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Abstract

We explicitly link expected stock returns to Þrm characteristics such as Þrm size and
book-to-market ratio in a dynamic general equilibrium production economy. Despite
the fact that stock returns in the model are characterized by an intertemporal CAPM
with the market portfolio as the only factor, size and book-to-market play separate
roles in describing the cross-section of returns. These Þrm characteristics appear to
predict stock returns because they are correlated with the true conditional market β
of returns. These cross-sectional relations can subsist after one controls for a typical
empirical estimate of market β. This lends support to the view that the documented
ability of size and book-to-market to explain the cross-section of stock returns is not
necessarily inconsistent with a single-factor conditional CAPM model. Our model also
gives rise to a number of additional implications for the cross-section of returns. In this
paper, we focus on the business cycle properties of returns and Þrm characteristics. Our
results appear consistent with the limited existing evidence and provide a benchmark
for future empirical studies.

∗Finance Department, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104-6367.
The comments of Andy Abel, Jonathan Berk, Michael Brandt, John Cochrane, Gary Gorton, Shmuel Kandel,
Craig MacKinlay, Robert Stambaugh, Jiang Wang, Amir Yaron, and seminar participants at NBER Fall
2000 Asset Pricing meeting, University of Chicago, University of British Columbia, UCLA, and Wharton
are gratefully acknowledged. All remaining errors are our own. E-mail: gomesj@wharton.upenn.edu,
lkogan@wharton.upenn.edu, and zhanglu@wharton.upenn.edu.



1 Introduction

The cross-sectional properties of stock returns have attracted considerable attention in recent

empirical literature in Þnancial economics. One of the best known studies, by Fama and

French (1992), uncovers the relations between factors such as book-to-market ratio and Þrm

size and stock returns, which appear to be inconsistent with the standard Capital Asset

Pricing Model (CAPM). Despite their empirical success, these simple statistical relations

have proved very hard to rationalize and their precise economic source remains a subject

of debate.1 The challenge posed by the Fama and French (1992) Þndings to traditional

structural models has created a signiÞcant hurdle to the understanding of more complex,

dynamic properties of the cross-section of stock returns.

In this work we construct a stochastic dynamic general equilibrium one-factor

model in which Þrms differ in characteristics such as size, book value, investment and

productivity among others, thus establishing an explicit economic relation between Þrm level

characteristics and stock returns. We show that the simple structure of our model provides

a parsimonious description of the Þrm level returns and makes it a natural benchmark for

interpreting many empirical regularities.

Our Þndings can be summarized as follows. First, we show that our one-factor equilibrium

model can still capture the ability of book-to-market and Þrm value to describe the cross-

section of stock returns. These relations can subsist after one controls for typical empirical

estimates of conditional market β. This lends support to the view that the documented

ability of size and book-to-market to explain the cross-section of stock returns is not

1Cochrane (1999), Campbell (2000) and Campbell, Lo and MacKinlay (1997) review the related literature.
Various competing interpretations of observed empirical regularities include, among others, Berk (1995),
Berk, Green and Naik (1999), Fama and French (1993, 1995, 1996), Jagannathan and Wang (1996), Kothari,
Shanken, and Sloan (1995), Lakonishok, Shleifer, and Vishny (1994), Lettau and Ludvigson (1999), Liew
and Vassalou (2000), Lo and MacKinlay (1988) and MacKinlay (1995).
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necessarily inconsistent with a single-factor conditional CAPMmodel and provides a possible

rationalization for the Fama and French (1992) Þndings. Second, we also establish a number

of additional properties of the cross-section of stock returns with important implications

for optimal dynamic portfolio choice. In particular, we Þnd that cross-sectional dispersion

in individual stock returns is related to the aggregate stock market volatility and business

cycle conditions. In addition, we show that the size and book-to-market return premia are

inherently conditional in their nature and likely countercyclical.

Our theoretical approach builds on the work of Berk, Green, and Naik (1999). These

authors construct a two-factor partial equilibrium model based on ideas of time-varying

risks to explain cross-sectional variations of stock returns associated with book-to-market

and market value. They show that their calibrated model is able to capture several of the

Fama and French (1992) Þndings. Our work differs along several important dimensions.

First, ours is a single-factor model in which the conditional CAPM holds. We can then

identify separate roles of size and book-to-market without appealing to multiple sources

of risk. Second, the simple structure of our model allows us to illustrate the role of β

mismeasurement in generating the cross-sectional relations between the Fama and French�s

factors and stock returns. Finally, the general equilibrium nature of our model allows us to

present a self-consistent account of the business cycle properties of Þrm level returns.

Our work is also related to a variety of recent papers that explore the asset pricing

implications of production and investment in an equilibrium setting. Examples of this line

of research include Bossaerts and Green (1989), Cochrane (1991 and 1996), Jermann (1998),

Kogan (2000a and 2000b), Naik (1994), Rouwenhorst (1995) and Coleman (1997). To the

best of our knowledge, however, ours is the Þrst work aiming directly at explaining the

cross-sectional variations of stock returns from a structural general equilibrium perspective.
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The rest of the paper is organized as follows. Section 2 describes the model economy and

its competitive equilibrium and derives an explicit analytical relation between the systematic

risk of stock returns and Þrm characteristics. Sections 3 and 4 examine the quantitative

implications of our model. Section 5 concludes.

2 The Model

In this section we develop a general equilibrium model with heterogeneous Þrms to

characterize individual returns and link them to underlying Þrm characteristics. There are

two types of agents: Þrms and households. We keep the household sector very standard,

summarized by a single representative household which makes the optimal consumption and

portfolio allocation decisions. The heart of the model is the production sector, where a

continuum Þrms are engaged in production of the consumption good. Each Þrm operates a

number of individual projects of different characteristics. This Þrm level uncertainty is crucial

to obtain a non-degenerate equilibrium cross-sectional distribution of Þrms, a necessary

condition for our analysis in sections 3 and 4. Subsection 2.1 details the structure of the

economy, while subsection 2.2 describes the equilibrium aggregate asset prices and establishes

the link between systematic risk of stock returns and Þrm characteristics.

2.1 The Economy and the Competitive Equilibrium

Technology

Production of the consumption good (numeraire) in this economy takes place in basic

productive units, which we label projects. These projects expire at a randomly chosen time,

deÞned by an idiosyncratic Poisson process with common arrival rate δ. They have three

individual features: scale, productivity, and cost.
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Let It denote the set of all projects existing at time t and let i be the index of an individual

project and s denote the time of creation, or vintage. We make two simplifying assumptions

with respect to the scale of the project, ksit. First, the scale of a project is determined when

the project is created and it remains Þxed throughout the life of the project. Second, all

projects of the same vintage have identical scale. Given these assumptions, and when there

is no possibility of confusion, we will use only ki = k
s
it to denote the scale of project i created

at time s(i) ≤ t.

Project�s productivity is driven by an exogenous stochastic processXit, resulting in a ßow

of output at rate Xitki. SpeciÞcally, we deÞne Xit = exp(xt) ²it, where xt is a systematic,

economy-wide productivity measure common for all projects, while ²it is the idiosyncratic,

project-speciÞc component. Furthermore, we assume that xt follows a linear mean-reverting

process

dxt = −θx (xt − x) dt+ σxdBxt (1)

and ²it is driven by a square-root process

d²it = κ(1− ²it) dt+ σ²√²itdBit (2)

where Bxt and Bit are standard Brownian motions.
2 Naturally we will assume that the

idiosyncratic productivity shocks of all projects are independent of the economy-wide

productivity shock, i.e., dBxt dBit = 0 for all i. We will place one further restriction on the

2The process in (1) is chosen to possess a stationary long-run distribution with constant instantaneous
volatility, so that aggregate stock returns are not heteroscedastic by assumption. The idiosyncratic
component in (2) follows a different type of process. It also has a stationary distribution, but it is
heteroscedastic. Since our focus in this paper is on the systematic component of stock returns, such
heteroscedasticity is not problematic. The advantage of (2) is that the conditional expectation of ²it is
an exponential function of time and a linear function of the initial value ²i0, which facilitates computation of
individual stock prices. An additional advantage of this process is that its unconditional mean is independent
of κ and σ², which simpliÞes the calibration.
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correlation structure of the shocks below. Initial productivity of new projects is unobserved

and drawn from the long-run distribution implied by (2).

While speciÞc nature of processes (1) and (2) is convenient but not essential to our

purposes, the assumption of mean-reversion in productivity shocks is very important. This

assumption, however, is supported by both aggregate and cross-sectional evidence. At the

aggregate level, mean-reversion implies that the growth rate of output is not exploding,

which is consistent with standard Þndings in the economic growth literature (e.g., Kaldor

(1963)). At the Þrm level, this assumption is required to obtain a stationary equilibrium

distribution of Þrms. This is consistent with the cross-sectional evidence on Þrm birth and

growth, suggesting that growth rates decline with age and size (e.g., Hall (1987) and Evans

(1987)).

Finally, projects of the same vintage differ in their unit cost, measured in terms of

consumption goods as eit. SpeciÞcally, a potential new project i can be adopted at time s

with investment cost of eiski, where ki is the scale of all new projects at time s.

Together, our assumptions about productivity and cost imply that all new projects are ex-

ante identical in terms of expected future output, differing only in their cost. As we will see

below, these assumptions guarantee that individual investment decisions can be aggregated

into a stochastic growth model with adjustment costs. In addition to its computational

appeal, this feature is useful in providing a realistic setting for aggregate asset pricing (e.g.,

Jermann (1998)).

Firms

Firms in our economy are inÞnitely lived. We assume that the set of Þrms F is exogenously

Þxed and let f be the index of an individual Þrm. Each Þrm owns a Þnite number of

individual projects. While we do not explicitly model entry and exit of Þrms, a Þrm can
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have zero projects, thus effectively exiting the market, and a new entrant can be viewed as

a Þrm that begins operating its Þrst project.

We make a further assumption that the idiosyncratic productivity shocks ²it are Þrm-

speciÞc. Formally, let Ift denote the set of projects owned by Þrm f at time t and let

f(i) denote the index of the Þrm owning project i. If (ongoing) projects i and j belong to

the same Þrm, then dBit and dBjt are perfectly correlated, otherwise they are independent.

Mathematically,

dBit dBjt =

(
dt, j ∈ If(i),t
0, j /∈ If(i),t

(3)

Firms are Þnanced entirely by equity and outstanding equity of each Þrm is normalized

to one share. We denote individual Þrm�s stock price by Vft. Stocks represent claims on the

dividends, paid by Þrms to shareholders, and equal to the Þrm�s output net of investment

costs.3 We specify the shareholders� problem below.

