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We propose using the price range in the estimation of stochastic volatility models. We show
theoretically, numerically, and empirically that the range is not only a highly efficient volatility
proxy, but also that it is approximately Gaussian and robust to microstructure noise. The good
properties of the range imply that range-based Gaussian quasi-maximum likelihood estimation
produces simple and highly efficient estimates of stochastic volatility models and extractions of
latent volatility series. We use our method to examine the dynamics of daily exchange rate
volatility and discover that traditional one-factor models are inadequate for describing
simultaneously the high- and low-frequency dynamics of volatility. Instead, the evidence points
strongly toward two-factor models with one highly persistent factor and one quickly mean-
reverting factor.
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Volatility is a central concept in finance, whether in asset pricing, portfolio choice, or risk
management. Not long ago, theoretical models routinely assumed constant volatility (e.g.,
Merton, 1969; Black and Scholes, 1973). Today, however, we widely acknowledge that
volatility is both time-varying and predictable (e.g., Andersen and Bollerslev, 1997), and
stochastic volatility models are commonplace. Discrete- and continuous-time stochastic
volatility models are extensively used in theoretical finance, empirical finance, and financial
econometrics, both in academe and industry (e.g., Hull and White, 1987; Heston, 1993; Bates,
1996; Ghysels, Harvey, and Renault, 1996; Jarrow, 1998; Duffie, Pan, and Singleton, 2000).

Unfortunately, the estimation of stochastic volatility models has proved quite difficult.
The Gaussian quasi-maximum likelihood estimation (QMLE) approach of Ruiz (1994) and
Harvey, Ruiz, and Shephard (1994), which initially seemed appealing because of its simplicity,
fell by the wayside as it became apparent that stochastic volatility models are highly non-
Gaussian. The problem is that standard volatility proxies such as log absolute or squared returns
are contaminated by highly non-Gaussian measurement error (e.g., Andersen and Sorensen,
1997), which produces highly inefficient Gaussian quasi-maximum likelihood estimators and
similarly inefficient inferences about latent volatility.

The literature therefore turned toward alternative estimators. In particular, attention
turned to variants of the generalized method of moments (GMM) that use model moments
obtained either through simulations (e.g., Duffie and Singleton, 1993) or analytically (e.g.,
Singleton, 1997). Those estimators, however, can also be highly inefficient, depending on the
choice of moment conditions and weighting matrix. Although recent GMM work has tried to

maximize efficiency through the optimal choice of moment conditions, empirical implementation



remains challenging (e.g., Gallant, Hsieh, and Tauchen, 1997; Gallant, Hsu, and Tauchen, 1999;
Chernov and Ghysels, 2000).

Another literature focuses on likelihood-based estimation and evaluates the likelihood
function either through numerical integration (e.g., Fridman and Harris, 1998) or Monte Carlo
integration using either importance sampling (e.g., Danielsson, 1994; Sandmann and Koopman,
1998) or Markov Chain methods (e.g., Jacquier, Polson, and Rossi, 1994; Kim, Shephard, and
Chib, 1998). In principle, both numerical and Monte Carlo integration can deliver highly
accurate approximations to the exact maximum likelihood estimator, but practical considerations
have impeded their widespread use. In particular, the methods are computationally intensive and
rely on assumptions that are hard to check in practice, such as the accuracy of numerical integrals
and the convergence of simulated Markov chains to their steady state.

Motivated both by the popularity and appeal of stochastic volatility models and by the
difficulties associated with estimating them, we propose a simple yet highly efficient estimation
method based on the range. The range, defined as the difference between the highest and lowest
log security price over a fixed sampling interval, is a volatility proxy with a long and colorful
history in finance (e.g., Garman and Klass, 1980; Parkinson, 1980; Beckers, 1983; Ball and
Torous 1984; Rogers and Satchell, 1991; Anderson and Bollerslev, 1998; Yang and Zhang,
2000). Data on the range are widely available for individual stocks and exchange-traded futures
contracts (including stock indices, Treasury securities, commodities, and currencies), not only at
present but also over long historical spans. In fact, the range has been reported for many years in

major business newspapers through so-called “candlestick plots,” showing the daily high, low,



and close. The range is also a popular technical indicator (e.g., Edwards and Magee, 1997).
Curiously, however, the range has been neglected in the recent stochastic volatility literature.'

The methodological contribution of the paper unfolds in Sections I through III. We set
the stage for the paper in Section I, in which we describe a general class of continuous-time
stochastic volatility models and the particular discretization that we exploit. In Section II we use
both analytical and numerical methods to motivate and establish the remarkable near-normality
of the log range. We also note that the log range is a highly efficient volatility measure, a fact
known at least since Parkinson (1980) and recently formalized by Andersen and Bollerslev
(1998). The approximate normality and high efficiency of the log range suggest its use in
Gaussian quasi-maximum likelihood estimation. We pursue this idea in the Monte Carlo study
of Section III, which reveals not only huge efficiency gains from our approach relative to
traditional methods, but also robustness to microstructure noise.

In Section IV we use the new range-based methods to perform a detailed empirical
analysis of volatility dynamics in five major U.S. dollar exchange rates, which delivers sharp new
insights. In particular, we find that two-factor models are clearly required to explain both the
autocorrelation of volatility and the volatility of volatility, a result that is consistent with both
economic theories and empirical studies of volatility dynamics in other markets. Finally, in

Section V we summarize, conclude, and sketch directions for future research.

! Schwert (1990) and Gallant, Hsu, and Tauchen (1999) also make use of the range, albeit with a very
different estimator. Although they are aware of the efficiency of the range as a volatility measure, they are unaware
of and do not exploit its log-normality, just as in the earlier Garman-Klass-Parkinson literature.
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I. Stochastic Volatility

A. Continuous-Time Stochastic Volatility Model

In a generic continuous-time stochastic volatility model, the price S of a security evolves as a
diffusion with instantaneous drift p and volatility o. Both the drift and volatility depend on a

latent state variable v, which itself evolves as a diffusion. Formally, we write:

s, = ws,,v)dt + o(S,,v)dWy,

dv, = o(S,,v)dt + B(S,,v)dw, M
where W, and W, are two Wiener processes with correlation dW¢ dW, =6(S,v,)dt. The
functions o and B govern the drift and volatility of the state variable process.

The stochastic volatility literature contains numerous variations on the generic model (1).

In this paper we work with a first-order parameterization, which is rich enough to be interesting,

yet simple enough to permit a streamlined exposition:

ds,
? = H.dt + thWSl‘

‘ ()
dinc, = o(Inc - Inc,)dt + BdW,,.

The simple stochastic volatility model (2) emerges from the general model (1) when

o(S,,v)=0S,, c,=exp(v,), a(S,,v)=a(lnc-v,), B(S,,v) =P, and 6(S,,v)=0. In this

t’
parameterization, the log volatility Inc of returns dS/S is the latent state variable. It evolves as a

mean-reverting Ornstein-Uhlenbeck process, with mean Inc and mean reversion parameter o>0.

The instantaneous drift of returns and the instantaneous drift and standard deviation of log



volatility are assumed constant, and the return innovations are assumed independent of the log
volatility innovations.?

B. Discretization of the Continuous-Time Model

In practice, we have to rely on N discrete-time price realizations to draw inference about the
continuous-time model. Thus, we divide the sample period [0,7] into N intervals, each of
length H=T/N, corresponding to the discrete-time data.” We then replace the continuous
volatility dynamics with a piecewise-constant process, where within each interval 7, that is

between times iH and (i+1)H, for i=1,2,...,N, volatility is assumed constant at 6,=c,,,, but

iH?
from one interval to the next, volatility is stochastic.

This piecewise-constant approximation implies that within each interval i the security

price evolves as a geometric Brownian motion:

ds
T’ = pdt + o,dW,, for iH <t < (i+1)H, 3)

t

and, by Ito’s lemma, that the log security price s,=InS, evolves as a Brownian motion:

for iH <t < (i+1)H. 4)

12

ds, = (u—%GfH)dt + 0, dW,

? We maintain the zero correlation assumption for tractability. It rules out the leverage effect in volatilities
(e.g., Schwert, 1989; Nelson, 1991; Engle and Ng, 1993; Jacquier, Polson, and Rossi, 1999). Our estimator can,
however, be extended to allow for non-zero correlation along the lines of Harvey and Shephard (1996); see
Alizadeh (1998).

? The assumption of equally-spaced observations is made for notational convenience and can be relaxed.
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Log volatility varies from one interval to the next according to its Ornstein-Uhlenbeck
dynamics. For small interval lengths A, the conditional distribution of log volatility is
approximately:*’

Ino,,, ,|lnc,, ~ N[lna + py(Inc, -Inc), p°H | Q)
In words, the discretized log volatility follows a Gaussian first-order autoregressive process with
mean Inc, autoregressive parameter p,, = 1-o/, and variance B°H.
II. Econometric Approach
A. Measuring Volatility
Even the discretized stochastic volatility model is difficult to estimate because the sample path of
the asset price within each interval is not fully observed. If it were observed, we could infer the
diffusion coefficients o, with arbitrary precision.’ In practice, we are forced to use discretely
observed statistics of the sample paths, such as the absolute or squared returns over each interval,
to draw inferences about the discretized log volatilities and their dynamics.

To formalize this idea, consider a volatility proxy that is a statistic f(s ) of the

iH, (i +1)

continuous sample path s, p of the log asset price between times iH and (i+1)H. If the

+D)H

statistic is homogeneous in some power y of volatility, then we can write it as:

f(SiH,(i +1)H) = G?Hf(si;(i +1)H), (6)

* This conditional distribution is an approximation for small H. The exact conditional distribution of
Inc,.,,, is normal with mean Inc+exp(-oH)(Inc ,,~Inc) and variance B2[1-exp(-20H)]/(2). The approximation
follows from Taylor series expansions of exp(-oH) and exp(-2aH) around H=0.

> A number of stochastic volatility papers postulate the discretized volatility dynamics (5) from the onset
(e.g., Jacquier, Polson, and Rossi, 1999). We could do the same without loss of generality, except that we need the

continuous-time price dynamics (3) and (4) to derive the properties of the volatility proxies in Section II.

? See, for example, Merton (1980).



which implies that:

In |f(SiH(i+1)H)| = YlnGiH + In |f(si;1,(i+1)H)| s (7)

where s, ;. )i denotes the continuous sample path of a standardized diffusion generated by the

same innovations as s, . but with volatility ,,=1.

AH>
Equation (7) makes clear that the statistic f(*) is a noisy volatility proxy: the first term is

proportional to log volatility and the second term is a measurement error. Other things the same,

the measurement error reduces the informational content of the volatility proxy. The more

variable the measurement error, the less precise are our inferences about log volatility and its

dynamics.

B. Linear State Space Representation

Following Ruiz (1994) and Harvey, Ruiz, and Shephard (1994), we recognize that equations (5)

and (7) form a linear state space system:

Inc, ,, = Inc + py(Inc,-Inc) + B\/FIV(M)H (8a)

In ‘f(S,H(,-+1)H)‘ = ylno,, + E ‘f(si;(i+1)H)‘:| * Eim (8b)

The transition equation (8a) follows from the conditional distribution of log volatility. It
describes the dynamics of the unobserved log volatility. The transition errors v are i.i.d. N[0,1],
which follows from equation (5). The measurement equation (8b) makes precise the way in
which the log volatility proxy In | f(-)| is related to the true log volatility Inc,,,; it follows from
equation (7) with the projection In | ()| = E[In|f(-)]] + €. The expectation of \f(sl.;ﬁ el

depends on s, the functional form of f(-), and interval length H, but it is by construction



independent of the log volatility Inc,,,. The projection errors & have a zero mean but are not
necessarily Gaussian.

