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1 Introduction

There is by now ample evidence in the literature that the means, variances, covariances,

and higher order moments of stock and bond returns are time-varying and predictable.

However, it has proven diÆcult to translate this evidence of predictability into practical

portfolio advice because the di�erent moments of returns, which in turn determine the

optimal portfolio weights, are typically predicted by di�erent sets of economic variables.

Perhaps because of this diÆculty with modeling the conditional return distribution, most

professional investment advice is given solely on the basis of variables that forecast expected

returns, such as the dividend yield or the slope of the term structure.1

Looking beyond expected returns, it is diÆcult to decide which selection or combination

of predictive variables the investor should focus on.2 This is true even in the few special cases

where we have an explicit asset allocation formula, such as for mean-variance utility where

the optimal allocation is proportional to the ratio of the conditional mean to the conditional

variance of returns. In this mean-variance case it is clear that we want to �nd variables that

best predict the ratio of the �rst two conditional moments. Choosing variables that best

predict the mean and variance separately is likely to be counter-productive. Indeed, what

should we do if a variable has a positive e�ect on both means (which the investor likes) and

variances (which are detrimental to the investor)? What should we do if this variable is highly

signi�cant for one of the moments but less so for the other? How do we capture the relative

importance that the investor's preferences place on the di�erent moments? These questions

all suggest that in a portfolio choice context we should select variables to directly predict

optimal portfolio weights, rather than �rst select variables to predict separate features of the

return distribution and then explore later their implications for asset allocation.

It is also intuitively clear that di�erent objective functions place di�erent emphases on the

various features of the conditional return distribution. For example, a mean-variance investor

1It is quite natural, of course, to focus on the �rst moment of the return distribution when making a
conditional portfolio choice. First, expected returns are the most intuitive, and arguably the most important,
input to the investor's objective function; second, the dependence of the optimal portfolio choice on the �rst
moment of the return distribution is monotonic for most preferences, unlike the dependence on higher order
moments; and third, even with relatively simple preferences, the dependence of the optimal portfolio choice
on the whole return distribution is so complex that it can usually only be solved numerically.

2As a result, the empirical literature on conditional portfolio choice has relied on a predetermined choice
of one or at most two concurrent state variables. For example, in a single-period context: Avramov (1999),
dividend yield, book to market ratio, earnings yield, Treasury bill yield, term spread; and Kandel and
Stambaugh (1996), dividend yield. In a multiperiod setting: Balduzzi and Lynch (1999), dividend yield;
Barberis (2000), dividend yield; Brandt (1999), dividend yield, default spread, term spread, lagged return;
Brennan, Schwartz, and Lagnado (1997), dividend yield; bond yield, Treasury bill yield; Campbell and
Viceira (1998), Treasury bill yield; Campbell and Viceira (1999), dividend yield; Chacko and Viceira (1999),
observed returns variance; and Lynch (200), dividend yield, term spread.
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wants to predict means and variances, while a loss averse investor may be more concerned

about forecasting the size of the left tail of the return distribution.3 Since, again, the means,

variances, and size of the tails are not always predicted by the same variables, these two

investors may choose di�erent predictors for their conditional portfolio choice. Furthermore,

investors may also disagree about the variable selection because, at the optimal choice, they

are holding di�erent portfolios of risky securities.4

In this paper, we show how to select and combine variables to best predict an investor's

optimal portfolio weights, both in single-period and multiperiod contexts. Rather than

�rst model the various features of the conditional return distribution and subsequently

characterize the portfolio choice, we focus directly on the dependence of the portfolio weights

on the predictors. We do so by solving sample analogues of the conditional Euler equations

that characterize the portfolio choice, as originally suggested by Brandt (1999). However,

unlike the existing literature, we determine endogenously, for a given set of utility preferences,

which of the candidate predictors are important for the optimal portfolio weights (rather than

important for separate moments of the return distribution).

The advantage of focusing directly on the optimal portfolio weights is that we bypass the

estimation of the conditional return distribution. This intermediate estimation step is the

Achilles' heel of conditional portfolio choice, because although the moments of returns are

predictable, this predictability is for some moments actually quite tenuous. In particular,

in the literature on predicting returns, an R2 of 10 percent is hailed, rightly so, as a great

success. Our approach is based on the hope that the relationship between the portfolio

weights, which are complicated functions of the return distribution, and the predictors is

actually less noisy than the relationship between the individual moments and the predictors.

Even if it is not, we avoid introducing additional noise and potential misspeci�cations through

the intermediate, but unnecessary, estimation of the return distribution.

We form a linear combination or index of the conditioning variables that best predicts

the investor's optimal portfolio weights and then judge the importance of each individual

variable by the role it plays in this index. We make no further assumptions about the

relationship between the optimal portfolio weights and the predictors for two reasons. First,

3If returns are normally distributed a loss averse investor cares e�ectively about the ratio of the mean to
the standard deviation of returns, which measures the size of the tail of a Gaussian density, rather than the
ratio of the mean to the variance that a mean-variance investor cares about.

4Consider two investors in the same class of preferences, one who is relatively risk averse and holds mostly
bonds, and another who is less risk averse and holds primarily stocks. Since di�erent variables help predict
the moments of bond and stock returns, these two investors may also choose di�erent predictors for their
conditional portfolio choice. Naturally, these e�ects are further compounded when we compare investors
with di�erent objective functions and di�erent portfolio holdings, such as a mean-variance investor who
holds stocks and a loss averse investor who holds bonds.
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the dependence of the portfolio choice on the predictors can be highly nonlinear, even when

the conditional moments are approximately linear; and second, the particular form of the

nonlinearities not only varies greatly with the investor's preferences but also cannot generally

be determined explicitly. This leads us to a semiparametric approach, where the optimal

portfolio weights depend nonparametrically on a parametric index of the predictors.

We study investors with both expected utility (mean-variance and CRRA) and non-

expected utility (ambiguity aversion and prospect theory) objectives in order to see how

the optimal index composition depends on the characteristics of the investor's preferences.

From a normative perspective, our results can help investors with any one of these preferences

determine which economic variables they should track and, more importantly, in what single

combination. Our index is a parsimonious way to describe the current state of the investor's

investment opportunities, just as in di�erent economic contexts indices summarize high-

dimensional state vectors (the index of leading economic indicators, the business cycle index,

the consumer con�dence index, etc.). Macroeconomic indices are country-speci�c, since

di�erent countries have di�erent characteristics, and for the same reason our investment

opportunities index is investor-speci�c because di�erent investors have di�erent preferences.

For the purpose of giving portfolio advice, one advantage of our index approach is that it

helps investors understand their conditional asset allocation in a more intuitive manner. For

instance, it delivers simple rules like \if the index increases, the allocation to stocks should

increase." By contrast, it is generally diÆcult to represent graphically variables in more than

two dimensions, let alone develop economic intuition about their interactions.

We characterize the market-timing, horizon e�ects, and hedging demands of di�erent

types of investors, where we disentangle the e�ects due to the time-varying return distribution

from those due to the speci�c preference structure. Speci�cally, we show how the portfolio

choice of both expected and non-expected utility investors varies as a function of the

predictors, investment horizon, and rebalancing frequency. We explain also how the source

of these variations di�ers across the preference speci�cations.

The remainder of the paper is organized as follows. We motivate the variable selection

problem in Section 2 with individual moment regressions. Section 3 explains our econometric

approach of predicting optimal portfolio weights with an index that captures the current state

of investment opportunities. In Section 4 we discuss four parameterizations of the investor's

preferences, which we then use in Section 5 for our empirical work. There we characterize

the optimal index composition and portfolio rules for di�erent types of investors, di�erent

horizons, and di�erent rebalancing frequencies. We conclude in Section 6.
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2 Predicting Individual Moments

2.1 Data

We collect monthly, quarterly, semi-annual, and annual returns on the Standard and Poors

(S&P) 500 index, an equal-weighted portfolio of non-callable and non-ower government

bonds with more than ten years to maturity, and a maturity-matched Treasury bill from

the Center for Research in Security Prices (CRSP). The returns are sampled monthly from

January 1954 through December 1997. The sample consists of 528 observations.

An ever growing set of economic variables has been shown to partly predict the means,

variances, and covariances of returns.5 We collect monthly data on four popular predictors:

the default spread, the log dividend to price ratio of the S&P index, the term spread, and

an S&P index trend (or momentum) variable. The default spread is the yield di�erence

between Moody's Baa and Aaa rated corporate bonds. The dividend yield is the sum of

dividends payed on the S&P index over the past 12 months divided by the current level of

the index. The term spread is the yield di�erence between the ten- and one-year government

bonds. The trend is the di�erence between the log of the current S&P index level and the log

of the average index level over the previous twelve months. Fama and French (1988,1989)

show that the �rst three predictors capture cyclical time-variations in excess stock and bond

returns, and Keim and Stambaugh (1986) use a variable very similar to our trend to predict

returns. The data for the predictors is obtained from the DRI/Citibase database.

Tables 1 and Figure 1 describe the data. Panel A of Table 1 presents univariate descriptive

statistics for the monthly returns, annual returns, and predictors. We omit the quarterly and

semi-annual returns to preserve space. Panel B shows pairwise correlations of the predictors

with each other and with excess stock and bond returns, their squares, and their cross-

products. Figure 1 plots the time-series and autocorrelations of the predictors.

5The following is a partial list of academic papers that document various degrees of mean predictability
and the variables they use: Campbell (1987), term spread; Campbell and Shiller (1988a,1988b), dividend
yield; Cochrane (1991), investment to capital ratio; Fama and Schwert (1977), Treasury bill yield; Fama
and French (1988,1989), default spread, dividend yield, term spread; Ferson and Harvey (1991), default
spread, dividend yield, lagged returns, term spread, Treasury bill yield; Keim and Stambaugh (1986), default
spread, trend; Lamont (1998), dividend to earnings ratio; Lettau and Ludvigson (2000), consumption to
wealth ratio; and Ponti� and Shall (1998), book to market ratio. Studies on variance predictability include:
Bollerslev (1986), lagged squared return, lagged variance; Campbell (1987), term spread; Engle (1982), lagged
squared return; French, Schwert, Stambaugh (1987), lagged squared return, lagged variance; Harvey (1991),
default spread, dividend yield, lagged squared return, lagged variance, term spread, Treasury bill yield;
Schwert (1989), debt to equity ratio, default spread, lagged variance, volume; and Whitelaw (1994), default
spread, lagged variance, paper spread, Treasury bill yield. Finally, representative papers on predicting
covariances are: Bollerslev, Engle, and Wooldridge (1988), lagged covariances, lagged cross-products of
returns; Campbell (1987), term spread; and Harvey (1989), default spread, dividend yield, term spread.
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2.2 Predictive Regressions

We �rst verify that the variables we identi�ed as potential predictors indeed capture time-

variations in at least the �rst and second moments of excess bond and stock returns. For

that purpose, we set up the following regressions:

Et

"
rbt+1

rst+1

#
=

"
Z 0
tb

Z 0
ts

#
and Vart

"
rbt+1

rst+1

#
=

"
Z 0
tÆbb Z 0

tÆbs
Z 0
tÆss

#
; (2.1)

where rbt+� and rst+� denote bond and stock returns in excess of the Treasury bill return and

the vector Zt contains subsets of the four predictors. We demean and standardize the data

to eliminate the intercepts and then estimate  and Æ using Hansen's (1982) generalized

method of moments (GMM) for all one-, two-, three-, and four-dimensional subsets of the

four predictors. Whenever we use overlapping returns we compute autocorrelation adjusted

asymptotic standard errors using the procedure of Hodrick (1992).

Table 2 presents the regression results. For each security (bonds and stocks), moment

(mean, variance, and covariance), and return horizon (monthly and annual), the table

presents the best one-, two-, and three-variable partial regressions. It also shows the full

regression with all four predictors. The best partial regressions are chosen according to the

Akaike information criterion (AIC).6 One, two, or three stars indicate that the coeÆcient is

statistically signi�cant at the ten, �ve, or one percent level, respectively.

The following facts emerge from Table 2:

� The default spread relates positively to the variances and covariance of both monthly

and annual stock and bond returns. The regression coeÆcients are both statistically

and economically signi�cant (recall the data is demeaned and standardized, so the

magnitude of the coeÆcients is meaningful), except for the stock return variance at

the annual horizons. The default premium also relates positively, but not always

signi�cantly, to expected bond and stock returns.

� The log dividend to price ratio relates positively and signi�cantly (at 10 percent levels)

to expected stock returns at the annual horizon but not at the monthly horizon.7 The

6Since the data is demeaned and standardized, the AIC criterion and the adjusted R2 of the regressions
are virtually identical. To save space, we only report the adjusted R2 of the regressions in Table 2.

7Because the dividend to price ratio does not appear to predict dividend growth, it must on the basis
of the present value formula forecast returns. In fact, as pointed out by Cochrane (1999), \price divided
by anything" sensible has this forecasting power. Since most price ratios are variables with very slow mean
reversion (see Figure 1) they forecast long-term returns better than short-term returns.
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log dividend yield also relates positively to the variance of bond returns and negatively

to the covariance between stock and bond returns at the annual horizon.

� The term spread is by far the most important predictor for expected returns. It relates

positively to expected bond and stock returns at both horizons.8 The coeÆcients are

statistically and economically signi�cant, especially for stock returns. In addition, the

term spread relates negatively to stock and bond variances.

� The trend variable relates negatively and signi�cantly to expected bond returns at both

horizons. It also relates negatively to the variance of stock returns, with regression

coeÆcients that increase in magnitude and statistical signi�cance with the horizon.

� Except for the covariance, the adjusted R2s of the regressions increase with the horizon,

meaning that returns and squared returns are more predictable at long horizons than at

short horizons. This pattern is due the slowly mean-reverting nature of the predictors

(see Figure 1) and is more pronounced for expected returns than for return variances.

Stock and bond returns are about equally predictable at both horizons. Squared bond

returns, however, are substantially more predictable than squared stock returns.

The most important �nding for motivating our approach is the fact that if we had to

restrict attention to only one or two predictors, the variable selection would depend on

the conditional moments of returns that we most wanted to predict (bonds vs. stocks and

�rst vs. second moments) as well as on the return horizon. This result is best illustrated

in Table 3, which lists for all four return horizons the best one or two predictors for each

moment. The problem with selecting variable in the portfolio choice context lies in the fact

that the moments of returns (or functions of them) that we want to predict are endogenous to

the investor's preferences. For example, an investor who is very risk averse and holds mostly

bonds may want to focus on predicting the variance of bond returns with the default spread,

while another investor who is less risk averse and holds mostly stocks may want to focus on

predicting expected stock returns with the log dividend to price ratio and term spread. It is

this endogeneity of the variable selection in the portfolio choice context that motivates our

emphasis on predicting optimal portfolio weights, rather than individual moments.

8Fama and French (1989) document that the slope of the yield curve moves in tandem with the business
cycle. The yield curve is inverted at the peak of the cycle, where expected returns are low, and upward
sloping when a recession turns into a recovery, where expected returns are high.
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3 Predicting Optimal Portfolio Weights

3.1 Investor's Problem

Consider a single-period investor who maximizes the conditional expectation of an objective

function v(Wt+1) of next period's wealth Wt+1.
9 The expectation is conditional on a vector

of state variables Zt. The maximization is over the portfolio weights �t under the budget

constraint Wt+1=Wt(�t
0Rt+1), where Rt+1 is a vector of gross returns on the securities the

investor can buy and sell. Formally, the portfolio choice problem is:

max
�t

E
h
v
�
Wt(�t

0Rt+1)
����Zt

i
; (3.1)

subject to the adding-up constraint �t
0�=1, where � denotes a vector of ones. Although the

portfolio weights sum to one, not all wealth must be invested in risky securities because one

of the securities may be risk-less. Furthermore, the portfolio choice may be subject to a set

constraints a � c(�t) � b, such as short-sale or borrowing constraints.