While they do not control the scale or productivity of their projects, Þrms do make

investment decisions by selecting which new projects to operate. SpeciÞcally, Þrms are

presented with potential new projects over time. If a Þrm decides to invest in a new project, it

must incur the required investment cost, which in turn entitles it to the permanent ownership

of the project. These investment decisions are irreversible and investment cost cannot be

recovered at a later date.4 If the Þrm decides not to invest in a project, the project disappears

from the economy.

The arrival rate of new projects is independent of the individual Þrm�s past investment

decisions. SpeciÞcally, all Þrms have an equal probability of receiving a new project in every

3Instead of assuming that investment is Þnanced by retaining earnings, one can make an equivalent
assumption that investment is Þnanced by new equity issues. The exact form of Þnancing has no effect on
the Þrm market value.

4Otherwise the assumption that initial productivity is unobserved would not matter.
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period. This assumption guarantees that large Þrms do not adopt more projects than small

Þrms, which is again consistent with the evidence on Þrm size and growth.5 Moreover, it

also implies that the decision to accept or reject a project has no effect on the individual

Þrm�s future investment opportunities.

Hence, current investment decisions do not depend on the nature of a speciÞc Þrm �

they are determined exclusively by the cost of new projects relative to the present value of

projects� cash ßows. Given these assumptions, the optimal investment decision of a Þrm

faced with project i at time s is to invest if

V ait = Et

·Z ∞

0

e−λsMt,t+s

¡
e−δskiXt+s

¢
ds

¸
≥ eitki (4)

where V ait is the net present value of the future stream of cash ßows associated with the

project and Mt,t+s is the stochastic discount factor between periods t and t+ s, equal to the

intertemporal marginal rate of substitution of the representative household in equilibrium.6

Note also that we have used the fact that the idiosyncratic productivity component ²it is

independent of all other processes in the economy and that, for any new project, ²it is drawn

from the steady state distribution of process (2). Hence, Et [Xt+s ²it+s] = Et [²it+s]Et [Xt+s] =

Et [Xt+s] .

5All that is required is that project arrival is less than proportional to Þrm size. This is the simplest way
of meeting this requirement and it seems the natural one to start with. Results for alternative assumptions
are substantially similar and are available upon request.

6Our treatment of the Þrm�s problem can be related to the Arbitrage Pricing Theory of Ross (1976).
Even though cash ßows of individual projects and Þrms are not spanned by a small number of traded assets,
their idiosyncratic components are perfectly diversiÞable. Therefore, the only stochastic components of cash
ßows and returns that are priced by the market are those associated with market-wide risk factors, which
are common to all Þrms. In our model, xt is the only systematic risk factor, which in equilibrium is spanned
by the market portfolio. Thus, the associated risk premium is uniquely determined by absence of arbitrage.
Alternatively, in the framework of a representative household, consumption-based asset pricing model, the
aggregate consumption process can be used as a single systematic risk factor which is sufficient for pricing
all risky assets (e.g., Breeden (1979)).
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Proposition 1 (Optimal Þrm investment) A new project i is adopted if and only if

eit ≤ et = e(xt)

Proof Given the stochastic process for aggregate productivity shocks (1), it follows that the

present value of project�s cash ßows per unit production scale equals

V ait
ki
= Et

·Z ∞

0

e−λsMt,t+s

¡
e−δsXt+s

¢
ds

¸

which in turn depends only on the current state of the economy xt. Equation (4) implies

then that a new project is adopted if and only if

eit ≤ V ait (xt)/ki = et = e(xt)

Proposition 1 establishes a simple, but crucial, property that optimal investment decisions

by Þrms at any time t are independent of the Þrms� identity and only rely on the unit cost

of new projects. SpeciÞcally, Þrms adopt new projects with unit cost below the threshold

e(x), which is only a function of the aggregate state variable. Note that this result hinges

on the convenient assumption that projects are ex-ante identical in their productivity and

allows for the simple aggregation results below.

The value of the Þrm can then be viewed as a sum of two components, the present value of

output from existing projects and the present value of dividends (output net of investment)

from future projects. Using the terminology from Berk et al. (1999), the former component

represents the value of assets-in-place, V aft, while the second can be interpreted as the value

of growth options, V oft. We can then compute the value of a Þrm�s stock as a sum of these
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two components

Vft = V
a
ft + V

o
ft (5)

where the value of assets in place can be constructed as

V aft =
X
i∈Ift

V ait (6)

Finally, it is useful for future use to deÞne the book value of a Þrm as the sum of book

values of the Þrm�s (active) individual projects

Bft =
X
i∈Ift

ei,s(i)k
s(i)
it

and the book value of a project is deÞned as the associated investment cost eisk
s
it.

Heterogeneity and Aggregation

To facilitate aggregation, we assume that there exists a large number (a continuum) of

Þrms in the economy. In our informal construction we appeal to the law of large numbers,

which simpliÞes the analysis and clariÞes economic intuition, albeit at a cost of some

mathematical rigor. Thus, one might view the results based on the law of large numbers as

an approximation to an economy with a very large number of Þrms.7

Let
R
It · di and

R
F · df denote aggregation operators over projects and Þrms respectively.

The aggregate scale of production in the economy, Kt, is

Kt ≡
Z
It
ki di =

Z t

−∞
ksit

µZ
It
χ{i: s(i)∈[τ,τ+dτ)} di

¶
ds

7Feldman and Gilles (1985) formalize the law of large numbers in economies with countably inÞnite
numbers of agents by aggregating with respect to a Þnitely-additive measure over the set of agents. Judd
(1985) demonstrates that a measure and the corresponding law of large numbers can be meaningfully
introduced for economies with a continuum of agents.
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where χ{·} denotes the indicator function and
R
It χ{i: s(i)∈[τ,τ+dτ)} di is the number (measure)

of projects created during [τ, τ +dτ) that remain in existence at time t. Similarly, aggregate

output Yt is given by

Yt =

Z
It
Xitki di =

Z t

−∞
ksit

µZ
It
Xit χ{i: s(i)∈[τ,τ+dτ)}di

¶
ds

= exp (xt)

Z t

−∞
ksit

µZ
It
χ{i: s(i)∈[τ,τ+dτ)}²it di

¶
ds

= exp(xt)

Z t

−∞
ksit

µZ
It
χ{i: s(i)∈[τ,τ+dτ)} di

¶
ds = exp(xt)Kt (7)

where the fourth equality follows from the law of large numbers, since by (2) random variables

²its are identically distributed with unit mean and are independent across a continuum of

Þrms, with each Þrm owning a Þnite number of projects. Equation (7) is consistent with our

interpretation of xt as the aggregate productivity shock.

New potential projects are continuously arriving in the economy. To ensure balanced

growth, we assume that the arrival rate of new projects is proportional to the total scale

of existing projects in the economy Kt and independent of project unit cost. Formally, the

arrival rate (measured by production scale) of new projects with cost less than et equals

ZKtet. Alternatively, ZKtetdt is the total scale of projects with the cost parameter less than

et arriving between t and t + dt. The parameter Z governs the quality of the investment

opportunity set. Given our deÞnition of the arrival rate, the total scale of projects in the

economy evolves according to

dKt = −δKtdt+ ZKt etdt (8)

where δ is the rate at which existing projects expire. The aggregate investment spending,
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It, is then given by

It = I (et) ≡
Z et

0

eitZKtdeit =
1

2
ZKte

2
t (9)

Aggregate dividends are deÞned as the aggregate output net of aggregate investment, or

Dt = Yt − It (10)

In addition, we deÞne the value of the aggregate stock market Vt, which is the market value

of a claim on aggregate dividends, as

Vt =

Z
F
Vft df (11)

Finally, given (10) and (11) we can deÞne the process for cumulative aggregate stock returns

as

dRt
Rt

=
dVt +Dtdt

Vt
(12)

Households

There is a single consumption good in the economy, which is produced by the Þrms. The

economy is populated by identical competitive households, who derive utility from the

consumption ßow Ct. The entire population can then be modeled as a single representative

household. We assume that this household has standard time-separable isoelastic preferences:

E0

·
1

1− γ
Z ∞

0

e−λtCt1−γdt
¸

(13)

Households do not work and derive income from accumulated wealth only.8 We letWt denote

the individual wealth at time t. Financial markets in our model consist of risky stocks and

8Since labor is not productive, this assumption is innocuous.
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an instantaneously riskless bond in zero net supply that earns a rate of interest rt. Financial

markets are perfect: there are no frictions and no constraints on short sales or borrowing.

The representative household then maximizes her expected utility of consumption (13),

subject to the constraints

dWt = −Ct dt+Wbtrt dt+Wst
dRt
Rt

(14)

Wt =Wbt +Wst (15)

Wt ≥ 0 (16)

where Wbt and Wst is the amount of wealth invested in the bond and stocks, respectively.
9

The returns processes on bonds, rt, and stocks, Rt, are taken as exogenous by households

and will be determined in equilibrium. The nonnegative-wealth constraint (16) is used to

rule out arbitrage opportunities, as shown in Dybvig and Huang (1989).10

The Competitive Equilibrium

With the description of the economic environment complete we are now in a position to state

the deÞnition of the competitive equilibrium.

DeÞnition 1 (Competitive equilibrium) A competitive equilibrium is summarized by

stochastic processes for optimal household decisions C?t , W
?
bt, W

?
st, and Þrm investment policy

9We are assuming that households invest directly in the aggregate stock market portfolio. Combined with
the assumption that Þrms� value is computed using the economy-wide stochastic discount factor to discount
their dividends, this formulation is not restrictive and allowing households to invest in individual securities
would lead to identical implications for equilibrium prices and policies.
10To make sure that the wealth process is well deÞned by (14), we assume that both the consumption policy

and the portfolio policy are progressively measurable processes, satisfying standard integrability conditions:Z τn

0

Ct +

¯̄̄̄
Wbtrt +Wst

Et [dRt]

Rt dt

¯̄̄̄
dt <∞Z τn

0

¿
Wst

dRt
Rt

,Wst
dRt
Rt

À
<∞

for a sequence of stopping times τn %∞, where h·, ·it denotes the quadratic variation process.
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e?t , such that

(a) Optimization

(i) Given security returns, households maximize their expected utility (13), subject to

constraints (14�16);

(ii) Given the stochastic discount factor

Mt,t+s = e
−λs
µ
C?t
C?t+s

¶γ
Þrms maximize their market value (5).

(b) Equilibrium

(i) Goods market clears:

C?t = Dt = Yt − It (17)

(ii) Stock market clears:

W ?
st = Vt =

Z
F
Vft df (18)

(iii) Bond market clears:

W ?
bt = 0 (19)

The following proposition establishes that the optimal policies e?t and C?t can be

characterized as the solution to a system of one differential equation and one algebraic

equation.