C. Quasi-Maximum Likelihood Estimation

If the measurement equation errors are Gaussian, exact maximum likelihood estimation of the

stochastic volatility model is straightforward. One simply maximizes the Gaussian log

likelihood:
1 & 1 e
lngﬁ(ln \f(so’H)\,ln |f(SH2H)|,...,h'1 |f(S(N71)H,NH)|;e) =C - Ezlnnl - EZ T]_’ (9)
i:I ‘:1 i
where the one-step ahead forecast errors:
e, = In ‘f(s(l'fj)f]yiH)‘ - Ei—[[ln ‘f(s(ifI)H,iH)‘ ]’ (10)
and their conditional variances:
n, = Var,_e], (11)

are readily evaluated using the Kalman filter.* When the measurement equation errors are not
Gaussian, maximum likelihood estimation is more involved because a tidy closed-form
expression for the likelihood, such as equation (9), does not exist in general. Therefore, the
evaluation and maximization of the likelihood is much more challenging. Related, in the non-
Gaussian case the prediction errors e; produced by the Kalman filter are merely linear projection
errors, not conditional expectation errors, because in non-Gaussian settings the linear projections
produced by the Kalman filter do not in general coincide with the conditional expectations.
Nevertheless, maximizing the Gaussian likelihood function (9) can yield consistent

parameter estimates even when the projection errors are not Gaussian. This approach is called

*Fora good overview of the Kalman filter, see Hamilton (1994).
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Gaussian quasi-maximum likelihood estimation (QMLE). The benefits of Gaussian quasi-
maximum likelihood estimation are its simplicity and consistency. Its drawbacks are that the
estimates are inefficient, even asymptotically, and more importantly that its small-sample
properties are suspect.’ Intuitively, the further the distribution of the projection errors € is from
normality, the more severe are the problems with Gaussian quasi-maximum likelihood
estimation. Of course, the distribution of the projection errors is application-specific, which
means that the quality of the Gaussian quasi-maximum likelihood approach can ultimately only
be assessed through Monte Carlo experiments.
D. Properties of Log Absolute or Squared Returns as Volatility Proxies
The stochastic volatility literature primarily uses absolute or squared returns as volatility
proxies.® The continuously compounded return over the ith interval is just the difference
between the log asset prices at times (i+1)H and iH. Thus, the traditional log volatility proxy is:
In S| = YIS~ Sl = YN0+ YISy~ 5, (12)
where y=1 or y=2, depending on whether we consider absolute or squared returns. Because vy
only scales the volatility proxy, and hence does not affect the distribution of the measurement
equation errors, we focus exclusively, but without loss of generality, on absolute returns. That is,

throughout the remainder of the paper we set y=1.

> Note also that, quite apart from whether the model parameters are efficiently estimated, in non-Gaussian
state-space models the Kalman filter generally produces inefficient filtered and smoothed extractions of the latent
state vector. In particular, in non-Gaussian stochastic volatility applications the Kalman filter delivers volatility
inferences that are merely best linear unbiased, not minimum variance unbiased. The two sets of inferred volatilities
can diverge greatly even when the true parameters of the model are known.

®Fora good survey, see Ghysels, Harvey, and Renault (1996).
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The second equality of equation (12) formally requires that the log security price is a
martingale, so that it is homogeneous in volatility. However, this assumption is not too troubling
because over sufficiently small sampling intervals H, such as a day or even a week, the price drift
of most securities is negligible. In fact, from a statistical perspective, the assumption is likely to
be helpful. By using a drift estimator that always takes the value zero we inject only a small bias,
to the extent that the true drift differs slightly from zero, but we greatly reduce the variance
relative to other estimators.

It is by now well known that the conditional distribution of log absolute or squared
returns is far from Gaussian. Jacquier, Polson, and Rossi (1994), Andersen and Sorensen (1997),
and Kim, Shephard, and Chib (1998) argue that, as a result, Gaussian quasi-maximum likelihood
estimation with these traditional volatility proxies is highly inefficient and often severely biased
in finite samples. Indeed, the relevant parts of our own Monte Carlo results, which we present in
the next section, confirm their conclusions.

To deepen our theoretical understanding of why the conditional normality assumption for
log absolute or squared returns fails, we examine the distribution of the log absolute value of a
driftless Brownian motion x, with origin x,=0 and constant diffusion coefficient 6, over an
interval of finite length t.” Karatzas and Shreve (1991) characterize the distribution of the
absolute value of a Brownian motion. A simple transformation of their result reveals that the

distribution of the log absolute value is:

Prob[ln\xf\ Edy] -2 (p( e )dy, (13)

oyt o/t

" The assumption x,=0 allows us to interpret x_directly as a continuously compounded return.
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where ¢ denotes a standard normal density.

From this distribution, we can compute the mean, standard deviation, skewness, and
kurtosis of In|x_|, which we present in the first row of Table I. Notice that different values of ¢
and 1 affect only the mean, not the variance, skewness, or kurtosis of log absolute returns. In
other words, those parameters determine the location, but not the shape, of the distribution.
Without loss of generality then, we graph in Figure 1a the distribution of In|x_| with both ¢ and
T set to one. For comparison, we also plot a Gaussian density with matching mean and variance.

Table I and Figure 1a clearly demonstrate that the distribution of log absolute returns is
far from Gaussian. The skewness and kurtosis of In |x_|are -1.5 and 6.9, in sharp contrast to the
values of 0.0 and 3.0 corresponding to normality. The intuition of this result is that both positive
and negative returns close to zero, observations that are “inliers” of the return distribution,
become large negative outliers of the distribution of log absolute returns.®
E. Properties of the Log Range as a Volatility Proxy
Now consider using the range as volatility proxy, where the range over the ith interval is defined
as the difference between the security’s highest and lowest log price between times iH and

(i+1)H. Formally, consider use of the following log volatility proxy:

¥ The use of log absolute returns is even more problematic in empirical work on high-frequency data,
because returns can be exactly zero with positive probability, due to the discreteness in prices. In that case, which
arises not infrequently in practice, the logarithm of absolute returns is undefined and the quasi-maximum likelihood
approach fails. Various ad hoc procedures, such as adding a small constant to the absolute returns, have been
devised to skirt this problem (e.g., Breidt and Carriquiry, 1996).
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In|f(sy i) = In SUp S T o
H (i +D)H iH<t<(i+1)H ' iH<t<(i+1)H '

(14)

*

Inc

+ In sup st* - inf s,
iH<t<(i+DH iH<t<(i+DH

iH
For the second equality we require again that the log price is homogeneous in volatility (i.e., that
it is a martingale).” We drop the absolute value signs because the range cannot be negative.

The log range is superior as a volatility proxy to log absolute or squared returns for two
reasons. First, it is more efficient, in the sense that the variance of the measurement errors
associated with the log range is far less than the variance of the measurement errors associated
with log absolute or squared returns. Second — and this is a central insight of this paper — the log
range is very well approximated as Gaussian. On both counts, the log range is an attractive
volatility proxy for Gaussian quasi-maximum likelihood estimation of stochastic volatility
models.

Let us first discuss in more detail the superior efficiency of the log range. The intuition is
simple: on days when the security price fluctuates substantially throughout the day but, by
chance, the closing price is close to the opening price, the absolute or squared return indicates

low volatility despite the large intraday price fluctuations. The range, in contrast, reflects the

intraday price fluctuations and therefore indicates correctly that the volatility is high.

? Instead of assuming a zero drift, we can perform a change of variable from the Brownian motion to a
Brownian bridge (e.g., Doob, 1949; Feller, 1951). The distribution of the log range of the Brownian bridge is
nearly identical to that of the log range of the corresponding Brownian motion. However, the Brownian bridge is by
construction independent of the drift. See Alizadeh (1998) for details.
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The mathematics underlying the superior efficiency of the log range is less simple, but
nevertheless standard. Specifically, consider again a driftless Brownian motion x, with origin
x,=0 and constant diffusion coefficient o, over an interval of finite length 7. Feller (1951)
derives the distribution of the range, and a simple transformation of his result reveals that the

distribution of the log range is:

Prob

In| sup x, - 1nfx € dy
O<t<t O<t<t

82( 1)“"} (’“}) (15)
O

Although this distribution is expressed as an infinite series, it is straightforward to compute its
moments after suitably truncating the infinite sum. In the second row of Table I we report the
mean and standard deviation. The superior efficiency of the log range, relative to the log
absolute return, emerges clearly. Both proxies move one-for-one with log volatility on average,
but the standard deviation of the log range is approximately one fourth the standard deviation of
the log absolute return.

The efficiency of the range as a volatility measure has been appreciated implicitly for
decades in the business press, which routinely reports high and low prices and sometimes
displays high-low-close or candlestick plots. Range-based volatility estimation has also featured
in the academic literature at least since Parkinson (1980), who proposes and rigorously analyzes
the use of the range for estimating volatility in a constant volatility setting. Since then,

Parkinson’s estimator has been improved in several ways, including combining the range with
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opening and closing prices (e.g., Garman and Klass, 1980; Beckers, 1983; Ball and Torous,
1984; Rogers and Satchell, 1991; Yang and Zhang, 2000)."

Let us now discuss in more detail the approximate normality of the log range, or
equivalently, the approximate log-normality of the range. This aspect of the range is not
particularly intuitive, and it is certainly not widely appreciated. Nevertheless, it is a fact. The
second row of Table I shows that the skewness and kurtosis of the log range are 0.17 and 2.80,
respectively. These values are very close to the corresponding values of zero and three for a
normal random variable, and they represent a sharp contrast to the earlier-presented skewness
and kurtosis of the log absolute return. In Figure 1b we plot the density of the log range (15),
with ¢ and t set to one, together with a Gaussian density with matching mean and variance,
which makes visually clear the remarkable near-normality of the distribution of the log range.
F. Robustness of the Range to Market Microstructure Noise
Thus far we have emphasized the desirable efficiency and normality properties of the range.
Here we investigate a third and intriguing property of the range, which is of independent interest
and which links nicely to a central literature in high-frequency finance: robustness to certain
types of market microstructure effects.'® To illustrate the robustness of the range to market

microstructure effects, we compare the properties of the range to those of realized volatility,

10 Although including the opening and closing prices can improve the estimation of volatility in principle,
the gains are not necessarily realized in practice. In particular, Brown (1990) argues against the inclusion of the
opening and closing prices on the grounds that they are highly influenced by microstructure effects, such as the lack
of trading at the close or “market on the close” orders that have a disproportionate effect on the closing price.
Furthermore, experimentation by Alizadeh (1998) reveals little theoretical efficiency gain from combining the range
with the opening and closing prices. Thus, we do not pursue the idea in this paper.

S Fora good empirically-oriented overview of market microstructure effects in security prices and returns,
see Hasbrouck (1996).
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another highly efficient volatility proxy, in the presence of bid-ask bounce, a well-known and
important source of market microstructure noise. Both the daily range and daily realized
volatility use intraday data, but they process this information in very different ways and
ultimately exhibit different degrees of robustness to market microstructure noise.