The solution to the investor's problem is the mapping from the state vector Zt to the

portfolio weights �t. Assuming that this mapping is time-invariant, we denote it:10

�t � �(Zt) (3.2)

and refer to it as the investor's portfolio choice, policy, weight, or rule.

The relation between the portfolio policy and the predictability of individual moments

of the returns Rt+1 given the predictors Zt obviously depends on the speci�cation of the

objective function v(Wt+1). To illustrate this point, consider an investor with standard

mean-variance preferences. The investor's objective function is:

E
h
v(Wt+1)

���Zt

i
= E

h
Wt+1

���Zt

i
� 

2
Var

h
W 2

t+1

���Zt

i
(3.3)

with the coeÆcient of absolute risk aversion �0. The investor's portfolio policy is:

�t = ��1t �
Wt � �0��1t �t

Wt�0�
�1
t �

+
��1t �t

Wt
; (3.4)

9We describe our econometric approach for a single-period portfolio choice to keep the notation
simple. However, our estimator extends readily to a multiperiod portfolio choice by replacing the single-
period objective function and its derivative with a multiperiod \value function" and its derivative [see
Brandt (1999)]. In fact, we apply our approach to multiperiod portfolio choice in Section 5.3.3.

10With time-invariant objective function v(Wt+1) this assumption only requires that the conditional
distribution of the returns Rt+1 given the predictors Zt is time-homogenous.
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where �t = Var[Rt+1jZt] and �t = E[Rt+1jZt]. This analytical expression for the portfolio

weight illustrates two facts. First, even with this most simple preference speci�cation

there is no straightforward link between predictability in �rst and second moments and

the portfolio policy that allows the investor to identify which predictors are important for

the portfolio choice. Second, even if the conditional moments are approximately linear in the

state variables, the ratio form of the portfolio policy implies that it can be a highly nonlinear

and even nonmonotonic function.

If the portfolio choice includes a risk-free rate, it simpli�es to allocating a fraction:

�tgc
t =

1

Wt

E
�
rtgct+1

��Zt

�
Var

�
rtgct+1

� (3.5)

of wealth to the mean-variance eÆcient tangency portfolio, with excess return rtgct+1, and to

invest the remainder in the risk-free asset. In other words, the mean-variance portfolio choice

is proportional to the conditional mean-variance ratio of the tangency portfolio. Therefore,

in selecting variables for the mean-variance portfolio choice, which is a normative issue, we

equivalently select variables for predicting the mean-variance ratio of the tangency portfolio,

which is a generic descriptive statistic of the conditional return distribution.

3.2 Indices for the Conditional Portfolio Choice

Brandt (1999) shows how to estimate the optimal portfolio policy �(Zt) without further

assumptions about the return dynamics or functional form of the decision rule by replacing

the conditional expectation in the investor's problem (3.1) with a consistent estimator. For a

given realization of the state vector Zt, we de�ne the fully nonparametric estimator �̂(Zt) of

the true �(Zt) as the portfolio weights that solve the investor's problem when the conditional

expectation E[�jZt] is replaced with a consistent estimator Ê[�jZt], such that:

Ê
h
v
�
Wt(�t

0Rt+1)
����Zt

i
�! E

h
v
�
Wt(�t

0Rt+1)
����Zt

i
as T !1; (3.6)

for all portfolio weights �t and state vector realizations Zt. In particular, Brandt suggests

estimating the conditional expectation with a standard nonparametric regression.

Unfortunately, this fully nonparametric approach does not allow us to address the issue

of which predictors are important for the portfolio choice because nonparametric estimators

typically cannot handle a large number of regressors. As the number of predictors increases,

the convergence rate of most nonparametric estimators to their asymptotic distribution

deteriorates exponentially. This feature of the estimators is commonly referred to as the
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\curse of dimensionality". Realistically, given our relatively short sample, we cannot reliably

estimate the conditional expectation for more than two predictors.

To overcome this econometric problem, we adopt a semiparametric approach, which

explicitly recognizes the endogeneity of the variable selection. We assume that the investor's

optimal portfolio weights depend on the predictors Zt only through a single linear index or

factor Zt
0� with unknown parameters �.11 The dependence of the portfolio weights on this

index, however, is left completely unrestricted. We classify our approach as semiparametric

because the index is parametric but the portfolio policy is not.

Formally, we rewrite the investor's problem (3.1) as:

max
�t

E
h
v
�
Wt(�t

0Rt+1)
����Zt

0�
i
; (3.7)

which implies that the optimal �t depend on Zt only through the index Zt
0�:12

�t � �(Zt
0�; �): (3.8)

From a statistical perspective, the index avoids the curse of dimensionality because it allows

us to reduce the multivariate problem to one were we can implement the nonparametric

approach described above in a univariate setting (since Z 0
t� is univariate). From an economic

standpoint, the index o�ers a convenient univariate summary statistic that describes the

current state of the time-varying investment opportunities.

The economic cost of collapsing the multidimensional information contained in Zt into a

linear index Zt
0� is that the expected utility from the unconstrained optimization (3.1)

exceeds that from the constrained optimization (3.7), unless our assumption about the

index structure of the investor's problem is true (as opposed to just an approximation for

econometric purposes). The magnitude of the expected utility loss due to the index depends

on the application and can ultimately only be measured empirically. For our application, we

present evidence in Section 5.3.1 that this expected utility loss is minor.

We estimate the index coeÆcients � through the conditional Euler equations of the

investor's unrestricted problem. Speci�cally, we substitute the parametric restriction (3.8)

into the �rst-order conditions of the problem (3.1) to obtain the following set of conditional

11We can relax the assumption of a linear index by introducing nonlinearities in Zt. Our experimentations
with nonlinear indices suggest, however, that in the portfolio choice context the incremental expected utility
loss from combining the predictors linearly, as opposed to nonlinearly, is minimal.

12The optimal portfolio choice �t depends on the index coeÆcients � not only through the index realization
Zt

0� but also through the functional form of the policy function �(�). For example, consider two indices �
and ��=��. In this case, �(x;�) 6=�(x; ��) but instead �(x;�)=�(�x; ��) for all index realizations x.
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moment conditions:

E
�
mt+1(�)

��Zt

� � E
h
v0
�
Wt

�
�(Z 0

t�; �)
0Rt+1

��
Rt+1

���Zt

i
= 0; (3.9)

where �(Z 0
t�; �) solves the investor's restricted problem (3.7). Multiplying these moment

conditions by predetermined functions g(Zt) of the forecasting variables, taking unconditional

expectations, and then applying the law of iterated expectations yields a standard GMM

inference problem [see Hansen (1982)]:13;14

min
�

E
�
mt+1(�)
 g(Zt)

�0
W E

�
mt+1(�)
 g(Zt)

�
(3.10)

with optimal weighting matrix W =Cov[mt+1 
 g(Zt)]
�1. The �nal step in the construction

of our estimator is to replace both the unconditional expectations and the optimal weighting

matrix with consistent sample analogues.

The main di�erence between our estimator and standard GMM is that the portfolio

weights in the conditional moments (3.9) are only de�ned implicitly through the investor's

portfolio optimization. To evaluate the GMM criterion for a candidate �, we �rst estimate the

sequence of optimal portfolio weights f�(Z 0
t�; �)gTt=1 by replacing the conditional expectation

in the investor's problem (3.7) with nonparametric regressions, as in equation (3.6).

Appendix A presents a more detailed description of our estimator and its asymptotic

distribution. The main results are that the estimator is consistent, asymptotically normal,

and, although it has a nonparametric component, achieves the parametric convergence rate

of
p
T irrespective of the number of predictors.15

The GMM estimator (3.10) treats the choice of � as an inference problem under the

null that the unconstrained portfolio policy �(Zt) has the index form �(Zt
0�; �). Under the

alternative that the index form is suboptimal, a more natural way to choose � is through

13Notice that we need the instruments g(Zt) to identify �. The index coeÆcients are unconditionally not
identi�ed because �(Z 0

t�;�) satis�es E[mt+1(�)jZ
0
t�]=0 and hence E[mt+1(�)]=0 for any �.

14This setup can be used not only for estimation, but also for testing whether a second set of predictors
should be included in the index. With the instruments g(Zt; Yt), the minimized GMM objective is an
asymptotically �2 distributed test for the hypothesis that the index has zero loadings on the predictors Yt.

15Because the index composition is estimated and the investor's portfolio choice depends upon the
estimated index, our subsequent estimates of the portfolio weights automatically incorporate the fact that
ex-ante predictability is uncertain. The standard errors of the estimated indices and portfolio policies are
larger in small sample but not asymptotically, since in suÆciently large samples there is no uncertainty about
predictability. Of course, the appropriate approach to fully address the issue of parameter uncertainty is a
Bayesian framework [see Barberis (2000) and Kandel and Stambaugh (1996)].

10



the unconditional utility maximization:

max
�

E

�
max
�t

E
h
v
�
Wt(�t

0Rt+1)
����Zt

0�
i�

= max
�

E
h
v
�
Wt(�(Zt

0�; �)
0
Rt+1)

�i
; (3.11)

where the equality follows from the law of iterated expectations and the restriction (3.8). In

words, the index de�ned by this maximization generates a sequence of conditional portfolio

choices that is unconditionally optimal or, equivalently, that minimizes the unconditional

expected utility loss from solving the constrained optimization (3.7) as opposed to the

unconstrained optimization (3.1).

The expected utility maximization (3.11) is nested by the GMM estimator (3.10) through

an optimal (in an expected utility not statistical sense) set of instruments g(Zt). Speci�cally,

the �rst-order conditions of the maximization:

E

�
v
�
Wt(�(Zt

0�; �)
0
Rt+1)

�
Rt+1

@�(Zt
0�; �)

@�

�
= 0 (3.12)

show that the problem (3.11) is equivalent to the problem (3.10) with instruments:

g(Zt) =
@�(Z 0

t�; �)

@�
(3.13)

and an arbitrary weighting matrix W (since the parmeters are exactly identi�ed).

However, just because these instruments are optimal in theory, they do not necessarily

result in more reliable estimates of the index coeÆcients in practice for two reasons. First, to

construct the instruments we need consistent estimates of the derivatives @�(Z 0
t�; �)=@�. A

nonparametric estimator of these derivatives converges at a slower rate then a nonparametric

estimator of the function �(Z 0
t�; �) [see H�ardle (1990)] and thus may introduce substantial

noise. Second, since the functional form of the portfolio policy may depend on the index

composition in a highly nonlinear and irregular way (even if the policy is well-behaved in the

index for a given index composition), the derivatives @�(Z 0
t�; �)=@� may cause the GMM

objective function to be less well-behaved. This makes the numerical minimization more

diÆcult and increases the risk of ending up with a local instead of global minimum.

Given estimates of the optimal index composition, we judge the importance of each

predictor in the conditional portfolio choice through the relative weight the predictor receives

in the index. In other words, the relative weights the estimated index coeÆcients �̂ place

on the di�erent variables, and their statistical signi�cance, tell us which variables, and more

importantly in what combination, are relevant for the investor's conditional portfolio choice.
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4 Objective Functions

To see how the variable selection varies across investors with di�erent preferences, we consider

four parameterizations of the objective function v(Wt+1). The �rst two, mean-variance and

CRRA preferences, are standard expected utility objectives and result in fairly similar indices

for the conditional portfolio choice. The second two, ambiguity aversion and prospect theory

preferences, are generalized or non-expected utility objectives. They produce indices that

are quite di�erent from those of expected utility investors, demonstrating the endogeneity

of the variable selection problem in the portfolio choice context. In e�ect, di�erent investors

focus on di�erent aspects of the returns distribution, which di�erent variables help predict.

4.1 Expected Utility

4.1.1 Mean-Variance Preferences

We already introduced the objective function of an investor with mean-variance preferences

in equation (3.3), where  measures the investor's absolute risk aversion @2v(W )
@W 2

Æ
@v(W )
@W

.16 An

appealing feature of mean-variance preferences, and the reason we consider them here, is that

the optimal portfolio weights depend exclusively and analytically on the �rst two moments

of returns [see equation (3.4)]. Thus, we can directly compare our semiparametric estimates

of the portfolio policy to parametric estimates based on individual moment forecasts.

4.1.2 Constant Relative Risk Aversion Preferences

We also consider an investor with constant relative risk aversion (CRRA) or power utility:

v(Wt+1) =

8><
>:

W 1�
t+1

1�  if  > 1

lnWt+1 if  = 1

; (4.1)

where  now measures relative risk aversion Wt
@2v(W )
@W 2

Æ@v(W )
@W

. CRRA preferences are by

far the most popular objective function in the portfolio choice literature. This is largely

because the investor's portfolio (and consumption) policy is proportional to wealth and the

value function is homothetic in wealth. In a multiperiod setting, these features of CRRA

preferences imply that wealth is not a state variable in the investor's problem.

16For the empirical work we normalize Wt=1, so relative risk aversion Wt
@2v(W )
@W 2

Æ@v(W )
@W also equals .
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4.2 Non-Expected Utility

4.2.1 Ambiguity Aversion

Expected utility theory assumes that the investor can compute expectations with respect

to the return distribution, which requires that the agent knows the parametric structure of

the return distribution and either knows its parameters or can form Bayesian beliefs about

them. The investor is only exposed to the \risk" inherent in the returns and trades o� this

risk against expected rewards through the expected utility maximization. Knight (1921) and

Ellsberg (1961) argue, however, that the investor may not have all of the information required

to form such expectations. For example, an agent may not be able or willing to assign

probabilities to a set of alternative parameterizations of the return distribution. Thus, the

investor faces additional \ambiguity" that is not captured in the expected utility framework.

Ambiguity aversion preferences formalize the idea that the investor dislikes not only risk but

also this more vague uncertainty about the world (called Knightian uncertainty).17

Consider again an investor with CRRA preferences, except that now the agent is uncertain

about whether the return distribution is �p (the empirical distribution, for example) or some

other distribution p2P in the neighborhood of �p. The crucial di�erence between ambiguity

aversion and expected utility theory with model uncertainty is that with ambiguity aversion

the investor cannot or does not want to assign probabilities to the set of alternative return

distributions. Following Gilboa and Schmeidler (1989) and Dow and Werlang (1992), the

investor's portfolio choice problem in this case is given by:

max
�t

min
p2P

Ep

h
v
�
Wt(�t

0Rt+1)
����Zt

i
; (4.2)

were v(�) is the CRRA utility function in equation (4.1). This maxmin criterion is quite

intuitive. Given the complete ambiguity about the return distribution, the investor considers

the worst case outcome (in the neighborhood of �p) through the interior minimization. The

exterior maximization then achieves the usual risk vs. expected reward trade-o�.

To implement this form of ambiguity aversion, we need to characterize the set of possible

return distributions P . We adopt the following "-contamination parameterization:18

P =
�
(1�") �p+ " p : p 2 P	; (4.3)

17There is an extensive experimental literature con�rming that individuals indeed dislike ambiguity, both
in gambling settings [e.g., Becker and Brownson (1964) or Curley and Yates (1985,1989)] and in �nancial
markets [e.g., Camerer and Kunreuther (1989) or Sarin and Weber (1993)].

