; tn+1

��Yn; tn; ��: (9)

Since the approximations of the unconditional density and of the transition densities converge

to their true counterparts, it follows that this approximate log likelihood function converges

to the true log likelihood function [Lemma 4]. Furthermore, convergence occurs for all

parameter values � 2 �, which means that the parameters that maximize the approximate

log likelihood function converge to the parameters that maximize the true log likelihood

function [Lemma 5]. Therefore, as long as the maximum likelihood estimator converges to

the true parameter vector �0, so does our simulated likelihood estimator [Lemma 6].

To numerically maximize the log likelihood function, we must evaluate it repeatedly for

di�erent parameter values. As we vary the parameters, we use the same random numbers �t

in the Euler discretization to generate the draws zs from f(z). This yields approximate

transition densities that are smooth functions of the parameters. As a result, the objective

function is continuous and twice di�erentiable in �. Not only does this help in the numerical

14Since the log likelihood function is constructed from approximations of the transition densities, rather
than from approximations of the log transition densities, the non-linearity of the log transformation induces
a bias of order 1=S in both the log likelihood function and the resulting SML estimator. Gouri�eroux and
Monfort (1993) suggest a �rst-order correction for this bias (in a slightly di�erent context).
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optimization, but it is also required for our proofs of the asymptotics.

2.3 Asymptotics

The asymptotics of the SML method are summarized in two theorems. The �rst theorem

establishes the consistency of the estimator. The second theorem presents its asymptotic

distribution. Proofs of the theorems and supporting lemmas are in Appendix A.

Theorem 1: Given Assumptions 1 through 5, as M !1 and S !1, with S1=2=M ! 0,

the estimator b�N;M;S converges to the maximum likelihood estimator b�N , which in turn

converges to the true parameter vector �0 as N !1.

This theorem summarizes Lemmas 1 through 6 in Appendix A. Lemmas 1 through 3 show

that the approximate transition densities converge to their true counterparts. Lemma 4

does the same for the approximate log likelihood function. Lemma 5 then shows that the

estimator converges to the maximum likelihood estimator, which according to Lemma 6, is

a consistent estimator of the true parameter vector.

To establish the asymptotic distribution, we require one more assumption:

Assumption 6: The gradient @p(Ytn+1 ; tn+1jYtn ; tn; �)=@� converges as N ! 1, or, if it

diverges, it does so at a rate slower than the rate of convergence of IN(�0)
�1=2 to zero.

A suÆcient condition for this so-called asymptotic negligibility assumption is that the

conditional densities p are strictly positive and that the derivatives @p=@� are bounded.

Lemma 7 in Appendix A and the consistency of our estimator from Theorem 1 imply:

Theorem 2: Given Assumptions 1 through 6, as N ! 1, M ! 1, and S ! 1, with

S1=2=M ! 0 and N=S1=4 ! 0, the asymptotic distribution of the estimator b�N;M;S is:

IN(�0)
1=2
�b�N;M;S � �0

� � N
�
0; 1

�
; (10)

where the information matrix IN (�) is de�ned in Assumption 5.

2.4 Some Practical Considerations

The quality of the estimator depends on three quantities: the sample size N , the number of

discretization stepsM , and the simulation size S. While the data determines the sample size,

the econometrician controls the other two parameters. Increasing M , S, or both, improves

the approximation of the transition densities and thus results in an estimator that behaves

11



more like the exact maximum likelihood estimator. However, at the same time, it increases

the computing time required to evaluate the approximate likelihood function.

Simulation studies by Honor�e (1997) and Durham and Gallant (2000) suggest that for

fairly persistent daily or weekly data an M of �ve to ten is suÆcient to capture the shape of

the transition densities for reasonably well-behaved univariate and multivariate di�usions.

Regarding the choice of S, our experience with the estimator suggests that even for a four

dimensional di�usion, 2500-5000 simulations are suÆcient. However, in practice, we always

perform a �nal round of optimizations, in which we double both S and M . The resulting

changes in the estimates and the objective function are typically negligible.

Variance reduction techniques are an e�ective way to enhance the quality of the

estimator for a given number of simulations. In practice, we always use the method of

antithetic variates, where for every zs generated by the sequence of Gaussian innovations

f�tn+(m+1)hgM�1m=0 , we also include the z
�
s generated by f��tn+(m+1)hgM�1m=0 .

15

As with any simulation-based econometric method, computational feasibility is an

important issue. Given modern computing power, SML estimation is practical. EÆciently

programmed (in Fortran or C), a single evaluation of the likelihood function and the gradient

(see below) for aK = 4 dimensional di�usion with L = 15 parameters, N = 500 observations,

M = 10 discretization steps, and S = 5000 simulations, takes less than three minutes on

a Pentium III 800 MHz personal computer. The whole simulated likelihood estimation

takes less than a day (with approximately 25 iterations per parameter).16 Furthermore, the

required computing time grows only linearly as we increase any of the quantities fK;N;M; Sg
to estimate a more elaborate model or to improve the precision of the estimator.

Optimizing the simulated log likelihood function is computationally feasible, even with

15 parameters, because both the gradient and the Hessian can be computed explicitly. In

particular, for the gradient we need the derivatives:

@bqS
@�

=
1

S

SX
s=1

@�

@�
+
@�

@zs

@zs
@�

: (11)

Given � = �
�
Yn+1; zs+�(zs; tn+(M�1)h; �)h; V (zs; tn+(M�1)h; �)h

�
, we can analytically

compute the derivatives @�=@� and @�=@zs. The term @zs=@�, which stands for a realization

15Kloeden and Platen (1992) discuss the use of antithetic variates and other variance reduction techniques.
16For the maximization we use NPSOL 5.0, which is a software package for eÆciently solving constrained

high-dimensional optimization problems. It employs a dense successive quadratic programming (SQP)
algorithm and is designed particularly for nonlinear problems whose functions and gradients are expensive
to evaluate. The algorithm is described in detail by Gill, Murray, Saunders, and Wright (1998) and the code
is distributed in Fortran with a Matlab interface by Stanford Business Software Inc.
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of @ bYtn+(M�1)h=@�, can be obtained recursively by di�erentiating the Euler discretization:

@ bYtn+(m+1)h

@�
=
@ bYtn+mh
@�

+"
��
�bYtn+mh; tn +mh; �

�
+ �Y

�bYtn+mh; tn +mh; �
�@ bYtn+mh

@�

#
h + (12)

"
��

�bYtn+mh; tn +mh; �
�
+ �Y

�bYtn+mh; tn +mh; �
�@ bYtn+mh

@�

# p
h �tn+(m+1)h;

where the subscripts denote the corresponding partial derivations. The recursion starts with

the initial condition @ bYtn=@� = 0. We can use the same reasoning to explicitly compute the

second derivatives for the Hessian.

3 Exchange Rate Dynamics in Incomplete Markets

In this section, we present a new model of the joint dynamics of interest rates in two countries

and of the exchange rate between the two currencies.17 Our model is both arbitrage-free and

consistent with equilibrium pricing in incomplete markets. The key insight of our model

is that when markets are incomplete the volatility of the exchange rate is not uniquely

determined by the domestic and foreign stochastic discount factors. Market incompleteness

causes the exchange rate to exhibit \excess volatility." We capture this excess volatility in

our model through a stochastic process for the degree of market incompleteness.

3.1 General Setup

Consider a world with two countries, a home country and a foreign country, each with its

own currency. Quantities denominated in the foreign currency are superscripted by ?.

We postulate the existence of a stochastic discount factor (SDF) in the home country that

prices all domestic assets. We denote this SDF by Mt and refer to it alternatively as the

pricing kernel or the state price density.18 The absence of arbitrage in �nancial markets

is equivalent to the existence of a strictly positive SDF. It also requires that the product

MtVt is a martingale, where Vt is the value process of any admissible self-�nancing trading

17The model is similar in spirit to the speci�cations of Nielsen and Sa�a-Requejo (1993), Sa�a-Requejo (1993),
Ahn (1995), Ahn and Gao (1999), Bansal (1997), and Backus, Foresi, and Telmer (1998).

18In an exchange economy, the SDF can be interpreted as the representative agent's nominal, intertemporal,
marginal rate of substitution of consumption. See DuÆe (1996) or Cochrane (2001) for details on SDFs.
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strategy. This implies the fundamental pricing equation:

Vt = Et

�
Ms

Mt

Vs

�
=

1

Mt

Et
�
Ms

�
Et
�
Vs
�
+

1

Mt

Covt
�
Ms; Vs

�
; (13)

where s>t is some future date. Intuitively, the ratio Ms=Mt discounts the future payo� Vs

at a rate that adjusts for the risk associated with the trading strategy.

When the �nancial markets are complete, meaning that the space of all payo�s is spanned

by trading strategies in the domestic assets, the SDF is unique. If market are incomplete,

however, there exists an in�nite number of SDFs that price all domestic assets.19

We assume the following joint dynamics of the domestic SDF:20

dMt

Mt

= �rtdt� �tdWt �  tdZt (14)

and of the domestic instantaneous interest rate:

drt = �tdt+ �tdWt; (15)

where �t,  t, �t, and �t are stochastic processes that satisfy the usual conditions for the

di�usions to be well de�ned [Karatzas and Shreve (1988)]. When markets are complete, the

SDF in equation (14) is unique. Otherwise, we assume it is the minimum-variance SDF.21

There are two sources of risk that are priced in the domestic economy, corresponding to

the Brownian motions Wt and Zt. Without loss of generality, we assume that these risks are

orthogonal. The instantaneous expected return of any trading strategy Vt is then:

Et

�
dVt
Vt

�
= rtdt� Covt

�
dVt
Vt
;
dMt

Mt

�
(16)

= rtdt+ �tCovt

�
dVt
Vt
; dWt

�
+  tCovt

�
dVt
Vt
; dZt

�
:

From this expression, we interpret �t and  t as the market prices of risk (or instantaneous

19If Mt prices Vt such that Vt=Et[(Ms=Mt)Vs], then M̂t=MtUt, where Ut is a martingale orthogonal to
Mt and Vt, also prices Vt because Et[(M̂s=M̂t)Vs]=Et[(Ms=Mt)Vs]Et[Us=Ut]=Et[(Ms=Mt)Vs]=Vt.