The concept of realized volatility has been used productively by French, Schwert, and
Stambaugh (1987), Schwert (1989), and Andersen, Bollerslev, Diebold, and Ebens (2001), and
is formally justified by Andersen, Bollerslev, Diebold, and Labys (2001). Realized volatility is
nothing more than the sum of squared high-frequency returns over a given sampling period. For
example, we calculate a daily realized volatility series by summing over each day a sequence of
squared intraday returns (e.g., five-minute returns). If log security prices evolve as a diffusion
and if returns are sampled sufficiently frequently, then the realized volatility is a more efficient
volatility proxy than the range, because it becomes arbitrarily close to the true volatility as the
sampling frequency increases. In particular, Andersen and Bollerslev (1998) show that, under
such ideal conditions, the daily range is about as efficient a volatility proxy as the realized
volatility based on returns sampled every four hours.

However, market microstructure can a have large impact on observed high-frequency
prices and returns. For example, in the presence of a bid-ask spread, the observed price is a noisy
version of the true price because it effectively equals the true price plus or minus half the spread,
depending on whether a trade is buyer- or seller-initiated. Because transactions tend to bounce
between buys and sells, the induced bid-ask bounce in observed prices increases the measured

volatility of high-frequency returns.
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In particular, bid-ask bounce increases the volatility of high-frequency returns and hence
the average size of squared high-frequency returns. By summing the squared high-frequency
returns, each of which is biased upward, the realized volatility contains a cumulated and therefore
potentially large bias, which becomes more severe as returns are sampled more frequently. The
range, in contrast, is less likely to be seriously contaminated by bid-ask bounce. The observed
daily maximum is likely to be at the ask and hence “too high” by half the spread, whereas the
observed minimum is likely to be at the bid and hence “too low” by half the spread. On average,
then, the range is inflated only by the average spread, which is small in liquid markets.'” The
upshot is obvious: despite the fact that the range is a less efficient volatility proxy than realized
volatility under ideal conditions, it may nevertheless prove superior in real-world situations in
which market microstructure biases contaminate high-frequency prices and returns.

Let us illustrate matters with a simple example in the spirit of Hasbrouck (1999).

Suppose that the true log price s, evolves as a random walk, s,=s,_, +u,, with u t~NID[O,0i] .

1
Let the bid price be B, =floor[S, - ticksize], and let the ask price be 4, =ceiling[S, + ticksize],
where S =exp(s,) is the true price. We then take the observed price as Sfbs =B,q,+4,(1-q,),
where ¢, =Bernoulli[1/2]. Hence the observed price fluctuates randomly between the bid and the
ask.'®

In Figure 2, we show a typical one-day sample path of 289 simulated five-minute true and

observed prices. Following Hasbrouck (1999), we use §,=$25, ticksize=$1/16, and ¢,=0.0011,

7 Moreover, one could readily perform a bias correction by subtracting the average spread from the range.
We thank Joel Hasbrouck for this observation.

'8 We could go even further and induce negative autocorrelation in ¢, by taking ¢, =Bernoulli[1/2+0] if
g,.,=0 and g,=Bernoulli[1/2-0 ] if ¢, =1, for 0,,0,>0. Doing so, however, would only strengthen the results.
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which implies an annualized thirty percent return volatility (standard deviation), assuming 250
trading days per year. The population daily return volatility is 1.87 percent (i.e., 100* 288(55),
and the realized volatility calculated using the true returns is a close 1.81 percent. In contrast, the
realized volatility based on the much noisier observed returns is an inflated 6.70 percent! The
market microstructure noise in the observed returns also affects the range-based volatility
estimator insofar as the observed daily maximum and minimum differ from their true
counterparts, resulting in an observed range that is greater than the true range, but the effect is
comparatively minor relative to the overall daily movement of the true and observed prices. For
the true and observed price paths on this “day,” the range-based volatility estimates are 1.54
percent and 1.79 percent, respectively."
III. Monte Carlo Analysis
The diffusion theory sketched above shows that the log range is a less noisy volatility proxy than
log absolute or squared returns and that the distribution of the log range is approximately
Gaussian, in stark contrast to the skewed and leptokurtic distribution of the traditional return-
based volatility proxies. Both of these findings suggest that Gaussian quasi-maximum likelihood
estimation with the log range as volatility proxy is highly efficient, not only relative to quasi-
maximum likelihood estimation with the traditional return based volatility proxies, but also
relative to exact maximum likelihood estimation.

We now use a Monte Carlo experiment to compare quasi-maximum likelihood estimation
with the log range as volatility proxy to both quasi- and exact maximum likelihood estimation

with the log absolute return as volatility proxy. In particular, we generate 5000 samples of

' We use Parkinson’s (1980) volatility estimator of 0.361 times the squared range.
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7=1000 or 500 daily observations of the two volatility proxies, where each daily price path is
generated by N=1000, 100, or 50 intraday price moves. For every sample, we then perform
quasi-maximum likelihood estimation of the stochastic volatility model (2) with either the log
range or the log absolute return as volatility proxy. For comparison, we also perform exact
maximum likelihood estimation with the log absolute return, where we evaluate the likelihood
function using the simulation approach of Sandmann and Koopman (1998).

We simulate the daily price paths from the following Euler approximation of the
discretized stochastic volatility model (4)-(5):

S,=8,_ +GiH8st\/E

(16)

Inc,,, ,=Inc+p,(Inc,, -Inc) + Bsw.\/l_{,

for iH <t < (i+1)H, where ¢, and ¢ ; are independent N[0, 1] innovations. The discrete time
increment Az, a small fraction of the discrete sampling interval H, approximates the continuous
time df. We set H=1/257and At=H/N, which corresponds to daily data generated by N trades
per day, and we set 0=3.855, Ino=-2.5, and $=0.75, which implies a volatility process with a
daily autocorrelation of p,,=0.985, an annualized average volatility of 8.51 percent, and a
coefficient of variation of 0.28.*° These volatility dynamics are broadly consistent with our
subsequent empirical results for five major currencies as well as with the literature on stochastic

volatility.

20 Following Jacquier, Polson, and Rossi (1994) we interpret the volatility of log volatility parameter 3
through the coefficient of variation, (Var[c,J/E 2 [Gt])l/ 2,
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A. Parameter Estimates

Tables 11 and III summarize the sampling distributions of the three estimators of p,,, B, and Inc
for 7=1000 and 7=500 daily observations of the volatility proxies, respectively. Each table is
made up of three parts corresponding to N=1000, N=100, and N=50 trades per day.

Consider first the case 7=1000 and N=1000 in Table IIA. Using the absolute return as
volatility proxy, the average quasi-maximum likelihood estimate of p,, is 0.95, compared to an
average estimate of 0.98 using the range as volatility proxy and the true value of 0.985. Even
more strikingly, the root mean squared errors (RMSE) of the estimates are 0.14 and 0.01,
respectively. Clearly, using the range instead of the absolute return as volatility proxy produces
quasi-maximum likelihood estimates that are both less biased and less variable.

The performance difference between the two quasi-maximum likelihood estimators is
even more impressive for the volatility of log volatility parameter, 3. The average estimate using
the log absolute return is 1.08 with an RMSE of 1.18. In contrast, the average estimate using the
log range is 0.8, close to the true value of 0.75, with an RMSE of only 0.12.

In contrast, the results for the mean log volatility Inc are basically identical. Intuitively,
this is because the average level of volatility is directly identified by the unconditional mean of
the volatility proxies. The estimates of the average level of volatility are thus relatively
insensitive to the statistical properties of the measurement equation errors.

In Figure 3, we illustrate graphically the very different finite-sample properties of the two
quasi-maximum likelihood estimators. The first three plots of the first two rows show the
sampling distributions of the parameter estimates using the log absolute return and the log range

as volatility proxy, respectively. The drastic efficiency gains from using the range are
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immediately apparent.”'

Furthermore, the sampling distributions of the estimates of p and f for
the log absolute return are severely skewed, which implies that the usual Gaussian inferences
based on asymptotic standard errors are not trustworthy. In contrast, the distributions of the
corresponding estimates using the log range are very close to Gaussian.

The results thus far indicate that quasi-maximum likelihood estimation with the log range
as volatility proxy is far more efficient than with the log absolute return as volatility proxy. This
efficiency gain stems from the range being a much less noisy volatility measure as well as from
the log range being approximately Gaussian. To separate these two effects, we now compare the
range-based quasi-maximum likelihood estimator to the exact maximum likelihood estimator for
absolute returns. If the only benefit from using the range is its approximate normality, the results
for the range-based quasi-maximum likelihood estimator should be very similar to the results for
the exact maximum likelihood estimator for absolute returns. If, however, the information about
intraday volatility revealed by the range but not by absolute or squared returns is useful in the
estimation of the model, the sampling properties of the range-based quasi-maximum likelihood
estimator could well dominate the sampling properties of the exact maximum likelihood
estimator for absolute returns.”

Comparing the second and third panel of Table IIA reveals that much but not all of the

efficiency gain from using the log range as volatility proxy is attributed to the approximate

normality of the log range (see also the second and third rows of Figure 3 for a graphical

2! Notice the different scales of the second plot in each row. The horizontal axes of the second plot in the
second and third rows correspond to the region between the two vertical lines in the second plot of the first row.

2 Alternatively, we could compare the properties of the range-based quasi-maximum likelihood estimator

to those of the exact maximum likelihood estimator for the range. However, given the near-normality of the log
range, the difference in performance between these two estimators would be minimal.
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representation of the results). In terms of bias, the range-based quasi-maximum likelihood
estimator and the exact maximum likelihood estimator for absolute returns perform equally well.
However, the RMSEs of the range-based estimates of p and 3 are significantly smaller than for
the corresponding exact maximum likelihood estimates (0.012 versus 0.016 for p and 0.122
versus 0.207 for ). This demonstrates that the information about intraday volatility contained in
the range is a crucial ingredient to the success of the range-based estimator.

Because the return-based estimators do not utilize intraday data, their sampling
distributions are independent of the number of trades per day N. The properties of the range-
based estimator, in contrast, depend on the level of trading activity. In particular, when there are
only a few trades per day, the observed range can be far from the true range of the underlying
price process and, as a result, range-based volatility estimates can substantially deviate from the
true volatility. To examine the robustness of the range-based estimator to less frequent trading,
we show in parts B and C of Table II results for N=100 and N=50 trades per day, respectively.

The general pattern is that as N decreases the range-based estimators of both p and f3
become more biased (p is downward biased while  is upward biased) and less precise. More
specifically, with 100 trades per day the performance of the range-based quasi-maximum
likelihood estimator is comparable to that of the exact maximum likelihood estimator with log
absolute returns. Even with only 50 trades per day, it still dominates the quasi-maximum
likelihood estimator with log absolute returns, in terms of both bias and RMSE. Further
experimentation with the trading frequency reveals that range-based estimation is inferior to
returns-based estimation only when there are less than 10 trades per day. (Detailed results are

available upon request).
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Table III presents the Monte Carlo results for 7=500 daily observations of the volatility
proxy. It appears from the table that the range-based estimator is less sensitive to the reduction in
the sample size than the return-based estimators. The RMSEs of the range-based estimators of p
and [ increase by 97 percent (from 0.012 to 0.023) and 48 percent (from 0.122 to 0.180),
respectively. The corresponding percentage increases in the RMSEs for the quasi- and exact
maximum likelihood estimators using absolute returns are significantly larger, with 102 and 225
percent for p and 83 and 96 percent for .