18The assumption of "-contamination is informally introduced by Ellsberg (1961) and is now common in the
literature on ambiguity aversion. It is used, for example, by Epstein and Wang (1994) and Liu (1998,1999).
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where P denotes the �-algebra generated by the support of the return distribution. The

parameter " reects the investor's degree of ambiguity.19 With "=0 the investor's objective

function reduces to that with standard CRRA preferences and return distribution �p.

The advantage of this parameterization is that the investor's problem simpli�es to:

max
�t

(1�") E�p

h
v
�
Wt(�t

0Rt+1)
����Zt

i
+ � inf

P
v
�
Wt(�t

0Rt+1)
�
; (4.4)

where we assume that the support of the return distribution is independent of the predictors.

Thus, to implement the notion of ambiguity aversion we only need to choose a value for the

parameter " and specify the support of the return distribution to evaluate the in�mum.

Ambiguity aversion relates closely to the recent literature on robustness [e.g., Anderson,

Hansen, and Sargent (1999), Hansen, Sargent, and Tallarini (1999), and Maenhout (1999)].

Although the formalizations di�er slightly, the behavioral motivation of the two theories is

the same. Agents are uncertain about the true model and are unable or unwilling to assign

probabilities to the set of alternative models. Not too surprisingly, robustness also results in

maxmin policies. We focus on the �-contamination version of ambiguity aversion because it

captures the essence of the theory and is more tractable for our empirical application.

4.2.2 Prospect Theory and Loss Aversion

In another literature on decisions under uncertainty, Kahneman and Tversky (1979) argue

that humans systematically violate the axioms of expected utility theory in two important

ways. First, experimental subjects tend to overweight outcomes that are considered certain,

relative to outcomes that are merely probable, which is referred to as the \certainty e�ect".

In �nancial markets, this certainty e�ect makes an investor risk averse in the case of gains,

as a small certain gain is preferred to a probable risky gain, but risk seeking in the case of

losses, as a probable risky loss is preferred to a small certain loss. In addition, subjects tend

to simplify decisions by disregarding components common to the alternative choices and

focusing on components that di�erentiate the choices, which is called the \isolation e�ect".

Since the decomposition of alternative choices into common and di�erentiating components

is non-unique, however, the outcome of the decision problem depends on the investor's

perspective in the simpli�cation process.

Motivated by this experimental evidence, Kahneman and Tversky formulate prospect

theory, which consists of an editing stage, where alternatives are put into perspective, and

19Alternatively, one can interpret the portfolio choice as the investor playing a two-stage game against
nature. In the �rst stage, nature replaces with probability " the return distribution �p with an arbitrary
distribution p2P . In the second stage, nature then draws a set of returns from the return distribution.
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a choice stage.20 Utility is de�ned over gains and losses relative to a reference point (such

as the result of an all-cash investment strategy, or last period's wealth) rather than over the

level of wealth as in expected utility theory. To capture the di�erential risk preferences over

gains and losses generated by the certainty e�ect, Tversky and Kahneman (1992) propose

the following objective function for the choice stage:

v(Wt+1) =

8<
:
�l � �W�Wt+1

�b
if Wt+1 < �W�

Wt+1� �W
�b

otherwise
; (4.5)

where �W is a reference wealth level determined in the editing stage. For example, �W could

be the initial wealth Wt or its future value R
tb
t+1Wt, depending on the investor's perspective.

The parameter l measures the investor's loss aversion and the parameter b captures the

degree of risk seeking over losses and risk aversion over gains.21 The kink at the origin

introduced by l>1 makes losses (relatively) more painful than gains are pleasurable.

In addition, in Tversky and Kahneman's formalization of prospect theory the investor

does not evaluate outcomes on the basis of true probabilities, but rather, as predicted by the

certainty e�ect, on the basis of distorted probabilities. That is, instead of maximizing the

true expectation of the objective function, the investor maximizes:

E

�
v (Wt+1)

�
�
p(Wt+1jZt)

�
p(Wt+1jZt)

����Zt

�
=

Z +1

�1

v(Wt+1) �
�
p(Wt+1jZt)

�
dWt+1;

where �(�) represents a subjective distortion of the objective probabilities p(�). Tversky

and Kahneman suggest parameterizing this probability distortion as [see also Tversky and

Wakker (1995)]:

�
�
p(Wt+1jZt)

�
=

p (Wt+1jZt)
cn

p(Wt+1jZt)
c
+
�
1� p(Wt+1jZt)

�co1=c
(4.6)

where c determines the degree of \irrationality". When c = 1, the decision weights �(�)
reduce to the objective probabilities p(�). Notice also that when 0< c< 1, the weights are

not a proper probability measure (hence they are called weights, not subjective probabilities)

because they sum to less than one.

A special case of prospect theory is loss aversion, when b= 1, c= 1, and l > 1. In this

20Finance applications of prospect theory preferences include Barberis, Huang, and Santos (2000), Barberis
and Huang (2001), Benartzi and Thaler (1995), Shefrin and Statman (1994), and Shumway (1997).

21Tversky and Kahneman cite experimental evidence that suggests b=0:88 and l=2:25.
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case, the investor is risk neutral over gains and is risk neutral over losses, but realizes a

greater incremental utility penalty for a loss than for an equally large gain. This results

in unconditional risk aversion. Furthermore, since with c = 1 the decision weights reduce

to the objective probabilities, this investor simply maximizes expected utility. Interestingly,

Benartzi and Thaler (1995) �nd that the main aspect of prospect theory relevant for portfolio

choice is loss aversion and that the concavity (resp. convexity) of the value function on the

upside (resp. downside), as well as the subjectivity of the probability distortions, are only

of second-order importance. Sharpe (1998) argues, however, that the local risk-neutrality

property of loss aversion results in portfolio choices that are too extreme.22

A literature that is somewhat related to loss aversion involves Value-at-Risk (VaR)

constraints which ensure that with probability of at least q the investor's wealth next period

(or some other target horizon) does not fall below some speci�ed level.23 The extremes q=0

and q=1 correspond to an unconstrained investor and a portfolio insurer [e.g., Basak (1995)

and Grossman and Zhou (1996)]. Unfortunately, VaR preferences have two faults. First,

Artzner et al. (1998) show that VaR measures have diÆculties aggregating individual risks,

even risks that are cross-sectionally independent, and sometimes discourage diversi�cation.

Second, Basak and Shapiro (1998) �nd that in a multiperiod setting a VaR-constrained

investor frequently chooses, quite paradoxically, a larger exposure to risky assets than an

otherwise equivalent unconstrained investor.24 As a �x to this problem they propose an

alternative risk management constraint that incorporates the expected value of the loss.

Similar in spirit to this extended VaR constraint, loss aversion preferences penalize for both

the probability and magnitude of losses.

5 Empirical Results

5.1 Unconditional Portfolio Choice

We begin our empirical work by characterizing the unconditional portfolio choice of investors

with expected and non-expected utility preferences. The unconditional portfolio choices

are useful for understanding the optimal index compositions in Section 5.2 and serve as

22The problem with loss-aversion is that the iso-expected utility curves are straight lines in mean vs.
standard deviation of returns space, which means that in a stylized portfolio choice between a single stock
and cash the optimal portfolio choice is either 100 percent cash or 100 percent stock, depending on whether
the iso-expected utility curves are more or less steep than the mean-variance frontier [see Sharpe (1998)].

23VaR is the de facto standard measure of risk because of its simplicity and its popularity with regulators.
24The intuition is that the VaR-constrained investor �nds it optimal to insure against losses in states where

insurance is relatively cheap (because losses are relatively small), but accepts the possibility of losses (up to
probability 1�q) in states where insurance is expensive (because losses are potentially large).
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benchmark for the conditional asset allocations in Section 5.3.

5.1.1 Expected Utility Preferences

Mean-Variance Investors

Panel A of Table 4 presents estimates of the unconditional portfolio choice of investors with

mean-variances preferences and absolute risk aversion (and relative risk aversion sinceWt=1)

of two, �ve, 10, and 20.25 The investment horizon is one month or one year. The entries

in the Without Risk-Free Rate section of the panel are for a portfolio choice between stocks

and bond. The entries in the With Risk-Free Rate section are for a portfolio choice between

stocks, bond, and Treasury bills. We assume that Treasury bills are risk-free and �x the

Treasury bill rate at its historical average. We impose the short-sale constraints 0� x� 1

to prohibit unrealistic leveraging and short-selling. In brackets below each estimate are

autocorrelation adjusted asymptotic standard errors.26

Panel A of Figure 2 helps visualize the mean-variance portfolio choice. The two graphs

plot the expected return on wealth against the standard deviation of wealth for the estimated

portfolio weights in Panel A of Table 4. The two lines in each graph represent the mean-

variance frontier with a risk-free rate (straight line) and without a risk-free rate (hyperbola).

The stars and circles represent the corresponding optimal portfolios. As a reference point,

we also plot a portfolio of 60 percent stocks, 20 percent bonds, and 20 percent Treasury bills,

which happens to resemble the optimal portfolio of a mean-variance investor with =5.

Several well-known but nevertheless interesting features of the mean-variance optimal

portfolios emerge. Consider the portfolio choice with a risk-free rate. Except when  = 2,

in which case the short-sale constraints are binding, all mean-variance investors hold the

same risky position of 84 or 90 percent stocks and 16 or 10 percent bonds, depending on

the horizon but irrespective of risk aversion. Risk aversion only a�ects how much wealth

the investor allocates to risky securities instead of to risk-free Treasury bills. This allocation

ranges from 100 percent for =2 to about 20 percent for =20.

Graphically, the fact that all mean-variance investors hold the same risky position, which

is the portfolio at the tangency of the two mean-variance frontiers, but allocate di�erent

fractions of wealth to it, implies that the optimal portfolios are all arranged on a straight

line in the expected return vs. standard deviation space. Also, we notice from Figure 2

25We checked that our method of moments estimates are virtually identical to the results of plugging the
unconditional moments from Table 1 into the analytic expression (3.4) for the optimal portfolio weights.

26Whenever the short-sale constraints are binding we compute the asymptotic standard errors using the
results of Moran (1971) and Andrews (1999), who derive the asymptotics of an extremum estimator of a
parameter that is located at the boundary of a closed parameter space.
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that the optimal standard deviation of wealth is inversely proportional to . This happens

because the decision of how much wealth to invest in the risky tangency portfolio is inversely

proportional to the investors' absolute risk aversion [see equation (3.5)].

These portfolio choice patterns are the direct consequence of two-fund separation and

have important implications for the variable selection.27 Recall our example of two investors,

one who is very risk averse, holds mostly bonds, and wants to predict variances, and another

who is less risk averse, holds mostly stocks, and wants to predict means. We argued, based

on this example, that the variable selection may di�er across investors for two reasons:

the investors' preferences for predicting the various moments of returns and their portfolio

holdings. The implication of two-fund separation is that all mean-variance investors hold

the same risky position, unless the borrowing constraints are binding or there is no risk-free

rate, which means their variable selection can only di�er due to di�erent preferences for

predicting means, variances, covariances, and higher-order moments.

The conclusion that di�erent investors hold the same risky position does not apply to

the portfolio choice without a risk-free rate, although two-fund separation holds nevertheless

(only now with two risky portfolios). Without a risk-free rate, the investors' stock holdings

decrease and the bond holdings increase with the level of risk aversion. Also, the standard

deviation of wealth decreases less than proportionally with , which means that relative to

the portfolio choice with a risk-free rate the investors are taking on more risk.

Constant Relative Risk Averse Investors

Panels B of Table 4 and of Figure 2 present estimates of the unconditional portfolio choice

of investors with CRRA preferences and relative risk aversion of two, �ve, 10, and 20. The

results are similar to those for mean-variance preferences, except that CRRA investors tend

to hold less stocks (up to seven percent less) and more bonds (up to �ve percent more),

relative to equally risk averse mean-variance investors. These di�erences in the portfolio

choices are attributed to the negative skewness in stock returns and the positive skewness in

bond returns that we document in Table 1.28

Given these di�erences in the optimal portfolio weights, it is interesting that the

implications of two-fund separation for the mean-variance portfolio choice with a risk-free

27We use the notion of two-fund separation to refer to the fact that two mean-variance eÆcient portfolios
span the mean-variance frontier. With a risk-free rate, these two portfolios are the Treasury bill and tangency
portfolio. It is important, however, to realize that in the literature two-fund separation is typically an
equilibrium statement that refers to the \market portfolio" being mean-variance eÆcient.

28We observe the greatest di�erences between the optimal portfolio weights of mean-variance and CRRA
investors at the three-month horizon, where stock returns exhibit the most negative skewness. The three-
and six-month estimates are not reported in Table 4 and Figure 2 to preserve space.
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rate apply as well to CRRA preferences. This is an empirical result, not a theoretical one. In

theory, the risky position of a CRRA investor can depend on relative risk aversion, since the

investor's preferences for higher order moments, which di�erentiate a CRRA investor from

an equally risk averse mean-variance investor, are a function of relative risk aversion. In the

data, however, the e�ect of the higher-order moments is apparently not strong enough to be

noticeable in the stock holdings of CRRA investors with di�erent degrees of risk aversion,

although it is clearly a factor in explaining the di�erent stock holdings of equally risk averse

CRRA and mean-variance investors.29 30

5.1.2 Generalized or Non-Expected Utility Preferences

Ambiguity Averse Investors

The results for investors with ambiguity aversion preferences are in Panel A of Table 5 and

in Figure 3. We consider the cases =f5; 10g and "=f0:001; 0:005; 0:010g.31 Recall that the

case "=0 corresponds to the CRRA portfolio choices in Panel B of Table 4. We parameterize

the worst-case returns on stocks and bonds, which we need to evaluate the in�mum in the

objective function (4.4), as the empirical univariate minimums from Table 1.

Ambiguity aversion has two e�ects on the portfolio choice. First, an increase in ambiguity

aversion leads investors to substitute Treasury bills for risky securities or bonds for stocks,

depending on whether or not a risk-free security is available.32 Second, in the case with a risk-

free rate, the investor does not take a position (positive or negative) in bonds for ��0:005,

even if we relax the short-sale constraints.33 For the variable selection, the tendency of

investors with ambiguity aversion to not hold a position in some securities has the same

e�ect as two-fund separation. It causes di�erent investors to hold similar portfolios.

29To be precise, the e�ects of higher-order moments on the relative stock holdings of CRRA investors with
di�erent risk aversion are not strong enough to be noticeable after rounding the estimates to the second
decimal. They are actually noticeable, but of course not statistically signi�cant, at the third decimal.

30Lynch (2000) reports analogous results for the multiperiod portfolio choice of CRRA and mean-variance
investors under the assumption of joint log-normality of returns.

31The choice of " is admittedly ad hoc. Camerer (1995) cites attempts to calibrate ambiguity aversion
preferences to gambling experiments. Since, it is unclear, however, how these experimental results relate to
ambiguity aversion in �nancial markets, we present estimates for a relatively generous range of ".

32This e�ect of an increase in ambiguity aversion parallels that of an increase in risk aversion, which is an
observational equivalence formalized recently by Liu (1999) and Maenhout (1999).