20The drift of the SDF guarantees that Mt prices a riskless bank account that grows at the instantaneous
interest rate rt. With continuous compounding, the value at time t of an initial deposit of B0 currency units
in an interest bearing account is Bt = B0 expf

R t
0
rsdsg: The absence of arbitrage requires that MtBt is a

martingale, or Et

�
d(MtBt)=(MtBt)

�
= 0, which requires that the drift of the SDF is Et

�
dMt=Mt

�
=�rtdt.

21The minimum-variance SDF plays a special role because in that case �2t+ 
2
t corresponds to the maximum

Sharpe ratio obtainable by trading in the assets priced by the SDFs [Hansen and Jagannathan (1991)].
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Sharpe ratio) associated with the Brownian motions Wt and Zt, respectively. They are the

instantaneous excess returns to the strategy Vt for covarying with the systematic risks in the

domestic economy. Since Wt governs the dynamics of the domestic interest rate, the process

�t represents the market price of interest rate risk. Analogously, we refer to the process  t

as the market price of risk that is orthogonal to interest rate risk.

Symmetric to the domestic economy, we postulate the existence of a foreign SDF that

prices all foreign assets and model either the unique or minimum-variance SDF (depending

on whether markets are complete) jointly with the foreign instantaneous interest rate as:

dM?
t

M?
t

= �r?t dt� �?tdW
?
t �  ?t dZ

?
t (17)

and

dr?t = �?tdt+ �?t dW
?
t ; (18)

where �t
?,  t

?, �t
?, and �t

? are again stochastic processes such that the di�usions are well

de�ned. We assume that the foreign Brownian motions Wt
? and Zt

? are correlated with the

domestic Brownian motions Wt and Zt, respectively, but are uncorrelated with each other.

We can then interpret �t
? as the market prices of foreign interest rate risk and  t

? as the

market price of all foreign risks that are orthogonal to interest rate risk.

We de�ne the exchange rate Et as the number of domestic currency units required to

purchase one unit of foreign currency. The dynamics of this exchange rate are:

dEt

Et
= �tdt+ vtdXt; (19)

where the drift �t, volatility vt, and Brownian motion Xt are to be determined endogenously.

For symmetry of the exchange rate from the domestic and foreign perspectives, we prefer

working with the log exchange rate. By Itô's lemma, the dynamics of et = lnEt are:

det =
�
�t � 1

2
vt

2
�
dt+ vtdXt; (20)

which di�ers from the dynamics of Et only by a Jensen's inequality drift correction.

The absence of arbitrage uniquely determines the drift �t of the exchange rate. Consider

the following trading strategy of a domestic investor: buy one unit of foreign currency, deposit

it with the foreign bank for one instant, and then convert the proceeds back into the home

currency. The pro�t from this strategy consists of \capital gains" from the appreciation
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or depreciation of the currency and \dividends" from the foreign interest. In units of the

domestic currency, the value of this strategy follows the process:

dEtBt
?

EtBt
? =

�
�t + rt

?
�
dt+ vtdXt: (21)

The absence of arbitrage across the two countries requires that MtEtBt
? is a martingale, or

that Et
�
d(MtEtBt

?)=(MtEtBt
?)
�
=0, which, in turn, implies that:

�t =
�
rt � r?t

�
+
�
�wx�t + �xz t

�
vt; (22)

where �wx and �xz denote the instantaneous correlations (covariances) between the Brownian

motions Wt and Xt and the Brownian motions Xt and Zt, respectively.

The �rst term in the drift of the exchange rate is the usual interest rate di�erential. The

second term is the currency risk premium. It is the excess return that domestic investors

require to deposit money in the foreign bank account. This currency risk premium is

made up of two components. The �rst component is �we�t � �t Covt[dEt=Et; dWt] and

compensates domestic investors for the covariance between the exchange rate and domestic

interest rate risk. The second component is �we t �  tCovt[dEt=Et; dZt] and compensates

for the covariance between the exchange rate and domestic risk orthogonal to interest rate

risk. We refer to this component as the risk premium for pure currency risk.

To determine the volatility vt of the exchange rate, we note that any foreign security with

price process Vt
? must be valued correctly by both the foreign and the domestic SDFs:

Et

�
M?

s

M?
t

Vs
?

�
= Et

�
Ms

Mt

Es

Et

Vs
?

�
: (23)

This equation is trivially satis�ed if the foreign SDF is de�ned as Mt
?=MtEt. Furthermore,

if markets are complete, this de�nition of the foreign SDF is unique, which implies that one

of the three quantities Mt, Mt
?, and Et is redundant and can be inferred from the other

two.22 Therefore, we can obtain an explicit expression for the exchange rate innovations

vt dXt by applying Itô's lemma to et = lnMt
?� lnMt.

The key insight of our model is that if markets are incomplete the exchange rate volatility

is not fully determined by the two minimum-variance SDFs. Depending on which set of

markets is incomplete, either or both SDFs that satisfy M̂t
?= M̂tEt can contain additional

sources of unpriced uncertainty (recall footnote 19), such that M̂t=MtUt and M̂t
?=Mt

?Ut
?,

where Ut and Ut
? are martingales that are orthogonal to the minimum-variance SDFs, all

22This redundancy is explained carefully by Backus, Foresi, and Telmer (1998).
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domestic and foreign security price processes, and each other. To maintain the symmetry of

our model, we therefore assume, without further loss of generality, the following relationship

between the exchange rate and the two minimum-variance SDFs:

Et =
M?

t

Mt

Ot; (24)

where Ot is a martingale that is orthogonal to Mt, M
?
t , and all domestic and foreign assets.

It is easy to verify that with this exchange rate both SDFs assign the same value to any

foreign security price process Vt
?. This means that although markets are incomplete, the law

of one prices holds across the two countries.

In our di�usion framework, we let:

dOt

Ot
= �tdUt; (25)

where the Brownian motion Ut is uncorrelated with the Brownian motions Wt, Wt
?, Zt and

Zt
?. By Itô's lemma, the dynamics of the log exchange rate are then:23

det =
h�
rt � rt

?
�
+
1

2

�
�t

2 � �t
?2
�
+
1

2

�
 t

2 �  t
?2
�� 1

2
�t
2
i
dt

(26)

+�tdWt � �t
?dWt

? +  tdZt �  t
?dZt

? + �tdUt;

which we can rewrite in the form of equation (20) as:

det =
h�
rt � r?t

�
+
�
�wx�t + �zx t

�
vt � 1

2
v2t

i
dt+ vtdXt: (27)

with

vtdXt = �tdWt � �?tdW
?
t +  tdZt �  ?t dZ

?
t + �tdUt (28)

and

v2t =
�
�t

2 + �t
?2 � 2�ww?�t�t

?
�
+
�
 t

2 +  t
?2 � 2�zz? t t

?
�
+ �t

2; (29)

where from equation (28) we have �wx = (�t � �ww?�t
?)=vt and �xz = ( t � �zz? t

?)=vt.

Equation (29) makes more precise the e�ect of market incompleteness. With incomplete

markets, the variance of the exchange rate is in
ated by an amount �t
2 relative to the variance

23Equation (26) illustrates nicely the symmetry of our model. This symmetry is not as transparent in the
mathematically equivalent formulation (20) because of the convoluted functional forms of �wx, �zx, and vt.
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with complete markets.24 The degree of \excess volatility" of the exchange rate depends on

the amount of uncertainty due to market incompleteness. We therefore interpret �t, which

determines the volatility of Ot, as a measure of both the degree of market incompleteness

and the degree of excess volatility of the exchange rate.

The �nal building block of our model is the following stochastic process for the degree of

market incompleteness:

d�t
2 = �tdt + �tdYt (30)

where �t and �t are stochastic processes such that the di�usion is well de�ned, and the

Brownian motion Yt may be correlated with the other Brownian motions in the model.

Assuming that the market prices of risk �t, �t
?,  t, and  t

? depend only on the variables

rt, rt
?, et, and �t, equation (29) de�nes the exchange rate volatility as a function of the same

variables. We can then use Itô's lemma to obtain the dynamics of vt in the form:

dvt
2 = �(rt; rt

?; et; vt)dt+ �w(rt; rt
?; et; vt)dWt + �w?(rt; rt

?; et; vt)dWt
?

(31)
+�x(rt; rt

?; et; vt)dXt + �y(rt; rt
?; et; vt)dYt;

where we use equation (29) again to replace �t with rt, rt
?, et, and vt.

In summary, our model speci�es the dynamics of four quantities: the domestic and foreign

interest rates [equations (15) and (18)], the log exchange rate [equations (26) and (29)], and

the degree of market incompleteness [equation (30)] or equivalently the volatility of the log

exchange rate [equation (31)]. These four quantities are governed by four Brownian motions

with the following correlation structure:

Corrt

266664
dWt

dWt
?

dXt

dYt

377775 =

266664
1

�ww? 1
�t � �ww?�t

?

vt
�ww?�t � �t

?

vt 1

�wy �w?y �xy 1

377775 : (32)

3.2 Parsimonious Parameterization

We need to parameterize the model to make it suitable for estimation. As usual, our objective

in choosing a parameterization is two-fold. We want a model that is parsimonious and, at

24Notice that market incompleteness does not e�ect the drift of the exchange rate and only enters the
drift of the log exchange rate through the Jensen's inequality correction. Therefore, whether markets are
complete is irrelevant for studying issues that involve only the drift, such as the \forward premium puzzle".
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the same time, 
exible enough to capture the stylized features of the data.

Motivated by an extensive literature on the term structure of interest rates, we assume

that the domestic and foreign interest rates follow correlated square-root processes:25

drt = �
�
� � rt

�
dt+ �

p
rt dWt

(33)
drt

? = �?
�
�?� rt

?
�
dt+ �?

p
rt? dWt

?

The two interest rates are mean reverting to their unconditional means � and �? with mean

reversion speeds � and �? and conditional volatilities �
p
rt and �

?
p
rt?, respectively.

Like Cox, Ingersoll, and Ross (CIR, 1985), we assume that the market prices of interest

rate risk are proportional to the square-root of the respective interest rate:

�t = �
p
rt and �t

? = �?
p
rt?: (34)

With this assumption, we can price domestic and foreign zero-coupon bonds in closed form,

which we use to identify the parameters � and �? (see Section 4.2).