Interestingly, increasing the sample size to 7=5000 or even 10000 does not dramatically
improve the performance of the quasi-maximum likelihood estimator with log absolute returns.
(Detailed results are available upon request). In particular, the estimator of [ remains severely
biased and extremely imprecise.

Finally, we repeat the Monte Carlo analysis allowing the volatility to vary throughout the
day to verify that the discretization (4)-(5) of the continuous time model (2) does not
substantially affect the estimator. The results (available upon request) are virtually identical to
those in tables II and III, which confirms that, at least for the parameterization of the model we
consider, the effect of the discretization is negligible.

B. Volatility Extraction
Once the model has been estimated, the Kalman filter can be used to extract the latent stochastic
volatility series.”” The Kalman filter produces linear projections, which coincide with

conditional expectations only under the assumption of joint normality. Therefore, the extraction

 The Kalman filter produces one-step ahead forecasts E[Inc,|/,_,], concurrent estimates E[Inc|/], and
smoothed extractions E[Inc |/;]. Throughout this section, we use the smoothed extractions, but we checked that
our results are not changed significantly if instead we use one-step ahead forecasts.
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of the latent volatilities is best unbiased when using a Gaussian volatility proxy, whereas the
extraction is merely best /inear unbiased when using a non-Gaussian volatility proxy. This
implies that there are two reasons to expect the volatility extraction with the log range to
dominate the extraction with the log absolute return. First, the range-based parameter estimates
are more accurate. Second, even for the same parameter values, the efficiency of the range as a
volatility proxy and the approximate normality of the log range yield more accurate volatility
extractions.

With this in mind, we summarize in the middle and right sections of tables II and III the
sampling distributions of the mean extraction error E[ &, -c,] and the root mean squared (RMS)
extraction error E[ (6, - Gt)2]1/ 2. Because the volatility can take on quite different values in a
given sample as well as across samples, we also report the distributions of the mean percent
extraction error E[ (6, -6 )/c,] and the RMS percent extraction error E[((6, - Gt)/Gt)Z]I/ 2. Inthe
middle section of each table, we compute the volatility extractions using the estimated
parameters. In the right sections we instead feed the Kalman filter the true parameters.

Not surprisingly, among the quasi-maximum likelihood estimators the range-based
estimator is superior. Consider, for example, the results for 7=1000 and N=1000 in Table IIA.
Both volatility extractions appear unbiased, but the range-based extraction is much more
efficient. With estimated parameters, the log absolute return produces a RMS extraction error of
1.8 percent or 22 percent relative to the level of volatility (the average level of volatility is 8.2
percent). Using the log range as volatility proxy, the RMS extraction error is only 1.2 percent or
14 percent in relative terms. With the true parameters, both estimators become more accurate,

but their relative performance remains the same.
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Comparing the range-based quasi-maximum likelihood extractions to the results for the
exact maximum likelihood estimator for absolute returns, we again notice that the information
about intraday volatility contained in the range is important. The exact maximum likelihood
estimates are based on a non-Gaussian filter, meaning that the extractions are actually conditional
expectations and not just linear projections produced by the Kalman filter. Therefore, the
differences between the range-based quasi-maximum likelihood extractions with known
parameters and the corresponding exact maximum likelihood results for absolute returns are not
induced by problems with the estimator (such as sub-optimal filtering) but are simply due to the
superior informational efficiency of the range.

Comparing the range-based extraction errors across the three parts of Table II reveals an
interesting pattern. With estimated parameters, the distribution of the RMS extraction error is
relatively unaffected by the number of trades per day. With the true parameters, in contrast, the
average RMS extraction error increases from one percent with N=1000 trades per day to 1.25
percent with N=50 trades per day.

Finally, putting Tables II and III side-by-side shows that as the number of observations
decreases and, as a result, the small sample biases of the parameter estimates become more
severe, the extraction errors with estimated parameters obviously increase.”* Because, as we
discovered above, the return-based parameters estimates are more sensitive to the smaller sample
size, the return-based volatility extractions also become relatively more noisy.

C. Robustness of the Range to Market Microstructure Noise

% Notice that the volatility extractions with the true parameters do not depend on the sample size 7.
Therefore, the extraction errors with known parameters are omitted from Table II1.
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In Section IL.F above, we conjectured that the range-based volatility estimator is robust to
microstructure noise, in contrast to other popular volatility estimators such as realized volatility,
and we substantiated this conjecture with an example based on a single day of simulated prices.
We now perform a more systematic analysis based on repeated samples. Using the same
parameter values as before, we simulate one day of five-minute true and observed prices (289
observations), and we calculate both realized and range-based daily volatility estimates, based
upon both true and observed prices, using a variety of underlying sampling frequencies (5-
minute, 10-minute, 20-minute, 40-minute, 1 hour and 20 minutes, 3 hour, 6 hour, and 12 hour).
We repeat this 100,000 times, and we report means, standard deviations and root mean squared
errors of the corresponding distributions in Table IV. For subsequent reference, recall that our
design implies that the population volatility (standard deviation) of true daily returns is in fact
fixed at 1.87 percent, which implies an annualized volatility of thirty percent.

First consider estimating volatility using the true underlying price series. In this case,
realized volatility is unbiased regardless of the return interval, and its standard deviation
decreases monotonically toward zero as the return interval shrinks. In contrast, range-based
volatility is biased downward, regardless of the return interval, because the range on a discrete
grid can only be less than the range of the true continuous sample path. As the sampling interval
shrinks, this bias decreases monotonically. Interestingly, however, the standard deviation of the
range-based estimator increases monotonically as the sampling interval shrinks. By the time we
arrive at 5-minute sampling, the efficiency (RMSE) of range-based volatility is between that of

realized volatility computed using 3-hour and 6-hour returns, which accords with the results of

Andersen and Bollerslev (1998).
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All told, realized volatility clearly dominates range-based volatility when based on the
true underlying price. The efficiency of realized volatility is superior regardless of the sampling
interval, and the efficiency of realized volatility relative to that of range-based volatility increases
without bound as the return interval shrinks.

Now we consider the effects of the market microstructure noise. The bid-ask bounce
biases realized volatility upward, and the bias increases monotonically as the underlying return
interval shrinks. To make matters worse, the variability of realized volatility stays high as the
return interval shrinks, because the benefits of using of high-frequency data are eventually
overpowered by the harmful effects of market microstructure noise. All of these effects are
distilled in the RMSE of realized volatility, which spikes sharply upward as the return interval
shrinks.

Bid-ask bounce affects range-based volatility differently. In particular, the discreteness
associated with long return intervals biases range-based volatility downward slightly, but the bid-
ask bounce tends to bias it upward slightly. The two biases trade off against each other, often
partly canceling, typically producing very good performance of range-based volatility in the
presence of microstructure noise.

In summary, the tables are clearly turned when calculations are based on observed rather
than true underlying returns: range-based volatility performs admirably relative to realized
volatility, and the efficiency of range-based volatility relative to that of realized volatility
increases as the return interval shrinks. We highlight certain aspects of the results in Figures 4
and 5, which show the distributions of realized volatility and range-based volatility for the true

and observed price paths, for sampling intervals of 5, 20, and 80 minutes. In the case of true
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prices, the performance of range-based volatility is approximately unchanged as we move from
80-minute to 5-minute sampling, whereas the performance of realized volatility improves
sharply. In the case of observed prices, the performance of range-based volatility deteriorates
moderately as we move from 80-minute to 5-minute sampling, whereas the performance of
realized volatility deteriorates sharply.

IV. Exchange Rate Volatility Dynamics

The nature of exchange rate volatility dynamics has important implications for currency
derivative pricing, portfolio allocation, and risk management. Here we use our simple range-
based maximum likelihood approach to shed light on the nature of those volatility dynamics,
with an eye toward the number and interpretation of the latent factors that drive volatility. We
estimate stochastic volatility models for the U.S. dollar price of five actively-traded currencies:
the British pound, Canadian dollar, Deutsche Mark, Japanese yen, and Swiss franc. We construct
the volatility proxies from daily high, low, and closing futures prices. Before we turn to the
estimates of the model, we first tabulate some statistics describing the salient aspects of the
volatility proxies.

A. Data

We use daily high, low, and closing (3pm EST) prices of currency futures contracts traded on the
International Monetary Market, a subsidiary of the Chicago Mercantile Exchange, from January
1978 through December 1998 (5284 observations).” A currency futures contract represents
delivery of the currency on the second Wednesday of the following March, June, September, or

December. Each day there are at least three futures contracts with different quarterly delivery

25 The data source is FAME Information Services.
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dates traded on each currency. We use futures prices from the front-month contract, which is the
contract closest to delivery and with at least ten days to delivery. This front-month contract is
typically the most actively traded futures contract.

There are several advantages to using futures, as opposed to spot, exchange rate data.
First, all futures prices (including the daily high and low) result from open outcry, so that all
transactions are open to the market and orders are filled at the best price. Currency spot market
trading, in contrast, is based on bilateral negotiation between banks, and any one particular
executed price is not necessarily representative of the overall market conditions. Second, the
closing, or “settlement,” futures price is based on the best sentiment of the market at the time of
close (3pm EST, after which spot market trading declines) and is widely scrutinized, because it is
used for marking to market all account balances. Therefore, the futures closing price is likely to
be a very accurate measure of the “true” market price at that time. Finally, futures returns are the
actual returns from investing in a foreign currency, whereas spot “returns” are less meaningful,
unless one accounts for the interest rate differential between the two countries.

A potential disadvantage of using futures prices is that the futures volatility may differ
from the spot volatility and, furthermore, that the difference between the two volatilities may
depend on the time-to-maturity of the contract. For exchange rates, the cash-and-carry
relationship F, =S exp(Ar, 1), where F, denotes the t-period futures price and Ar;” is the 1-
period interest rate differential between the two countries, implies the approximate daily variance
decomposition Var[f; ;ZH—ﬁfH] = Varls,,, =51 + T Var[Ar ;zH—ArifH] , where we ignore the
covariance between the daily spot returns and the daily changes in the interest rate differential.

Suppose the annualized spot volatility is ten percent and the annualized volatility of changes in
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the interest rate differential is four percent, which are both realistic numbers. Then for a 45 day
contract (the average maturity in our sample), the difference between the annualized futures and
spot volatility is less than one basis point. We conclude therefore that at least for relatively
short-dated contracts the difference between the futures and spot volatility is in theory negligible.

To verify this conclusion empirically, we perform two robustness checks. First, we use
five-minute samples of the spot rate for the British pound, Deutsche Mark, Japanese yen, and
Swiss franc from December 3, 1986 to December 1, 1998 to construct a series of spot ranges, and
we regress the futures ranges on the corresponding spot ranges and a constant. All of the
resulting regression slope estimates are very close to one (within 0.05), all intercept estimates are
very close to zero (within 0.05), and all R’s are high (above 0.85). Second, we estimate
stochastic volatility models where we add polynomial terms in the time-to-maturity of the futures
contract as exogenous regressors in the measurement equation to capture any biases induced by
rolling the futures every three months to the current front-month contract. The coefficients on
these time-to-maturity terms are both statistically and economically negligible. (Detailed results
are available upon request).