33This tendency to not hold a position in some securities, which happens because the expected returns
are not suÆciently positive or negative to justify taking on the associated ambiguity, is the subject of Dow
and Werlang's (1992) paper. It also motivates Liu's (1998) attempt to explain the limited participation of
U.S. households in �nancial markets [see Mankiw and Zeldes (1991)] with ambiguity aversion preferences.
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Prospect Theory Investors

Panels B of Table 5 and Figure 3 present estimates of the unconditional portfolio choice

of prospect theory investors.34 We set c= 1 and, guided by the experimental calibrations

of Tversky and Kahneman (1992), consider the parameter values b = f0:8; 0:9; 1:0g and

l=f2:0; 2:5; 3:0g, where b=1 corresponds to pure loss aversion.35 We set the wealth reference

level �W , which is chosen in the editing stage of prospect theory, to the initial wealth Wt=1.

By far the most striking feature of the prospect theory results are the strong horizon

e�ects (which is why we report results for all four investment horizons here).36;37 Consider

the portfolio choice with a risk-free rate. At the one-month horizon the optimal allocation

consists of more than 90 percent Treasury bills, while at the one-year horizon it is 100 percent

stocks, irrespective of the preference parameters. This is in obvious contrast to the results

for the other three sets of preferences, which exhibit only minimal horizon e�ects.

Benartzi and Thaler (1995) explain that the more often a loss averse investor evaluates

his or her portfolio the less attractive are high expected return but high variance investments

because losses of these investments are realized more often at short horizons than at long

horizons. Loss aversion e�ectively causes short-term investors to be extremely risk averse,

since the return distribution straddles the kink of the utility function, but long-term investors

to be almost risk neutral, as the mass of the return distribution moves away from the kink. In

contrast, Merton (1969) and Samuelson (1969) show that as long as returns form a martingale

the portfolio choices of mean-variance and CRRA investors are independent of the horizon.38

Even if we relax the martingale assumption, the mean-variance and CRRA portfolio choices

do not exhibit nearly the magnitude of horizon e�ects that we observe with loss aversion.

Besides the horizon e�ects, the portfolio choice with loss aversion preferences is

34To compute the standard errors, which requires �rst and second derivatives of the objective function
with respect to �, we smooth the kink in the objective function at zero with a polynomial in-between the
contact points -0.005 and +0.005 with continuous �rst and second derivatives at the contact points.

35Like Barberis, Huang, and Santos (2000), who use c = 1, b = 1, and l = 2:25, we abstract from the
probability distortions. When c=1, the weights �(�) reduce to the objective probabilities p(�). We checked,
however, that our results are qualitatively robust to using Tversky and Kahneman's value of c=0:65.

36In a single-period context we de�ne horizon e�ects as di�erences in the portfolio policies of investors
with di�erent buy-and-hold horizons. An alternative de�nition, and one that we employ in Section 5.3.3,
refers to di�erences in the portfolio policies of multiperiod investors with the same rebalancing frequency
but di�erent numbers of rebalancing periods.

37The behavioral �nance literature distinguishes between the investor's rebalancing period when securities
are traded and the \evaluation period" when gains and losses are realized mentally (as opposed to �nancially)
[Benartzi and Thaler (1995) or Barberis and Huang (2001)]. For simplicity, we assume that the rebalancing
and evaluation periods are the same.

38 This horizon irrelevance result breaks down if the returns are mean-reverting instead of martingales or
in a multiperiod setting if the returns are contemporaneously correlated with innovations to the investment
opportunity set [see Barberis (2000) and Campbell and Viceira (1999)].
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noteworthy because investors with di�erent degrees of loss aversion hold substantially

di�erent positions in the risky securities (except at the annual horizon, where the short-

sale constraints are binding). In particular, for the portfolio choice with a risk-free rate the

fraction of stocks in the risky part of the allocation ranges from 60 to 100 percent. It is also

intriguing that prospect theory investors construct approximately mean-variance eÆcient

portfolios (see Panel B of Figure 3) although they do not all hold the tangency portfolio.

5.2 Optimal Index Composition

Turning now to the conditional portfolio choice, we estimate the optimal index composition

as described in Section 3.2 and Appendix A. We use linear instruments g(Zt) = Zt, which

may be suboptimal in the sense of problem (3.11) but result in numerically more reliable

estimates.39;40 We demean and standardize the variables Zt to be able to interpret the

magnitude of the index coeÆcients. We also normalize the index coeÆcients to sum to

one in absolute values, meaning j�j0� = 1, since they are only identi�ed up to scale. This

normalization means that we can read the index coeÆcients as signed percentage loadings.

5.2.1 Expected Utility Preferences

Mean-Variance Investors

Panel A of Table 6 presents estimates of the index coeÆcients for mean-variance investors

with a one-month or one-year horizon. One, two, or three stars indicate that the coeÆcient is

statistically signi�cant at the ten, �ve, or one percent level, respectively. Tables 7 describes

the estimated indices, where Panel A shows univariate descriptive statistics and Panel B

shows pairwise correlations with the four predictors, with the returns on bonds, stocks, and

wealth generated by the unconditional portfolio choice, and with the squared returns on

bonds, stocks, and wealth.41

39The instruments (3.13) tend to result in estimates that are sensitive to the starting values and are
only locally optimal. The problem is that, due to the derivative of �(Zt

0�;�) with respect to it second
argument, the optimal instruments cause the GMM objective function to be less well-behaved than with
linear instruments (see also the discussion in Section 3.2).

40We carefully veri�ed, however, that the estimates with linear instruments are virtually identical to the
estimates that correspond to the global minimum of the GMM criterion with the optimal instruments. In
particular, we solved for eight indices (two for each set of preferences) using a random search optimization
algorithm that is robust to ill-behaved objective functions. In the worst case (ambiguity aversion preferences
with =10 and "=0:01), the di�erence between the estimates with linear and optimal instruments implies
an expected utility loss of 0.09 percent in certainty equivalent terms. The corresponding estimates of the
index are [0:249;�0:124; 0:597; 0:030] with linear and [0:312;�0:119; 0:518; 0:051] with optimal instruments.

41We use the return on wealth generated by the unconditional portfolio choice as a meaningful way to
collapse the bivariate return series (bonds and stocks) into a univariate variable. In particular, the return
on wealth weights the bond and stock returns relative to their unconditional importance to the investor.
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Consider �rst the indices for the portfolio choice with a risk-free rate. The most striking

feature of the results is that the index composition is remarkably insensitive to the level

of risk aversion. This is again an implication of two-fund separation because with a risk-

free rate and without short-sale constraints the optimal portfolio choice of a mean-variance

investor is to allocate a fraction �tgc
t [from equation (3.5)] of wealth to the tangency portfolio

and to hold the remaining wealth in risk-free Treasury bills. Two-fund separation therefore

implies that the portfolio policies of all mean-variance investors are proportional to each

other and that, as a result, the optimal index of conditional variables must be the same

for all investors (since the index is identi�ed only up to scale). In line with this theoretical

result, the estimated indices are in fact identical across di�erent levels of risk aversions if

we relax the short-sale constraints. If we impose the short-sale constraints, as we do for

Table 6, the estimates are slightly di�erent because the constraints are binding more often

for an investor with =2 than for an investor with =20.

At the monthly horizon the index loads positively on the term spread, positively on the

default spread, negatively on the log dividend yield, and positively on the trend, with relative

weights of about 55, 16, 13, and 15 percent, respectively. At the one-year horizon, it loads

positively on the term spread and the dividend yield, with relative weights of 57 and 29

percent. The default spread and trend each account for less than 11 percent of the index.

To better understand the index composition, given that the predictors are correlated,

consider the pairwise correlations in Panel B of Table 7. At the monthly horizon the index is

most correlated with the term spread and is about equally correlated with the log dividend

yield and trend (correlations of 0.95, -0.43, and 0.48, respectively). Somewhat unexpectedly,

it is nearly orthogonal to the default spread, although the loading on the default spread

exceed those on the log dividend yield and trend. At the annual horizon the index is

positively correlated with the term spread and dividend yield (correlations of 0.89, 0.08,

respectively) and is virtually orthogonal to the default spread and trend.

At both horizons the indices relate positively to the returns on wealth, with correlations

of 0.18 and 0.40, and negatively to the squared returns on wealth, with correlations of -0.11

and -0.05.42 The signs and magnitudes of these correlations suggest the following:

� An increase in the index represents an unambiguous improvement in investment

opportunities, since it increases the mean and decreases the variance of future wealth.

42At the monthly horizon the positive correlation of the index with returns on wealth is attributed to
the positive loading on the term premium. The negative correlation with squared returns comes from the
positive loading on the trend. At the annual horizon both the positive correlation with returns and the
negative correlation with squared returns on wealth are attributed to the term spread.
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� The term spread receives the highest weighting in all indices.43 Tables 1 and 2 show

that the term spread is the only variable that is strongly (in relative terms) positively

correlated with the mean and negatively correlated with the variance of stock returns.

Since mean-variance investors allocate unconditionally between 86 and 90 percent of

their risky investments to stocks, they de�nitely cheer increases in the term spread.

The log dividend to price ratio, the more traditional predictor of expected returns,

receives a negative weight at the monthly horizon, since it is negatively correlated

with the mean and positively correlated with the variance of stock returns, and a less

positive (60 percent less) weight than the term spread at the annual horizon because

it is positively correlated with the mean but also with the variance of stock returns.

The less positive weight reects the fact that an increase in the dividend yield is good

news for expected returns but bad news for the variance of returns.

� The correlations of the indices with the returns and squared returns on wealth are both

below their theoretical maximums implied by the individual moment regressions in

Table 2. This implies that, in line with our intuition, the indices achieve a compromise

between predicting means and variances.

� The balance between predicting means and variances depends on the relative degree

of predictability of the two moments. At the monthly horizon the mean and variance

of stock returns are equally predictable (R2s of 0:04 and 0:05) and the indices are

about equally correlated with returns and squared returns on wealth. At the annual

horizon, however, the expected return of stocks is almost twice as predictable as the

variance (R2s of 0:18 and 0:10) and, as a result, the indices focus almost exclusively

on predicting mean returns.

This is exactly how we intend the indices to work. The only feature of our approach that is

not well illustrated yet is that the index composition can be investor speci�c.

This feature of the indices is apparent from the results for the portfolio choice without a

risk-free rate. Recall from Table 4 that as risk aversion increases, the unconditional portfolio

choice without a risk-free rate varies from 100 percent stocks to the global minimum variance

portfolio of 20 percent stocks and 80 percent bonds. The corresponding entries in tables 7

and 8 show that as the relative position in stocks vs. bonds changes with the level of risk

aversion, the index composition also changes. In particular, at the one-month horizon the

most important predictor is the term spread for =f2; 5g and the trend for =f10; 20g.
43We checked carefully that the dominance of the term spread in the indices is not attributed to a few

inuential data points, such as the period surrounding October 1987.
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Constant Relative Risk Averse Investors

The indices for CRRA preferences, in Panel B of Table 6, resemble those for mean-variance

preferences. Their likes and dislikes of higher-order moments induce CRRA investors to

focus somewhat more on the term premium and less on the dividend yield (except for the

one-month portfolio choice without a risk-free rate). Despite the di�erences between the

CRRA and mean-variance indices, the indices for CRRA investors with di�erent levels of

risk aversion are no more di�erent than those for mean-variance investors with di�erent

levels of risk aversion. In fact, if we relax the short-sell constraints the CRRA indices for

the portfolio choice with a risk-free rate are identical across di�erent levels of risk aversion,

just as they are for mean-variance investors. This is true not only for  ranging from two

through 20, but also for  as large as 100 (not shown in the table). We hence conclude that

the preferences for higher-order moments, which depend on the level of risk aversion, are not

strong enough to induce di�erent CRRA investors to focus on di�erent economic variables.

5.2.2 Generalized or Non-Expected Utility Preferences

Ambiguity Averse Investors

Panel A of Table 8 presents the estimated indices for investors with ambiguity aversion

preferences. Overall, the results are quite similar to those for the expected utility preferences

in Table 6. For the portfolio choice with a risk-free rate the term spread is by far the most

important contributor to the index. The second most important predictor is the default

spread at the monthly horizon and the log dividend yield at the annual horizon.

A more subtle feature of the results is that the index composition depends on the degree

of ambiguity aversion. Consider, for example, the case  = 5 for the one-month portfolio

choice with a risk-free rate. With �= 0 (in Panel B of Table 6), the index coeÆcients are

0.173, -0.087, 0.667, and 0.073, while with "=0:01, they are 0.184, -0.116, 0.644, and -0.056.

Depending on whether the portfolio choice includes a risk-free rate or not, there are two

di�erent reasons for why the index composition depends on the degree of ambiguity aversion.

Without a risk-free rate, an increase in ambiguity aversion is observationally equivalent to

an increase in risk aversion. Thus, the index composition changes in the same way as it does

for the CRRA portfolio choice without a risk-free rate when risk aversion increases. With a

risk-free rate, in contrast, the index changes because suÆciently ambiguity averse investors

avoid bonds. As the unconditionally optimal risky position shifts from 87 percent stocks and

13 percent bonds (in Panel B of Table 4) to 100 percent stocks (see Panel A of Table 5), the

index changes accordingly.
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Prospect Theory Investors

The indices for prospect theory investors, shown in Panel B of Table 8, exhibit the most

variation across di�erent preference parameters and are the most di�erent from the mean-

variance benchmark. They are also the most challenging to interpret, due to the strong

horizon e�ects that we documented in Table 5.

To abstract from the horizon e�ects, we focus on the index composition for the portfolio

choice with a risk-free rate at the one-year horizon, where all prospect theory investors hold

only stocks. The indices are quite di�erent from those for mean-variance preferences at the

one-year horizon. In particular, when b=0:8 the index loads positively and substantially on

the default spread (correlation of 0.22). This is puzzling, at �rst sight, since the default

spread is a strong positive predictor of the variance of stock returns and even relates

negatively to the mean. However, the fact that prospect theory investors are risk loving

in the case of losses explains the role of the default spread. When the default spread is

high the investor anticipates relatively volatile losses, as opposed to certain losses, which

is preferred in prospect theory.44 Indeed, as b increases and the investor becomes less risk

loving over losses, the correlation of the index with the default spread drops sharply. The

correlation increases for values of b less than 0.8 (not shown in the table).

Another interesting di�erence between the prospect theory and mean-variance indices is

the negative loading on the trend. At the one-year horizon, the trend is a weak negative

predictor of the mean, but a strong negative predictor of the variance of stock returns. Thus,

mean-variance investors virtually ignore the trend, since the correlation with the variance

is not strong enough to o�set the correlation with the mean of the same sign, and vice

versa. More puzzling than the negative loading itself, however, is the fact that the role

of the trend variable in the index does not depend much on the curvature of the utility

function, which suggests that it is unrelated to our usual mean-variance intuition. Instead,

there are two reasons to believe that loss averse investors use the trend to predict positive

skewness, or rather fewer and smaller losses. First, the importance of the trend depends

on the loss aversion parameter l. In particular, when we consider l < 2 the loading on the

trend decreases, while it increases when we consider l > 2:5 (both results are not shown in

the table). Second, the correlation of the trend with cubed stock returns, a simple measure

of skewness, is -0.21.

44We checked that losses are indeed more volatile when the default spread is high than when it is low.
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5.3 Conditional Asset Allocation

Figures 4 and 5 plot the portfolio policies of investors with expected and non-expected utility

preferences. The black, grey, and white areas in each plot represent the estimated allocations

of wealth to Treasury bills, bonds, and stocks as a function of the estimated indices from

Table 6 (for Figure 4) and Table 8 (for Figure 5).45 We compute the conditional portfolio

weights for 15 evenly spaced realizations of the index ranging from its mean minus two

standard deviations to its mean plus two standard deviations, which roughly corresponds to

the interior 95 percent of the empirical distribution of the index (see Table 7).