The theoretical literature o�ers little guidance on parameterizing the market prices of

currency risk orthogonal to interest rate risk. We explore speci�cations with constant market

prices  t =  and  t
? =  ?, as well as with time-varying market prices:

 t =  0 +  1

�
rt� rt

?
�
+  2et +  3vt and  t

? =  0
? +  1

?
�
rt� rt

?
�
+  2

?et +  3
?vt: (35)

We specify the following square-root process for the market incompleteness measure �t
2:

d�t
2 =

�� 2��t
2 + �2

�
dt+ 2�

���t��dYt; (36)

where the drift and volatility speci�cations are motivated (via Itô's lemma) by an Orstein-

Uhlenbeck process for �t that mean-reverts to zero (which represents market completeness)

with a mean-reversion speed of � and a conditional volatility of �.

Even with this parsimonious parameterization, the implied volatility dynamics (31) are

quite involved and the detailed derivation is therefore left to Appendix B. Although it is

25Chan, Karolyi, Longsta�, and Sanders (1992) argue that the interst rate volatility is parameterized
better by a constant elasticity of variance (CEV) model with a coeÆcient of approximately 1.5, instead of
0.5 as implied by the square-root process. However, Bliss and Smith (1998) show that the evidence against
the square-root volatility is driven by a structural shift in the interest rate process during the high-in
ation
period of October 1979 through September 1982. The data we use for our empirical work starts in 1990.
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not immediately apparent from the expressions for the drift and the di�usion functions,

simulation experiments with a broad range of parameter values reveal that the resulting

volatility process is strictly positive and mean-reverting.

4 Empirical Results

We estimate the above parameterization of our model using the SML method and data for

the US as the home country and the UK or Germany as the foreign country.

4.1 Data

4.1.1 Interest and Exchange Rates

We collect weekly observations of one-week Euro-currency interest rates as proxies for the

instantaneous interest rates r in the US and r?UK in the UK or r?DM in Germany. We use

one-week interest rates, instead of overnight rates, because of the market micro-structure

anomalies documented in the overnight market [Hamilton (1996)]. In addition to the one-

week interest rates, we also collect weekly observations of one-year Euro-currency yields y,

y?UK , and y
?
DM , as well as the spot dollar-per-pound and dollar-per-mark exchange rates EUK

and EDM , respectively. The interest and exchange rates are sampled every Tuesday from

January 1990 through May 2000 (544 observations). The Euro-currency rates are taken

from the Financial Times and the exchange rates are obtained from Morgan Stanley Capital

International (MSCI), both provided by the Datastream database.

4.1.2 Volatility of the Exchange Rate

Traditionally, the empirical literature on stochastic volatility treats the volatility as a latent

state variable. We explore an alternative approach. We use the implied volatility of an

at-the-money option on the spot exchange rates with one week to maturity as a proxy for

the instantaneous volatility of the exchange rates. This is analogous to using the one-week

interest rate as proxy for the instantaneous interest rate.

The results of Ledoit and Santa-Clara (1998) formally justify this approach. They

show that in a stochastic volatility model, the Black-Scholes implied volatility of an at-

the-money option converges to the instantaneous volatility of the underlying asset as the

option approaches expiration. Intuitively, one instant before the option expires, the e�ect

of stochastic volatility on the option price is negligible. In that case, the Black-Scholes

formula prices the option correctly and, as a result, its implied volatility corresponds to
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the instantaneous volatility of the underlying asset.26 Since we cannot observe the implied

volatility of an option one instant before it expires, we use the implied volatility of an at-

the-money option with one week to expiration as a proxy for the instantaneous volatility.

We merge the weekly interest and exchange rates with over-the-counter (OTC) quotes

of one-week at-the-money dollar-per-pound and dollar-per-mark exchange rate options. The

data is provided by a major money-center banks that actively makes a market in OTC

currency options. It comes in the form of Garman-Kohlhagen implied volatilities.27 Relative

to their exchange traded counterparts, OTC currency options are very liquid, especially when

they are short-dated and at-the-money. Furthermore, OTC options are well-suited for our

purpose because they are quoted for a �xed set of times-to-maturities and moneyness, as

opposed to a �xed set of maturity dates and strike prices. This means that we always observe

an at-the-money option with exactly one week to maturity. Finally, since OTC options are

quoted as implied volatilities, rather than prices, the e�ect of non-synchronicities between

the exchange rates, interest rates, and option quotes is minimal.28

4.1.3 Descriptive Statistics

Tables 1 and 2 and Figure 2 describe the data. Table 1 presents in Panel A summary statistics

for the interest rates r, r?UK, and r
?
DM , for the yields y, y?UK, and y

?
DM , for the interest rate

di�erential r�r?UK and r�r?DM , for the log exchange rates eUK and eDM , and for the implied

volatilities vUK and vDM of the exchange rates. It describes in Panel B the weekly di�erences

�r, �r?UK, �r
?
DM , �eUK , �eDM , �vUK , and �vDM . Table 2 shows selected cross-correlations

of the data. Panel A of Figure 2 plots as solid lines the log exchange rates and as dashed

lines the corresponding volatilities of the exchange rates. Panel B plots as solid and dashed

lines the domestic and foreign interest rates, respectively.

Toward the end of 1992 the dollar-per-pound exchange rate, in Panel A of Figure 2,

experienced a dramatic drop. At the time, the British pound faced a severe currency crisis

that resulted in it leaving the Exchange Rate Mechanism (ERM) of the European Monetary

System (EMS). On Tuesday, September 15, 1992, the Bank of England intervened by buying

more than 15 billion pounds and raising interest rates twice, from about ten percent to 12

percent, and ultimately to 15 percent. However, the intervention was in vain and on the

next day, \Black Wednesday," the exchange rate was allowed to move freely.

26Ledoit and Santa-Clara's result is not as trivial as this intuitive argument suggests. They prove that
only the implied volatility of an at-the-money option converges to the instantaneous volatility. The limit of
the implied volatilities of out-of- or in-the-money options is indeterminate.

27Garman and Kohlhagen (1983) modify the Black and Scholes (1973) formula to price currency options.
28For further details on the OTC currency options market, see Campa, Chang, and Reider (1998).
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Since the Financial Times samples the exchange and Euro-currency interest rates in the

morning, we do not observe the extreme swings in rates that occurred on September 15, 1992.

Nevertheless, there are still unusually large swings in the exchange and interest rate series

surrounding this period. From September 9 through October 27, the price of the British

pound fell from two dollars to 1.5 dollars, the volatility of the exchange rate increased from

15 percent to 22 percent, while the UK interest rate was approximately ten percent. By

December 15, the exchange rate was still around 1.5 dollars per pound, but its volatility had

returned to 15 percent and the interest rate had declined to 7.1 percent.

It is diÆcult to judge the impact of the ERM crisis on the estimation results for the

British pound. However, it is reassuring that this time period was not that unusual. Panel

A of Figure 2 shows other periods during which the data series experienced sizable shocks.

Unfortunately, the limited availability of OTC options data does not allow us to further

explore whether September 1992 represents a structural break in the data.

Finally, notice that the annualized standard deviation of �e of 10.1 percent for the UK

or 10.6 percent for Germany virtually matches the average implied volatility of 10.3 or 10.7

percent, respectively. Therefore, the one-week implied volatility is (at least on average) a

good proxy for the instantaneous volatility of the exchange rate.

4.2 Identifying the Market Prices of Risk

Market prices of risk are notoriously diÆcult to estimate and, to make matters worse, they

are not well identi�ed in our model. In particular, the market prices of interest rate risk �t

and �t
? appear in the drift of the log exchange rate as �we�t = �2 rt��ww? ��?

p
rtrt? and in

the variance as �we�t + �w?e�t
? = �2 rt + �?2 rt

?� 2 �ww? ��
?
p
rtrt?. Since both interest rates

are highly persistent (see Table 1), the two terms �we�t and �we�t + �w?e �t
? are virtually

constant and estimating � and �? from the exchange rate dynamics alone is diÆcult.

This problem is even worse for the market prices of currency risk orthogonal to interest

rate risk,  t and  t
?, which appear in the drift of the exchange rate as �ze t =  t

2��zz? t t?
and in the variance as �ze t+�z?e t

?=  t
2+ t

?2� 2 �zz? t t
?. Since �zz? is a coeÆcient that,

in contrast to �ww?, cannot be directly estimated from observables, it follows that when  t

and  t
? are constant, we have two equation in three unknowns. In that case, we can only

identify �ze and �z?e 
? from the exchange rate dynamics. When  t and  t

? are time-varying

as a function of observables, we can separately identify the coeÆcients of the two functions,

but, depending on the persistence of  t and  t
?, the estimation may then be subject to the

same problems as that of the market prices of interest rate risk.29

29Suppose  t= 0+ 1xt and  t
?= 0

?+ 1
?xt, for some regressor xt. Then, �ze t=a0+a1xt+a2xt

2 and
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Finally, market incompleteness makes the estimation of the market prices of risk even

more diÆcult because it introduces the excess variance term �t
2 into the variance of the

log exchange rate in equation (29). The problem is that subtracting a constant from either

�we�t + �w?e�t
? or �ze t + �z?e t

? and adding this constant to �t
2 results in the same variance

of the exchange rate. In principle, the dynamics of �t
2 in equation (36) resolve this problem.

Although the variance of the exchange rate is the same, the log likelihood function of the

whole model is not because �t is assumed to mean-revert to zero (with constant volatility).

In practice, however, market incompleteness clearly adds to the identi�cation problem.

We therefore take another route to estimate the market prices of risk. In particular, we

estimate the market price of interest rate risk from the domestic and foreign term structures

of default-free zero-coupon bonds. We use CIR's bond pricing formula, the parameters of

the interest rate processes, and the interest rates to solve in every iteration of the SML

estimation for the coeÆcient � and �? that best price, in a least-squares sense, the domestic

and foreign one-year bonds (with yields yUS and y?UK or y?DM).
30 We then evaluate the

likelihood function conditional on these values of � and �?.

When the market prices of currency risk orthogonal to interest rate risk are constant, in

which case we can only identify the products �ze  and �z?e 
?, we estimate �ze by SML but

choose �z?e 
? in every iteration of the SML estimation to minimize, in a least square sense, the

degree of market incompleteness. More speci�cally, in every iteration of the SML estimation

we choose �z?e 
? to minimize

PT
t=1 �t

2, where �t
2= v2t�(�t2+�t?2�2�ww?�t�t?