Proposition 2 (Equilibrium allocations) The competitive equilibrium allocations of

13



consumption C?t and investment e
?
t can be computed by solving the equations

e?(x) = [c? (x)]γ p(x) (20)

and

c? (x) = exp (x)− 1
2
Z [e?(x)]2 (21)

where function p(x) satisÞes

exp(x)

[c? (x)]γ
= [λ+ (1− γ)δ + γZe?(x) ] p(x) + θx (x− x) p0(x)− 1

2
σ2xp

00
(x) (22)

and

e?t = e
? (xt)

C?t ≡ c? (xt)Kt

Proof See Appendix A.1.

2.2 Asset Prices

With the optimal allocations computed we can now easily characterize the asset prices in

the economy, including the risk-free interest rate and both the aggregate and Þrm-level stock

prices.

Aggregate Prices

The following proposition summarizes the results for the equilibrium values of the risk-free

rate and the aggregate stock market value.

Proposition 3 (Equilibrium asset prices) The instantenous risk-free interest rate is

14



determined by:

rt = −Et[dMt,t+dt − 1]
dt

= λ+ γ [Ze? (xt)− δ] + γ [A(c
?(xt)]

c? (xt)
− 1
2
γ(γ + 1)σ2x

·
c? (xt)

0

c? (xt)

¸2
(23)

where A(c(x)) satisÞes

A(c(x)) = −θx (x− x) c0 (x) + 1
2
σ2xc

00 (x)

The aggregate stock market value, Vt, can then be computed as

Vt = Et

·Z ∞

0

e−λs
µ
C?t
C?t+s

¶γ
C?t+s ds

¸
= (c?t )

γ ψ (xt)Kt (24)

where function ψ (x) satisÞes the differential equation

λψ (x) = [c?(x)]1−γ + (1− γ) [Ze?(x)− δ]ψ (x)− θx(x− x)ψ0 (x) + 1
2
σ2xψ

00 (x)

Proof See Appendix A.3.

While the exact conditions are somewhat technical, the intuition behind them is quite

simple. As we would expect, the instantenous risk-free interest rate is completely determined

by the equilibrium consumption process of the representative household, and its implied

properties for the stochastic discount factor. Also, the aggregate stock market value

represents a claim on the the future stream of aggregate dividends paid out by Þrms. In

equilibrium, however, these must equal the consumption of the representative household.

In addition to the deÞnition above, value of the stock market can also be viewed as a sum

of two components, the present value of output from existing projects and the present value

of dividends (output net of investment) from all future projects. The value of assets-in-place
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is given by

V at = Et

·Z ∞

0

e−λs
µ
C?t
C?t+s

¶γ µZ
It
Xit+se

−δski di
¶
ds

¸
(25)

Using arguments similar to (7), we can restate this as

V at = KtEt

·Z ∞

0

e−(λ+δ)s
µ
C?t
C?t+s

¶γ
exp (xt+s) ds

¸
= Kt (c

?
t )
γ p (xt) (26)

where p (xt) is deÞned by (22) above. By deÞnition then, the value of aggregate growth

options can be constructed as

V ot = Vt − V at (27)

Firm-Level Stock Prices

Valuation of individual stocks is straightforward once the aggregate market value is

computed. First, note that as we have seen above, the value of a Þrm�s stock is the sum of

assets-in-place and growth options, where the value of assets-in-place is the sum of present

values of output from all projects currently owned by the Þrm. The value of an individual

project i is given by the following Proposition.

Proposition 4 (Project valuation) The present value of output of a project i is given by

V ait = Et

·Z ∞

0

e−λs
µ
C?t
C?t+s

¶γ ¡
e−δskiXit+s

¢
ds

¸
=
ki
Kt

heV at (²it − 1) + V at i (28)

where eV at is deÞned as
eV at ≡ KtEt

·Z ∞

0

e−(λ+δ+κ)s
µ
C?t
C?t+s

¶γ
exp (xt+s) ds

¸

Proof See Appendix A.4.
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Given the result in Proposition 4, the value of assets in place for the Þrm, V aft, can be

constructed as

V aft =

Z
Ift

ki
Kt

heV at (²it − 1) + V at i di (29)

Now since future projects are distributed randomly across the Þrms with equal probabilities,

all Þrms will derive the same value from growth options. Clearly then this implies that the

value of growth options of each Þrm, V oft, equals

V oft =
1R

F 1 df
V ot (30)

We can then join these two components to obtain the total value of the Þrm, Vft, as

Vft =

Z
Ift

ki
Kt

heV at (²it − 1) + V at i di+ 1R
F 1 df

V ot (31)

By relating individual Þrm value to market aggregates, the decomposition (31) is

extremely useful as it implies that the instantaneous market betas of individual stock returns

can also be expressed as a weighted average of market βs of three economy-wide variables,

V at , eV at , and V ot . Proposition 5 formally establishes this property.
Proposition 5 (Market betas of individual stocks) Firm market βs are described by

βft = eβat + V oftVft
³
βot − eβat ´+ Kft

Vft

µ
Kt

V at

¶−1 ³
βat − eβat ´ (32)

where

Kft =

Z
Ift
ki di
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and

βat =
∂ log (V at ) /∂x

∂ log (Vt) /∂x
, eβat = ∂ log

³eV at ´ /∂x
∂ log (Vt) /∂x

, βot =
∂ log (V ot ) /∂x

∂ log (Vt) /∂x
(33)

Proof Since the market beta of a portfolio of assets is a value-weighted average of betas of

its individual components, the expression for the value of the Þrm (31) implies that

βft =

µ
1− V

o
ft

Vft

¶
βaft +

V oft
Vft
βot

=

µ
1− V

o
ft

Vft

¶³
(1− πft)eβat + πftβat ´+ V oftVftβot

where

πft =
Kft

V aft

µ
Kt

V at

¶−1
Simple manipulation then yields (32).

Stock Returns and Firm Characteristics

Proposition 5 is extremely important. It shows that the weights on the �aggregate� betas,

βat ,
eβat , and βot , depend on economy-wide variables like Kt/V

a
t , and V

o
t , but also, and more

importantly on Þrm-speciÞc characteristics such as the size, or value, of the Þrm, Vft, and

the ratio of the Þrm�s production scale to its market value, Kft/Vft.

The second term in (32) creates a relation between size and β, as the weight on the beta

of growth options, βot , depends on the value of the Þrm�s growth options relative to its total

market value. Firms with small production scale derive most of their value from growth

options and their betas are close to βot . Since all Þrms in our economy have identical growth

options, the cross-sectional dispersion of betas due to the loading on βot is captured entirely

by the size variable Vft. Large Þrms, on the other hand, derive a larger proportion of their
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value from assets in place, therefore their betas are close to a weighted average of βat and
eβat .

The last term in (32) also shows that part of the cross-sectional dispersion of market

betas is explained by the Þrm-speciÞc ratio of the scale of production to the market value,

Kft/Vft, captured empirically to certain extent by the Þrm�s book-to-market ratio.
11 To

see the intuition behind this result consider two Þrms, A and B, with the same market

value. Assume that Þrm A has larger scale of production but lower productivity than B.

As a result, the two stocks would differ in their systematic risk due to the differences in the

distribution of cash ßows from the Þrms� existing projects. By assumption, such a difference

is not reßected in the Þrms� market value, but it would be captured by the ratio Kft/Vft.

Thus, while Þrm size captures the component of Þrm�s systematic risk attributable to its

growth options, the book-to-market ratio serves as a proxy for risk of existing projects.

Note that in this model the cross-sectional distribution of expected returns is determined

entirely by the distribution of market βs, since returns on the aggregate stock market are

perfectly correlated with the consumption process of the representative household (and hence

the stochastic discount factor, e.g., Breeden (1979)). Thus, if conditional market βs were

measured with perfect precision, no other variable would contain additional information

about the cross-section of returns.

However, equation (32) implies that if for any reason market βs were mismeasured (e.g.

because the market portfolio is not correctly speciÞed), then Þrm-speciÞc variables like Þrm

size and book-to-market ratios could appear to predict the cross-sectional distribution of

expected stock returns simply because they are related to true conditional βs. In section 4

we generate an example within our artiÞcial economy of how mismeasurement of βs can lead

to a signiÞcant role of Þrm characteristics as predictors of returns.

11The ratio Kft/Vft can also be approximated by other accounting variables, e.g., by the earnings-to-price
ratio.
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3 Aggregate Stock Returns

In this section we evaluate our model�s ability to reproduce key qualitative and quantitative

features of empirical data. While it is not the objective of this paper, it seems appropriate

to ensure that the model is reasonably consistent with the well documented aggregate

Þndings before examining its cross-sectional implications. Thus, our methodology follows

the approach of Kydland and Prescott (1982) and Long and Plosser (1983). First, we

calibrate the model parameters using the unconditional moments of aggregate stock returns

and the moments of the aggregate consumption process. We then provide evidence on other

aggregate-level properties of the model regarding the predictability of aggregate stock returns

by the book-to-market ratio documented by Pontiff and Schall (1998).

3.1 Calibration

We Þrst calibrate the aggregate-level preference and technology parameters. The values of

γ, λ, δ, x, and Z are chosen to match approximately the unconditional moments of the key

aggregate variables. Table 1 reports the parameter values used in simulation and Table 2

compares the moments of some key aggregate variables in the model with corresponding

empirical estimates. For completeness, we report two sets of moments from the model:

population moments and sample moments. Population moments are estimated by simulating

a 300, 000-month time series; the sample moments are computed based on 200 simulations,

each containing 70 years worth of monthly data.12 In addition to point estimates and

standard errors, we also report 95% conÞdence intervals based on empirical distribution

functions from 200 simulations. Population moments are close to their empirical counterparts

and almost all the moments of historical series are within the 95% conÞdence intervals in

12The 70-year sample length is comparable to that of CRSP, which is the historical data set used in
generating the two (Data) columns in Table 2.
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the (Sample) columns.

Our model is able to capture the historical level of the equity premium, while maintaining

plausible values for the Þrst two moments of the risk-free rate. These results are due to the

combination of sufficiently high risk aversion (γ = 15) of the representative household and

a small amount of predictability in the consumption process (e.g., Kandel and Stambaugh

(1991)).13 Based on these results, we conclude that our model provides a satisfactory Þt of

the aggregate data.

To further illustrate the properties of our model, we plot some key economic variables

against the state variable x in Figure 1. Panel A shows that the optimal investment policy,

e?, increases with x. In equilibrium, e? equals the present value of cash ßows from a new

project of unit size, V a/K, which is increasing in productivity parameter x. Similarly, the

market value per unit scale of a typical project, V/K, is increasing in x, as shown in Panel

B. According to Panel C, the value of assets-in-place as a fraction of the total stock market

value decreases slightly with x. Most of the time, assets-in-place account for 75�80% of the

stock market value in the model. Finally, Panel D compares the instantaneous stock market

betas, βa and βo. The beta of growth options is higher than that of assets in place.