5.3.1 Market Timing

In our context, market timing is the response of the optimal asset allocation to changes in

the index. Market timing is therefore visible in �gures 4 and 5 through changes in the bar

charts from the left of each plot (where the index is equal to its mean minus two standard

deviations) to the right (where the index is equal to its mean plus two standard deviations).

In a nutshell, all of the investors we consider engage in market timing, unless they are very

risk averse (with extremely high ) or very ambiguity averse (with extremely high ").

Otherwise, a few broad patterns emerge:

� More market timing takes place at long horizons than at short horizons. There are two

reasons for this phenomenon. First, it reects one of the basic �ndings from Section 2,

that long-horizon returns are more predictable than short-horizon returns, which is

largely due to the slow mean-reversion of the term premium and log dividend yield

(see Figure 1). Second, short-horizon investors hold a larger percentage of their wealth

in cash, which implies that the rewards from timing the market are more limited.

� Less (resp. more) risk averse investors engage in more (resp. less) market timing. It

takes only a small increase in the index for an investor with =2 to switch from 100

percent cash (or bonds in the case without a risk-free rate) to 100 percent stocks, and

this switch occurs much before the index reaches its mean. More risk averse investors

react less abruptly to an increase in the index. Furthermore, there appears to be a

limit to how far they are willing to switch from Treasury bills into stocks. This pattern

is most pronounced at the one-month horizon, where a mean-variance investor with

 = 20, for example, reduces the cash holdings from 100 percent to 55 percent as

45The kernel bandwidths for the estimator of �(Z 0�;�) are determined by leave-one-out cross-validation,
which is a data-based procedure described in detail in Brandt (1999). We checked carefully that the estimated
portfolio rules are fairly insensitive to reasonable variations (�25 percent) in the bandwidths.
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the index moves from minus two standard deviations to its mean, but then keeps the

55 percent cash position even when the index rises to plus two standard deviations.

Interestingly, the investor tends to substitute bonds for stocks as the index rises above

its mean. As a result, the stock holdings peak around the mean of the index.46

� Predictability induces even mean-variance investors with di�erent levels of risk aversion

to hold di�erent relative positions in bonds and stocks for a given horizon. This creates

a departure from the unconditional mean-variance allocation, where investors hold the

same risky position, the tangency portfolio, irrespective of their risk aversion.

� The portfolio policies of mean-variance and CRRA investors with the same degree of

risk aversion di�er substantially, which can only be attributed to time-variations in the

higher-order moments of the return distribution.47

� Prospect theory investors are by far the most active market-timers. They substitute

stocks for Treasury bills (or bonds in the case without a risk-free rate) more or less

quickly, depending on their degree of loss aversion, as the index increases. Except at

the monthly horizons, prospect theory investors are invested 100 percent in stocks even

before the index reaches its mean. At the one-month horizon and without a risk-free

rate their bond holdings reach a minimum of 25 to 40 percent around the mean of

the index. Further increases in the index do not induce the investors to hold more

stocks and fewer bonds because of the short-term loss potential of stocks. With a

risk-free rate, prospect theory investors introduce some bonds to their portfolio (up to

35 percent) when the index increases above its mean.

Since mean-variance preferences yield an analytical expression for the optimal portfolio

weights, we can compare our semiparametric estimates of the portfolio policies to plug-in

policies based on individual estimates of the �rst and second moments of returns. This

comparison allows us to measure the trade-o� between the expected utility loss from

combining the predictors into a single index as opposed to two indices (one for each moment)

and the statistical gain (if any) from directly estimating the portfolio weights.

Table 9 compares our semiparametric estimates of the mean-variance portfolio policies in

Panel A of Figure 4 to plug-in policies based on the regression estimates of the conditional

46This nonmonotonicity in the portfolio policy can be explained by the strong positive relation between
the term spread and expected bond returns, as documented in Table 2, together with the fact that expected
stock returns relate positively to the term spread only when the yield curve is inverted [see Boudoukh,
Richardson, and Whitelaw (1997)].

47We explicitly control for the possibility of our econometric procedure inducing these di�erences in the
policies by constraining the kernel bandwidths to be the same for mean-variance and CRRA preferences.
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moments in Table 2.48 Since the linear moment structure imposed by the linear regressions

makes this an unfair comparison, we also compare our estimates to nonlinear plug-in

policies based on semiparametric index regressions, where each conditional moment depends

nonparametrically on a separate linear index of the predictors.49 We use index regressions,

which still impose some parametric structure on the moments, because fully nonparametric

plug-in policies, in which both moments are arbitrary functions of all four predictors, are

infeasible due to the curse of dimensionality of nonparametric estimators.

The table reports for each portfolio policy the mean and standard deviation of the return

on wealth generated by the estimated asset allocations in our sample. It also shows the

certainty equivalent rate of return cet, which we de�ne as the risk-free rate of return on

wealth that makes the investors indi�erent between timing the market and the unconditional

portfolio choice in Panel A of Table 4. All entries in the table are annualized.

The semiparametric policies clearly outperform the linear plug-in policies and perform

about as well as the nonlinear plug-in policies, although they ignore the parametric structure

of the optimal portfolio weights. The general pattern is that the semiparametric policies

generate a mean return that is substantially larger than that of the linear plug-in policies

but slightly smaller than that of the nonlinear plug-in policies. Furthermore, they generate

a smaller standard deviation of wealth than both the linear and nonlinear plug-in policies.

This implies that, according to the certainty equivalent rates of return, the semiparametric

policies are dominated by the nonlinear plug-in policies for low levels of risk aversion, when

investors focus on expected returns, but dominate the nonlinear plug-in policies for high

levels of risk aversion, when investors are more sensitive to risk.

We draw two conclusions from Table 9. First, comparing the linear plug-in policies to

the nonlinear ones, it is clear that allowing for nonlinearities in the conditional moments is

crucial. Second, comparing the semiparametric policies to the nonlinear plug-in ones, it is

apparent that collapsing the conditioning information into a single index as opposed to two

indices (one for each moment) is inconsequential, or, if it matters, the expected utility loss

is balanced by the statistical gain from directly estimating the portfolio policy.

As a more direct measure of the expected utility cost of collapsing the multidimensional

information into a single index or, equivalently, of solving the constrained maximization (3.7)

instead of the unconstrained maximization (3.1), we report in Table 10 the di�erences in

certainty equivalent rates of return for semiparametric policies with indices of two predictors

and fully nonparametric policies [as in Brandt (1999)] with the same two predictors. Ideally,

48We use the full regressions, but the results with the best one- or two-variable regressions are very similar.
49See Powell, Stock, and Stoker (1989) for an introduction to semiparametric index regressions.
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we would like to compare the semiparametric policies with all four predictors to their fully

nonparametric counterparts but, as we explained in Section 3.2, the nonparametric approach

cannot be applied to more than two predictors due to the curse of dimensionality. However,

we hope that the comparison with two predictors is representative of the results with all four

predictors (especially since the index tends to be dominated by one or two predictors).

The most surprising result in Table 10 is that most of the entries are positive, suggesting

that collapsing the information into a single index generates an expected utility gain, not loss.

Of course, the solution of the constrained maximization (3.7) cannot dominate that of the

unconstrained maximization (3.1). Instead, the gains are due to our econometric approach.

In particular, the reason is that the optimal bandwidths for the nonparametric estimator

of the bivariate policy �(Z1;t; Z2;t) are substantially larger than the optimal bandwidths for

estimator of the univariate policy function �([Z1;t; Z2;t]
0�; �).50 This causes the estimates of

the bivariate policies to be substantially less responsive to the data. Since the theoretical

expected utility di�erence cannot be positive, the di�erence due to the larger bandwidths

can exceed 50 basis points per year (for low levels of risk aversion).

Focusing only on the negative entries in the table, where the expected utility loss is not

erased by the statistical gain, it appears that without a riskfree rate there are signi�cant

interactions between the term spread and trend variable at the monthly horizon and between

the dividend yield and term spread at the annual horizon. Similarly, with a riskfree rate

there appear to be signi�cant interactions between the default spread and term spread at

both the monthly and annual horizons and between the dividend yield and term spread at

the annual horizon. In both cases, the expected utility loss due to the index can be as high

as 50 basis points per year (for high levels of risk aversion).

To put these expected utility losses into perspective, we compare them to the expected

utility gains from market timing based on the index (of all four predictors) instead of on

each predictor individually. We show in Table 11 the di�erences in certainty equivalent rates

of return for the portfolio policies with indices and with individual predictors. Even when

the individual predictor is the dominant variable in the index (without a riskfree rate: the

dividend yield, term spread, or trend, depending on the level of risk aversion and horizon;

with a riskfree rate: the term spread), the expected utility gain from the index can be as

large as 1.4 percent per year. When the individual predictor is not the dominant variable in

the index, the expected utility gain can be almost three percent.

50The asymptotically optimal bandwidths of a nonparametric regression are proportional to T�1=(K+4),
whereK denotes the number of regressors [see H�ardle (1990)]. With T =528 observations, the bandwidths for
the bivariate estimator are therefore approximately 23 percent larger than those for the univariate estimator.
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Overall, tables 10 and 11 suggest that our index approach is sensible for general asset

allocation problems where an analytical solution is not available. The expected utility gains

from considering an index as opposed individual predictors is substantial while the expected

utility loss from an index as opposed to multivariate predictors appears to be relatively small.

5.3.2 Horizon E�ects

Horizon e�ects refer to di�erences in the portfolio choices of single-period investors

with di�erent buy-and-hold horizons (see also footnote 36). In a mean-variance setting,

unconditional positive (resp. negative) horizon e�ects are induced by an unconditional

negative (resp. positive) autocorrelation in returns, which makes stocks more (resp. less)

attractive at long horizons than at short horizons. While the mean return grows linearly with

the horizon, the variance of the returns also grows linearly when returns are uncorrelated,

but grows less (resp. more) than linearly when they are negatively (resp. positively)

autocorrelated. Furthermore, predictability can in some cases induce conditional mean

reversion and thereby generate conditional horizon e�ects [e.g., Barberis (2000)].

The horizon e�ects for the conditional portfolio choice are most pronounced for prospect

theory investors, who avoid stocks like the plague in the short-term but ock to them at longer

horizons, just as in the unconditional case (see Table 5). However, these hedging demands

are not due to unconditional or conditional mean reversion, but are rather attributed to the

simple fact that losses on risky securities are realized more often at short horizons than at

long horizons [see also Benartzi and Thaler (1995) and Barberis, Huang, and Santos (2000)].

For prospect theory investors the mean reversion induced by predictability is a secondary

source of horizon e�ects that reinforces the primary e�ect due to loss aversion.

For the expected utility investors, in contrast, mean reversion is the only source of horizon

e�ects because it is the only reason for the Merton/Samuelson horizon-irrelevance result to

fail in a single-period setting (recall footnote 38). The unconditional horizon e�ects in

Table 4 are relatively small, reecting the fact that returns are unconditionally not very

autocorrelated. Both mean-variance and CRRA investors tend to allocate somewhat less

wealth to stocks and bonds at the annual horizon than at the monthly horizon (notice the

positive autocorrelations of returns in Table 1). Conditional on the indices, however, the

horizon e�ects are much more pronounced. For example, consider the portfolio choice of

a mean-variance investor with  = 10. Although we cannot directly compare the portfolio

policies across horizons, since the indices are not the same, it is immediately clear from

the substantial bond positions at the monthly horizon that the portfolio choice depends

dramatically on the how soon utility is realized.
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Unfortunately, the horizon e�ects we �nd for the expected utility investors are only

partially consistent with the popular advice that investors should gradually shift from risky

securities to cash as the end of their investment horizon (e.g., retirement) approaches.

Consistent with this advice, suÆciently risk averse investors hold more bonds at the monthly

horizon than at the annual horizon. However, if we count bonds as risky securities, all

investors allocate more wealth to risky securities at the monthly horizon. It is not clear,

of course, that this pattern does not reverse at buy-and-hold horizons longer than a year

or in a multiperiod context with intermediate rebalancing.51 We therefore turn next to the

multiperiod portfolio choice.

5.3.3 Hedging Demands

Hedging demands arise in a multiperiod (i.e., long-horizon with intermediate rebalancing)

portfolio choice when investors can partially hedge against future changes in investment

opportunities by deviating from their single-period portfolio choice. To measure the

extent to which hedging demands arise in our setting, we solve for the multiperiod index

coeÆcients �n and portfolio weights �n(Z
0
t�n; �n) of investors with an annual rebalancing

frequency and horizons n ranging from one to 10 years. We de�ne hedging demands as

�n(Z
0
t�n; �n)��1(Z

0
t�1; �1), were �1 and �1(�) are the single-period index and portfolio

weights, respectively.

Besides studying hedging demands, we are interested in seeing how the index composition

�n varies with the horizon n. Intuitively, the index serves two purposes in a multiperiod

portfolio choice. First, the index forecasts the features of the return distribution that are

important to the investor, just as in a single-period context. Second, it predicts next period's

index realization, which in turn summarizes next period's investment opportunities, to help

the investor hedge against future changes in investment opportunities. The �rst purpose of

the index is independent of the horizon but the second one is by de�nition not.

We estimate �n and �n(Z
0
t�n; �n) recursively, starting with the single-period problem

at the end of the horizon and recursing backward, period by period, to the initial 10-

period problem. Each period n we replace in our estimator the single-period objective

function v(Wt+1) and its derivative @v(Wt+1)=@Wt+1 with the multiperiod value function

J(Wt+1; Z
0
t+1�n�1; n� 1) and its derivative @J(Wt+1; Z

0
t+1�n�1; n� 1)=@Wt+1. The value

function represents the expected utility of making optimal portfolio choices for the remaining

n�1 periods, as a function of next period's wealth Wt+1 and conditional on next period's

51Brandt (1999) also documents negative horizon e�ects (meaning less wealth allocated to stocks at long
horizons relative to the monthly portfolio choice) for horizons between two months and one year. However,
he �nds positive horizon e�ects for buy-and-hold investments lasting between one and ten years.
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index realization Z 0
t+1�n�1. We obtain the value function by evaluating the maximized

objective function of the (n�1)-period problem over a �ne grid of initial wealth levels and

index realizations.

We study only CRRA and ambiguity aversion investors in this multiperiod context. The

reason is that mean-variance utility is inherently a single-period objective that generates

nonsensical multiperiod policies and prospect theory yields trivial results, since with annual

rebalancing the short-sale constraints are binding for all horizons and preference parameters.

Panels A and B of Table 11 show estimates of the multiperiod index coeÆcients for

CRRA and ambiguity aversion investors with horizons of one, two, �ve, and 10 years. Since

the portfolio is rebalanced once a year, the one-year horizon results correspond to the single-

period index coeÆcients in Panel B of Table 6 and Panel A of Table 8. To preserve space, we

only present results for the cases =f5; 10g and "=0:005. The results for di�erent degrees

of relative risk aversion and ambiguity aversion are quantitatively similar.

It is clear that the optimal index composition depends at least to some extent on the

investor's horizon. Consider, for example, the portfolio choice with a risk-free rate of a

CRRA investor with  = 10. The single-period index has loadings of 0.054, 0.218, 0.592,

and -0.149 on the default spread, dividend yield, term spread, and trend, respectively. For

a ten-year portfolio choice, the corresponding loadings are 0.022, 0.209, 0.721, and -0.048.