In light of the above arguments in favor of using futures prices to calculate daily ranges
and returns, we do so from this point onward. In Table V we present statistics summarizing the
distributions of log absolute returns and the log range for each of the five currencies. The
superior efficiency of the log range as a volatility proxy emerges not only in terms of its smaller
standard deviation stressed thus far, but also in terms of its time-series dynamics. In particular,

the large and slowly-decaying autocorrelations of the log range clearly reveal strong volatility
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persistence for each exchange rate, in sharp contrast to the spuriously small autocorrelations of
log absolute returns, whose measurement error masks the persistence in volatility.

B. One-Factor Stochastic Volatility Model Estimates and Residual Diagnostics

The left panel of Table VI reports estimates of the traditional one-factor stochastic volatility
model (4)-(5) for the five currencies. The absolute return-based estimates closely accord with
other estimates of this model in the literature. The range-based estimates, in contrast, are at odds
with both the return-based estimates and the results in the literature. In particular, the estimated
volatility persistence parameter p ranges from 0.62 to 0.85, with four of the five estimates below
0.75, compared to typical estimates of 0.80 to 0.99. Equally puzzling at first sight, the range-
based estimate of the volatility of log volatility parameter f is about three to five times larger
than the corresponding absolute return-based estimates (implying coefficients of variation that
range from 0.40 to 0.96 vs. from 0.20 to 0.42).

Because the differences between the return- and range-based estimates of p and p are
exactly opposite in sign to the relative small-sample biases of the quasi-maximum likelihood
estimators in our Monte Carlo analysis (in small samples the absolute return based estimate of p
is more downward biased and that of B is more upward biased), we speculate that these
differences are not attributed to a problem with the estimators, but are rather due to the two
estimators reacting differently to model misspecification.

To assess model misspecification more carefully, in Table VII we present diagnostics for

the measurement equation residuals, £, for the one-factor model.” Indeed, the residual

2% The measurement equation residuals diagnostics are the same statistics computed earlier for the observed
log absolute returns and log ranges.
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diagnostics for the range-based estimator indicate serious problems with the one-factor model
specification. While the residuals are clearly less persistent than the log range itself (compare the
autocorrelations in Tables VII and V), substantial residual serial correlation remains. Effectively,
the one-factor stochastic volatility model adequately accounts for the volatility correlation at lag
one, but not at longer lags, which results in a humped-shaped residual autocorrelation function.
The misspecification of the one-factor model can be seen in another way. To obtain the
estimates in Table VI, we set the standard deviation of the measurement equation disturbances to
0.29, following the results in Table I. Alternatively, however, we can estimate the standard
deviation of the measurement errors along with the other parameters, and when we do so, we
typically obtain a much larger estimate of p. Consider, for example, the British pound. When we
set the standard deviation of the measurement errors to 0.29, we obtain p=0.66, as recorded in
Table VI, but when we estimate the standard deviation of the measurement errors along with the
other parameters, we obtain p=0.97 and an estimate of the standard deviation of 0.42. The
difference in maximized log likelihoods, moreover, is greater than two hundred. Hence, the
measurement errors of the one-factor model are much more variable than expected if the one-
factor model were correct — a standard deviation of 0.42 vs. 0.29 — which again suggests that the

one-factor model is not correct.”’

¥ In fact, the sum of the unconditional variance of the measurement errors and the unconditional variance
of the latent log volatility process exceeds the unconditional variance of the log range (from Table V), which
suggests a negative correlation between log volatility and the measurement errors. In theory, of course, the
measurement errors are uncorrelated with log volatility.
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C. Two-Factor Stochastic Volatility Model Estimates and Residual Diagnostics
In light of the severe deficiencies of the one-factor stochastic volatility model revealed by our
range-based estimation and analysis, we move to a two-factor model, with transition equation:

Inc .

i = Ino + Inc,

aHT Inc, (i 1)H> (17)

where

Ino, .y = Pryno, y + BVHY, (.1
(18)

Ine, ;. ;= Py NG, + Bz‘/ﬁ"z, (i -1)H?

and where the volatility component innovations v, and v, are contemporaneously and serially

independent N[0,1] variates. Notice that the means of Ing, p and Ino, p are not

+D)H +DH

separately identifiable. Hence we include a mean Inc in (17), but not in the individual volatility
factor equations (18).

When we estimate the two-factor stochastic volatility model, the results of which we
report in the right panel of Table VI, we find that one factor has highly persistent dynamics and
the other has transient dynamics. Each factor is responsible for approximately half the long-run
(unconditional) variance of log volatility, but the transient factor is responsible for much more of
the short-run variance.”® This result is intuitively appealing and in line with properties of
volatilities estimated using very different procedures, such as the realized volatilities of
Andersen, Bollerslev, Diebold, and Labys (2001), which seem to display slow persistent

movement, with high-frequency noise superimposed. The residual diagnostics for the two-factor

30 By independence of the volatility factors, the unconditional variance of volatility is the sum of the
unconditional variances of the two volatility factors. The unconditional variance of each volatility factor, in turn, is
its respective innovation variance divided by one minus its squared serial correlation coefficient. The unconditional
variances of the volatility factors tend to be roughly equal, although for different reasons. The high serial
correlation underlying the first volatility factor is responsible for relatively more of its unconditional variation than
is its innovation variance, whereas the situation for the second volatility factor is just the opposite.
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models, reported in Table VIII, indicate that the two-factor models are adequate. In particular,
the measurement equation residuals for the two-factor model are serially uncorrelated, in sharp
contrast to those for the one-factor model.

An interesting feature of our results is that the estimated one-factor volatility persistence
parameter is an average of the estimated persistence parameters from the two-factor model. To
understand this finding, consider the two-factor stochastic volatility model (17)-(18). Suppose,
however, that although the two-factor model is true, we fit a one-factor model, which captures

only the sum of the components, Inc instead of the individual components, Inc, (DH and

(i +1)H?

1n02 p Then the first autocovariance of Inc p

D" i 18

Cov[lncﬁﬂ)H, lncl.H] = Cov[lncj,(l.+1)H+lnc52’(i+1)H, lncj’l.H+lnc52,iH]

B COV[IHGL (i +1)H> lnGI,iH] i COV[IHGZ,(i +D)H> lnGZ,iH] (19)

pIVar[lnc;]’(M)H} + pZVar[lnozy(M)H],

where of course the variances are unconditional. Hence the first autocorrelation of Inc ;- in

the one-factor model is simply:
Cov[lncs(l.ﬂ)H, lnoiH] pIVar[lncL(M)H} + pZVar[lnozy(M)H}

p = Var[lnG(iﬂ)H} ) Var[lncs]’(iﬂ)H] + Var[lncl(l_ﬂ)H} ’ (20)

which is a relative variance weighted average of the first autocorrelations of the two factors.
This is approximately true in the estimates. The fact that we can successfully predict the
outcome of estimating a one-factor model on the basis of our estimates of the two-factor model is
further evidence in favor of the two-factor model.

The range-based estimates of the one- and two-factor models are also consistent in terms

of implied unconditional variances of log volatility. Given the independence of Inc, and Ino,,
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the unconditional variance of Inc in the one-factor model should be equal to the sum of the
variances of the two factors in the two-factor model. This is approximately true.

D. Empirical Normality of the Log Range

Thus far we have used measurement equation residual autocorrelations to ascertain that one-
factor volatility structure is inadequate, and that a two-factor structure appears adequate. The
residual autocorrelations from range-based estimation clearly reveal the defects of the one- factor
model, whereas the residual autocorrelations from estimation based on absolute returns do not.
The superior ability to discriminate among models when using the range-based volatility proxy
stems from its high efficiency.

We have argued throughout this paper, however, that range-based volatility estimation is
powerful and convenient not only because of the efficiency of the range, but also because of the
near-normality of the range. Hence it is of great interest to check whether our earlier theoretical
and Monte Carlo assertions on normality of the log range are verified empirically. Importantly,
they are. Both the moments reported in Tables VII and VIII and the histograms and quantile-
quantile (QQ) plots in Figure 6 provide striking verification of the theory: the measurement
equation residuals for the two-factor models are virtually indistinguishable from Gaussian when
we use the range-based volatility proxy.’’ When volatility is proxied by absolute returns, in
contrast, the measurement equation residuals are highly skewed and leptokurtic.

The empirical normality of the log range is important, because it means that the Gaussian

quasi-likelihood that we maximize is in fact not a quasi-likelihood, but the true likelihood.

! A Gaussian QQ plot is simply a graph of the quantiles of a standardized distribution against the
corresponding quantiles of a N[0,1] distribution. Hence if a variable is normally distributed, its Gaussian QQ plot is
a straight line with a unit slope, which enables simple visual assessment of closeness to normality.

-34-



Hence the large parameter estimation efficiency gains achievable are realized in practice.
Ultimately, both the efficiency and normality of the log range are important, and they interact in
valuable ways. Operating in tandem, the two enable us to quickly detect and discard inadequate
specifications, to settle upon a preferred specification, and to obtain easily-computed yet highly
precise estimates maximum-likelihood estimates of its underlying parameters.

E. What Do We Learn from the Range, and Why Two Factors?

We have emphasized repeatedly that efficiency and normality of the range lead to simple yet
highly efficient methods of estimating stochastic volatility models. Here we delve more deeply
into the reasons for the success of range-based procedures. We address the question posed in the
subsection title in two parts. First we consider what we learn from the range quite generally,
regardless of the specific application. Second, we consider what we learn from the range
specifically about exchange rate volatility dynamics.

The key to the general success of range-based estimation in both model specification and
estimation is its superior information about the volatility of volatility, relative to traditional
proxies such as absolute returns. A volatility model must explain two things: the autocorrelation
of volatility, and the volatility of volatility. Because it is difficult to assess the volatility of
volatility using traditional proxies, due to the overwhelming amount of measurement error,
estimation using traditional proxies emphasizes explaining the autocorrelation of volatility and
hence tends to produce models that appear well-specified in terms of small residual
autocorrelations. Range-based volatility proxies, on the other hand, are contaminated by much
less measurement error, and range-based estimation therefore appropriately attempts to explain

not only the autocorrelation of volatility, but also the volatility of volatility.
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In the context of our investigation of exchange rate volatility dynamics, the range-based
analysis points sharply toward a two-factor volatility specification. It is natural to ask why the
range-based analysis clearly reveals misspecification of the one-factor model, as revealed by the
obvious patterns in the residual autocorrelations, whereas analysis based on absolute returns
seems to indicate adequacy of the one-factor model. The explanation is that the large amount of
noise in the absolute returns masks the presence of the second, less persistent, factor. In fact,
upon closer inspection we notice that both sets of one-factor models are equally misspecified, but
that the misspecification is revealed along different dimensions. The misspecification of the
range-based models is immediately apparent from the autocorrelations of the residuals. The
misspecification of the models based on absolute returns, in contrast, is more subtle. It appears
as a violation of the adding-up constraint, Var[In|f,|]=Var[Inc,]+Var[¢ ].