3.2 Quantitative Results

We now examine some additional quantitative implications of the model for the relationship

between aggregate returns and other aggregate variables. Table 3 Panel A reports the

means, standard deviations, and 1- to 5-year autocorrelations of the dividend yield and

book-to-market ratio. We estimate these statistics by repeatedly simulating 70 years of

monthly data,.a sample size similar to that used in Pontiff and Schall (1998). The Data

13Note that we are not arguing that this is the precise mechanism behind the observed equity premium
and other aggregate-level properties of asset prices. The only objective of this analysis is to verify that our
cross-sectional results are not undermined by unreasonable aggregate-level properties of the model.
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rows report the mean and standard deviation of the book-to-market ratio to be 0.668 and

0.23 respectively, the values taken from Pontiff and Schall, Table 1 Panel A. Our model

produces similar values of 0.584 and 0.19. The autocorrelations of the book-to-market ratio

are decreasing with the horizon, matching the pattern observed in the data. However, the

ratio is more persistent in the model compared to the data, as indicated by higher magnitude

of autocorrelations. The model also reproduces the decreasing pattern of autocorrelations

of the dividend yield data. While the standard deviation of dividend yield is close to the

empirical value, the average level exceeds the number reported by Pontiff and Schall (1998).

Panel B in Table 3 examines the performance of the book-to-market ratio as a predictor of

stock market returns. The slope in the regression of monthly value-weighted market returns

on one-period lagged book-to-market ratios based on the model is 1.75%. The empirical

value of 3.02% is within the 95% conÞdence interval around the simulation-based estimate.

The adjusted R2s are also comparable. The same analysis at annual frequency produces

similar results.

It is also important to note that, in the model, instantaneous stock market returns

are perfectly correlated with consumption growth and the stochastic discount factor. As a

result, asset returns are characterized by a single-factor intertemporal CAPM. To determine

how closely monthly stock returns satisfy the ICAPM with the market portfolio being the

only factor, we regress market returns on the contemporaneous realization of the stochastic

discount factor, given by (Ct+4t/Ct)−γe−λ4t. As expected, the regression shows that 96%

of the variation in market return can be explained by variation in the stochastic discount

factor. The unconditional correlation between the stochastic discount factor and the market

return is −0.98 and the conditional correlation between the two is, effectively, −1. Thus,

even at the monthly frequency, a single-factor ICAPM is, theoretically, highly accurate.
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In this respect our environment differs crucially from Berk, Green, and Naik (1999). By

construction then, stock returns in their model cannot be described using market returns as

a single risk factor, allowing variables other than market βs to play an independent role in

predicting stock returns.

4 The Cross-Section of Stock Returns

This section establishes our key quantitative results. After outlining our numerical procedure,

subsection 4.3 documents the ability of the model to replicate the empirical Þndings about

the relation between Þrm characteristics and stock returns. It also establishes that these

Þndings disappear after one controls for the theoretically correct measure of systematic risk.

Subsection 4.4 describes the conditional, or cyclical, properties of Þrm level returns.

4.1 Calibration

To examine the cross sectional implications of the model we must choose the parameters of

the stochastic process for Þrm-speciÞc productivity shocks, κ and σ². We restrict these values

by two considerations. First, we want to be able to generate empirically plausible levels of

volatility of individual stock returns, which directly affects statistical inference about the

relations between returns and Þrm characteristics. Second, we also want the cross-sectional

correlation between Þrm characteristics, i.e., the logarithms of Þrm value and book-to-market

ratio, to match the empirically observed values. The value, and particularly the sign of this

correlation, are critical in determining the univariate relations between Þrm characteristics

and returns implied by the multivariate relation (32), due to the well-known omitted variable

bias.

We can accomplish these goals by setting value of κ=0.51 and σ²=2.10. These values
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imply an average annualized volatility of individual stock returns of approximately 25%

and a correlation between size and book-to-market variables of about −0.26, the number

reported by Fama and French (1992). Panel D of Figure 1 shows the behavior of eβa implied
by our choice of κ. In particular, eβa is lower than the market beta of assets-in-place and is
increasing in the state variable x.

According to equation (32), there exists a cross-sectional relation between the market βs

of stock returns and Þrm characteristics. The sign of this relation depends on the aggregate-

level variables βot−eβat and βat−eβat in (32). Under the calibrated parameter values, the long-run
average values of βot −eβat and βat −eβat are 0.67 and 0.21 respectively.
These numbers suggest then a negative relation between market βs and Þrm size and a

positive one between βs and book-to-market. Since size and book-to-market are negatively

correlated in our model, coefficients in univariate regressions of returns on these variables

should have the same sign as partial regression coefficients in a joint regression, i.e., returns

should be negatively related to size and positively related to book-to-market. To further

evaluate the quantitative signiÞcance of these effects, we repeatedly simulate a panel data

set of stock returns based on our model and apply commonly used empirical procedures on

the simulated panel.

We follow the empirical procedures used by Fama and French (1992). First, we present

some descriptive statistics of the simulated panel in Tables 4 and 5, providing an informal

summary of the relations between returns, size, and book-to-market. Our main results are

presented in Tables 7, 8, and 9, where we detail the cross-sectional relations between stock

returns and Þrm characteristics.
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4.2 Simulation and Estimation

In our simulations, the artiÞcial panel consists of 360 months of observations for 2,000 Þrms.

This panel size is comparable to that in Fama and French (1992), who used an average of

2,267 Þrms for 318 months. We also adhere to Fama and French�s timing convention in that

we match the accounting variables at the end of the calendar year t−1 with returns from

July of year t to June of year t+1. Moreover, we use the value of the Þrm�s equity at the

end of calendar year t−1 to compute its book-to-market ratios for year t−1, and we use

its market capitalization for June of year t as a measure of its size.14 Further details of our

simulation procedure are summarized in Appendix B.

Some of our tests use estimates of market βs of stock returns, which are obtained using

the empirical procedure of Fama and French (1992).15 Their procedure consists of two steps.

First, pre-ranking βs for each Þrm at each time period are estimated based on previous 60

monthly returns. Second, for each month stocks are sorted into ten portfolios by market

value. Within each size portfolio, stocks are sorted again into ten more portfolios by their

pre-ranking βs. The post-ranking βs of each of these 100 portfolios are then calculated using

the full sample. All portfolios are formed using equal weights and all βs are calculated by

summing the slopes of a regression of portfolio returns on market returns in the current and

prior months. In each month, we then allocate the portfolio βs to each of the stocks within

the portfolio. To highlight the fact that these post-ranking βs are estimated, we will refer

to them as Fama and French-βs.

Following Fama and French (1992), we form portfolios at the end of June each year and

the equal-weighted returns are calculated for the next 12 months. In each of these sorts,

14In this aspect our simulation procedure differs from that of Berk et al. (1999), since they use a
straightforward and intuitive timing convention (one-period-lag values of explanatory variables), which does
not however agree with the deÞnitions in Fama and French (1992).
15For details of the beta estimation procedure, we refer readers to Fama and French (1992).
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we form 12 portfolios. The middle 8 portfolios correspond to the middle 8 deciles of the

corresponding characteristics, with 4 extreme portfolios (1A, 1B, 10A, and 10B) splitting

the bottom and top deciles in half. We repeat the entire simulation 100 times and average

the results of the sorting procedure across the simulations. In tables 4, 5 and 6, Panel A is

taken from Fama and French (1992) and Panel B is computed based on the simulated panels.

4.3 Size and Book-to-Market Effects

Tables 4 and 5 report post-ranking average returns for portfolios formed by a one-dimensional

sort of stocks on Þrm size and book-to-market. When portfolios are formed on Þrm value

(Table 4), the simulated panel exhibits a negative relation between size and average returns,

similar to the one observed empirically.16 Table 5 presents average returns for portfolios

formed based on ranked values of book-to-market ratios. Similar to the historical data, our

simulated panels on average also show a positive relation between book-to-market ratios and

average returns. Thus, one-dimensional sorting procedures indicate cross-sectional relations

between Fama and French factors and returns that are similar to those in the historical data.

Table 7 shows a summary of our results from the Fama-MacBeth (1973) regressions of

stock returns on size, book-to-market, and conditional market βs.17 For comparison, we also

report empirical Þndings of Fama and French (1992) and simulation results of Berk et al.

(1999) in columns 2 and 3 of the same table.

Our Þrst univariate regression shows that the logarithm of Þrm market value appears to

contain useful information about the cross-section of stock returns in our model. The relation

16The level of average returns is higher in Panel A than in Panel B. This difference is due to the fact that
we are modeling real returns in our model, while Fama and French (1992) report the properties of nominal
historical returns.
17For each simulation, we compute the slope coefficients as the time series average coefficients over the 360-

month cross-sectional regressions, and the t-statistics are these averages divided by the standard deviations
across the 360 months, which provide standard Fama-MacBeth (1973) tests for statistical signiÞcance of
regression coefficients. We then average the results across 100 simulations. The market βs are exact
conditional βs computed based on our theoretical model.
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between returns and the size variable is signiÞcantly negative. The average slope coefficient

as well as the corresponding t-statistic implied by the model are close to their empirical values

reported by Fama and French (1992). Panel A of Figure 2 shows the histogram of realized

t-statistics across simulations. The empirical value is well within the body of realizations

produced by the model. Our second univariate regression conÞrms the importance of book-

to-market ratio in explaining the cross-sectional properties stock returns. While our slope

coefficient is smaller than the one obtained by Fama and French (1992), our estimate is also

positive on average. Panel B of Figure 2 shows that the coefficient of book-to-market is often

signiÞcant at traditional levels, however, the model is not able to produce the t-statistics as

high as that reported by Fama and French (1992).

Next, we regress returns on size and book-to-market jointly. On average our coefficients

have the same signs as in Fama and French (1992) and Berk et al. (1999) as returns exhibit

negative dependence on size and positive dependence on book-to-market. While our average

size slope and the corresponding t-statistic are close to the empirical values, the average

slope on book-to-market is smaller than in Fama and French (1992). Panel C of Figure 2

illustrates the range of t-statistics in a joint regression of returns on size and book-to-market

that could be obtained if the historical data were generated by our model. We present the

results in the form of a scatter plot, where each point corresponds to a realization of two

t-statistics obtained in a single simulation. The empirically observed t-statistic on the size

variable is comparable to typical realizations produced by the model. However, the t-statistic

on book-to-market is usually somewhat lower than in Fama and French (1992).

The Þrst three regressions in Table 7 conform to the intuition derived from our theoretical

relation (32) that size and book-to-market are related to systematic risks of stock returns

and therefore have explanatory power in the cross-section. However, within our theoretical

27



framework, Þrm characteristics add no explanatory power to the conditional market βs of

stock returns.18 To illustrate this point, we regress returns on size while controlling for

market β. The fourth row of Table 7 shows that the average coefficient on size and the

corresponding t-statistic are close to zero.