The general pattern is that long-horizon investors focus even more on the term spread than

single-period investors. Also, when the portfolio choice includes a risk-free rate, long-term

investors focus more on the dividend yield than single-period investors. When it does not,

they instead pay more attention to the trend.

Panels A and B of Figure 6 plot the portfolio policies as a function of the horizon (along

the horizontal axis) and the index (across plots). The three plots in each row present the

portfolio choice conditional on the index being equal to its 25th percentile, median, and 75th

percentile, respectively. The black, grey, and white areas in each plot represent the estimated

allocations of wealth to Treasury bills, bonds, and stocks as a function of the horizon.

Relative to the recent and ever growing literature on hedging demands [e.g., Balduzzi

and Lynch (1999), Barberis (2000), Brandt (1999), Brennan, Schwartz, and Lagnado (1997),

Campbell and Viceira (1998,1999), Chacko and Viceira (1999), and Lynch (2000)] we

surprisingly �nd relatively small hedging demands. Even more striking, we �nd negative

hedging demands, in the sense that long-term investors allocate less wealth to risky securities

than short-term investors, instead of the consensus of positive hedging demands.

To understand our results, recall that for hedging demands to arise the returns have to

be contemporaneously correlated with changes in the investment opportunities. Looking
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at Panel B of Table 1, we notice that at the one-year frequency stock returns are (by

construction) strongly negatively correlated with changes in the log dividend yield and

strongly positively correlated with changes in the trend variable (-0.36 and 0.31, respectively).

They are weakly positively correlated with the term spread. Bond returns, in turn, are only

weakly positively correlated with both the default and term spreads.

Most of the literature on hedging demands focuses on the dividend yield as the leading

state variable. Since stock returns are strongly negatively correlated with innovations in the

dividend yield, multiperiod investors in these settings allocate more wealth to stocks than

single-period investors, since stock returns tend to be high when the dividend yield falls and

the investment opportunities next period worsen. In our setting, however, the choice of the

leading state variable is endogenously determined to be the term spread. Since returns are

not as correlated with changes in the term spread as they are with changes in the dividend

yield, our indices generate little hedging demands. In fact, the weak positive correlation of

both stock and bond returns with changes in the term spread induces a slight reduction in

risky investments at longer horizons.

Another noteworthy feature of our multiperiod policies is that at horizons of more than

�ve years even CRRA investors do not invest in bonds. The reason is that the negative

correlation of the bond returns with changes in the term spread (or the indices) leads investors

to reduce their bond holdings as a hedge against changes in the investment opportunities.

Therefore, our results con�rm, at least qualitatively, the popular investment advice that

short-term investors should hold a larger fraction of bond relative to stocks than long-term

investors [see also Canner, Mankiw, and Weil (1997)].

6 Conclusions

We showed how to use indices to select and combine predictive variables for the conditional

portfolio choice of an investor with given preferences and investment horizons. We also

characterized the optimal single-period and multiperiod asset allocations between asset

classes for a variety of investor preferences as a function of their respective indices. This

enables us to give investors hopefully sensible advice regarding the economic variables they

should pay attention to and the sensitivity of their investments to the (sometimes mixed)

signal these variables send. As Campbell and Viceira (1999) and others note, �nancial

planners who provide advice to individual investors have received surprisingly little guidance

from academics. We hope to have taken another step towards providing such advice.

Beyond the introduction of an index, an important feature of this paper is that we
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considered investors with a variety of preferences, including both expected and non-expected

utility objectives, which are viewed by psychologists as more realistic descriptions of human

decision making under uncertainty. Along the way, we identi�ed features of these preferences

that lead investors to select di�erent combinations of variables and react di�erently to them.

At least four stylized facts emerged from our empirical analysis:

� The term premium is an ubiquitous variable in our indices, appearing signi�cantly

across all preferences, investment horizons, and rebalacing frequencies. To a lesser

extent, but fairly consistently, the S&P index momentum variable we termed \Trend"

enters our indices at short horizons, while the dividend yield is the second most

important variable at long horizons. The default risk premium generally records the

lowest index loadings.

� All investors, when presented with their index of investment opportunities, �nd it

optimal to engage in signi�cant market timing.

� Horizon e�ects are most pronounced for prospect theory investors, who �nd the

likelihood of stock losses at short horizons to be prohibitively costly. For investors who

are not subject to loss aversion, the relative lack of returns autocorrelation translates

into relatively small horizon e�ects.

� Hedging demands are weak and negative because stocks do not provide a good hedge

for innovations in the index (i.e., in the investment opportunities). However, the index

coeÆcients vary with the horizons.

Finally, it should be noted that in the second half of the 1990s (which is only partially

included in our sample) many of the patterns in expected returns previously identi�ed

have weakened: the dividend-to-price ratio stubbornly predicted negative returns for the

stock market which never materialized; the size factor has all but disappeared; and value

stocks earned substantially lower returns than predicted on the basis of previously estimated

regressions. This should serve as a reminder that the magnitude of predictability in returns is

small and subject to a tremendous amount of noise, especially at short horizons. Our analysis

incorporated this fact through the standard errors of the estimated indices and optimal

portfolio rules. The size of these standard errors merely reects the fact that predicting

returns is diÆcult. Nevertheless, our estimates allow us to identify a few important stylized

facts about the optimal selection and combination of predictors, as well as about market

timing, horizon e�ects, and hedging demands.
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A Estimator and Distribution Theory

We let �0(Zt) denote the solution to the unconstrained problem max� E
�
v(�0Rt+1)

��Zt] and
�0(Zt

0�; �) denote the solution to the constrained problem max� E
�
v(�0Rt+1)

��Zt
0�]. For the

optimal portfolio weights �t to depend on the predictors Zt only through the index Zt
0�, we

assume that there exist a parameter vector �0 such that:
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and �0(Zt)=�0(Z
0
t�0; �0) for almost all Zt:

We assume that the data fZt; Rt+1gTt=1 are stationary and strongly mixing at an
exponential rate of decay. Then, we can obtain estimates of �̂(�) and �̂ by solving the
sample moments problem:
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@v(�0Rt+1)
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Rt+1 (A.4)

and g(�) is a vector of instruments. Equation (A.2) identi�es the index coeÆcients for a
given portfolio policy, as described in Section 3.2. Equation (A.3) characterizes the optimal
portfolio policy for a given index composition through the �rst-order conditions of the
portfolio optimization, as suggested by Brandt (1999), where we replace the conditional
expectation with a nonparametric regression. The function K(�) denotes the kernel of the
nonparametric regression and h is the kernel bandwidth. We choose the bandwidth as
O(T�1=5lnT ), a rate just fast enough to asymptotically eliminate the bias of �̂ induced by
the nonparametric regression (at the cost of a slight increase in asymptotic variance, relative
to the optimal mean-squared error tradeo�).

The asymptotics of �̂ follow from a Taylor-expansion of the moments (A.2) and (A.3)
around the true �0 and �0. Starting with the �rst moment condition and expanding around
�0, we have:
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where ��2(�0; �̂) with the usual convention for vector intervals. Rearranging this expression:
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which implies that for each Z2fZtgTt=1:
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Evaluating expansion (A.11) at Z=Zt and substituting it into the second summation in
equation (A.7) yields:
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The function qt+1;s+1(Zt; Zs) is not symmetric in t and s: In order to write it in U -statistic
form, we work with the symmetrized version:
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and sum only on s > t. This allows us to rewrite equation (A.13) as:
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Finally, the expansion (A.7) simpli�es to:
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where � = Var
�
et+1(Zt)

�
is the sum of the three variances and twice the sum of the three

covariances of the terms e(i); for i = 1; 2; 3, in equation (A.20). The �nal result is then:
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Table 1

Description of Returns and Predictors

Panel A of this table shows annualized descriptive statistics of monthly and annual returns on the S&P 500 index,

a portfolio of long-term government bonds, and a maturity-matched Treasury bill. The panel also shows descriptive

statistics of four predictors: the default spread Def, the log dividend to price ratio of the S&P index LnDP, the

term spread Term, and the S&P index momentum variable Trend. Panel B shows correlations of the predictors

and their �rst di�erences with the predictors, with excess stock returns rs, excess bond returns rb, their squares, and

cross-products. The data is sampled monthly from January 1954 through December 1997. There are 528 observations.

Panel A: Descriptive Statistics

Autocorrelations

Mean Median StdDev Skew Kurtosis Min Max �1 �3 �6 �12

One-Month Horizon

T-Bill 0.053 0.049 0.008 1.043 4.437 0.000 0.013 0.972 0.920 0.874 0.784

Bonds 0.069 0.040 0.085 0.784 6.796 -0.079 0.141 0.111 -0.085 0.035 0.007

Stocks 0.128 0.161 0.144 -0.403 5.338 -0.225 0.166 0.056 -0.002 -0.062 0.030

One-Year Horizon

T-Bill 0.053 0.050 0.026 0.895 3.728 0.008 0.141 0.998 0.987 0.954 0.852

Bonds 0.069 0.050 0.095 1.060 4.793 -0.153 0.454 0.933 0.785 0.566 0.048

Stocks 0.126 0.143 0.147 -0.487 3.466 -0.505 0.532 0.921 0.736 0.422 -0.230

Predictors

Def 0.961 0.810 0.442 1.332 4.689 0.320 2.690 0.973 0.910 0.832 0.687

LnDP 1.275 1.247 0.251 -0.157 3.335 0.476 1.844 0.990 0.958 0.904 0.792

Term 0.562 0.630 1.286 -0.185 3.539 -3.950 3.960 0.968 0.867 0.752 0.616

Trend 0.018 0.022 0.039 -0.680 3.837 -0.164 0.106 0.886 0.657 0.306 -0.116

Panel B: Correlations

One-Month Horizon One-Year Horizon

Def LnDP Term Trend rb rs (rb)2 (rs)2 rbrs rb rs (rb)2 (rs)2 rbrs

Def 1.00 0.54 -0.07 -0.08 0.14 0.08 0.37 0.15 0.23 0.20 0.11 0.38 0.17 0.27

LnDP 1.00 -0.35 -0.32 -0.00 -0.03 0.22 0.13 0.12 -0.07 0.16 0.28 0.17 -0.02

Term 1.00 0.26 0.14 0.18 -0.07 -0.09 -0.03 0.29 0.29 0.10 -0.10 0.12

Trend 1.00 -0.12 0.01 -0.01 -0.19 -0.14 -0.13 -0.12 -0.05 -0.24 -0.13

� Def -0.11 0.11 -0.21 -0.22 0.12 -0.16 0.09 0.20 0.04 0.12 0.06 0.10 0.04 0.07

� LnDP -0.13 -0.03 -0.18 0.01 -0.29 -0.53 -0.02 0.08 -0.10 -0.05 -0.36 -0.07 -0.15 -0.05

� Term 0.15 0.11 -0.13 -0.17 0.31 -0.04 0.14 0.09 0.12 0.15 0.12 -0.00 0.14 0.02

� Trend 0.12 0.06 0.09 -0.24 0.29 0.95 0.05 -0.05 0.25 0.03 0.31 0.05 0.19 0.06
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Table 2

Individual Moment Predictability

This table presents regressions for expected excess bond returns Et[r
b
t+1], expected excess stock returns Et[r

s
t+1],

the variance of excess bond returns Vart[r
b
t+1], the variance of excess stock returns Vart[r

s
t+1], and the covariance

between excess bond and stock returns Covt[r
b
t+1; r

s
t+1]. The predictors are the default spread Def, the log dividend

to price ratio of the S&P 500 index LnDP, the term spread Term, and the S&P index momentum variable Trend.

The predictors are demeaned and standardized. The return horizon is one month or one year. For each moment the

table presents the best one-, two-, and three-variable partial regressions, selected based on the Akaike information

criterion, and the full regression with all four predictors. It also reports the adjusted R2 of the regressions. One, two,

or three stars indicate that the coeÆcient is statistically signi�cant at the ten-, �ve-, or one-percent level, respectively.

All inferences are based on autocorrelation adjusted asymptotic standard errors.

One-Month Horizon One-Year Horizon

Def LnDP Term Trend R2 Def LnDP Term Trend R2

Et[r
b
t+1]

0.142� 0.02 0.286�� 0.08

0.185�� -0.166��� 0.04 0.218 0.301�� 0.13

0.137 0.192�� -0.158�� 0.06 0.206 0.353�� -0.208�� 0.17

0.189 -0.104 0.165�� -0.180�� 0.07 0.317�� -0.217 0.296�� -0.254��� 0.19

Et[r
s
t+1]

0.177�� 0.03 0.292�� 0.09

0.092� 0.183��� 0.04 0.305� 0.400��� 0.16

0.090� 0.191��� -0.029 0.04 0.268� 0.423��� -0.142 0.18

0.110� -0.040 0.180��� -0.038 0.04 0.022 0.281� 0.426��� -0.140 0.18

Vart[r
b
t+1]

0.370��� 0.14 0.366��� 0.13

0.366��� -0.057 0.14 0.276�� 0.167� 0.15

0.368��� -0.068 0.045 0.14 0.248�� 0.239� 0.159 0.17

0.359��� 0.019 -0.063 0.050 0.14 0.245�� 0.247� 0.155 0.025 0.17

Vart[r
s
t+1]

-0.190� 0.04 -0.272�� 0.07

0.120�� -0.181� 0.05 -0.097 -0.247�� 0.08

0.117�� -0.066 -0.164� 0.05 0.146 -0.122 -0.305�� 0.09

0.121� -0.008 -0.068 -0.166� 0.05 0.160 -0.163 -0.127 -0.286�� 0.10

Covt[r
b
t+1; r

s
t+1]

0.220��� 0.05 0.220�� 0.05

0.212�� -0.110 0.06 0.327��� -0.198�� 0.07

0.238��� -0.050 -0.124� 0.06 0.345��� -0.248��� -0.127 0.09

0.243��� -0.062 -0.032 -0.120� 0.06 0.357��� -0.280��� -0.080 -0.116 0.09
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Table 3

Variable Selection for Individual Moments

This table shows the best one or two predictors of expected excess bond returns Et[r
b
t+1], expected excess stock

returns Et[r
s
t+1], the variance of excess bond returns Vart[r

b
t+1], the variance of excess stock returns Vart[r

s
t+1], and

the covariance between excess bond and stock returns Covt[r
b
t+1; r

s
t+1]. The predictors are the default spread Def,

the log dividend to price ratio of the S&P 500 index LnDP, the term spread Term, and the S&P index momentum

variable Trend. The return horizon is one, three, six, or twelve months. The variable selection is based on the Akaike

information criterion.

One-Month Three-Month Six-Month One-Year
Horizon Horizon Horizon Horizon

Et[r
b
t+1] Term, Trend Term, Trend Term, Trend Term, Trend

Et[r
s
t+1] Term LnDP, Term LnDP, Term, LnDP, Term

Vart[r
b
t+1] Def Def Def Def

Vart[r
s
t+1] Def, Trend Def, Trend Trend Trend

Covt[r
b
t+1; r

s
t+1] Def Def, Trend Def, Trend Def, LnDP
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Table 4

Unconditional Portfolio Choice with Expected Utility Preferences

This table shows estimates of the unconditional portfolio choice of investors with single-period objectives:

Panel A: max
�

�
E
�
Wt+1

�
�



2
Var

�
Wt+1

��
Panel B: max

�
E

�
W

1�
t+1

1� 

�
;

where Wt+1 is next period's wealth and �=[�s; �b; �tb] are the fractions of current wealth Wt=1 invested in stocks,

bonds, and Treasury bills, respectively. The investment horizon is one month or one year. The Without Risk-Free

Rate estimates are for a portfolio choice between stocks and bonds (i.e. �tb=0) and the With Risk-Free Rate estimates

are for a portfolio choice between stocks, bonds, and Treasury bills. In both cases, the optimization is subject to the

short-sales constraints 0���1. In brackets are autocorrelation adjusted asymptotic standard errors.