��(�ze +�z?e ?)
from equation (29), subject to the constraint that �t

2 � 0 for all dates t. The intuition of

this estimation scheme is that �ze is identi�ed by the drift of the exchange rate while �z?e 
?

is diÆcult to tell apart from �t
2. By choosing �z?e 

? to minimize the sum of �t
2, we impose

a prior of sorts that markets are complete. When the market prices of risk are time-varying

as a function of two or more observables, we we can identify the parameters of  t and of

the product �zz? t
? from the drift of the exchange rate (by expanding �ze t as a polynomial

of the observables as in footnote 29). In that case, we only estimate the correlation �zz? by

minimizing the degree of market incompleteness or excess volatility.

To compute joint standard errors of the parameters estimated by SML and the market

prices of risk estimated by least-squares, we stack the �rst-order conditions of the SML

�ze t+�z?e t
? = b0+b1xt+b2xt

2, where we can use the six reduced-form coeÆcients: a0 = 0��zz? 0 0?,
a1= 1��zz? 0 1?��zz? 1 0?, a2=��zz? 1 1?, b0=a0+ 0?��zz? 0 0?, b1=a1+ 1?��zz? 0 1?��zz? 1 0?,
and b2=a2 � �zz? 1 1

? to solve for the �ve structural coeÆcients  0,  1,  0
?,  1

?, and �zz?.
30For each country, we solve min�

PT
t=1[yt�y(rt; �;�; �; �)]2, where y(rt; �;�; �; �) denotes the theoretical

one-year yield as a function of rt and �, conditional on the parameters �, �, and � of the interest rate process.
If we assume that the one-year bond yield is observed with normally distributed measurement error, this
least-squares step can be interpreted as conditional (on the other parameters) ML estimation of �.
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estimation (the scores) and the �rst-order conditions of the least-squares estimation into a

single vector of moments. We then compute standard GMM [Hansen (1982) and Hansen

and Singleton (1982)] standard errors for the parameter estimates, using the autocorrelation

and heteroskedasticity adjusted covariance matrix estimator of Andrews (1991).

4.3 Estimation Results

Table 3 presents SML estimates of our model with constant market prices of currency risk

orthogonal to interest rate risk  and  ?.31 We use M = 10 Euler discretization steps and

S = 5000 simulations (plus 5000 antithetic variates) to approximate the likelihood function.

The likelihood maximization is performed using the NPSOL optimizer (see footnote 16).32

4.3.1 Interest Rate Dynamics and Market Prices of Interest Rate Risk

Our estimates of the square-root interest rate dynamics are in line with the results of Chen

and Scott (1993), Gibbons and Ramaswamy (1993), Pearson and Sun (1994), and Geyer and

Pichler (1995). The long-run means of the US, UK, and German rates are 5.3 (or 5.8), 7.4,

and 6.4 percent, respectively. The US interest rates appear to mean-revert faster than the

German rates but slower than the UK rates. The half-life of a shock to r?US is about 2.5 years,

compared to more than 7.5 years for r?DM and less than 1.5 years for r?UK . The UK rates

are signi�cantly more volatile than the US and German rates, with an annualized volatility

of 1.2 to 2.2 percent, compared to 0.5 to 0.9 percent and 0.7 to 1.3 percent, respectively.

Finally, the US and UK interest rates are fairly independent, with a correlation of only 0.06,

while the US and German rates covary more, with a correlation of 0.21.

The linear drift and square-root volatility functions are admittedly simplistic.33 However,

estimating more elaborate interest rate dynamics is diÆcult because short-term interest rates

are highly persistent (see Table 1). It requires samples much larger than ours to precisely

estimate nonlinearities in the drift and volatility of interest rates. As a result, we only explore

the square-root dynamics for the interest rates.

31All parameters estimates in this section are subject to the constraint "2t � 0 for all t, which we impose
numerically by assigning a likelihood of zero to parameters values that violate the constraint.

32We treat the initial observation as deterministic. However, we checked in lower-dimensional applications
that the conditional (on the �rst observation) estimates are not very di�erent from the unconditional ones.

33A��t-Sahalia (1996b), Conley, Hansen, Luttmer, and Scheinkman (1997), and Stanton (1997) document
non-linearities in the drift of US interest rates. However, Pritsker (1998), Chapman and Pearson (2000) and
Jones (2000b) argue that these results are due to the poor small sample properties of the estimators. There
is also disagreement about the correct di�usion function. Nowman (1997) cannot reject that the volatility
of UK interbank rates is independent of the level, while Ball and Torous (1999) present estimates that favor
a square-root speci�cation for four Euro-currency rates, UK interbank rates, and US Treasury bill rates.
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The advantage of the square-root dynamics is that we can use CIR's bond pricing formula

to estimate the market prices of interest rate risk �t=�
p
rt and �t

? = �?
p
rt? from the cross-

sections of domestic and foreign bond yields (see Section 4.2). Our estimates imply an

average market price of interest rate risk of �3:1 (or �2:8) percent in the US, �0:9 percent
in Germany, and +0:8 percent in the UK. The relatively small magnitude of these market

prices of risk re
ects the fact that in our sample the average yield curve was virtually 
at in

the US and in Germany and was even slightly inverted in the UK (see Table 1).34

4.3.2 Exchange Rate Dynamics and Currency Risk Premium

Constant Market Prices of Currency Risk

The dynamics of the exchange rate are fully characterized by the instantaneous drift and

volatility. The volatility vt is observed while the drift �t consists of three terms: the interest

rate di�erential rt� r?t , the interest rate risk premium �we�t = �t
2��ww?�t�t?, and the risk

premium for currency risk orthogonal to interest rate risk �ze t =  t
2��zz? t t?. Since the

interest rate di�erential is observed and the interest rate risk premium is determined by the

domestic and foreign market prices of interest rate risk, which in turn depend on the interest

rate dynamics and the observed cross-sections of bond yields, the only free parameter in the

exchange rate dynamics is the pure currency risk premium.35 With constant market prices of

pure currency risk, our estimates of the currency risk premium are an annualized 2.4 percent

for the British pound and minus one percent for the Deutsche mark.

To make sense of these risk premia estimates, we can approximate (in discrete-time) the

unconditional pure currency risk premium as E[�et]�E[rt�rt?]�E[�t2��ww?�t�t?]+E[0:5 v2t ].
Plugging in the sample moments from Table 1 and our estimates of the market prices of

interest rate risk and of the correlation between the domestic and foreign interest rates, this

approximation implies a pure currency risk premium of �0:007+0:025�0:001+0:006=0:023

for the British pound and of �0:019+0:003�0:001+0:006=�0:011 for the Deutsche mark.

These approximations are within a few basis points of the corresponding SML estimates.

The implications of the estimates for currency investments depend on the nationality of

the investor.36 From the perspective of a US investor, the British pound o�ers a positive

34To make sense of the magnitude of the market price of interest rate risk, we can in a one-factor model
interpret ��t=��prt as the instantaneous Sharpe ratio of default-free bonds [see equation (16)].

35The currency risk premium is not literally \free" because there must exist parameters f ;  ?; �zz?g that
generate  2��zz?  ? and satisfy vt2�(�t

2+�t
?2�2 �ww?�t�t

?)+( 2+ ?2�2�zz?  ?) for all t. This constraint
can be binding, since the correlation �zz? must take on a value in [�1; 1], but empirically it is slack.

36Currency investments are typically carried out with currency forward contracts, by buying the foreign
currency forward and selling it in the spot market at maturity of the forward contract. In our model, the
instantaneous log (dollars per foreign currency) forward price is ft=et+ (rt� rt

?) dt, and the log return on
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risk premium (interest rate risk and pure currency risk) and the Deutsche mark demands a

negative premium throughout the whole the sample. For both exchange rates, the magnitude

of the risk premium is the same as that of the pure currency risk premium �ze because the

interest rate risk premium �we�t is economically negligible (less than 0.1 percent).

There are three hypotheses commonly considered for the currency risk premium. The

�rst hypothesis is that the risk premium is zero, which is typically phrased as uncovered

interest rate parity or unbiasedness of the forward exchange rate as a predictor of the future

spot exchange rate. The second hypothesis is that the premium cancels out the interest

rate di�erential, causing the spot exchange rate to be a martingale. The third hypothesis

is that the risk premium is time-varying in a way that does not cancel out the interest rate

di�erential.37 In our model, uncovered interest rate parity requires that �we�t=�ze t. The

estimates suggest otherwise, but the standard errors are so large, especially for the pure

currency risk premium, that we cannot reject this hypothesis with a likelihood ratio test.

For the British pound, the estimates are unconditionally consistent with the martingale

hypothesis, since �ze 'E[rr
?�rt] and �we�t is negligible, but for the Deutsche mark the risk

premium and average interest rate di�erential share the same sign. To address the third

hypothesis, we need to allow the market prices of currency risk to be time-varying.

Time-Varying Market Prices of Currency Risk

Table 4 presents estimates of three di�erent speci�cations (denoted models A, B, and C) of

the market prices of pure currency risk  t and  t
?. Model A is the constant market prices of

risk case from Table 3, where we can only identify the terms  2��zz?  ? and  ?2��zz?  ?.
In model B, the market prices depend linearly on the interest rate di�erential rt�rt? and the

log exchange rate et.
38 In model C, the market prices depend also on the volatility of the

exchange rate vt.
39 For each model, the table shows only estimates of the coeÆcients entering

the currency risk premium. The corresponding estimates of the other 14 parameters of the

model are not shown to save space, but they are very similar to the estimates in Table 3.

this (zero investment) trading strategy is et+dt � ft =
�
�we�t + �ze t � 1

2
vt
2
�
dt+ vtdXt.

37Baillie and Bollerslev (1989,1990), Diebold (1988), Diebold and Nason (1990), andWester�eld (1977) �nd
that exchange rate changes are virtually unpredictable, which supports the second hypothesis. Domowitz
and Hakkio (1985), Fama (1984), Hansen and Hodrick (1980), Hodrick and Srivastava (1984,1986), and
Hsieh (1984) �nd that exchange rates tend to vary in the opposite direction of the interest rate di�erential,
which is evidence in favor of the third hypothesis and is referred to as the \forward premium puzzle". In the
recent literature, only Roll and Yan (1998) �nd support for the uncovered interest rate parity hypothesis.