Fama and French (1992) Þnd that the estimated market βs show no explanatory power

when used individually or jointly with Fama and French factors. This could be because

in practice returns on the market portfolio are not perfectly correlated with the stochastic

discount factor and additional risk factors are necessary to describe expected returns. Such

mechanism lies beyond the scope of our single-factor model. To reconcile our results

with poor empirical performance of Fama and French-βs one must take into account the

fact that so far we have been using the exact conditional βs, which are not observable

in practice. Instead, βs must be estimated, which leaves room for measurement error.

Potential sources of errors are, among others, the fact that the market-proxy used in

estimation is not the mean-variance efficient portfolio (Roll (1977)) or the econometric

methods employed in estimation do not adequately capture the conditional nature of the

pricing model (e.g., Ferson, Kandel and Stambaugh (1987), Jaganathan and Wang (1996),

Campbell and Cochrane (2000), and Lettau and Ludvigson (2000)). Our artiÞcial economy

provides an example of how signiÞcance of Þrm characteristics as predictors of returns can

persist due to β mismeasurement.

In our simulations we use the true market portfolio. However, in the model conditional

market βs are time-varying, which can potentially lead to measurement problems. To

illustrate the impact of β mismeasurement, we apply Fama and French (1992) estimation

18Theoretically, market βs are sufficient statistics for instantaneous expected returns in our model. As
shown in section 3, even at monthly frequency, the market portfolio is almost perfectly correlated with the
stochastic discount factor.
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procedure to our simulated data. First, we form 100 portfolios by sorting on size and then on

pre-ranking βs. Table 6 provides evidence on the relation between βs and average returns.

After stocks have been sorted by size, the second-pass β sort produces little variation in

average returns. Table 8 shows results of the joint regression of returns on Þrm value and

Fama and French-β. On average, the size variable remains negative and signiÞcant, while

the average t-statistic on Fama and French-β is close to zero. The scatter plot in Panel D

of Figure 2 shows that the t-statistic on Fama and French-β is usually less than 1.96, while

the coefficient on size would often appear signiÞcant. In a univariate regression, the slope

coefficient and the t-statistic on Fama and French-β reported in Table 8 are relatively low

compared to those on the exact conditional β, as reported in Table 7.

Table 9 presents a measure of estimation noise in Fama and French-β, the average

correlation matrix of the true conditional βs, Fama and French-βs, size, and book-to-market.

For every simulation, we calculate the correlations between true β, Fama and French-β, book-

to-market, and size every month and then report the averages of the correlation coefficients

and their corresponding standard deviations across simulations. Table 9 shows that size is

highly negatively correlated with the exact conditional β. The correlation between Fama and

French-β and the true β is lower. Not surprisingly, size serves as a more accurate measure

of systematic risk than Fama and French-β and hence outperforms it in a cross-sectional

regression. Moreover, imperfect correlation between the true β and Fama and French-β in

our model lowers the coefficient and the t-statistic in the univariate regression of returns on

Fama and French-βs due to the errors-in-variables bias. This illustrates how mismeasurement

of β can have an effect on all of the cross-sectional results, bringing out Þrm characteristics

such as size and book-to-market as predictors of expected returns.
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Sensitivity Analysis

Finally, it is interesting to take some measure of the sensitivity of our Þndings to choices

of the key parameters, κ and σ², governing the cross-sectional properties of stock returns.

Tables 10 and 11 report the results of these experiments.

We consider two alternative combinations of parameters. First, we look at the effects

of increasing the cross-sectional dispersion of stock returns to 30%, which corresponds to

a value for σ² of 2.82. The results are reported in the columns labeled �High Variance� of

Tables 10 and 11. Next, we study the effects of changing the persistence of the idiosyncratic

productivity shocks by raising the value of κ to 0.4, while keeping the cross sectional variance

of returns at 25%. The �Low Persistence� columns show the results of these simulations.

Comparison between columns 2 and 3 in Table 10 and 11 shows that the inference from

the benchmark model carries, without any signiÞcant change, both to the High Variance

and the Low Persistence variants of the model, as both the signs and signiÞcance of all

the coefficients are preserved. Our main results appear to be quite robust with respect to

perturbations of main parameter values.

4.4 Business Cycle Properties

The theoretical characterization of stock prices and systematic risk, as given by (31) and

(32), highlights the fact that the properties of the cross-section of stock prices and stock

returns depend on the current state of the economy. This dependence is captured by the

economy-wide variables V at , eV at , and V ot and their market βs. Thus, our model also gives
rise to a number of predictions about the variation of the cross-section of stock prices and

returns over the business cycle. These properties of the cross-section of stock returns may

have important implications for optimal dynamic portfolio choice.
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Firm Characteristics

To help understand the relation between the cross-section of Þrm characteristics and the

business cycle, we Þrst characterize the cross-sectional dispersion of Þrm market values.

To this end, let var (h) denote the variance of the cross-sectional distribution of a Þrm-

speciÞc variable h. According to our characterization of Þrm market value (31), it follows

immediately that

var

µ
Vft
Vt

¶
=

Ã eV at
Vt

!2
var

ÃZ
Ift
(²it − 1) ki

Kt
di

!
+

µ
V at
Vt

¶2
var

ÃZ
Ift

ki
Kt
di

!
(34)

The right-hand side of (34) captures the cross-sectional dispersion of relative Þrm size.

This dispersion can be attributed to: (i) the cross-sectional variation of project-speciÞc

productivity shocks ²it as well as project-speciÞc and Þrm-speciÞc production scale, and (ii)

economy-wide variables V at /Vt and eV at /Vt.
The contribution of the Þrst source of heterogeneity, captured by var

³R
Ift ki /Ktdi

´
and var

³R
Ift(²it − 1)ki /Ktdi

´
, is clearly path-dependent in theory, since the scale of new

projects depends on the current aggregate scale of production Kt. Intuitively however this

dependence is fairly low when the average life-time of individual projects is much longer than

the average length of a typical business cycle.19

It falls then on the aggregate components, characterized by V a (xt) /V (xt) andeV a (xt) /V (xt) , to determine the cross-sectional variance in market value. Given the

properties of our environment, it is easy to see that this implies that the cross-sectional

dispersion of Þrm size is countercyclical, that is, it expands in recessions and it becomes

compressed in expansions. We can see this by looking at Panel D of Figure 1. Since the

market βs of V at and eV at are less than one, the ratios V at /Vt and eV at /Vt should be negatively
19Note that the average project life is about 1/δ = 25 years, given our calibration.
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related to the state variable xt. Figure 3 conÞrms this Þnding.

To quantify this relation, we simulate our artiÞcial economy over a 200-year period and

compute the cross-sectional standard deviation of the logarithm of Þrm values and book-to-

market ratios on a monthly basis. Since the state variable xt is not observable empirically,

we choose to capture the current state of the economy by the price-to-dividend ratio of the

aggregate stock market.20

Figure 3 presents scatter-plots of the cross-sectional dispersion of Þrm characteristics

against the logarithm of the aggregate price-dividend ratio. In both cases the relation

is clearly negative. Note that cross-sectional dispersion is not a simple function of the

state variable. This is partially due to the fact that we are using a Þnite number of Þrms

and projects in our simulation, therefore our theoretical relations hold only approximately.

Moreover, as suggested by the above theoretical argument, such relations are inherently

history-dependent.

Stock Returns

Next we study how the cross-sectional distribution of actual stock returns depends on the

state of the aggregate economy. First, we analyze the degree of dispersion of returns,

RDt =
p
var (Rft), where Rft denotes monthly returns on individual stocks. We construct

a scatter-plot of RDt versus contemporaneous values of the logarithm of the aggregate price-

dividend ratio.

According to Figure 5, our model predicts a negative contemporaneous relation between

return dispersion and the price-dividend ratio. This can be attributed to the countercyclical

nature of both aggregate return volatility, as shown in Panel A of Figure 4, and of the

dispersion in conditional market β, as shown in Panel B.

20In the model, the unconditional correlation between xt and log (Vt/Dt) is approximately 99.3%
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Since investment in our model is endogenously procyclical, an increase in aggregate

productivity shock leads to an increase in the scale of production as well as an increase

in stock prices. On the other hand, since investment is irreversible, the scale of production

cannot be easily reduced during periods of low aggregate productivity, increasing volatility

of stock prices.21

The countercyclical dispersion of conditional βs follows from the characterization of the

systematic risk of stock returns (32) and the pattern observed in Figure 1, Panel D. During

business cycle peaks, the dispersion of aggregate βs, i.e., βat ,
eβat , and βot , is relatively low,

contributing to lower dispersion of Þrm-level market βs. This effect is then reinforced by the

countercyclical behavior of dispersion of Þrm characteristics.

An interesting empirical Þnding by Stivers (2000) is the ability of return dispersion to

forecast future aggregate return volatility, even after controlling for the lagged values of

market returns. We conduct a similar experiment within our model, by simulating 1000

years of monthly stock returns and regressing absolute values of aggregate market returns

on lagged values of return dispersion and market returns. As in Stivers (2000), we allow for

different slope coefficients depending on the sign of lagged market returns. As shown in Table

12, both lagged market returns and return dispersion predict future conditional volatility of

returns. Return dispersion retains signiÞcant explanatory power even after controlling for

market returns in the regression. This is due to the fact that lagged market returns provide

only a noisy proxy for the current state of the economy, and return dispersion contains

independent information such as the current dispersion of market βs.

21Qualitatively, the impact of the irreversibility on conditional volatility of stock returns in our model is
similar to that in Kogan (2000a, 2000b).
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Conditional Size and Book-to-Market Effects

The fact that dispersion of returns on individual stocks in our model changes countercyclically

suggests that the size and book-to-market effects analyzed in subsection 4.3 are also

conditional in nature.

To capture this cyclical behavior of cross-sectional patterns in returns and its implications

for dynamic portfolio allocation, we analyze the conditional performance of alternative size-

and value-based strategies. SpeciÞcally, we simulate 1,000 years of monthly individual stock

returns and then form zero-investment portfolios by taking a long position in bottom-size-

decile stocks and a short position in top-size-decile stocks, as sorted by size, with monthly

rebalancing. We also construct alternative portfolios by doing the opposite for book-to-

market deciles. We then regress portfolio returns on the logarithm of the aggregate price-

dividend ratio.

Our model predicts an average annualized value (book-to-market) premium of 1.45% and

an average annualized size premium of 1.93%. Moreover, both strategies exhibit signiÞcant

countercyclical patterns in their expected returns. In particular, we Þnd that a 10% decline

in the price-dividend ratio below its long-run mean implies approximately a 12% and 9%

increase in expected returns on the size and book-to-market strategies, respectively, measured

as a fraction of their long-run average returns.