Panel A: Mean-Variance Investors

Without Without
Risk-Free Rate With Risk-Free Rate Risk-Free Rate With Risk-Free Rate

�s �b �s �b �tb �
s

�
s+�

b �s �b �s �b �tb �
s

�
s+�

b

One-Month Horizon One-Year Horizon

=2 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
[0.45] [0.45] [0.73] [0.74] [0.37] [0.73] [0.36] [0.36] [0.55] [0.44] [0.31] [0.44]

=5 0.73 0.27 0.70 0.11 0.19 0.86 0.68 0.32 0.62 0.07 0.31 0.90
[0.23] [0.23] [0.37] [0.38] [0.24] [0.42] [0.22] [0.22] [0.31] [0.24] [0.24] [0.32]

=10 0.45 0.55 0.35 0.06 0.60 0.86 0.43 0.57 0.31 0.03 0.66 0.90
[0.12] [0.12] [0.19] [0.19] [0.12] [0.42] [0.14] [0.14] [0.15] [0.12] [0.12] [0.32]

=20 0.31 0.69 0.17 0.03 0.80 0.86 0.31 0.69 0.15 0.02 0.83 0.90
[0.06] [0.06] [0.09] [0.10] [0.06] [0.42] [0.10] [0.10] [0.08] [0.06] [0.06] [0.32]

Panel B: Constant Relative Risk Averse Investors

Without Without
Risk-Free Rate With Risk-Free Rate Risk-Free Rate With Risk-Free Rate

�s �b �s �b �tb �
s

�
s+�

b �s �b �s �b �tb �
s

�
s+�

b

One-Month Horizon One-Year Horizon

=2 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
[0.40] [0.40] [0.75] [0.74] [0.43] [0.74] [0.30] [0.30] [0.57] [0.64] [0.20] [0.61]

=5 0.69 0.31 0.66 0.16 0.18 0.81 0.55 0.45 0.54 0.08 0.37 0.87
[0.21] [0.21] [0.38] [0.38] [0.22] [0.39] [0.19] [0.19] [0.32] [0.32] [0.19] [0.45]

=10 0.43 0.57 0.33 0.08 0.59 0.81 0.31 0.69 0.28 0.04 0.68 0.87
[0.11] [0.11] [0.19] [0.19] [0.11] [0.40] [0.11] [0.11] [0.16] [0.16] [0.10] [0.43]

=20 0.30 0.70 0.17 0.04 0.79 0.81 0.22 0.78 0.14 0.02 0.84 0.87
[0.06] [0.06] [0.09] [0.09] [0.05] [0.40] [0.06] [0.06] [0.08] [0.08] [0.05] [0.43]
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Table 5

Unconditional Portfolio Choice with Non-Expected Utility Preferences

This table shows estimates of the unconditional portfolio choice of investors with single-period objectives:

Panel A: max
�

�
(1� ") E

�
W

1�
t+1

1� 

�
+ " inf

Rt+1

W
1�
t+1

1� 

�
Panel B: max

�
E

"
�l
�
�W�Wt+1

�b
if Wt+1 < �W�

Wt+1� �W
�b

if Wt+1 � �W

#
;

where Wt+1 denotes next period's wealth, �W =1 is a subjective wealth reference level, and �= [�s; �b; �tb] are the

fractions of current wealth Wt=1 invested in stocks, bonds, and Treasury bills, respectively. The investment horizon

is one, three, six, or twelve months. The Without Risk-Free Rate estimates are for a portfolio choice between stocks

and bonds (i.e. �tb=0) and the With Risk-Free Rate estimates are for a portfolio choice between stocks, bonds, and

Treasury bills. In both cases, the optimization is subject to the short-sales constraints 0� �� 1. In brackets are

autocorrelation adjusted asymptotic standard errors.

Panel A: Ambiguity Averse Investors

Without Without
Risk-Free Rate With Risk-Free Rate Risk-Free Rate With Risk-Free Rate

�s �b �s �b �tb �
s

�
s+�

b �s �b �s �b �tb �
s

�
s+�

b

One-Month Horizon One-Year Horizon

=5 "=0:1% 0.66 0.34 0.61 0.11 0.28 0.85 0.52 0.48 0.53 0.05 0.42 0.91
[0.20] [0.20] [0.36] [0.38] [0.21] [0.46] [0.17] [0.17] [0.29] [0.31] [0.18] [0.49]

"=0:5% 0.52 0.48 0.48 0.00 0.52 1.00 0.43 0.57 0.47 0.00 0.53 1.00
[0.18] [0.18] [0.32] [0.37] [0.19] [0.76] [0.13] [0.13] [0.24] [0.29] [0.16] [0.62]

"=1:0% 0.38 0.62 0.32 0.00 0.68 1.00 0.35 0.65 0.41 0.00 0.59 1.00
[0.16] [0.16] [0.29] [0.36] [0.17] [1.12] [0.11] [0.11] [0.21] [0.29] [0.15] [0.70]

=10 "=0:1% 0.40 0.60 0.31 0.05 0.64 0.86 0.27 0.73 0.27 0.03 0.70 0.91
[0.10] [0.10] [0.18] [0.19] [0.11] [0.46] [0.08] [0.08] [0.15] [0.15] [0.09] [0.48]

"=0:5% 0.29 0.71 0.24 0.00 0.76 1.00 0.17 0.83 0.24 0.00 0.76 1.00
[0.09] [0.09] [0.16] [0.18] [0.09] [0.78] [0.06] [0.06] [0.12] [0.15] [0.08] [0.61]

"=1:0% 0.18 0.82 0.16 0.00 0.84 1.00 0.11 0.89 0.21 0.00 0.79 1.00
[0.07] [0.07] [0.15] [0.18] [0.09] [1.12] [0.05] [0.05] [0.11] [0.14] [0.08] [0.68]
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Table 5 Continued

Panel B: Prospect Theory Investors

Without Without
Risk-Free Rate With Risk-Free Rate Risk-Free Rate With Risk-Free Rate

�s �b �s �b �tb �
s

�
s+�

b �s �b �s �b �tb �
s

�
s+�

b

One-Month Horizon Three-Month Horizon

b=0:8 l=2:00 0.43 0.57 0.03 0.02 0.95 0.60 0.65 0.35 0.10 0.02 0.88 0.83
[0.20] [0.20] [0.19] [0.19] [0.11] [4.27] [0.26] [0.26] [0.11] [0.10] [0.07] [1.53]

l=2:50 0.30 0.70 0.03 0.02 0.95 0.60 0.51 0.49 0.08 0.04 0.88 0.67
[0.14] [0.14] [0.15] [0.15] [0.09] [3.87] [0.20] [0.20] [0.09] [0.09] [0.06] [1.36]

b=0:9 l=2:00 0.42 0.58 0.06 0.00 0.94 1.00 0.70 0.30 0.20 0.03 0.77 0.87
[0.19] [0.19] [0.18] [0.19] [0.11] [3.01] [0.35] [0.35] [0.17] [0.14] [0.13] [1.49]

l=2:50 0.30 0.70 0.05 0.01 0.94 0.83 0.50 0.50 0.12 0.02 0.86 0.86
[0.13] [0.13] [0.14] [0.15] [0.09] [3.32] [0.22] [0.22] [0.10] [0.10] [0.07] [1.33]

b=1:0 l=2:00 0.39 0.61 0.08 0.02 0.90 0.80 0.76 0.24 0.46 0.06 0.48 0.88
[0.17] [0.17] [0.18] [0.18] [0.11] [2.35] [0.39] [0.39] [0.50] [0.23] [0.45] [1.58]

l=2:50 0.30 0.70 0.07 0.02 0.91 0.78 0.49 0.51 0.15 0.04 0.81 0.79
[0.11] [0.11] [0.14] [0.14] [0.08] [2.07] [0.24] [0.24] [0.13] [0.12] [0.09] [1.41]

Six-Month Horizon One-Year Horizon

b=0:8 l=2:00 1.00 0.00 0.22 0.13 0.65 0.63 1.00 0.00 1.00 0.00 0.00 1.00
[0.39] [0.39] [0.42] [0.22] [0.43] [0.90] [0.43] [0.43] [0.53] [0.41] [0.47] [0.14]

l=2:50 0.53 0.47 0.16 0.07 0.77 0.70 1.00 0.00 1.00 0.00 0.00 1.00
[0.23] [0.23] [0.11] [0.12] [0.11] [0.66] [0.44] [0.44] [0.54] [0.41] [0.48] [0.15]

b=0:9 l=2:00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
[0.44] [0.44] [0.49] [0.26] [0.50] [0.93] [0.48] [0.48] [0.58] [0.43] [0.51] [0.17]

l=2:50 0.60 0.40 0.24 0.14 0.62 0.63 1.00 0.00 1.00 0.00 0.00 1.00
[0.25] [0.25] [0.18] [0.21] [0.22] [0.86] [0.49] [0.49] [0.59] [0.43] [0.51] [0.18]

b=1:0 l=2:00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
[0.49] [0.49] [0.54] [0.28] [0.59] [1.11] [0.52] [0.52] [0.64] [0.48] [0.54] [0.23]

l=2:50 0.65 0.35 0.49 0.18 0.33 0.73 1.00 0.00 1.00 0.00 0.00 1.00
[0.31] [0.31] [0.23] [0.26] [0.26] [0.91] [0.53] [0.53] [0.64] [0.49] [0.55] [0.25]
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Table 6

Index Composition with Expected Utility Preferences

This table shows estimates of the optimal index composition for the conditional portfolio choice of investors with

single-period preferences:

Panel A: v(Wt+1) = Wt+1 �


2

�
Wt+1 � E

�
Wt+1

��2
Panel B: v(Wt+1) =

W
1�
t+1

1� 
;

where Wt+1 denotes next period's wealth. Each index is a linear combination of the default spread Def, the log

dividend to price ratio of the S&P 500 index LnDP, the term spread Term, and the S&P index momentum variable

Trend. The investment horizon is one month or one year. The Without Risk-Free Rate estimates are for a portfolio

choice between stocks and bonds and the With Risk-Free Rate estimates are for a portfolio choice between stocks,

bonds, and Treasury bills. In both cases, the optimization is subject to the short-sale constraints 0���1. One or

two stars indicate statistical signi�cance at the ten- or �ve-percent level, respectively. All inferences are based on

autocorrelation adjusted asymptotic standard errors.

Panel A: Mean-Variance Preferences

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

One-Month Horizon

=2 -0.091 0.127 0.465�� 0.317� 0.165 -0.134 0.549�� 0.151

=5 -0.075 0.122 0.444�� 0.360� 0.164 -0.133 0.554�� 0.149

=10 0.002 0.168 0.401�� 0.429�� 0.158 -0.131 0.590�� 0.121

=20 0.049 0.230� 0.299� 0.422�� 0.151 -0.129 0.599�� 0.121

Twelve-Month Horizon

=2 -0.235 0.418� 0.347 0.001 -0.107 0.291 0.559� -0.043

=5 -0.199 0.438� 0.327 0.036 -0.106 0.287 0.565� -0.042

=10 -0.159 0.459� 0.324 0.058 -0.105 0.285 0.570� -0.041

=20 -0.130 0.468� 0.318 0.083 -0.105 0.280 0.573� -0.041

Panel B: Constant Relative Risk Aversion Preferences

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

One-Month Horizon

=2 -0.146 0.154 0.431�� 0.268� 0.181� -0.083 0.648�� 0.089

=5 -0.094 0.144 0.420�� 0.342� 0.173� -0.087 0.667�� 0.073

=10 -0.011 0.173 0.388� 0.428�� 0.168 -0.091 0.683�� 0.058

=20 0.086 0.173 0.268� 0.472�� 0.164 -0.091 0.687�� 0.058

One-Year Horizon

=2 -0.136 0.441� 0.391 0.032 0.095 0.179 0.625� -0.101

=5 -0.124 0.462� 0.361 0.053 0.087 0.180 0.630� -0.104

=10 -0.102 0.470� 0.320 0.108 0.054 0.184 0.655� -0.107

=20 -0.055 0.504� 0.229 0.212 0.049 0.184 0.658� -0.108
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Table 7

Description of Indices with MV Preferences

Panel A of this table shows descriptive statistics of the optimal indices for the conditional portfolio choice of investors

with single-period mean-variance preferences. Each index is a linear combination of the default spread Def, the log

dividend to price ratio of the S&P 500 index LnDP, the term spread Term, and the S&P index momentum variable

Trend. The index coeÆcients are shown in Panel A of Table 6. The investment horizon is one month or one year.

Panel B shows correlations of the indices with the predictors, excess bond returns rbt+1, excess stock returns rst+1,

and excess returns on wealth rwt+1 generated by the unconditional portfolio choices from Panel A of Table 4. It also

shows correlations of the indices with squared excess returns on bonds, stocks, and wealth.

Panel A: Descriptive Statistics

One-Month Horizon One-Year Horizon

With Risk- With Risk-
Without Risk-Free Rate Free Rate Without Risk-Free Rate Free Rate

=2 =5 =10 =20 =5 =2 =5 =10 =20 =5

Median 0.05 0.04 0.04 0.00 0.05 -0.05 -0.05 -0.20 -0.02 -0.03

StdDev 0.59 0.60 0.61 0.53 0.66 0.39 0.39 0.00 0.41 0.52

Skew -0.38 -0.42 -0.70 -0.23 -0.21 0.06 0.06 0.00 -0.01 0.03

Kurtosis 2.81 2.83 2.99 3.18 2.73 3.14 3.23 3.20 3.14 2.98

Min -1.83 -2.01 -2.17 -1.90 -1.94 -1.11 -1.18 -1.26 -1.29 -1.56

Max 1.14 1.12 1.33 1.38 1.48 1.16 1.16 1.17 1.17 1.35

�1 0.95 0.95 0.94 0.93 0.97 0.96 0.97 0.97 0.97 0.96

�3 0.83 0.82 0.80 0.79 0.86 0.86 0.88 0.90 0.91 0.84

�6 0.66 0.63 0.58 0.57 0.73 0.75 0.78 0.80 0.82 0.70

�12 0.44 0.39 0.30 0.27 0.55 0.55 0.60 0.30 0.66 0.53

Panel B: Correlations

One-Month Horizon One-Year Horizon

With Risk- With Risk-
Without Risk-Free Rate Free Rate Without Risk-Free Rate Free Rate

=2 =5 =10 =20 =5 =2 =5 =10 =20 =5

Def -0.13 -0.11 0.05 0.23 0.06 -0.08 0.04 0.16 0.23 0.03

LnDP -0.32 -0.32 -0.18 0.03 -0.43 0.43 0.52 0.60 0.63 0.08

Term 0.86 0.83 0.74 0.61 0.95 0.55 0.50 0.47 0.44 0.89

Trend 0.68 0.73 0.79 0.79 0.48 -0.07 -0.01 0.02 0.06 0.04

rbt+1 0.03 0.02 0.01 -0.00 0.13 0.06 0.05 0.05 0.05 0.24

rst+1 0.13 0.12 0.12 0.10 0.18 0.37 0.36 0.36 0.35 0.39

rwt+1 0.13 0.12 0.09 0.05 0.18 0.37 0.34 0.28 0.22 0.40

(rbt+1)
2 -0.07 -0.06 0.01 0.08 -0.01 0.17 0.21 0.25 0.27 0.20

(rst+1)
2 -0.17 -0.18 -0.16 -0.13 -0.11 -0.04 -0.03 -0.01 0.00 -0.06

(rwt+1)
2 -0.17 -0.20 -0.14 -0.02 -0.11 -0.04 -0.03 0.02 0.06 -0.05
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Table 8

Index Composition with Non-Expected Utility Preferences

This table shows estimates of the optimal index composition for the conditional portfolio choice of investors with

single-period preferences:

Panel A: v(Wt+1) = (1� ")
W

1�
t+1

1� 
+ " inf

R

W
1�
t+1

1� 
Panel B: v(Wt+1) =

(
�l
�
�W�Wt+1

�b
if Wt+1 < �W�

Wt+1� �W
�b

if Wt+! � �W
;

where Wt+1 denotes next period's wealth and �W = 1 is a subjective wealth reference level. Each index is a linear

combination of the default spread Def, the log dividend to price ratio of the S&P 500 index LnDP, the term spread

Term, and the S&P index momentum variable Trend. The investment horizon is one, three, six, and twelve months.