Both estimators choose the parameters Inc, p,,, and B to match two features of the data:
the autocorrelation of the volatility proxy and the difference between the unconditional variance
of the volatility proxy and the corresponding unconditional variance of the measurement errors
from Table I. The relative importance of those features, however, differs across the volatility
proxies. Specifically, the latent volatility dynamics explain less than ten percent of the
unconditional variance of log absolute returns, but more than seventy percent of the variance of
the log range, which is just another manifestation of the informational efficiency of the log range.
The quasi-maximum likelihood estimator using log absolute returns therefore chooses parameters
that explain entirely the autocorrelation of the volatility proxy, but leave unexplained half of the
variance of log absolute returns that is attributed to the volatility dynamics (which is very little

relative to the total variance of log absolute returns). In contrast, the estimator using the log
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range chooses parameters that explain all of the variance of the volatility proxy, but leave a
significant amount of autocorrelation (about half) unexplained.

It is interesting to note that the misspecification of the one-factor model is also readily
revealed in a different way, by simulating data from a two-factor model and then estimating a
one-factor model. The estimates of the one-factor model based on absolute returns appear
reasonable, whereas the range-based estimates appear bizarre. In particular, just as in the real
data, the range-based estimate of p is too low and that of B is too high.** Furthermore, again just
as in the real data, the residuals from the one-factor model based on absolute returns appear
white, whereas the residuals from range-based estimation are highly serially correlated.

The upshot: range-based exchange rate volatility analysis makes clear that two volatility
factors (one with persistent dynamics and one with transient dynamics) are needed to explain
exchange rate volatility, as one-factor models are incapable of simultaneously fitting the
persistence of volatility and the volatility of volatility. Situations of partially persistent and
partially transient dynamics arise in many areas, and perhaps it is not surprising — and even
economically appealing — that our two-factor exchange rate volatility dynamics are of that form,
consistent with the idea that some news is easily interpretable by the market and hence readily
and unambiguously incorporated into prices, while other news is not.

F. Links to Long Memory: Structural vs. Reduced-Form Approaches
Interestingly, our two-factor volatility structure is related to the repeated findings of long-
memory fractionally-integrated volatility dynamics, as reported prominently for example in

Andersen and Bollerslev (1997). In particular, as emphasized by Barndorff-Nielsen and

32 Detailed results are available upon request.
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Shephard (2000, 2001), fractionally-integrated dynamics can be built up by superimposing
Ornstein- Uhlenbeck or AR(1) processes. It seems clear, however, that multi-factor volatility
“structures” are more readily interpreted and learned from than their fractionaly-integrated
“reduced forms.” For example, in the previous section it emerged that one of the factors was
highly persistent and responsible for the autocorrelation in volatility, while the other was much
less persistent and responsible for the volatility of volatility.”> This interpretability stands in
sharp contrast to models of long-memory fractionally-integrated volatility dynamics, which often
appears mysterious and non-intuitive.

The two-factor component structure may also produce volatility forecasts superior to
those from fractionally-integrated reduced-form specifications. Suppose, for example, that
volatility today is very high. The forecast of tomorrow’s volatility produced by our two-factor
model would then differ markedly depending on why today’s volatility is high. If, for example,
today’s persistent volatility component is high and the transient component is not, then the
forecast would be for continued high volatility. If, on the other hand, today’s transient volatility
component is high and the persistent volatility component is not, then the forecast would be for
quick reversion of volatility to its mean. The ability to disentangle these effects is lost when one

uses a reduced-form representation, which effectively attributes average persistence to all shocks.

3 Multiple exchange rate volatility factors are also predicted by modern financial
economic theory, as for example in Bansal (1997).
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V. Concluding Remarks and Directions for Future Research

The range has a long history in finance, from the stock charts in business newspapers to
highbrow academics. We have clarified the properties of the log range as a volatility proxy, and
we have used it to implement simple yet highly efficient maximum likelihood estimation of
stochastic volatility models, facilitating our detailed examination of the volatility dynamics of
five major U.S. dollar exchange rates. Our empirical results are sharp and surprising, strongly
indicating two volatility factors operative in each exchange rate, with one reverting slowly to its
mean and controlling volatility persistence, and one reverting quickly to its mean and controlling
the volatility of volatility.

Our empirical work is built on a foundation of both theoretical and Monte Carlo analysis
establishing that the log range is nearly Gaussian, much less noisy than popular alternative
volatility proxies such as log absolute or squared returns, and robust to bid-ask bounce and
related microstructure noise, unlike competitors such as realized volatility. Those properties of
the range translate into a simple range-based Gaussian quasi-maximum likelihood estimator that
is highly efficient, in small as well as large samples, and widely applicable for studying
stochastic volatility dynamics in financial asset returns.

We look forward to pursuing future research in several directions. On the empirical side,
more work is needed on the number, nature and determinants of the factors underlying stochastic
volatility. It is striking that only a few years ago the possibility of multiple volatility factors was
rarely, if ever, entertained, as one-factor models appeared adequate. Presently, however, it
appears that a consensus is emerging for two-factor stochastic volatility dynamics, whether in

equity or foreign exchange, despite the different natures of the assets and the different market
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microstructures. Much of the most relevant research has been done very recently; particularly
noteworthy contributions include Jacquier, Polson, and Rossi (1994,1999), Gallant, Hsu, and
Tauchen (1999), Jacquier and Polson (2000), and Chernov, Gallant, Ghysels, and Tauchen
(2001), Barndorff-Nielsen and Shephard (2000, 2001) and Bollerslev and Zhou (2001). Lo and
Wang (2000) provide interesting related evidence, finding two factors in equity trading volume.
Further empirical advances will require further financial econometric developments,
including multivariate extensions of range-based volatility proxies and more thorough
comparison of the range to another highly efficient volatility proxy that has received recent
attention, namely realized volatility constructed from high-frequency intraday data. We have
noted, for example, the intriguing robustness of the range to some common sources of
microstructure noise, but a more extensive exploration and comparison of range-based volatility
to realized volatility is needed, particularly as ongoing work such as that summarized in
Andersen, Bollerslev, Diebold, and Labys (2000) develops methods of making realized volatility

robust to microstructure noise.
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Table I
Moments of Alternative Volatility Proxies

We consider a driftless Brownian motion x, with origin x,=0 and constant diffusion coefficient o,
over an interval of finite length t. The table shows the first four moments of two volatility
proxies: the log absolute return Infx | and the log range In[sup x,-infx |.

Volatility Proxy Mean Standard Skewness Kurtosis
Deviation
Log Absolute Return -0.64 + 2Int + Ino 1.11 -1.53 6.93

Log Range 0.43 +2Int + Inc 0.29 0.17 2.80




Table 11
Sampling Distributions of Estimators of the Parameters
of the Stochastic Volatility Model, with 7=1000 Observations

We report statistics summarizing the sampling distribution of three estimators of the parameters
and the latent volatilities of the stochastic volatility model:

Se = Se + O e VAL
Inc, ,, = Inc + py(lnc,, - Inc) + Be, VH,

iH<t< (i+1)H,where ¢, and ¢, are independent N[0,1] variates. We set //=1/257and At=H/N,
which corresponds to using daily data generated by N trades per day. We consider N=1000 (A),
N=100 (B), and N=50 (C). We set a=3.855, Ino=-2.5 and $=0.75, which implies a volatility
process with daily autocorrelation of p,,=0.985, an annualized average volatility of 8.51 percent,
and a coefficient of variation of 0.28. “QML with Absolute Return” denotes Gaussian quasi-
maximum likelihood estimation with the log absolute return as volatility proxy. “QML with
Range” denotes Gaussian quasi-maximum likelihood estimation with the log range as volatility
proxy. “Exact ML with Absolute Return” denotes a simulation-based estimator that maximizes
the exact likelihood of log absolute returns. All results are based on 5000 replications.



Table I1 A
Sampling Distribution with 7=1000 Observations and N=1000 Trades

Parameter Estimates Prediction Errors with Estimated Parameters Prediction Errors with True Parameters
p=0.985 P=0.750 Inc=-2.5 Mean RMS Mean % RMS % Mean RMS Mean % RMS %
QML with Absolute Return
Mean 0.946 1.078 -2.498 -0.0023  0.0185 0.026 0.218 -0.0014  0.0167 0.023 0.197
RMSE  0.142 1.175 0.101 0.0084  0.0053 0.096 0.046 0.0035 0.0040 0.039 0.025
5% 0.848 0.354 -2.661 -0.0172  0.0132 -0.118 0.164 -0.0075  0.0113 -0.039 0.160
25% 0.964 0.629 -2.564 -0.0073  0.0149 -0.042 0.186 -0.0034  0.0139 -0.004 0.179
50% 0.978 0.830 -2.498 -0.0013  0.0168 0.023 0.207 -0.0012  0.0160 0.021 0.194
75% 0.987 1.111 -2.429 0.0037  0.0205 0.088 0.237 0.0010  0.0188 0.048 0.211
95% 0.994 2.243 -2.331 0.0093 0.0292 0.192 0.306 0.0039  0.0242 0.090 0.239
QML with Range
Mean 0.979 0.800 -2.533 -0.0012  0.0118 0.013 0.140 -0.0027  0.0097 -0.021 0.109
RMSE  0.012 0.122 0.099 0.0079  0.0041 0.094 0.039 0.0013 0.0021 0.011 0.006
5% 0.961 0.633 -2.682 -0.0155  0.0084 -0.130 0.104 -0.0051 0.0067 -0.039 0.099
25% 0.974 0.715 -2.593 -0.0059  0.0093 -0.053 0.113 -0.0035  0.0082 -0.028 0.104
50% 0.981 0.790 -2.534 -0.0003  0.0104 0.008 0.127 -0.0026  0.0094 -0.021 0.109
75% 0.985 0.873 -2.470 0.0045  0.0127 0.072 0.153 -0.0017  0.0109 -0.013 0.112
95% 0.990 0.988 -2.384 0.0097  0.0200 0.172 0.222 -0.0008  0.0133 -0.002 0.118
Exact ML with Absolute Return
Mean 0.978 0.791 -2.504 -0.0020  0.0139 0.011 0.159 -0.0011 0.0114 0.003 0.131
RMSE  0.016 0.207 0.096 0.0083  0.0046 0.094 0.038 0.0020  0.0021 0.023 0.012
5% 0.953 0.491 -2.660 -0.0167  0.0098 -0.134 0.120 -0.0044  0.0083 -0.035 0.113
25% 0.973 0.649 -2.563 -0.0067  0.0110 -0.055 0.135 -0.0024  0.0101 -0.012 0.122
50% 0.981 0.777 -2.505 -0.0009  0.0124 0.007 0.149 -0.0010  0.0112 0.003 0.130
75% 0.987 0915 -2.438 0.0041 0.0152 0.072 0.174 0.0002  0.0127 0.019 0.140