38We only consider cases in which the market prices depend on two or more variables because otherwise
we cannot identify all parameters of  t and �zz? t

? from the drift of the log exchange rate (see Section 4.2).
39We treat models B and C separately in order to measure (in Section 4.3.3) the role the volatility plays

in reducing the degree of market incompleteness. From equation (29) it is clear that if the market prices of
currency risk depend on the exchange rate volatility, the �2t can in principle be reduced signi�cantly.
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Finally, the table also describes the implied currency risk premium  t
2��zz? t t? and excess

volatility j"tj.
From model B, there is some evidence (at the ten-percent level) that both market prices

of currency risk depend on the log exchange rate. The point estimates are such that for

both currencies the risk premium  t
2��zz? t t? is positive throughout the whole sample and

increases monotonically in the log exchange rate. For the British pound, the risk premium

ranges from zero to 1.4 percent per year, with an average of 36 basis points. For the Deutsche

mark, it ranges from zero to 65 basis points per year, with an average of 17 basis points.

Model C enhances the time-variation of the market prices of currency risk (and indirectly

of the currency risk premium), both in terms of economic and statistical signi�cance. The

coeÆcients  3 and  3
? on the exchange rate volatility vt are signi�cant at the �ve-percent

level for the British pound and at the ten-percent level for the Deutsche mark.

In the case of the British pound, the estimates imply an annualized currency risk premium

that ranges from�4:1 to 2.9 percent, with an average of 32 basis points. Holding the volatility
constant, the risk premium increases monotonically in the log exchange rate, and holding

the log exchange rate constant, the risk premium decreases monotonically in the volatility

of the exchange rate. Since for the British pound et and vt are positively correlated in our

sample (see Table 2), these marginal e�ects tend to partially o�set each other. In the case

of the Deutsche mark, the implied currency risk premium ranges from �56 basis point to

1.3 percent, with an average of 22 basis points. Most of this time-variation is still due to

the positive relationship between the risk premium and the log exchange rate, and not due

to the exchange rate volatility (notice the di�erent magnitude of  3 and  3
?).

To get a better sense for the time-variation in the currency risk premium and for the role

this risk premium plays in the drift of the exchange rate, Figure 3 shows a decomposition of

the drift into its three components. We plot the interest rate di�erential rt�rt? as a dashed
line, the interest rate risk premium �we�t = �t

2��ww?�t�t? as a dotted line, and the pure

currency risk premium �ze t= t
2��zz? t t? as a solid line. Panels A and B correspond to

the models B and C in Table 4, respectively.

Comparing the two panels, it is clear that model C produces substantially more time-

variation in the currency risk premium. Consider �rst the British pound. The risk premium

is large and positive during the �rst two years of the sample, turns large and negative after

the ERM crisis, and then remains fairly steady around 50 basis points throughout the second

half of the sample. Except for the �rst year after the ERM crisis, the premium tends to

be positive and partially o�sets the mostly negative interest rate di�erential. In terms of
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economic signi�cance, the interest rate di�erential and the currency risk premium appear on

equal footing, whereas, as we noted before, the interest rate risk premium is negligible.

In contrast, for the Deutsche mark the interest rate di�erential clearly dominates the drift

of the exchange rate in both panels. Nevertheless, in Panel B the currency risk premium

exhibits broadly the same pattern as the premium for the British pound. When the interest

rate di�erential is large and negative, throughout the �rst half of the sample, the currency

risk premium is positive. As the interest rate di�erential turns positive in the second half of

the sample, the risk premium decreases and ultimately becomes negative.

To further measure the signi�cance of the time-variation in the currency risk premium

(beyond the statistical signi�cance of the coeÆcients of  t and  t
?), we compute the following

adjusted incremental R2 for the exchange rate equation of the di�usion model:

1�
Var

h
�et�

��
rt� rt

?
�
+
�
�t

2� �ww?�t�t
?
�
+
�
 t

2� �zz? t t
?
�� 1

2vt
2
�
�t
i

Var
h
�et�

��
rt� rt?

�
+
�
�t

2� �ww?�t�t?
�
+
�
 2� �zz?  ?

� � 1
2vt

2
�
�t
i T � LA
T � LB=C

; (37)

where the numerator is evaluated using the estimates of either model B or model C (with

LB=C parameters) and the denominator corresponds to model A (with LA parameters).

Analogous to the standard regression context, the term (T �LA)=(T �LB=C) adjusts the

incremental R2 for the fact that models B and C have six and eight more parameters than

model A, respectively. For the British pound, the adjusted R2 is 0.002 for model B and

0.014 for model C. For the Deutsche mark, the R2 are 0.005 and 0.008. We conclude from

these adjusted incremental R2 that the time-variation in the currency risk premium is not

negligible, especially considering that the horizon in our study is only one week.

Returning to the three hypotheses about the currency risk premium, when the market

prices of currency risk depend on the volatility of the exchange rate, we can decisively (at the

�ve-percent level for the British pound and at the ten-percent level for the Deutsche mark)

reject both the uncovered interest rate parity and martingale exchange rate hypotheses with

Wald tests (not shown to save space).40 The reason for the rejections is two-fold. First, the

volatility improves the �t of the exchange rate drift (which is obvious from the signi�cance

of  3 and  3
? and from the adjusted incremental R2). Second, when the market prices of

currency risk depend on the volatility of the exchange rate, the 
uctuations of the �t [de�ned

implicitly by equation (29)] are dampened and the Ornstein-Uhlenbeck process for the degree

of excess volatility or market incompleteness �ts the data better.

40The Wald tests are based on the GMM standard errors described in Section 4.2 to account for the
estimation error from the least-squares identi�cation of the market prices of risk parameters.
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In contrast to our results, Baillie and Bollerslev (1989,1990), Bekaert and Hodrick (1993),

and Domowitz and Hakkio (1985) �nd only weak or no support for the inclusion of the

conditional exchange rate volatility in the exchange rate drift. The evidence presented in

Table 4 is stronger for two reasons. First, we observe the volatility of the exchange rate,

rather than �lter it with potentially large error from past changes in the exchange rate using

a GARCH model. Second, we impose an economic model that implies a speci�c functional

form for the drift. In particular, our drift includes both vt and vt
2 through the polynomial

form of �ze t= t
2��zz? t t?. To illustrate the importance of including both terms, consider

a GLS regression of �et�[(rt�rt?)� 0:5 vt
2]�t on vt, on vt

2, and on both terms.41 For the

British pound, the adjusted R2 of the regression is 0.009 with vt, 0.013 with vt
2, and 0.023

with both terms. For the Deutsche mark, the R2 are 0.002, 0.001, and 0.016.

The estimates of  t and  t
? in Table 4 are subject to the constraint that �t

2 � 0 for all t,

or equivalently from equation (29) that:

v2t �
�
�t

2 + �t
?2 � 2�ww?�t�t

?
�
+
�
 t

2 +  t
?2 � 2�zz? t t

?
�

for all t: (38)

This constraint is binding for models B and C, which can be detected from the fact that the

average conditional currency risk premium deviates substantially from the unconditional risk

premium (from model A). For the British pound, models B and C imply average currency

risk premia of only 36 and 32 basis points, compared to an unconditional premium of 2.4

percent. Similarly for the Deutsche mark, models B and C generate average risk premia of

17 and 21 basis points, instead of an unconditional premium of minus one percent.

To further measure the impact of this constraint on our results, we plot in Figure 4 as

solid line an unconstrained version of the currency risk premium of model C. Since we need

equation (29) for the SML estimation, to infer �2t from the data, we cannot actually lift the

constraint in the context of our di�usion model. We therefore compute the unconstrained

risk premium through a GLS regression of �et�[(rt�rt?)+�we�t� 0:5 vt
2]�t on the variables

(rt� rt?), et, and vt, their squares, and their cross-products (the terms in  t
2��zz? t t?). For

comparison, we also plot in Figure 4 as a dashed line the corresponding constrained currency

risk premium (from Figure 3) and as a dotted line the interest rate di�erential.

There is no question that lifting the constraint has a substantial e�ect on our estimates

of the time-varying currency risk premia. Not only do the unconstrained risk premia match

on average the unconditional premia from model A, but the time-variation in the risk premia

also increases dramatically when we lift the constraint. For the British pound, for example,

41We use a GLS not OLS regression to correct for the heteroskedasticity induced by the time-varying
volatility vt. We also checked that the regressions are not sensitive to the Jensen's inequality adjustment.
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the unconstrained premium exceeds 20 percent in 1991, drops to nearly �20 percent after

the ERM crisis, and remains fairly steady around �ve percent throughout the second half

of the sample. Even more strikingly, when we lift the constraint the currency risk premium

clearly dominates the interest rate di�erential in the drift of the exchange rate.

It is not obvious, however, that lifting the constraint leads to a statistically signi�cant

improvement of the estimated currency risk premium. For the British pound, the R2 of the

unconstrained regression is 0.031, compared to 0.029 for the constrained model C. For the

Deutsche mark, the constrained and unconstrained R2 are 0.019 and 0.021, respectively. At

least in the context of the GLS regression, we cannot reject (at the �ve-percent level) the

constrained risk premium implied by model C in favor of the unconstrained risk premium.

Unfortunately, we cannot formally test the constraint in our di�usion model because we need

to impose it to construct the likelihood function.

4.3.3 Market Incompleteness or Excess Volatility

The degree of market incompleteness or excess volatility implied by the observed volatility

of the exchange rate vt, the estimated market prices of interest rate risk �t and �t
?, and the

estimated market prices of pure currency risk  t and  t
? is de�ned by equation (29) as:

j�tj =
q
vt2 �

�
�t

2 + �t
?2 � 2 �ww?�t�t

?
�� � t2 +  t

?2 � 2�zz? t t
?
�
: (39)

Table 4 describes the implied �t for models A, B, and C.