The Without Risk-Free Rate estimates are for a portfolio choice between stocks and bonds and the With Risk-Free

Rate estimates are for a portfolio choice between stocks, bonds, and Treasury bills. In both cases, the optimization

is subject to the short-sale constraints 0 � � � 1. One or two stars indicate statistical signi�cance at the ten- or

�ve-percent level, respectively. All inferences are based on autocorrelation adjusted asymptotic standard errors.

Panel A: Ambiguity Averse Investors

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

One-Month Horizon

=5 "=0:1% -0.024 0.169 0.415�� 0.392� 0.178� -0.097 0.659�� 0.066

"=0:5% 0.008 0.175 0.384� 0.433�� 0.183� -0.115 0.645�� 0.057

"=1:0% 0.014 0.183 0.327� 0.476�� 0.184� -0.116 0.644�� 0.056

=10 "=0:1% -0.008 0.186 0.346� 0.460�� 0.196� -0.099 0.669�� 0.036

"=0:5% 0.013 0.195 0.307� 0.485�� 0.235� -0.121 0.612�� 0.032

"=1:0% 0.027 0.221 0.255� 0.497�� 0.249� -0.124 0.597�� 0.030

One-Year Horizon

=5 "=0:1% -0.080 0.483� 0.349 0.088 0.058 0.194 0.620� -0.128

"=0:5% 0.012 0.512� 0.367 0.109 0.041 0.218 0.592� -0.149

"=1:0% 0.045 0.535� 0.284 0.136 0.039 0.246 0.568� -0.147

=10 "=0:1% -0.063 0.491� 0.301 0.145 0.052 0.190 0.623� -0.135

"=0:5% 0.024 0.521� 0.294 0.161 0.035 0.213 0.606� -0.146

"=1:0% 0.053 0.543� 0.222 0.182 0.029 0.236 0.592� -0.143
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Table 8 Continued

Panel B: Prospect Theory Investors

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

One-Month Horizon

b=0:8 l=2:0 0.069 -0.247 0.677�� -0.007 0.232� -0.139 0.589�� -0.041

l=2:5 -0.032 -0.276� 0.587�� -0.105 0.229� -0.138 0.584�� -0.049

b=0:9 l=2:0 0.101 -0.227 0.644�� -0.027 0.164 -0.135 0.590�� 0.111

l=2:5 0.001 -0.276� 0.608�� -0.115 0.190 -0.150 0.624�� 0.036

b=1:0 l=2:0 0.125 -0.210 0.603�� -0.062 0.204 -0.149 0.605�� 0.042

l=2:5 0.032 -0.260� 0.582�� -0.126 0.189 -0.154 0.611�� 0.046

Three-Month Horizon

b=0:8 l=2:0 0.148 0.009 0.806�� 0.037 0.235 0.085 0.674�� -0.006

l=2:5 0.109 -0.062 0.823�� -0.007 0.235 0.085 0.674�� -0.006

b=0:9 l=2:0 0.175 0.009 0.797�� 0.019 0.156 0.146 0.636�� 0.062

l=2:5 0.133 -0.052 0.800�� -0.015 0.185 0.127 0.654�� 0.034

b=1:0 l=2:0 0.204 0.002 0.786�� -0.007 0.207 0.117 0.657�� 0.018

l=2:5 0.154 -0.049 0.771�� -0.026 0.199 0.127 0.652�� 0.022

Six-Month Horizon

b=0:8 l=2:0 0.190 0.066 0.716� 0.028 0.205 0.116 0.642� -0.037

l=2:5 0.198 -0.006 0.776� -0.019 0.205 0.116 0.642� -0.037

b=0:9 l=2:0 0.210 0.067 0.714� 0.008 0.140 0.186 0.653� 0.020

l=2:5 0.216 0.003 0.755� -0.026 0.168 0.166 0.665� -0.002

b=1:0 l=2:0 0.230 0.057 0.694� -0.019 0.187 0.143 0.651� -0.018

l=2:5 0.230 0.005 0.726� -0.040 0.178 0.154 0.654� -0.013

One-Year Horizon

b=0:8 l=2:0 0.115 0.163 0.623� -0.099 0.125 0.173 0.564� -0.137

l=2:5 0.141 0.094 0.653� -0.112 0.125 0.173 0.564� -0.137

b=0:9 l=2:0 0.133 0.147 0.612� -0.109 0.040 0.264 0.578� -0.117

l=2:5 0.156 0.092 0.632� -0.120 0.071 0.231 0.573� -0.125

b=1:0 l=2:0 0.156 0.124 0.599� -0.121 0.095 0.206 0.566� -0.133

l=2:5 0.172 0.086 0.614� -0.128 0.084 0.218 0.568� -0.130
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Table 10

Bivariate Indices vs. Pairs of Predictors for the Conditional Portfolio Choice

This tables shows the annualized certainty equivalent rate of return required to make an investor with single-period

mean-variance preferences indi�erent between semiparametric estimates of the conditional portfolio choice based on

bivariate indices of the default spread, the log dividend to price ratio of the S&P 500 index, the term spread, and

the S&P index trend variable, and fully nonparametric estimates based on the same pairs of predictors. The index

coeÆcients are shown in Panel A of Table 6. The investment horizon is one month or one year.

Without Risk-Free Rate With Risk-Free Rate

Def Def Def LnDP LnDP Term Def Def Def LnDP LnDP Term
LnDP Term Trend Term Trend Trend LnDP Term Trend Term Trend Trend

One-Month Horizon

=2 0.0042 0.0047 0.0032 0.0018 0.0007 -0.0011 0.0020 -0.0021 0.0044 0.0013 0.0025 0.0027

=5 0.0034 0.0039 0.0024 0.0011 0.0001 -0.0015 0.0001 -0.0035 0.0031 0.0001 0.0015 0.0024

=10 0.0021 0.0026 0.0019 0.0003 -0.0006 -0.0024 0.0006 -0.0048 0.0030 -0.0009 0.0011 0.0007

=20 0.0019 0.0020 0.0013 -0.0009 -0.0017 -0.0036 0.0001 -0.0056 0.0024 -0.0014 0.0007 0.0001

One-Year Horizon

=2 0.0034 0.0041 0.0016 -0.0033 0.0026 0.0030 0.0008 -0.0011 0.0033 -0.0020 0.0019 0.0025

=5 0.0017 0.0027 0.0010 -0.0041 0.0010 0.0025 0.0003 -0.0016 0.0024 -0.0038 0.0013 0.0020

=10 0.0012 0.0021 0.0010 -0.0049 0.0008 0.0017 -0.0010 -0.0031 0.0018 -0.0043 -0.0005 0.0011

=20 0.0011 0.0010 0.0008 -0.0050 0.0001 0.0012 -0.0016 -0.0032 0.0009 -0.0051 -0.0010 0.0003
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Table 11

Indices vs. Individual Predictors for the Connditional Portfolio Choice

This tables shows the annualized certainty equivalent rate of return required to make an investor with single-period

mean-variance preferences indi�erent between estimates of the conditional portfolio choice based on indices of the

default spread, the log dividend to price ratio of the S&P 500 index, the term spread, and the S&P index trend

variable, and estimates based on the individual predictors. The index coeÆcients are shown in Panel A of Table 6.

The investment horizon is one month or one year.

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

One-Month Horizon

=2 0.0178 0.0147 0.0007 0.0063 0.0287 0.0250 0.0001 0.0164

=5 0.0160 0.0123 0.0017 0.0045 0.0297 0.0267 0.0023 0.0185

=10 0.0160 0.0110 0.0012 0.0075 0.0229 0.0202 0.0022 0.0166

=20 0.0114 0.0093 0.0016 0.0046 0.0115 0.0105 0.0026 0.0073

One-Year Horizon

=2 0.0138 0.0099 0.0072 0.0134 0.0171 0.0136 0.0068 0.0178

=5 0.0195 0.0148 0.0109 0.0181 0.0202 0.0155 0.0055 0.0207

=10 0.0174 0.0121 0.0111 0.0160 0.0101 0.0086 0.0011 0.0108

=20 0.0199 0.0139 0.0153 0.0196 0.0056 0.0046 0.0014 0.0053
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Table 12

Index Composition for Multiperiod Portfolio Choice

This table shows estimates of the optimal index composition for the conditional portfolio choice of investors with

multiperiod preferences:

Panel A: v(Wt+n) =
W

1�
t+n

1� 
Panel B: v(Wt+n) = (1� ")

W
1�
t+n

1� 
+ " inf

R

W
1�
t+n

1� 
;

where Wt+n denotes the terminal wealth in n periods. Each index is a linear combination of the default spread Def,

the log dividend to price ratio of the S&P 500 index LnDP, the term spread Term, and the S&P index momentum

variable Trend. The portfolio is rebalanced annually and the investment horizon ranges from one to ten years. The

Without Risk-Free Rate estimates are for a portfolio choice between stocks and bonds and the With Risk-Free Rate

estimates are for a portfolio choice between stocks, bonds, and Treasury bills. In both cases, the optimization is

subject to the short-sale constraints 0���1.

Panel A: Constant Relative Risk Aversion Preferences

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

 = 5

n=1 -0.124 0.462 0.361 0.053 0.087 0.180 0.630 -0.104

n=2 -0.098 0.413 0.422 0.067 0.064 0.194 0.663 -0.079

n=5 -0.089 0.395 0.430 0.086 0.049 0.197 0.679 -0.075

n=10 -0.088 0.394 0.430 0.088 0.044 0.198 0.683 -0.075

 = 10

n=1 -0.102 0.450 0.340 0.108 0.054 0.184 0.655 -0.107

n=2 -0.088 0.441 0.360 0.111 0.041 0.192 0.674 -0.093

n=5 -0.084 0.421 0.368 0.127 0.039 0.208 0.695 -0.058

n=10 -0.084 0.420 0.368 0.128 0.022 0.209 0.721 -0.048

Panel B: Ambiguity Aversion Preferences

Without Risk-Free Rate With Risk-Free Rate

Def LnDP Term Trend Def LnDP Term Trend

 = 5 and " = 0:5%

n=1 0.012 0.512 0.367 0.109 0.041 0.218 0.592 -0.149

n=2 0.015 0.461 0.405 0.119 0.028 0.229 0.608 -0.135

n=5 0.016 0.442 0.419 0.123 0.020 0.232 0.617 -0.131

n=10 0.016 0.438 0.420 0.126 0.016 0.234 0.622 -0.128

 = 10 and " = 0:5%

n=1 0.024 0.521 0.294 0.161 0.035 0.213 0.606 -0.146

n=2 0.036 0.509 0.289 0.166 0.022 0.222 0.625 -0.131

n=5 0.042 0.487 0.298 0.173 0.016 0.229 0.627 -0.128

n=10 0.043 0.483 0.300 0.174 0.011 0.231 0.633 -0.125
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Figure 2

Unconditional Portfolio Choice with Expected Utility Preferences

This �gure plots the expected return on wealth against the standard deviation of wealth for the unconditional portfolio

choice of investors with mean-variance preferences, in Panel A, and constant relative risk aversion preferences, in

Panel B. The investment horizon is one month or one year. The straight line and hyperbola are the mean-variance

frontiers with and without a risk-free rate, respectively. The stars (�) represent the portfolio choice with a risk-free

rate. The circles (Æ) represent the portfolio choice without a risk-free rate. The cross (+) is a portfolio of 60 percent

stocks, 20 percent bonds, and 20 percent Treasury bills.
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Figure 3

Unconditional Portfolio Choice with Non-Expected Utility Preferences

This �gure plots the expected return on wealth against the standard deviation of wealth for the unconditional portfolio

choice of investors with ambiguity aversion preferences, in Panel A, and prospect theory preferences, in Panel B. The

investment horizon is one, three, six, and twelve months. The straight line and hyperbola are the mean-variance

frontiers with and without a risk-free rate, respectively. The stars (�) represent the portfolio choice with a risk-free

rate. The circles (Æ) represent the portfolio choice without a risk-free rate. The cross (+) is a portfolio of 60 percent

stocks, 20 percent bonds, and 20 percent Treasury bills.
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Figure 3 Continued

Panel B: Prospect Theory Investors
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Figure 4

Conditional Portfolio Choice with Expected Utility Preferences

This �gure plots the conditional portfolio choice with and without a risk-free rate of investors with mean variance

preferences, in Panel A, or constant relative risk aversion preferences, in Panel B. The investment horizon is one

month or one year. The portfolio choice is conditional on an index of the default spread, log dividend to price ratio of

the S&P 500 index, the term spread, and the S&P index trend variable. The index coeÆcients are shown in Table 6.

The black-shaded, grey-shaded, and white areas represent the fractions of wealth allocated to Treasury bills, bonds,

and stocks, respectively.
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Figure 4 Continued

Panel B: Constant Relative Risk Averse Investors
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Figure 5

Conditional Portfolio Choice with Non-Expected Utility Preferences

This �gure plots the conditional portfolio choice with and without a risk-free rate of investors with ambiguity aversion

preferences, in Panel A, and prospect theory preferences, in Panel B. The investment horizon is one, three, six, or

twelve months. The portfolio choice is conditional on an index of the default spread, log dividend to price ratio of

the S&P 500 index, the term spread, and the S&P index momentum variable. The index coeÆcients are shown in

Table 8. The black-shaded, grey-shaded, and white areas represent the fractions of wealth allocated to Treasury bills,

bonds, and stocks, respectively.
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Figure 5 Continued

Panel B: Prospect Theory Investors
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Figure 5 Continued

With Risk-Free Rate, One-Month Horizon
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Figure 6

Conditional Multiperiod Portfolio Choice

This �gure plots the conditional multiperiod portfolio choices with and without a risk-free rate of investors with

constant relative risk aversion preferences, in Panel A, and ambiguity aversion preferences, in Panel B. The horizon

ranges from one year to ten years with an annual rebalancing frequency. The portfolio choice is conditional on an

index of the default spread, log dividend to price ratio of the S&P 500 index, the term spread, and the S&P index

momentum variable. The index coeÆcients are shown in Table 10. The black-shaded, grey-shaded, and white areas

represent the fractions of wealth allocated to Treasury bills, bonds, and stocks, respectively.
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Figure 6 Continued

Panel B: Ambiguity Aversion Investors
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