95% 0.992 1.145 -2.346 0.0095  0.0230 0.170 0.238 0.0020  0.0152 0.040 0.152




Table II B
Sampling Distribution with 7=1000 Observations and N=100 Trades

Parameter Estimates Prediction Errors with Estimated Parameters Prediction Errors with True Parameters
p=0.985 P=0.750 Inc=-2.5 Mean RMS Mean% RMS % Mean RMS Mean % RMS %
QML with Range
Mean 0.974 0.889 -2.593 -0.0012  0.0116 0.015 0.146 -0.0066  0.0112 -0.073 0.127
RMSE  0.016 0.195 0.134 0.0079  0.0043 0.097 0.041 0.0021 0.0027 0.012 0.007
5% 0.951 0.676 -2.749 -0.0160  0.0082  -0.138 0.107 -0.0103  0.0074 -0.092 0.115
25% 0.969 0.794 -2.657 -0.0054  0.0091 -0.052 0.118 -0.0078  0.0093 -0.081 0.122
50% 0.977 0.879 -2.594 -0.0001 0.0101 0.011 0.130 -0.0063  0.0109 -0.073 0.127
75% 0.983 0.975 -2.529 0.0044  0.0125 0.077 0.162 -0.0051  0.0127 -0.065 0.132
95% 0.989 1.125 -2.434 0.0097  0.0206 0.185 0.236 -0.0037  0.0165 -0.052 0.139
Table II C

Sampling Distribution with 7=1000 Observations and N=50 Trades

Parameter Estimates Prediction Errors with Estimated Parameters Prediction Errors with True Parameters

p=0.985 p=0.750 Inc=-2.5 Mean RMS Mean% RMS % Mean RMS Mean% RMS %

QML with Range

Mean 0.967 1.007 -2.632 -0.0011  0.0113 0.014 0.148 -0.0087  0.0125 -0.105 0.147
RMSE  0.026 0.315 0.162 0.0073  0.0038 0.095 0.039 0.0023  0.0029 0.011 0.008
5% 0.933 0.742 -2.785 -0.0138  0.0082  -0.130 0.111 -0.0129  0.0085 -0.124 0.134
25% 0.960 0.884 -2.699 -0.0054  0.0090 -0.054 0.121 -0.0102  0.0103 -0.113 0.141
50% 0.971 0.992 -2.632 -0.0001  0.0100 0.009 0.135 -0.0084  0.0121 -0.105 0.147
75% 0.979 1.105 -2.570 0.0044  0.0121 0.079 0.162 -0.0071  0.0142 -0.098 0.153

95% 0.987 1.330 -2.482 0.0088  0.0183 0.176 0.227 -0.0054  0.0176 -0.087 0.161




Table I1I
Sampling Distribution with 7=500 Observations

We report statistics summarizing the sampling distribution of three estimators of the parameters
and the latent volatilities of the stochastic volatility model:

Se = S Oy VA
Inc, ,, = Inc + py(lnc,, - Inc) + Be VH,

iH<t< (i+1)H,where ¢, and ¢, are independent N[0,1] variates. We set //=1/257and At=H/N,
which corresponds to using daily data generated by N trades per day. We consider N=1000 (A),
N=100 (B), and N=50 (C). We set a=3.855, Ino=-2.5 and p=0.75, which implies a volatility
process with daily autocorrelation of p,,=0.985, an annualized average volatility of 8.51 percent,
and a coefficient of variation of 0.28. “QML with Absolute Return” denotes Gaussian quasi-
maximum likelihood estimation with the log absolute return as volatility proxy. “QML with
Range” denotes Gaussian quasi-maximum likelihood estimation with the log range as volatility
proxy. “Exact ML with Absolute Return” denotes a simulation-based estimator that maximizes
the exact likelihood of log absolute returns. All results are based on 5000 replications.



Table IIT A
Sampling Distribution with 7=500 Observations and N=1000 Trades

Parameter Estimates Prediction Errors with Estimated Parameters
p=0.985 B=0.750 Inc=-2.5 Mean RMS Mean % RMS %
QML with Absolute Return
Mean 0.862 1.604 -2.496 -0.0033 0.0200 0.028 0.233
RMSE 0.288 2.153 0.138 0.0121 0.0084 0.130 0.067
5% 0.095 0.295 -2.712 -0.0259 0.0125 -0.172 0.159
25% 0.917 0.629 -2.590 -0.0090 0.0148 -0.061 0.186
50% 0.969 0.918 -2.497 -0.0007 0.0172 0.023 0.217
75% 0.984 1.523 -2.403 0.0053 0.0220 0.113 0.262
95% 0.993 6.293 -2.261 0.0120 0.0372 0.249 0.367
QML with Range
Mean 0.972 0.817 -2.531 -0.0023 0.0135 0.014 0.157
RMSE 0.023 0.180 0.129 0.0113 0.0071 0.125 0.058
5% 0.936 0.554 -2.731 -0.0242 0.0082 -0.185 0.102
25% 0.967 0.701 -2.623 -0.0080 0.0093 -0.071 0.116
50% 0.977 0.804 -2.533 -0.0001 0.0110 0.008 0.138
75% 0.985 0.918 -2.448 0.0060 0.0145 0.100 0.181
95% 0.991 1.092 -2.318 0.0116 0.0283 0.228 0.273
Exact ML with Absolute Return

Mean 0.964 0.863 -2.504 -0.0036 0.0157 0.007 0.176
RMSE 0.052 0.407 0.132 0.0120 0.0079 0.126 0.056
5% 0.898 0.399 -2.714 -0.0260 0.0093 -0.190 0.117
25% 0.960 0.634 -2.591 -0.0091 0.0110 -0.079 0.137
50% 0.977 0.805 -2.507 -0.0013 0.0130 -0.001 0.161
75% 0.985 1.029 -2.417 0.0049 0.0169 0.090 0.200

95% 0.993 1.475 -2.283 0.0115 0.0323 0.225 0.292




Table 111 B
Sampling Distribution with 7=500 Observations and N=100 Trades

Parameter Estimates Prediction Errors with Estimated Parameters

p=0.985 B=0.750 Inc=-2.5 Mean RMS Mean % RMS %
QML with Range
Mean 0.964 0.936 -2.590 -0.0024 0.0135 0.016 0.167
RMSE 0.039 0.294 0.162 0.0114 0.0071 0.136 0.065
5% 0.915 0.630 -2.810 -0.0247 0.0081 -0.193 0.107
25% 0.956 0.784 -2.682 -0.0084 0.0094 -0.080 0.122
50% 0.971 0.911 -2.593 -0.0002 0.0109 0.009 0.147
75% 0.981 1.046 -2.499 0.0058 0.0146 0.102 0.193
95% 0.990 1.326 -2.365 0.0118 0.0291 0.251 0.295
Table III C

Sampling Distribution with 7=500 Observations and N=50 Trades

Parameter Estimates Prediction Errors with Estimated Parameters
p=0.985 B=0.750 Inc=-2.5 Mean RMS Mean % RMS %
QML with Range

Mean 0.949 1.093 -2.628 -0.0021 0.0127 0.013 0.165
RMSE 0.070 0.490 0.178 0.0099 0.0059 0.126 0.058
5% 0.873 0.681 -2.833 -0.0207 0.0079 -0.177 0.110
25% 0.944 0.873 -2.711 -0.0073 0.0093 -0.073 0.124
50% 0.964 1.033 -2.628 -0.0004 0.0107 0.007 0.146
75% 0.977 1.231 -2.546 0.0052 0.0138 0.092 0.187

95% 0.988 1.652 -2.429 0.0106 0.0248 0.222 0.271




Table IV
Sampling Distributions
Realized and Range-Based Volatility Estimates

We simulate one day of five-minute log prices (289 observatlons) from the Gaussian
logarithmic random walk, s,=s, , +u,, with #,~NID[0,c ] Let the bid price be

B, =floor[S, - ticksize], and let the ask price be A —celhng[S +ticksize], where S =exp(s,) is
the true price. We then take the observed price as S "=B,q,+A4,(1-q,), where
q,=Bernoulli[1/2]. Hence the observed price ﬂuctuates randomly between the bid and the ask.
We take S,=$25, ticksize=$1/16, and o, =0.0011, which implies a fixed daily return volatility
of 1.87 percent, and an annualized return volatility of thirty percent, assuming 250 trading days
per year. For each day’s data we calculate both realized and range-based volatility estimates
(see text for details), based upon both true and observed returns, using a variety of underlying
return intervals (5-minute, 10-minute, 20-minute, 40-minute, 1 hour and 20 minutes, 3 hour, 6
hour, and 12 hour). We repeat this 100,000 times, and we report moments of the
corresponding distributions below, all of which are expressed as percentages.

Return Realized Volatility Range-Based Volatility
Interval Mean Std RMSE Mean Std RMSE
True Returns
5-min 1.87 0.08 0.08 1.71 0.53 0.55
10-min 1.86 0.11 0.11 1.68 0.53 0.56
20-min 1.86 0.16 0.16 1.63 0.53 0.58
40-min 1.85 0.22 0.22 1.56 0.53 0.61
1hr 20 min 1.84 0.31 0.31 1.45 0.53 0.67
3hr 1.81 0.46 0.46 1.27 0.52 0.79
6 hr 1.80 0.64 0.65 1.02 0.51 0.99
12 hr 1.79 0.87 0.89 0.63 0.48 1.32
Observed Returns

5-min 9.35 0.32 7.49 2.11 0.53 0.59
10-min 6.74 0.32 4.88 2.06 0.53 0.57
20-min 4.94 0.34 3.09 1.98 0.53 0.54
40-min 3.72 0.39 1.89 1.87 0.53 0.53
1hr 20 min 2.92 0.45 1.15 1.71 0.53 0.55
3hr 2.34 0.58 0.75 1.44 0.53 0.68
6 hr 2.03 0.73 0.75 1.13 0.54 0.91

12 hr 1.79 0.93 0.94 0.68 0.52 1.29




Table V
Distributions and Dynamics of Volatility Proxies
for Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of
two volatility proxies for five dollar exchange rates, measured daily from January 1, 1978
through December 31, 1998 (5284 observations). The underlying data used to compute the log
absolute return and the log range are daily high, low, and settlement prices of front-month futures
contracts traded on the International Monetary Market.

Unconditional Moments Autocorrelations
Volatility Proxy Mean  Std Dev  Skew Kurt Ist 2nd 5th  10th  20th
British Pound
Absolute Return ~ -5.82 1.19 -0.86 3.64 0.09 0.06 0.10 0.07 0.05
Range -4.87 0.53 0.09 3.10 0.39 033 030 027 0.22
Canadian Dollar
Absolute Return ~ -6.67 1.10 -0.62  2.89 0.11 0.09 0.12 0.08 0.05
Range -5.70 0.53 -0.02  3.39 049 046 041 035 0.31
Deutsche Mark
Absolute Return ~ -5.77 1.17 -0.88  3.62 0.06 0.06 0.09 0.07 0.05
Range -4.83 0.52 -0.07  3.12 040 037 035 030 0.23
Japanese Yen
Absolute Return ~ -5.77 1.17 -0.88  3.62 0.10 0.05 0.08 0.07 0.07
Range -4.88 0.58 0.03 3.19 041 034 032 026 0.20
Swiss Franc
Absolute Return ~ -5.60 1.16 -0.95  3.77 0.05 0.02 0.06 0.05 0.04

Range -4.67 0.48 0.04 3.13 032 029 030 025 0.19




Table VI
Quasi-Maximum Likelihood Estimates of
One-Factor and Two-Factor Stochastic Volatility Models
for Five Dollar Exchange Rates

We report estimates of one-factor and two-factor stochastic volatility models fit to five dollar
exchange rates, using daily data from January 1, 1978 through December 31, 1998. Asymptotic
standard errors appear in parentheses. See text for model descriptions.