With constant market prices of currency risk (model A), the average level of excess

volatility is surprisingly large. For the British pound, the average �t is an annualized 8.2

percent, which means that approximately 80 percent of the exchange rate volatility is not

explained by the domestic and foreign pricing kernels (from Table 1, the average vt is 10.3

percent). For the Deutsche mark, the average �t is 8.8 percent, which leaves 82 percent of

the exchange rate volatility unexplained (the average vt is 10.7 percent).

To understand this result recall that interest rates are very persistent. As a result, the

term �t
2+�t

?2�2�ww?�t�t
? in equation (39) is nearly constant. When the market prices of

currency risk are also constant, the excess volatility is then essentially �t=
p
vt2�minfvtgTt=1

because the constraint (38) must hold for all dates including the date on which the volatility

is the lowest. Since vt is quite volatile (see Figure 2), the average vt is very di�erent from the

lowest vt, which means that our model leaves a large fraction of the exchange rate volatility

unexplained. It is important to realize that it is not the level but the volatility of exchange
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rate volatility that generates the excess volatility in model A.42 If the exchange rate volatility

was high but steady (so that the di�erence between the average and lowest vt is small), the

constant market prices of currency risk could explain a much larger portion of it.

Given that the exchange rate volatility is volatile and that the interest rate risk premium

term �t
2+�t

?2�2�ww?�t�t? is nearly constant, the only way to signi�cantly reduce the level

of excess volatility is through time-varying market prices of pure currency risk  t and  t
?.

However, time-variation in the market prices of currency risk alone is not enough. The term

 t
2+ t

?2�2�zz? t t? must be positively correlated with the variance vt
2, or more precisely it

must be small on the same dates that v2t is small to prevent the constraint (38) from binding.

Of course,  t
2��zz? t t? must also help explain the drift of the exchange rate.

Model B, in which  t and  t
? depend on the interest rate di�erential and log exchange

rate, has only mixed success in reducing the level of excess volatility. For the British pound

the average �t drops substantially from 8.2 to 7.1 percent but for the Deutsche mark it drops

only less than 10 basis points. The di�erence between the results for the two currencies is

explained by the fact that the correlation between the log exchange rate (which in model B

drives the time-variation in the market prices of currency risk) and the volatility is 0.33 for

the British pound and only 0.04 for the Deutsche mark (see Table 2).

When  t and  t
? also depend on the exchange rate volatility, in model C, the reduction

in excess volatility is more impressive. The average �t drops to 6.6 percent (64 percent of the

average volatility) for the British pound and 6.2 percent (58 percent of the average volatility)

for the Deutsche mark. Furthermore, especially for the British pound (for which the market

prices of currency risk load more on the volatility) the extreme realizations of �t are reduced

substantially relative to the constant market prices of risk model A (from 22 to 12 percent

for the British pound and from 18 to 15 percent for the Deutsche mark).

To better visualize the magnitude and time-series properties of the degree of market

incompleteness, we plot in Figure 5 as a solid line the excess volatility �t and as a dashed line

the exchange rate volatility vt. Panels A and B correspond to models B and C, respectively.

Comparing the two panels, the importance of allowing the market prices of pure currency

risk to depend on the volatility emerges clearly. However, there is still a substantial amount

of excess volatility, which raises the challenge of �nding variables that help predict changes

in the exchange rate and at the same time help reduce the excess volatility.

42This suggests the literature on the excess volatility of exchange rates [Huang (1981), Wadhwani (1987),
Bartolini and Bodnar (1996), and Bartolini and Giorgianni (1999)] is somewhat misguided in its focus on
the level, instead of the volatility of volatility.
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4.3.4 Speci�cation Tests

We conduct a number of speci�cation tests on the model. The results of these tests, which are

not tabulated to save space, can be summarized as follows. First, to verify that the one-week

implied volatility is a reasonable proxy for the instantaneous volatility of the exchange rate,

we estimate speci�cations of the model in which the true volatility, denoted ht, is constant

(A: ht = h0), proportional to the implied volatility (B: ht = h1vt), or linear in the implied

volatility (C: ht = h0+ h1vt). For both currencies, speci�cation A is easily rejected. The

estimates of h1 in speci�cations B and C range from 0.9 to 0.98 (depending on the currency

and on whether the market prices of currency risk are time-varying), which is consistent with

an upward-sloping term structure of implied volatilities, but the standard errors are so large

that for both currencies we cannot reject (at the ten-percent level) the hypothesis h1=1 for

B and the joint hypothesis fh0= 0; h1= 1g for C.
Second, we allow the correlations �wy, �w?y, and �xy to be time-varying as functions of

the interest rate di�erential, log exchange rate, and exchange rate volatility.43 The results

do not suggest that �wy and �w?y are time-varying as a function of these variables. For the

third correlation, the results are less clear-cut. When the market prices of currency risk are

constant, as in Table 3, there is some evidence (at the ten-percent level) in the case of the US

dollar per British pound exchange rate that �xy depends on the volatility of the exchange

rate. However, when the market prices are time-varying, as in Table 4, this relationship

between the correlation and volatility disappears.

Finally, we test for non-linearities in the market prices of pure currency risk by including

second- and third-order polynomial terms of the interest rate di�erential, log exchange rate,

and exchange rate volatility (with and without cross-terms) in the linear speci�cation (35).

For both currencies, these higher-order terms are insigni�cant.

5 Conclusion

Empiricists now have a transparent, adaptive, and (as our application illustrates) practical

econometric method for estimating the parameters of a continuous time di�usion model that

inherits the desirable asymptotic properties of the typically unattainable maximum likelihood

estimator. The list of potential applications of the SML method in economics and �nance is

43We ensure that the correlation can only taken on values in [�1; 1] by parameterizing it as:

�t = 2
expf�0 + �1(rt� rt

?) + �2et + �3vtg
1 + expf�0 + �1(rt� rt?) + �2et + �3vtg � 1:
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virtually endless. We use it to estimate a new continuous-time model of the joint dynamics

of interest rates in two countries and of the exchange rate between the two currencies. The

innovation of our model is that it allows for �nancial markets to be incomplete and speci�es

the degree of incompleteness as a stochastic process.

Our empirical results for the US dollar per British pound and per Deutsche mark exchange

rates o�er some new insights into the dynamics of exchange rates. For both currencies we

�nd that the interest rate risk premium is negligible relative to the premium for currency

risk orthogonal to interest rate risk. We present evidence that the market prices of pure

currency risk are time-varying as a function of the exchange rate and, more importantly, the

volatility of the exchange rate. However, even with time-varying market prices of currency

risk, a large fraction of the exchange rate volatility is attributed to market incompleteness.

We identify the volatility of the exchange rate volatility, rather than the level, as the quantity

that is diÆcult to explain with our parsimoniously parameterized model.
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A Asymptotics

This appendix presents a collection of results for the asymptotics of the SML estimator.
Lemmas 1 through 6 combine into a proof of Theorem 1 and Lemma 7 establishes Theorem 2.

Lemma 1: Given Assumptions 1 and 2, as M !1:44

qM
�
Ytn+1; tn+1

��Ytn; tn; ��� p
�
Ytn+1 ; tn+1

��Ytn ; tn; �� = O
�
1=M

�
: (A1)

Proof of Lemma 1: Assumptions 1 and 2 are suÆcient for the expansion of qM�p in
powers of 1=M by Bally and Talay (1995a,1995b,1996a,1996b). The leading terms of the
expansion are proportional to 1=M and 1=M2 with bounded coeÆcients.

Lemma 2: Given Assumptions 1 and 2, as M !1 and S !1:

bqM;S

�
Ytn+1 ; tn+1

��Ytn ; tn; ��! p
�
Ytn+1 ; tn+1

��Ytn ; tn; �� almost surely: (A2)

Proof of Lemma 2: Recall that from equation (8):

bqM;S

�
Ytn+1; tn+1

��Ytn; tn; �� = 1

S

SX
s=1

�
�
Ytn+1 ; zs + �(zs)h; V (zs)h

�
; (A3)

where we abbreviate �(zs) � �
�
zs; tn + (M � 1)h; �

�
and V (zs) � V

�
zs; tn + (M � 1)h; �

�
.

The elements of the sum are i.i.d. with �nite expectation (by Assumption 2):

E
h
�
�
Ytn+1 ; zs + �(zs)h; V (zs)h

�i
= qM

�
Ytn+1; tn+1

��Ytn; tn; ��: (A4)

Hence, the Strong Law of Large Numbers applies, and as S !1:

bqM;S

�
Ytn+1 ; tn+1

��Ytn ; tn; ��! qM
�
Ytn+1 ; tn+1

��Ytn ; tn; �� almost surely. (A5)

Use of Lemma 1 completes the proof.

Lemma 3: Given Assumptions 1 and 2, as M !1 and S !1, with S1=2=M ! 0:

S1=2
hbqM;S

�
Ytn+1 ; tn+1

��Ytn ; tn; ��� p
�
Ytn+1 ; tn+1

��Ytn ; tn; ��i �
(A6)

N
�
0; var

�
�
�
Ytn+1 ; zs + �(zs)h; V (zs)h

���
:

44We use the standard notation cn = O(1=nÆ) to denote a sequence cn for which plimnÆcn is a �nite
non-zero constant and cn=o(1=n

Æ) to denote a sequence cn for which plimnÆcn is zero.
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Proof of Lemma 3: Write:

S1=2
hbqM;S

�
Ytn+1 ; tn+1

��Ytn ; tn; ��� p
�
Ytn+1; tn+1

��Ytn; tn; ��i =
1

S1=2

SX
s=1

�
�
Ytn+1; zs + �(zs)h; V (zs)h

�� qM
�
Ytn+1 ; tn+1

��Ytn ; tn; ��+ (A7)

S1=2
h
qM
�
Ytn+1 ; tn+1

��Ytn ; tn; ��� p
�
Ytn+1 ; tn+1

��Ytn ; tn; ��i:
Lemma 1 and the condition S1=2=M ! 0 ensure that as M ! 1 the second term in the
sum converges to zero. Applying the Central Limit Theorem to the �rst term, as in DuÆe
and Glynn (1996), completes the proof.