5 Conclusion

This paper analyzes a general equilibrium production economy with heterogeneous Þrms. In

the model, the cross-section of stock returns is explicitly related to Þrm characteristics such

as size and book-to-market. Firms differ in the share of their total market value derived

from their assets, as opposed to future growth opportunities, which is captured by their

34



characteristics. Since these two components of Þrm value have different market risk, Þrm

characteristics are closely related to market β.

To the best of our knowledge, our paper is the Þrst to explain the cross-section of stock

returns from a general equilibrium perspective. Our model demonstrates that size and book-

to-market can explain the cross-section of stock returns because they are correlated with the

true conditional β. We also provide an example of how empirically estimated β can perform

poorly relative to Þrm characteristics due to measurement errors.

Our model also gives rise to a number of additional implications for the cross-section

of returns. In this paper, we focus on the business cycle properties of returns and Þrm

characteristics. Our results appear consistent with the limited existing evidence and provide

a natural benchmark for future empirical studies.
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A Proofs and Technical Results

A.1 Proof of Proposition 2

The equilibrium conditions imply that the optimal Þrm investment policy e?(x) satisÞes the
condition

V ait = Et

·Z ∞

0
e−λs

µ
C?t
C?t+s

¶γ ³
e−δskiXt+s

´
ds

¸
= e?(x)ki (A1)

where we impose that optimal consumption decisions are used in determining the stochastic discount

factor in equilibrium. In words, optimality of Þrms� investment decisions requires that the most

expensive project undertaken has a present value of cash ßows equal to its cost.
Using the fact that ki is independent of t and equation(8), we obtain that:

e?(x)ki = (C
?
t )
γ kiEt

"Z ∞

0
e−(λ+δ)s

Xt+s¡
C?t+s

¢γ ds
#
=

= (C?t )
γ kiEt

"Z ∞

0
e−(λ+δ)s

Xt+s¡
c?t+s

¢γ
Kγ
t+s

ds

#
=

= (C?t )
γ kiEt

"Z ∞

0
e−(λ+δ)s

Xt+s¡
c?t+s

¢γ
Kγ
t exp

¡R s
0 −γδ + γZe?τ dτ

¢ ds# =
= (c?t )

γ kip (xt)

or, as in equation (20)

e?(x) = (c?t )
γ p (xt)

where the Feynman-Kac theorem implies then that p(x) satisÞes the differential equation:22

[λ+ (1− γ)δ + γZe? (x)] p (x)−A[p (x)]− exp(x)

[c?(x)]γ
= 0

and A[p (x)] is the inÞnitesimal generator of the diffusion process xt:

A[p (x)] ≡ −θx(x− x)p (x) + 1
2
σ2xp

00 (x)

In addition, optimal consumption and investment policies are also related by the resource
constraint (17). Using equations (7) and (9) this can be easily transformed into equation (21)

c? (x) =
Yt
Kt
− It
Kt

= exp (x)− 1
2
Z [e?(x)]2

thus completing the proof of the Proposition.

22See, for example, Duffie (1996) Appendix E.
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A.2 Computation of Equilibrium

We solve for the equilibrium iteratively. First, we use equation (21) to eliminate c(x) in (22). We
then approximate the resulting differential equation for p(x) with a system of linear equations upon
discretizing the state space of x:

[λ+ (1− γ)δ + γZei] pi = bA(p)i + exp(xi)h
exp (xi)− 1

2Z (ei)
2
iγ

where bA(p) is the Þnite-difference approximation to the inÞnitesimal generator A(p). We then solve
this system together with (20). We do this by using the following iterative procedure:

p
(n+1)
i = p

(n)
i +4t(n)

 exp(xi)·
exp (xi)− 1

2Z
³
e
(n)
i

´2¸γ + bA(p)(n)i −
h
λ+ (1− γ)δ + γZe(n)i

i
p
(n)
i



e
(n+1)
i = e

(n)
i −4t(n)


e
(n)
i − p(n)i

·
exp (xi)− 1

2Z
³
e
(n)
i

´2¸γ
1 + γZe

(n)
i p

(n)
i

·
exp (xi)− 1

2Z
³
e
(n)
i

´2¸γ−1


where the step-size 4t(n) is adjusted to ensure convergence.

A.3 Proof of Proposition 3

Let mt = (C
?
t )
−γ . Then Mt,t+s = e

−λsmt+s/mt and by Ito�s Lemma,

Mt,t+dt − 1 = ∂M

∂s

¯̄̄̄
s=0

dt+
∂mt

mt∂C?t
dC?t +

1

2

∂2mt

mt∂ (C?t )
2 [dC

?
t ]
2

= −λmt dt− γ

C?t
mt dC

?
t +

1

2

γ(γ + 1)

(C?t )
2 mt [dC

?
t ]
2

Thus,

E[Mt,t+dt − 1] = −λ dt− γ

C?t
E[dC?t ] +

1

2

γ(γ + 1)

(C?t )
2 [dC?t ]

2

Next, since C?t = Kt c
?(xt), another application of Ito�s Lemma yields

E[dC?t ] = c
?(xt) dKt +KtE[d c

?(xt)] = c?(xt)[Ze
? (xt)− δ]Kt dt+KtA[c? (xt)] dt

[dC?t ]
2 = K2

t

£
c? (xt)

0¤2 σ2x
where A[c? (x)] ≡ µxc? (x)0 + 1

2σ
2
xc
? (x)00. As a result,

rt = λ+ γ [Ze
? (xt)− δ] + γA[c

? (x)]

c? (xt)
− 1
2
γ(γ + 1)σ2x

µ
c? (xt)

0

c? (xt)

¶2
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Second, the value of the aggregate stock market, Vt, can be computed as

Vt = Et

·Z ∞

0
e−λs

µ
C?t
C?t+s

¶γ
C?t+s ds

¸
= (C?t )

γ Et
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¸
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γ ψ (xt)Kt

where, ψ(xt) is deÞned by

ψ(xt) ≡ Et
·Z ∞

0
e−λs

¡
c?t+s

¢1−γ
exp

µZ s

0
− (1− γ) δ + (1− γ)Ze?τ dτ

¶
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¸
which, by Feynman-Kac theorem, satisÞes the following differential equation:

λψ (x) = [c? (x)]1−γ + (1− γ) [Ze?(x)− δ]ψ (x)− θx(x− x)ψ0(x) + 1
2
σ2xψ

00(x)

A.4 Proof of Proposition 4

The present value of output from a speciÞc project i, denoted V ait , is given by

V ait = Et

·Z ∞

0
e−λs

µ
C?t
C?t+s
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¸
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where the last equality follows from mutual independence of Xt and ²it. The square-root process
(2) has the property
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which implies that
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B Computation

B.1 Discretization and Simulation

We use a Þnite number of Þrms in the numerical implementation. While the number of Þrms
is Þxed, the total number of projects in the economy is time-varying and stationary. We let
the scale of new projects be proportional to the aggregate production scale in the economy,
which ensures stationarity of the cross-sectional distribution of the number of projects per
Þrm. Thus, ktit = Kt/ϕ where the constant ϕ controls the long-run average number of
projects in the economy. On average, projects expire at the total rate δN?. The arrival
rate of new projects is Zetϕ. Therefore, ZE [et]ϕ = δN

?, where N? is the long-run average
number of projects in the economy.

In the simulation, time increment is discrete. The unit cost of a new project are spaced out

evenly over the interval [0, et]. The investment of individual Þrm at time t is computed as the

total amount the Þrm spends on its new projects at time t. The dividend paid out by a given Þrm

during period t is deÞned as the difference between the cash ßows generated by the Þrm�s existing

projects and its investment. Finally, the individual Þrm�s book value is measured as the cumulative

investment cost of the Þrm�s projects that remain active at time t.

In our simulation, we Þrst generate 200 years worth of monthly data, to allow the economy to

reach steady state. After that, we repeatedly simulate a 420-month panel data set consisting of the

cross-sectional variables (360 months of data constitute the main panel and 60 extra months are

used for pre-ranking β estimation).

B.2 Quality of the Aggregation

We appeal to the law of large number in our theoretical analysis of the economy. Discretization of

the economy introduces approximation error, the magnitude of which we evaluate by comparing the

aggregate series to their exact analytical counterparts. We simulate the corresponding quantities

for 10,080 Þrms over 420 months and record the aggregation results, the corresponding theoretical

values, and the difference between the two. In all cases, the difference between these variables

and their analytical counterparts is very close to zero.23 We thus conclude that the quality of

aggregation in our simulation is sufficiently high.

23Complete results are available upon request.
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Table 1 : Parameter Values Used in Simulation

The table lists the values of all model parameters used in simulation: the risk aversion coefficient (γ), the time

preference parameter (λ), the rate of project expiration (δ), the long run mean of the aggregate productivity

variable (X), the quality of investment opportunities (Z), the volatility (σx) and the rate of mean-reversion

(θx) of the productivity variable, the rate of mean-reversion (κ) and the volatility (σ²) of the idiosyncratic

productivity component.

Parameters γ λ δ x̄ Z σx θx κ σ²
Values 15 0.01 0.04 log(0.01) 0.50 0.08 0.275 0.51 2.10

Table 2 : Moments of Key Aggregate Variables

This table reports unconditional means and standard deviations of consumption growth (Ct+1/Ct− 1),
real interest rate (rt), equity premium (logRt− log rt), and the mean of the Sharpe ratio (E(logRt−
log rt)/σ(logRt− log rt)). The numbers reported in columns denoted (Data) are from Campbell, Lo, and

MacKinlay (1997). The numbers reported in columns denoted (Population) are population moments. These

statistics are computed based on 300,000 months of simulated data. The two columns denoted (Sample)

report the Þnite-sample properties of the corresponding statistics. We simulate 70-year long monthly data

sets, which is comparable to the sample length typically used in empirical research. Simulation is repeated

200 times and the relevant statistics are computed for every simulation. Then we report the averages across

the 200 replications. The numbers in parenthesis are standard deviations across these 200 simulations and the

two numbers in brackets are 2.5% and 97.5% percentiles of the resulting empirical distribution, respectively.

All numbers except those in the last three rows are in percentages.