One Factor Model Two-Factor Model
Volatility Proxy Ino p B Ino P, B, P, B,
British Pound
Absolute Return  -2.42 099 091 -2.42 0.99 0.60 0.06 7.44
(0.06) (0.01) (0.18) (0.08) (0.00) (0.12) (0.07) (0.51)
Range 251 0.65 533 -2.50 0.98 0.94 0.19 5.14

0.01) (0.02) (0.12) (0.04) (0.00) (0.09) (0.03) (0.10)

Canadian Dollar

Absolute Return  -3.29 0.98 1.12 -3.29 0.98 1.03 0.24 3.26
(0.06) (0.01) (0.16) (0.06) (0.00) (0.15) (0.39) (0.93)

Range -3.34 0.85 3.69 -3.34 0.98 1.20 0.16 4.26
(0.02) (0.01) (0.14) (0.05) (0.00) (0.10) (0.04) (0.11)

Deutsche Mark

Absolute Return  -2.38 0.97 1.37 -2.38 0.98 1.07 -0.11 6.57
(0.04) (0.01) (0.25) (0.05) (0.01) (0.21) (0.16) (0.61)

Range -2.47 0.72 4.77 -2.47 0.97 1.23 0.05 4.64

(0.02) (0.02) (0.14) (0.04) (0.01) (0.09) (0.04) (0.11)

Japanese Yen

Absolute Return ~ -2.37 097  1.47 238 098 094 017 731
(0.04) (0.01) (0.28) (0.05) (0.01) (0.21) (0.10) (0.53)
Range 253 062 620 253 097 143 015 568

(0.02) (0.02) (0.12) (0.04) (0.01) (0.13) (0.03) (0.12)

Swiss Franc

Absolute Return  -2.22 098  0.74 222 099 059 002 629
(0.04) (0.10) (0.15) (0.05)  (0.00) (0.13) (0.02) (0.58)
Range 232 063 478 232 097 105 003 450

(0.01) (0.02) (0.13) (0.03) (0.01) (0.08) (0.03) (0.11)




Residual Diagnostics for
One-Factor Stochastic Volatility Models

Table VII

for Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of
measurement equation residuals from one-factor stochastic volatility models fit to five dollar
exchange rates, using daily data from January 1, 1978 through December 31, 1998.

Volatility Proxy

Absolute Return
Range

Absolute Return
Range

Absolute Return
Range

Absolute Return
Range

Absolute Return
Range

Unconditional Moments Autocorrelations
Std Dev  Skew Kurt Ist 2nd Sth 10th 20th
British Pound
1.17 -1.29  5.87 -0.00  -0.02 0.02 -0.00  -0.02
0.30 0.15 3.06 0.18 0.20 0.22 0.20 0.16
Canadian Dollar
1.10 -1.19  5.46 0.10 -0.01 0.02 -0.02  -0.03
0.26 0.17 3.25 -0.02 0.07 0.12 -0.10 0.09
Deutsche Mark
1.16 -1.46  7.53 -0.03  -0.02 0.02 0.00 0.00
0.28 0.06 3.07 0.10 0.16 0.21 0.18 0.15
Japanese Yen
1.14 -1.08  4.67 0.02 -0.03 0.01 0.12 0.03
0.32 0.09 3.15 0.23 0.23 0.25 0.20 0.16
Swiss Franc
1.15 -1.25  5.59 -0.00  -0.04 0.01 0.01 -0.00
0.19 0.12  3.08 0.12 0.16 0.21 0.18 0.15




Residual Diagnostics for
Two-Factor Stochastic Volatility Models

Table VIII

for Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of
measurement equation residuals from two-factor stochastic volatility models fit to five dollar
exchange rates, using daily data from January 1, 1978 through December 31, 1998.

Volatility Proxy

Absolute Return
Range

Absolute Return
Range

Absolute Return
Range

Absolute Return
Range

Absolute Return
Range

Unconditional Moments Autocorrelations
Std Dev  Skew Kurt Ist 2nd Sth 10th 20th
British Pound
1.18 -1.26  5.72 0.01 -0.01 0.03 0.00 -0.01
0.37 024 3.17 0.11 0.03 0.02 0.02 0.01
Canadian Dollar
1.09 -1.17  5.39 0.01 -0.01 0.02 -0.01 -0.03
0.33 0.23 3.38 0.07 0.05 0.01 -0.01 0.01
Deutsche Mark
1.17 -1.28  5.88 -0.02  -0.01 0.03 0.01 0.00
0.37 0.19  3.09 0.04 0.00 0.02 0.02 0.02
Japanese Yen
1.16 -1.34  6.72 0.03 -0.01 0.02 0.02 0.02
0.39 026 3.27 0.09 0.01 0.03 0.01 0.02
Swiss Franc
1.16 -1.30 591 0.01 -0.03 0.02 0.01 0.00
0.37 0.27 3.17 0.02 -0.01 0.03 0.02 0.03




Figure 1a
Distribution of Log Absolute Return

We consider a driftless Brownian motion, with zero origin and unit
diffusion coefficient, over an interval of unit length. We plot the
distribution of the log absolute return, with the best-fitting normal
distribution superimposed for visual reference.
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Figure 1b
Distribution of Log Range

We consider a driftless Brownian motion, with zero origin and unit
diffusion coefficient, over an interval of unit length. We plot the
distribution of the log range, with the best-fitting normal distribution
superimposed for visual reference.
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Prices

Figure 2
True and Observed Prices
Simulated One-Day Sample Path

We simulate one day of five-minute log prices (289 observatlons) from the Gaussian
logarithmic random walk, s,=s, ; +u,, with u ~NID[0,c ] Let the bid price be

B, =floor[S, - ticksize], and let the ask price be A4,= celhng[S +t1ck51ze] where

S =exp(s,) is the true price. We then take the observed price as S *=B ,q,+4,(1-q,),
where q,=Bernoulli[1/2]. Hence the observed price fluctuates randomly between the bid
and the ask. We take S,=$25, ticksize=$1/16, and ¢ =0.0011, which implies an
annualized thirty percent return volatility, assuming 250 trading days per year.
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Figure 3
Monte Carlo Distributions of Parameter Estimates

We show the sampling distributions of three estimators of the parameters and the latent volatilities of the stochastic
volatility model:

S, =S4 * Oy VAL

Inc,,,, = Inc + p,(Inc, - Inc) + Pe H,

iH<t<(i+1)H,where ¢ and ¢, are independent N[0,1] variates. We set H=1/257and Az=H/N, which corresponds
to using daily data generated by N trades per day. We set =3.855, In6=-2.5 and ¢ =0.75, which implies a volatility
process with daily autocorrelation of p,,=0.985, an annualized average volatility of 8.51 percent, and a coefficient of
variation of 0.28. “QML with Absolute Return” denotes the Gaussian quasi-maximum likelihood estimator with the
log absolute return as volatility proxy. “QML with Range” denotes the Gaussian quasi-maximum likelihood estimator
with the log range as volatility proxy. “Exact ML with Absolute Return” denotes a simulation based estimator that
maximizes the exact likelihood of log absolute returns. All results are based on 5000 Monte Carlo replications, a
sample size of 7=1000, and N=1000 trades per day. Reading across the rows, we show the sampling distributions of the
estimators of p, B, logo, and E[(6,-0 t)z]” 2. The two vertical lines in the second plot of the first row mark the range
of the same plots in the second and third row.
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Figure 4
Distributions of Realized Volatility and Range-Based Volatility
Based on True Underlying Prices

We 51mulate one day of five- mlnute log prices (289 observations) from the Gaussian logarithmic random walk,
s,=s, ,+u,, with u ~NID[0,c ] Let the bid price be B, =floor[S, - ticksize], and let the ask price be

A o cellmg[S +tlcks1ze] where S =exp(s,) is the true prlce We then take the observed price as

SO *=B,q,+A4,(1-q,), where ¢ , Bernoulh[l/2] Hence the observed price fluctuates randomly between the bid
and the ask. We take S,=$25, ticksize=$1/16, and ¢, =0.0011, which implies a fixed daily return volatility of 1.87
percent and an annualized return volatility of thirty percent, assuming 250 trading days per year. For each day’s
data we calculate both realized and range-based volatility estimates (see text for details), based upon both true and
observed returns, using 5-minute, 20-minute and 80- minute underlying price observations. We repeat this 100,000
times, and we show kernel estimates of the corresponding sampling densities below. All volatilities and related

summary statistics are expressed in percent.

Realized Volatility Range-Based Volatility
5 True Underlying Prjce 5 True Underlying Price
5 min Returns 5 min Returns
4 Mean=1.87 4 Mean=1.71
Std=0.08 Std=0.53
; RMSE=0.08 5 RMSE=0.55
2 2 <
= 1
0 T T T T T 0 T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
6 6
Realized Volatility Range-Based Volatility
5 True Underlying Prjce 5 True Underlying Price
20 min Returns 20 min Returns
B\ 4 Mean=1.86 4 Mean=1.63
7 Std=0.22 Std=0.53
=] 3 RMSE=0.22 3 RMSE=0.58
b5 p p
2 2 <
= 1
0 T T T T T 0 T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
6 6
Realized Volatility Range-Based Volatility
5 True Underlying Prjce 5 True Underlying Price
1 hr 20 min Return: Thr 20 min Returns
4 Mean=1.84 4 Mean=1.45
Std=0.31 Std=0.53
5 RMSE=0.31 5 RMSE=0.67
2 2 <
= 1
0 T T T T T 0 T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Volatility (Realized or Range-Based, percent)



Figure 5
Distributions of Realized Volatility and Range-Based Volatility
Based on Observed Prices

We 51mulate one day of five- mlnute log prices (289 observations) from the Gaussian logarithmic random walk,
s,=s, ,+u,, with u ~NID[0,c ] Let the bid price be B, =floor[S, - ticksize], and let the ask price be

A = cellmg[S +tlcks1ze] where §,=exp(s,) is the true prlce We then take the observed price as

SO "=B,q,+A4,(1-q,), where ¢ , Bernoulh[l/2] Hence the observed price fluctuates randomly between the bid
and the ask. We take §,=$25, ticksize=$1/16, and ¢, =0.0011, which implies a fixed daily return volatility of 1.87
percent and an annualized return volatility of thirty percent, assuming 250 trading days per year. For each day’s
data we calculate both realized and range-based volatility estimates (see text for details), based upon both true and
observed returns, using 5-minute, 20-minute and 80- minute underlying price observations. We repeat this 100,000
times, and we show kernel estimates of the corresponding sampling densities below. All volatilities and related
summary statistics are expressed in percent.
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Figure 6
Distributions of the Measurement Equation Residuals for
Two-Factor Stochastic Volatility Models for Five Dollar Exchange Rates

We show histograms of the measurement equation residuals for stochastic volatility models estimated using either
log absolute returns or the log range as volatility proxy with the best-fitting normal imposed for visual reference,
and the corresponding QQ plot, which is a graph of the quantiles of the standardized residual distribution against the
corresponding quantiles of a N[0,1] distribution. If the residual is normally distributed, its Gaussian QQ plot is a
straight line with a unit slope. The rows correspond to the five currencies examined: the British pound, Canadian
dollar, Deutsche Mark, Japanese yen, and Swiss franc.
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