Lemma 4: Given Assumptions 1{4, as N !1, M !1, and S !1, with S1=2=M ! 0:

ln bLN;M;S(�)� lnLN(�) = o
�
N=S1=2

�
: (A8)

Proof of Lemma 4: Let xn denote the errors of the simulated transition densities:

xn � bqM;S

�
Ytn+1 ; tn+1

��Ytn ; tn; ��� p
�
Ytn+1 ; tn+1

��Ytn ; tn; ��: (A9)

Abbreviate pn � p
�
Ytn+1 ; tn+1

��Ytn ; tn; �� and write:

ln bqM;S

�
Ytn+1 ; tn+1

��Ytn ; tn; ��� ln pn = ln
�
xn + pn

�� ln pn = ln

�
1 +

xn
pn

�
: (A10)

Expanding the last term around xn = 0 for a �xed pn implies that for a suÆciently small xn:

ln

�
1 +

xn
pn

�
� xn
pn

+ o
�
xn
�
= o

�
1=S1=2

�
: (A11)

The last equality follows from Lemma 3. Substituting the expansion (A11) into
equation (A10) and summing over the N sample points completes the proof.

Lemma 5: Given Assumptions 1{4, as N !1, M !1, and S !1, with S1=2=M ! 0:

b�N;M;S � b�N = o
�
N1=2=S1=4

�
; (A12)

where b�N is the parameter vector that maximizes lnLN(�).
Proof of Lemma 5: A second-order expansion of lnLN

�b�N;M;S

�
around b�N yields:

lnLN
�b�N;M;S

�
= lnLN

�b�N�+
(A13)

@ lnLN
�b�N�

@�

�b�N;M;S � b�N�+ 1

2

@2 lnLN
�
��
�

@�2
�b�N;M;S � b�N�2;

where �� is a convex combination of b�N;M;S and b�N . The �rst order term of the expansion is
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zero, since b�N maximizes lnLN(�).
An analogous second-order expansion of ln bLN;M;S(b�N ) around b�N;M;S yields:

ln bLN;M;S

�b�N� = ln bLN;M;S

�b�N;M;S

�
+

(A14)
@ ln bLN;M;S

�b�N;M;S

�
@�

�b�N � b�N;M;S

�
+
1

2

@2 ln bLN;M;S

�
~�
�

@�2
�b�N � b�N;M;S

�2
;

where ~� is another convex combination of b�N;M;S and b�N . The �rst order term of the expansion

is again zero, since b�N;M;S maximizes ln bLN;M;S(�).

Summing the two expansions (A13){(A14) and rearranging terms:�
ln bLN�b�N;M;S

�� ln bLN;M;S

�b�N;M;S

��
+
�
ln bLN�b�N�� ln bLN;M;S

�b�N�� =h@ ln bLN;M;S

�b�N;M;S

�
@�

� @ ln bLN�b�N�
@�

i�b�N � b�N;M;S

�
+ (A15)

1

2

h@2 ln bLN����
@�2

+
@2 ln bLN;M;S

�
~�
�

@�2

i�b�N � b�N;M;S

�2
:

From Lemma 4, the two di�erences between the actual and simulated log likelihood functions
are o(N=S1=2). The �rst-order derivatives are both zero by construction and the second-order
derivatives are bounded by Assumption 4. The result (A12) follows.

Lemma 6 Given Assumptions 1{5, as N !1:

b�N ! �0: (A16)

Proof of Lemma 6: De�ne:

un+1(�) =
@ ln p

�
Ytn+1 ; tn+1

��Ytn ; tn; ��
@�

and vn+1(�) =
@2 ln p

�
Ytn+1 ; tn+1

��Ytn ; tn; ��
@�2

: (A17)

It is well know that E
�
vn+1(�0)

��Fn� = �E�un+12(�0)��Fn�, which implies that:

IN(�0) = �E
� N�1X
n=0

vn+1(�0)

����Fn� � �E�JN(�0)��Fn�: (A18)

Therefore, JN(�) + IN(�) is a martingale.

An expansion of the �rst-order conditions @ lnLN
�b�N�=@� = 0 around �0 yields:

@ lnLN
�b�N�

@�
=
N�1X
n=0

un+1
�
�0
�� IN

�
�0
��b�N � �0

�
+
�
JN
�
��
�
+ IN

�
�0
���b�N � �0

�
= 0; (A19)
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where �� is a convex combination of b�N and �0. Rearrange this expansion to isolate b�N � �0:

�b�N � �0
�h
1� IN

�
�0
��1�

JN
�
��
�
+ IN

�
�0
��i

= IN
�
�0
��1 N�1X

n=0

un+1
�
�0
�
: (A20)

As in Theorem 2.18 of Hall and Heyde (1980), if IN(�0)!1 as N !1, the right-hand
side of equation (A20) converges to zero, or:�b�N � �0

�h
1� IN

�
�0
��1�

JN
�
��
�
+ IN

�
�0
��i! 0 almost surely: (A21)

Since there always exists a ~� between �� and �0 such that:

JN
�
��
�
= JN

�
�0
�
+
@JN

�
~�
�

@�

�
~� � �0

�
; (A22)

the bracketed term in equation (A21) can be rewritten as:

h
1� IN

�
�0
��1�

JN
�
�0
�
+ IN

�
�0
��i

+ IN (�0)
�1@JN

�
~�
�

@�

�
~� � �0

�
: (A23)

If IN(�0) ! 1 as N ! 1, the second term converges to zero, since JN has a bounded
gradient, from Assumption 4. The �rst term converges to one almost surely, since JN + IN
is a martingale.

Lemma 7: Given Assumptions 1{6, as N !1:

IN(�0)
1=2
�b�N � �0

� � N(0; 1): (A24)

Proof of Lemma 7: From Hall and Hyde (1980), suÆcient conditions for the Central Limit
Theorem are that as N !1:

N�1X
n=0

E
h
IN
�
�0
��1

un+1
2
�
�0
����Fni! 1 in probability, (A25)

and

max
0�n�N�1

���IN��0��1=2un+1��0����! 0 in distribution. (A26)

The �rst condition is trivial, since IN =
P
u2n. The second condition is satis�ed if

IN(�0)!1 and if un+1 behaves according to Assumption 6.
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B Exchange Rate Volatility Dynamics

In this appendix, we derive the dynamics of the volatility of the exchange rate for the model
of section 3.2. This derivation is basically of a tedious but straightforward application of
Itô's Lemma in matrix form.

De�ne d �W �

2664
dW
dW ?

dX
dY

3775, and its correlation matrix � = Corr(d �W ). We know that:

dv2 = �dt+ �WdW + �W ?dW ? + �XdX + �Y dY: (B1)

Denoting �v =

2664
�W
�W ?

�X
�Y

3775, we have:

dv =

�
�

2v
� 1

8v3
�0v��v

�
dt+

1

2v

�
�WdW + �W ?dW ? + �XdX + �Y dY

�
: (B2)

Let R1 =

�p
rp
r?

�
, and R2 =

2664
r
r?

e
v

3775. Then R1 and R2 are governed by the following

processes:

dR1 =f1dt+ g1d �W
(B3)

dR2 =f2dt+ g2d �W;

with

f1 =

264 1

2
r�

1

2�(� � r)� 1

8
r�

1

2�2

1

2
r?�

1

2�?(�? � r?)� 1

8
r?�

1

2�?2

375 ; f2 =
2666664

�(� � r)
�?(�? � r?)

(r � r?) + (�wx�+ �zx )v � 1

2
v2

�

2v
� 1

8v3
�0v��v

3777775 ; (B4)

g1 =
1

2

�
� 0 0 0
0 �? 0 0

�
; and g2 =

26664
�
p
r 0 0 0

0 �?
p
r? 0 0

0 0 v 0
1

2v
�W

1

2v
�W ?

1

2v
�X

1

2v
�Y

37775 : (B5)
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Note that: �
�
�?

�
= B1R1 and

�
 
 ?

�
= A2 +B2R2; (B6)

where

B1 =

�
� 0
0 �?

�
; A2 =

�
 0

 ?0

�
; and B2 =

�
 2 � 2  1  3

 ?2 � ?2  ?1  ?3

�
: (B7)

Denote: C1 =

�
1 ��ww?

��ww? 1

�
, and C2 =

�
1 ��zz?

��zz? 1

�
, we can write:

v2 =
1

2
R01
1R1 +

1

2
�2 + �2R2 +

1

2
R02
2R2 + �2 (B8)

where 
1 = 2B01C1B1, �2 = 2A02C2A2, �2 = 2A02C2B2, and 
2 = 2B02C2B2. Thus:

dv2 = R01
1dR1 +
1

2
dR01
1dR1 + (�2 +R02
2)dR2 +

1

2
dR02
2dR2 + d�2

= R01
1dR1 +
1

2
Tr(dR01
1dR1) + (�2 +R02
2)dR2 +

1

2
Tr(dR02
2dR2) + d�2

= R01
1(f1dt+ g1d �W ) +
1

2
Tr(
1g1�g

0
1)dt

(B9)
+(�2 +R02
2)(f2dt+ g2d �W ) +

1

2
Tr(
2g2�g

0
2)dt+ d�2

=

�
R01
1f1 + (�2 +R02
2)f2 +

1

2
Tr(
1g1�g

0
1) +

1

2
Tr(
2g2�g

0
2)� 2��2 + �2

�
dt

+

�
R01
1g1 + (�2 +R02
2)g2

�
d �W + 2�j�jdY:

The last line of equation (B9) de�nes implicitly the drift � and the di�usion terms � in
equation (B1). The drift � is the term in brackets before dt, the �rst three elements of � are
given by the �rst three elements of the term in brackets before d �W , and �Y is equal to the
sum of the forth element of the of the term in brackets and 2�j�j.
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Table 1

Descriptive Statistics

This table presents descriptive statistics of one-week Euro-currency rates r in the US and r? in the
UK or Germany, one-year Euro-currency yields y and y?, interest rate di�erentials r�r?, log US
dollar per British pound or Deutsche mark exchange rates e, implied volatilities v of one-week at-
the-money British pound or Deutsche mark options, and weekly di�erences �r, �r?, �e, and �v.
The means and standard deviations of the �rst di�erences are annualized. The data are weekly
observations from January 1990 through May 2000 (544 observations).