Data Data Population Population Sample Sample
Mean Std Mean Std Mean Std

Ct+1/Ct − 1 1.72 3.28 0.85 3.22 0.84 3.06
(0.28) (0.26)

[0.22 1.33] [2.56 3.50]
rt 1.80 3.00 1.30 4.33 1.34 3.98

(1.30) (0.85)
[-0.63 4.23] [2.55 5.73]

logRt − log rt 6.00 18.0 6.00 14.34 5.89 15.28
(1.32) (1.73)

[2.97 8.13] [11.80 18.58]
Sharpe Ratio 0.33 0.42 0.39

(0.11)
[0.17 0.62]
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Table 3 : Book-To-Market As a Predictor of Market Returns

This table examines our model�s ability to match the empirical regularities documented by Pontiff and Schall

(1998). Panel A reports means, standard deviations, and autocorrelations of dividend yield (DIV) and book-

to-market ratio (B/M), both from historical data and from simulation output. The numbers in columns

denoted (Data) are from last two rows in Table 1 Panel A of PS. Panel B reports the properties of the

regression of value-weighted market returns, both at monthly and annual frequency, on one-period lagged

book-to-market. The columns denoted (Data) are from Table 2 of PS. In both Panels, the columns denoted

(Model) report the statistics from 200 simulations, each of which has the same length as that of the data set

used in PS. The numbers in parenthesis are standard deviations across 200 simulations and the two numbers

in brackets are 2.5th and 97.5th percentiles, respectively. All numbers, except autocorrelations and adjusted

R2s, are in percentages.

Panel A: Means, Standard Deviations, and Autocorrelations
Source mean std 1 year 2 yrs 3 yrs 4 yrs 5 yrs

DIV Data 4.267 1.37 0.60 0.36 0.26 0.23 0.25
Model 6.407 0.97 0.69 0.46 0.31 0.19 0.11

(0.321) (0.22) (0.08) (0.14) (0.17) (0.18) (0.18)
[5.789 7.084] [0.61 1.45] [0.51 0.82] [0.17 0.70] [-0.05 0.61] [-0.16 0.51] [-0.22 0.45]

B/M Data 0.668 0.23 0.68 0.43 0.23 0.08 0.00
Model 0.584 0.19 0.88 0.80 0.73 0.68 0.64

(0.052) (0.04) (0.03) (0.07) (0.09) (0.12) (0.13)
[0.495 0.707] [0.12 0.28] [0.81 0.93] [0.63 0.89] [0.48 0.86] [0.38 0.84] [0.31 0.83]

Panel B: Regressions on Book-To-Market
Data Data Model Model
slope adj.-R2 slope adj.-R2

monthly 3.02 0.01 1.75 0.00
(0.79) (0.00)

[0.68 3.65] [0.00 0.01]
annual 42.18 0.16 19.88 0.04

(10.46) (0.04)
[6.57 46.09] [0.00 0.14]
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Table 4 : Properties of Portfolios Formed on Size

At the end of June of each year t, 12 portfolios are formed on the basis of ranked values of size. Portfolios

2-9 cover corresponding deciles of the ranking variables. The bottom and top 2 portfolios (1A, 1B, 10A, and

10B) split the bottom and top deciles in half. The breakpoints for the size portfolios are based on ranked

values of size. Panel A is from Fama and French (1992) Table II, Panel A. Panel B is constructed from the

simulated panel. The average returns are the time-series averages of the monthly equal-weighted portfolio

returns, in percent. log(Vf ) and log
³
Bf
Vf

´
are the time-series averages of the monthly average values of these

variables in each portfolio. β is the time-series average of the monthly portfolio post-ranking βs.

Panel A: Historical Data
1A 1B 2 3 4 5 6 7 8 9 10A 10B

Return 1.64 1.16 1.29 1.24 1.25 1.29 1.17 1.07 1.10 0.95 0.88 0.90
β 1.44 1.44 1.39 1.34 1.33 1.24 1.22 1.16 1.08 1.02 0.95 0.90
log(Vf ) 1.98 3.18 3.63 4.10 4.50 4.89 5.30 5.73 6.24 6.82 7.39 8.44
log (Bf/Vf ) -0.01 -0.21 -0.23 -0.26 -0.32 -0.36 -0.36 -0.44 -0.40 -0.42 -0.51 -0.65

Panel B: Simulated Panel
1A 1B 2 3 4 5 6 7 8 9 10A 10B

Return 0.74 0.72 0.72 0.71 0.71 0.70 0.69 0.68 0.67 0.65 0.62 0.57
β 1.05 1.05 1.03 1.02 1.02 1.01 1.00 0.99 0.97 0.95 0.89 0.89
log(Vf ) 4.23 4.40 4.48 4.53 4.56 4.60 4.64 4.68 4.73 4.82 4.95 5.21
log (Bf/Vf ) -0.92 -0.86 -0.84 -0.84 -0.84 -0.85 -0.86 -0.89 -0.96 -1.08 -1.24 -1.50

Table 5 : Properties of Portfolios Formed on Book-to-Market

At the end of June of each year t, 12 portfolios are formed on the basis of ranked values of book-to-market,

measured by log
³
Bf
Vf

´
. The pre-ranking β�s use 5 years of monthly returns ending in June of t. Portfolios

2-9 cover deciles of the ranking variables. The bottom and top 2 portfolios (1A, 1B, 10A, and 10B) split the

bottom and top deciles in half. The breakpoints for the book-to-market portfolios are based on ranked values

of book-to-market equity. Panel A is from Fama and French (1992) Table IV, Panel A. Panel B is from the

simulated panel. The average returns are the time-series averages of the monthly equal-weighted portfolio

returns, in percent. log(Vf ) and log
³
Bf
Vf

´
are the time-series averages of the monthly average values of these

variables in each portfolio. β is the time-series average of the monthly portfolio post-ranking βs.

Panel A: Historical Data
1A 1B 2 3 4 5 6 7 8 9 10A 10B

Return 0.30 0.67 0.87 0.97 1.04 1.17 1.30 1.44 1.50 1.59 1.92 1.83
β 1.36 1.34 1.32 1.30 1.28 1.27 1.27 1.27 1.27 1.29 1.33 1.35
log(Vf ) 4.53 4.67 4.69 4.56 4.47 4.38 4.23 4.06 3.85 3.51 3.06 2.65
log (Bf/Vf ) -2.22 -1.51 -1.09 -0.75 -0.51 -0.32 -0.14 0.03 0.21 0.42 0.66 1.02

Panel B: Simulated Panel
1A 1B 2 3 4 5 6 7 8 9 10A 10B

Return 0.61 0.67 0.69 0.71 0.71 0.71 0.71 0.72 0.72 0.71 0.72 0.72
β 0.95 0.98 1.01 1.02 1.02 1.03 1.03 1.03 1.02 1.02 1.02 1.02
log(Vf ) 4.92 4.66 4.53 4.47 4.45 4.45 4.46 4.47 4.48 4.49 4.51 4.52
log (Bf/Vf ) -1.54 -1.28 -1.15 -1.04 -0.97 -0.92 -0.87 -0.82 -0.77 -0.72 -0.66 -0.58
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Table 6 : Average Returns For Portfolios Formed on Size (Down) and then β (Across)

Panel A is identical to Fama and French(1992) Table I Panel A, in which the authors report average returns

for 100 size-β portfolios using all NYSE, AMEX, and NASDAQ stocks from July 1963 to December 1990

that meet certain CRSP-COMPUSTAT data requirements. Panel B is produced using our simulated panel

data set. The portfolio-sorting procedure is identical to that used in Fama and French(1992). In particular,

portfolios are formed yearly. The breakpoints for the size deciles are determined in June of year t using all

the stocks in the panel. All the stocks are then allocated to the 10 size portfolios using the breakpoints. Each

size decile is further subdivided into 10 β portfolios using pre-ranking βs of individual stocks, estimated with

5 years of monthly returns ending in June of year t. The equal-weighted monthly returns on the resulting 100

portfolios are then calculated for July of year t to June of year t+1. The pre-ranking βs are the sum of the

slopes from a regression of monthly returns on the current and prior month�s market returns. The average

return is the time-series average of the monthly equal-weighted portfolio returns, in percent. The (ALL)

column shows statistics for equal-weighted size-decile (ME) portfolios and the (ALL) row shows statistics

for equal-weighted portfolios of the stocks in each β group.

Panel A: Average Monthly Returns (in Percent) from Fama and French(1992)
All Low-β β-2 β-3 β-4 β-5 β-6 β-7 β-8 β-9 High-β

All 1.25 1.34 1.29 1.36 1.31 1.33 1.28 1.24 1.21 1.25 1.14
Small-ME 1.52 1.71 1.57 1.79 1.61 1.50 1.50 1.37 1.63 1.50 1.42
ME-2 1.29 1.25 1.42 1.36 1.39 1.65 1.61 1.37 1.31 1.34 1.11
ME-3 1.24 1.12 1.31 1.17 1.70 1.29 1.10 1.31 1.36 1.26 0.76
ME-4 1.25 1.27 1.13 1.54 1.06 1.34 1.06 1.41 1.17 1.35 0.98
ME-5 1.29 1.34 1.42 1.39 1.48 1.42 1.18 1.13 1.27 1.18 1.08
ME-6 1.17 1.08 1.53 1.27 1.15 1.20 1.21 1.18 1.04 1.07 1.02
ME-7 1.07 0.95 1.21 1.26 1.09 1.18 1.11 1.24 0.62 1.32 0.76
ME-8 1.10 1.09 1.05 1.37 1.20 1.27 0.98 1.18 1.02 1.01 0.94
ME-9 0.95 0.98 0.88 1.02 1.14 1.07 1.23 0.94 0.82 0.88 0.59
Large-ME 0.89 1.01 0.93 1.10 0.94 0.94 0.89 1.03 0.71 0.74 0.56

Panel B: Average Monthly Returns (in Percent) from Simulated Panel
All Low-β β-2 β-3 β-4 β-5 β-6 β-7 β-8 β-9 High-β

All 0.69 0.68 0.69 0.69 0.69 0.69 0.69 0.69 0.68 0.68 0.69
Small-ME 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.73 0.74
ME-2 0.72 0.72 0.73 0.72 0.72 0.70 0.73 0.72 0.72 0.72 0.71
ME-3 0.71 0.70 0.72 0.71 0.72 0.72 0.70 0.72 0.71 0.70 0.71
ME-4 0.71 0.70 0.71 0.70 0.71 0.69 0.71 0.72 0.71 0.72 0.70
ME-5 0.70 0.71 0.69 0.71 0.70 0.71 0.71 0.70 0.70 0.71 0.71
ME-6 0.70 0.69 0.68 0.70 0.71 0.70 0.70 0.71 0.71 0.68 0.67
ME-7 0.69 0.68 0.68 0.69 0.68 0.69 0.70 0.67 0.67 0.70 0.68
ME-8 0.67 0.64 0.68 0.68 0.66 0.69 0.70 0.68 0.66 0.66 0.68
ME-9 0.65 0.65 0.67 0.65 0.64 0.64 0.68 0.64 0.62 0.62 0.67
Large-ME 0.59 0.56 0.59 0.59 0.61 0.61 0.58 0.62 0.58 0.60 0.59
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Table 7 : Exact Regressions

This table lists summary statistics for the coefficients and the t-statistics of Fama-MacBeth regressions using

exact conditional β on the simulated panel sets. The dependent variable is the realized stock return and

independent variables are market β, the logarithm of the market value (log(Vt)), and the logarithm of the

book-to-market ratio (log(Bt/Vt)). The column denoted (FF) gives the empirical results obtained by Fama

and French (1992), Table III, using the historical returns of 2,267 Þrms over 318 months. The column

denoted (BGN) gives the results obtained by Berk et al. (1999). The column denoted (Model) reports the

results from our model. The coefficients in the columns are in percentage terms. The numbers in parenthesis

are their corresponding t-statistics. Both coefficients and t-statistics are averaged across 100 simulations.