Panel A: Levels

US UK Germany

Statistic r y r? y? r�r? e v r? y? r�r? e v

Mean 0.052 0.056 0.078 0.077 -0.025 0.492 0.103 0.056 0.057 -0.003 -0.499 0.107

Standard
Deviation 0.014 0.013 0.031 0.025 0.025 0.071 0.030 0.025 0.024 0.029 0.092 0.023

Skewness 0.291 0.208 1.266 1.334 -0.678 0.879 0.933 0.404 0.519 -0.754 -0.254 0.456

Kurtosis 3.109 2.845 3.295 3.780 1.905 3.468 3.710 1.516 1.676 2.051 2.893 3.308

Auto-
Correlation 0.996 0.994 0.996 0.997 0.993 0.981 0.928 0.999 0.999 0.999 0.987 0.824

Panel B: Di�erences

US UK Germany

Statistic �r �r? �e �v �r? �e �v

Mean -0.002 -0.009 -0.007 -0.000 -0.004 -0.019 0.002

Standard
Deviation 0.009 0.020 0.101 0.082 0.009 0.106 0.098

Skewness 1.674 -0.396 -1.360 0.853 0.734 -0.363 0.644

Kurtosis 24.757 6.433 9.870 9.903 22.995 5.467 5.017

Auto-
Correlation 0.028 -0.249 0.066 -0.196 -0.027 0.001 -0.243

47



Table 2

Correlation Matrix

This table presents pairwise correlations of one-week Euro-currency rates r in the US and r? in the
UK or Germany, one-year Euro-currency yields y and y?, interest rate di�erentials r�r?, log US
dollar per British pound or Deutsche mark exchange rates e, implied volatilities v of one-week at-
the-money British pound or Deutsche mark options, and weekly di�erences �r, �r?, �e, and �v.

Levels Di�erences

r y r? y? r�r? e v �r �r? �e �v

Levels

US

r 1.000 -0.090

y 0.942 1.000 0.005

UK

r? 0.590 0.494 1.000 -0.163

y? 0.662 0.608 0.964 1.000 -0.134

r�r? -0.178 -0.092 -0.899 -0.816 1.000 0.151

e 0.420 0.317 0.727 0.717 -0.659 1.000 -0.172

v -0.166 -0.215 0.484 0.402 -0.680 0.363 1.000 -0.112

Germany

r? -0.087 -0.106 1.000 -0.142

y? 0.103 0.099 0.971 1.000 -0.136

r�r? 0.535 0.525 -0.888 -0.775 1.000 0.079

e -0.009 -0.109 0.251 0.211 -0.217 1.000 -0.083

v -0.095 -0.117 0.377 0.360 -0.364 0.036 1.000 -0.058

Di�erences

UK

�r? 0.036 0.038 -0.100 -0.025 0.141 -0.005 -0.132 0.010 1.000

�e 0.077 0.083 0.018 0.039 0.020 -0.090 -0.113 -0.077 -0.047 1.000

�v 0.028 0.022 0.011 0.028 0.002 0.082 -0.190 -0.044 0.195 -0.125 1.000

Germany

�r? 0.090 0.116 -0.046 0.004 0.081 -0.076 0.002 0.403 1.000
�e 0.037 0.049 0.044 0.062 -0.021 -0.043 0.007 -0.097 0.062 1.000
�v 0.011 0.008 -0.006 0.002 0.010 -0.002 -0.294 -0.040 -0.010 -0.069 1.000
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Table 3

Simulated Maximum Likelihood Estimates of the Model

This table presents simulated maximum likelihood estimates of the model:

drt= �
�
� � rt

�
dt+ �

p
rt dWt

drt
?=�?

�
�?� rt

?
�
dt+ �?

p
rt?dWt

?

det =
h�
rt � rt

?
�
+ �wx�t + �ze � 1

2
vt

2
i
dt+ vtdXt;

v2t = (�t
2 + �t

?2 � 2 �ww?�t�t
?) + ( 2 +  ?2 � 2�zz?  

?) + �t
2;

d�t
2 =

�� 2� �t
2 + �2

�
dt+ 2�

���t
��dYt;

where �we = �wzvt = �t � �ww?�t
?, �ze = �zxvt =  � �zz? 

?, �t = �
p
rt, �t

? = �?
p
rt?, and:

Corr

2
664

dWt

dWt
?

dXt

dY t

3
775 =

2
6664

1:00
�ww? 1:00

�t � �ww?�t�t
?

vt
�t
? � �ww?�t�t

?

vt
1:00

�wy �w?y �xy 1:00

3
7775 :

In brackets are asymptotic standard errors. All parameters are annualized.

US vs. UK US vs. Germany

Interest Rates

� and �? 0:284 [0:239] 0:486 [0:255] 0:305 [0:263] 0:088 [0:299]

� and �? 0:053 [0:017] 0:074 [0:038] 0:058 [0:021] 0:064 [0:038]

� and �? 0:028 [0:001] 0:056 [0:001] 0:027 [0:001] 0:042 [0:001]

�ww 0:057 [0:012] 0:213 [0:046]

Market Prices of Risk

� and �? �0:138 [0:048] 0:027 [0:016] �0:125 [0:043] �0:036 [0:018]
 2 � �zz?  

? 0.024 [0.022] -0.010 [0.012]

 ?2� �zz?  
? -0.021 [0.017] 0.013 [0.010]

Market Incompleteness / Excess Volatility

� 0:320 [0:112] 0:338 [0:125]

� 0:088 [0:001] 0:101 [0:002]

�wy 0:048 [0:005] 0:058 [0:008]

�w?y 0:034 [0:005] �0:034 [0:009]
�xy �0:012 [0:003] 0:006 [0:002]
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Table 4

Time-Varying Market Prices of Pure Currency Risk

This table presents simulated maximum likelihood estimates of the model described in Table 3 with
constant (model A) and time-varying (models B and C) market prices of currency risk orthogonal
to interest rate risk:

 t =  0 +  1(rt � rt
?) +  2 et +  3 vt and  t

? =  0
? +  1

?(rt � rt
?) +  2

?et +  3
?vt:

The table also describes the implied pure currency risk premium:

�ze t =  t
2 � �zz? t t

?

and excess volatility:

���t
�� =

q
vt2 �

�
�t

2 + �t
?2 � 2 �ww?�t�t

?
�� �

 t
2 +  t

?2 � 2�zz? t t
?
�
:

In brackets are asymptotic standard errors. All entries are annualized.

Risk Premium Excess Volatility
 t  t

?

Mean Min Mean Min
 0  1  2  3  0

?  1
?  2

?  3
? �zz? StdDev Max StdDev Max

US vs. UK

A  2 � �zz?  
? = 0:024 [0:022] 0.0241 0.0820 0.0000

 ?2� �zz?  
? =�0:021 [0:017] 0.0364 0.2151

B 0.062 0.117 -0.263 -0.101 0.418 0.135 0.54 0.0036 0.0001 0.0711 0.0000
[0.043] [0.237] [0.144] [0.061] [0.451] [0.078] [0.13] 0.0029 0.0141 0.0353 0.2099

C -0.026 0.019 0.134 1.514 0.065 0.002 -0.329 2.581 0.89 0.0032 -0.0414 0.0660 0.0000
[0.019] [0.025] [0.076] [0.633] [0.041] [0.007] [0.179] [1.001] [0.17] 0.0101 0.0286 0.0195 0.1234

US vs. Germany

A  2 � �zz?  
? =�0:010 [0:012] -0.0104 0.0875 0.0000

 ?2� �zz?  
? = 0:013 [0:010] 0.0290 0.1791

B -0.140 0.066 -0.197 0.089 -0.003 0.251 0.36 0.0017 0.0001 0.0867 0.0000
[0.121] [0.049] [0.104] [0.131] [0.004] [0.129] [0.09] 0.0016 0.0065 0.0277 0.1782

C -0.072 -0.073 0.006 -0.142 0.029 0.028 0.238 0.127 0.94 0.0022 -0.0056 0.0624 0.0000
[0.050] [0.059] [0.004] [0.072] [0.021] [0.035] [0.134] [0.072] [0.21] 0.0034 0.0132 0.0245 0.1450
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Figure 1

Approximating the Transition Densities

This �gure illustrates the approximation of the transition densities of a di�usion. The solid line
represents the unobserved continuous-time sample path of a univariate di�usion. The four dashed
lines represent incomplete ten-step Euler discretizations.
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Figure 2

Log Exchange Rate, Exchange Rate Volatility, and Interest Rates

This �gure shows in Panel A as solid lines the log US dollar per British pound or log US dollar per
Deutsche mark exchange rates and as dashed lines the one-week implied volatilities of at-the-money
British pound or Deutsche mark options. It shows in Plot B as solid and dashed lines the one-week
Euro-dollar and Euro-sterling or Euro-dollar and Euro-mark interest rates, respectively

Panel A: Log Exchange Rate and Exchange Rate Volatility
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Figure 3

Exchange Rate Drift Decomposition

This �gure decomposes the drift �t of the exchange rate. It plots as solid line the currency risk
premium orthogonal to interest rate risk  2

t� �zz? t t?, as dashed line the interest rate di�erential
rt� rt

?, and as dotted line the interest rate risk premium �2t� �ww?�t�t
?. In Panel A, the market

prices of risk  t and  
?
t depend linearly on the interest rate di�erential and log exchange rate et.

In Panel B, the market prices of risk also depend linearly on the exchange rate volatility vt.
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Figure 4

Constrained and Unconstrained Currency Risk Premium

This �gure plots the currency risk premium  2
t � �zz? t t

?. The market prices of risk  t and  
?
t

depend linearly on the interest rate di�erential rt� rt
?, log exchange rate et, and exchange rate

volatility vt. The solid line is the unconstrained risk premium. The dashed line is the constrained
risk premium that satis�es vt

2 � (�t
2+�t

?2� 2 �ww?�t�t
?) + ( t

2+ t
?2� 2�zz? t t

?) for all t. The
dotted line is the interest rate di�erential rt�rt?.
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Figure 5

Exchange Rate Volatility and Excess Volatility

This �gure shows as dashed line the exchange rate volatility vt and as solid line the excess volatility
j�tj = [vt

2� (�t
2 + �t

?2� 2 �ww?�t�t
?)� ( t

2 +  t
?2� 2�zz? t t

?)]1=2: In Panel A, the market prices
of risk  t and  

?
t depend linearly on the interest rate di�erential rt� r?t and log exchange rate et.

In Panel B, the market prices of risk also depend linearly on the exchange rate volatility vt.
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