FF BGN Model
log(Vt) -0.15 -0.035 -0.139

(-2.58) (-0.956) (-2.588)
log[Bt/Vt] 0.50 − 0.079

(5.71) − (1.845)
log(Vt) -0.11 -0.093 -0.127

(-1.99) (-2.237) (-2.476)
log[Bt/Vt] 0.35 0.393 0.043

(4.44) (2.641) (1.119)
β -0.37 0.642 1.076

(-1.21) (2.273) (2.602)
log(Vt) -0.17 0.053 0.038

(-3.41) (1.001) (0.601)
β − − 0.916

− − (2.992)
log[Bt/Vt] − − 0.010

− − (0.257)
β 0.15 0.377 0.932

(0.46) (1.542) (3.052)
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Table 8 : Fama-French Regressions

This table lists summary statistics for the coefficients and the t-statistics of Fama-MacBeth regressions using

exact conditional β on the simulated panel sets. The dependent variable is the realized stock return and

independent variables are market β, the logarithm of the market value (log(Vt)), and the logarithm of the

book-to-market ratio (log(Bt/Vt)). The column denoted (FF) gives the empirical results obtained by Fama

and French (1992), Table III, using the historical returns of 2,267 Þrms over 318 months. The column

denoted (BGN) gives the results obtained by Berk et al. (1999). The column denoted (Model) reports the

results from our model. The coefficients in the columns are in percentage terms. The numbers in parenthesis

are their corresponding t-statistics. Both coefficients and t-statistics are averaged across 100 simulations.

FF BGN Model
log(Vt) -0.15 -0.035 -0.139

(-2.58) (-0.956) (-2.588)
log[Bt/Vt] 0.50 − 0.079

(5.71) − (1.845)
log(Vt) -0.11 -0.093 -0.127

(-1.99) (-2.237) (-2.476)
log[Bt/Vt] 0.35 0.393 0.043

(4.44) (2.641) (1.119)
β -0.37 0.642 0.100

(-1.21) (2.273) (0.318)
log(Vt) -0.17 0.053 -0.126

(-3.41) (1.001) (-2.091)
β 0.15 0.377 0.572

(0.46) (1.542) (2.081)

Table 9 : Cross-Sectional Correlations

We calculate the cross-sectional correlations of exact conditional β, FF-β, book-to-market, and size for every

simulated panel every month and then report the average correlations across 100 simulations. The numbers

in parentheses are cross-simulation standard deviations.

True β FF-β log[Bt/Vt] log(Vt)
True β 1 0.597 0.322 -0.764

(0.031) (0.023) (0.012)
FF-β 1 0.269 -0.761

(0.035) (0.041)
log[Bt/Vt] 1 -0.268

(0.019)
log(Vt) 1
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Table 10 : Exact Regressions � Sensitivity Analysis

This table lists summary statistics for the coefficients and the t-statistics of Fama-MacBeth regressions using

exact conditional β. The dependent variable is the realized stock return. Independent variables are market

β, size measured as the log market value (log(Vt)), and the log of book-to-market ratio (log(Bt/Vt)). The

column denoted (FF) gives the empirical results obtained by Fama and French (1992), Table III, using the

actual returns of 2,267 Þrms over 318 months. The column denoted (Benchmark) reports the regression

results for the benchmark model, the same as the last column in Table 8. The column denoted (High

Variance) reports the results from the model with perfect correlated shocks within each Þrm but with the

calibrated parameter values κ=0.51 and σ²=2.82 such that σf =30%, which is higher than the benchmark

case when σf =25%. The column denoted (Low Persistence) reports the results from the model with perfect

correlated shocks within each Þrm but with the calibrated parameter values κ=0.40 and that σf remains at

the benchmark level of 25%. However, the persistence level is now lower. The regression coefficients are in

percentage terms. The numbers in parenthesis are t-statistics.

FF Benchmark High Variance Low Persistence
log(Vt) -0.15 -0.138 -0.134 -0.133

(-2.58) (-2.583) (-2.246) (-2.669)
log[Bt/Vt] 0.50 0.079 0.084 0.085

(5.71) (1.866) (1.667) (2.205)
log(Vt) -0.11 -0.126 -0.120 -0.120

(-1.99) (-2.474) (-2.115) (-2.502)
log[Bt/Vt] 0.35 0.043 0.040 0.043

(4.44) (1.157) (0.887) (1.286)
β -0.37 1.026 1.000 0.938

(-1.21) (2.477) (2.032) (2.561)
log(Vt) -0.17 0.029 0.027 0.024

(-3.41) (0.449) (0.344) (0.402)
β − 0.892 0.891 0.831

− (2.933) (2.604) (2.992)
log[Bt/Vt] − 0.013 0.010 0.010

− (0.355) (0.204) (0.313)
β 0.15 0.913 0.914 0.846

(0.46) (3.007) (2.682) (3.086)
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Table 11 : Fama-French Regressions � Sensitivity Analysis

This table lists summary statistics for the coefficients and the t-statistics of Fama-MacBeth regressions using

Estimated Portfolio β. The dependent variable is the realized stock return. Independent variables are market

beta β, size measured as the log market value (log(Vt)), and the log of book-to-market ratio (log(Bt/Vt)).

The column denoted (FF) gives the empirical results obtained by Fama and French (1992), Table III, using

the actual returns of 2,267 Þrms over 318 months. The column denoted (Benchmark) reports the regression

results for the benchmark model, the same as the last column in Table 8. The column denoted (High

Variance) reports the results from the model with perfect correlated shocks within each Þrm but with the

calibrated parameter values κ=0.51 and σ²=2.82 such that σf =30%, which is higher than the benchmark

case when σf =25%. The column denoted (Low Persistence) reports the results from the model with perfect

correlated shocks within each Þrm but with the calibrated parameter values κ=0.40 and that σf remains at

the benchmark level of 25%. However, the persistence level is now lower. The regression coefficients are in

percentage terms. The numbers in parenthesis are t-statistics.

FF Benchmark High Variance Low Persistence
log(Vt) -0.15 -0.138 -0.134 -0.133

(-2.58) (-2.583) (-2.246) (-2.669)
log[Bt/Vt] 0.50 0.079 0.084 0.085

(5.71) (1.866) (1.667) (2.205)
log(Vt) -0.11 -0.126 -0.120 -0.120

(-1.99) (-2.474) (-2.115) (-2.502)
log[Bt/Vt] 0.35 0.043 0.040 0.043

(4.44) (1.157) (0.887) (1.286)
β -0.37 0.087 0.018 0.080

(-1.21) (0.273) (0.030) (0.269)
log(Vt) -0.17 -0.126 -0.131 -0.123

(-3.41) (-2.112) (-1.955) (-2.203)
β 0.15 0.557 0.488 0.556

(0.46) (2.031) (1.625) (2.162)
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Table 12 : Cross-Sectional Return Dispersion As a Predictor of Market Volatility

This table illustrates the intertemporal relation between market volatility and the lagged cross-sectional
return dispersion (RD). The volatility is measured by the absolute value of the market excess return.
Variations of the following model are estimated:

|Ret | = a+ b1RDt−1 + b21{Re
t−1<0}RDt−1 + c1|Ret−1|+ c21{Re

t−1<0}|Ret−1|+ ²t

where |Ret | ia the absolute value of the market excess return, RDt is the cross-sectional standard deviation
of the individual stock returns, 1{Re

t−1<0} is a dummy variable that equals one when the market excess
return is negative and zero otherwise, and ²t is the residual. All t-statistics are adjusted with respect to

heteroskedasticity and autocorrelation using Newey-West procedure. For the F -test on joint restrictions,

the p-values are in parentheses. Panel A is from Stivers (2000) who uses 400 Þrm returns from July 1962 to

December 1995. Panel B is generated as the average coefficients and statistics across repeated simulations.

Panel A: Results from Stivers (2000)
Coefficients b1 b2 c1 c2 Joint b1 = b2 = 0 Joint c1 = c2 = 0 R2(%)
Full Model 0.365 0.111 -0.157 0.221 10.08 2.69 10.45

(3.61) (1.40) (-2.94) (1.84) (0.000) (0.069)
Panel B: Simulation Results

Coefficients b1 b2 c1 c2 Joint b1 = b2 = 0 Joint c1 = c2 = 0 R2(%)
Full Model 1.198 -0.008 -0.083 0.172 6.206 2.038 4.10

(3.09) (-0.138) (-1.203) (1.487) (0.038) (0.282)
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Figure 1 : Some Key Variables in Competitive Equilibrium

Panel A shows ē? or equivalently V a/K in (26). Panel B shows the ratio of total market value to aggregate

capital stock, V/K, and Panel C shows the ratio of aggregate value of assets-in-place to total market value,

V a/V . Panel D shows three aggragate level βs, βa (solid line), eβa (dashed-dotted line), and βo (dashed
line), deÞned in (33).
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Figure 2 : Size and Book-to-Market in Cross-sectional Regressions

Panel A shows the histogram of t-statistic of univariate regressions of returns on size and Panel B shows the

histogram of t-statistic of univariate regressions of returns on book-to-market across 100 simulations. Panel

C reports the scatter plot of t-statistics on size and book-to-market and Panel D reports the scatter plot of

t-statistics on size and Fama-French (FF) β in a joint regression of returns.
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Figure 3 : Business Cycle Properties: I

This Figure illustrates the business cycle properties of some aggregate and cross-sectional variables. Panel A

plots V a/V (the solid line) and �V a/V (the dashed line) as functions of x. Panel B plots log price-dividend

ratio as a function of log(X). Panel C plots the size (log(Vf )) dispersion as a function of log(V/D) and

Panel D plots the dispersion of book-to-market (log(Bf/Vf )) as a function of log(V/D).

Panel A: V a/V (solid) and �V a/V (dash) Panel B: log(V/D)
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Figure 4 : Business Cycle Properties: II

Panel A: Market Volatility Panel B: Beta Dispersion
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Figure 5 : Return Dispersion over Business Cycle

Panel A: Return Dispersion
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