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Abstract

In this article, we examine analytically the optimal consumption and portfolio policies in an econ-

omy with incomplete �nancial markets where agents have power utility over intermediate consump-

tion and bequest, and face portfolio constraints and a stochastic investment opportunity set. The

source of changes in the investment opportunity set could be a stochastic instantaneous interest

rate, stochastic volatility, and/or a stochastic risk premium. We �nd analytically the conditions

under which investment in the risky asset can increase with risk aversion. We then nest this port-

folio problem in a general equilibrium setting (for a production economy and also for an exchange

economy) with multiple agents who di�er in their degree of risk aversion. We derive the optimal

portfolio policies when the evolution of the investment opportunity set is determined endogenously

and also characterize explicitly the interest rate, stock price and risk premium in general equi-

librium. The exact local comparative statics and approximate but analytical expressions for the

optimal policies are obtained by developing a method based on perturbation analysis to expand

around the solution for an investor with log utility.

JEL classi�cation: G12, G11, D52, C63.

Key words: Asset allocation, stochastic investment opportunities, incomplete markets, borrowing

constraints, asymptotic analysis.
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1 Introduction

In this article, our objective is to examine analytically the optimal portfolio rules in economies

where the investment opportunity set is stochastic, agents have power utility over intermediate

consumption, and �nancial markets are incomplete. We study the optimal portfolio policies in a

partial-equilibrium single-agent setting and also in a general equilibrium economy. For both the

partial- and general-equilibrium analysis, we consider the case without portfolio constraints and

also the case with portfolio constraints. We rely on perturbation analysis, which allows us to obtain

in closed-form the exact local comparative statics and the approximate portfolio policies.

Our contribution to the literature on portfolio selection is on three fronts. One, in a partial-

equilibrium economy we obtain explicit expressions for the portfolio rules when there is an arbitrary

vector process driving the stochastic investment opportunities and there are constraints on portfolio

positions. In our model, we allow for intermediate consumption without requiring �nancial markets

to be complete. This analysis nests the optimal portfolio policies for the cases where the source

of changes in the investment environment is (i) stochastic volatility; (ii) stochastic interest rates,

(iii) stochastic mean, and/or (iv) stochastic risk premium.

Two, we embed the above analysis in a general equilibrium setting with heterogenous agents,

where the evolution of the investment opportunity set is now determined endogenously rather

than being speci�ed exogenously. We �rst analyze portfolio rules in a constant-returns-to-scale

production economy with multiple agents who di�er in their degree of risk aversion, and face

borrowing constraints. In this economy, the interest rate process is determined endogenously.

Following this, we analyze portfolio decisions in an exchange economy where, in addition to an

endogenous interest rate, also the volatility and expected return on the risky asset are endogenous.

Our last contribution is methodological. Using perturbation or asymptotic analysis, we provide

a general framework for characterizing explicitly optimal portfolio policies and equilibrium with

incomplete �nancial markets. The basic idea of asymptotic methods is to formulate a general

problem, �nd a particular case that has a known solution, and use this as a starting point for

computing the solution to nearby problems.1 In the context of portfolio problems, the insight

1A description of the application of this method to problems in economics, along with a discussion of the non-local
properties of the approximate solution, can be found in Judd (1996) and Judd (1998, Chapters 13{15).
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is that the solution for the investor with log utility provides a convenient starting point for the

expansion.

We now discuss the existing literature on dynamic portfolio choice, and its relation to our

analysis. In this discussion, we focus on the work studying intertemporal hedging demands arising

from a stochastic investment opportunity set.2 This literature can be divided into four strands:

(i) Single agent, without portfolio constraints (partial equilibrium);

(ii) Single agent, with portfolio constraints (partial equilibrium);

(iii) Multiagent, without portfolio constraints (general equilibrium); and

(iv) Multiagent, with portfolio constraints (general equilibrium);

Single agent analysis without portfolio constraints

Merton (1969, 1971) shows that in an environment where investment opportunities vary over time,

investors optimizing over a single period will choose portfolios that are di�erent from investors op-

timizing over multiple periods. This is because, compared to the static portfolio, the intertemporal

optimal portfolio will be one that not only is instantaneously mean-variance eÆcient but also one

that provides the best hedge against future shifts in the investment opportunity set.3 While a

general characterization of the optimal consumption and portfolio policies in an environment with

a stochastic investment opportunity set is provided in the papers by Merton, these papers do not

indicate how one can obtain explicit solutions. In the dynamic programming formulation of Mer-

ton, obtaining an explicit solution requires one to solve a nonlinear partial di�erential equation.

Typically, closed-form solutions are not available; moreover, in many cases it is not even clear how

to specify the boundary conditions for the di�erential equation.

In order to obtain explicit solutions to the intertemporal portfolio problem, research building

on the work of Merton has had to make restrictive assumptions about investor preferences and

�nancial markets: in particular, whether investors care about intermediate consumption or only

about terminal wealth; and, whether �nancial markets are complete or incomplete. Based on

2For a more detailed description of the literature, along with an account of its historical development, we refer
the reader to Karatzas and Shreve (1998).

3The static and dynamic portfolios will coincide only under speci�c conditions for the utility function (unit elas-
ticity of intertemporal substitution) or asset returns (zero correlation between changes in the investment opportunity
and asset returns). Results in the empirical literature suggest that it is unlikely that either condition is true; a
discussion of this literature is in Campbell and Viceira (1999).
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the modeling choices along these two dimensions, one can classify the existing partial equilibrium

literature on portfolio choice as follows.

Kim and Omberg (1996) and Liu (1998) ignore intermediate consumption and assume that

an investor wishes to maximize only the expected utility from terminal wealth. For this special

case, Liu identi�es the portfolio rules for the case of stochastic volatility, stochastic interest rates,

and predictability in expected returns, while Kim and Omberg do this for the case where the risk

premium follows a particular stochastic process. Numerical solutions for the optimal portfolio are

provided by Barberis (1999) for the case of predictable expected returns, and by Brennan, Schwartz

and Lagnado (1997) for the case of predictable expected returns and stochastic risk premium.4 A

limitation of these models is that the assumption of zero intermediate consumption may have strong

implications for the demand for risky assets for purposes of intertemporal hedging; in contrast, our

analysis will allow for intermediate consumption. Moreover, we do not need to rely on numerical

analysis.

A second stream of the partial equilibrium literature has dealt with the problem of intermediate

consumption by assuming that �nancial markets are complete, and hence the stochastic changes

in investment opportunities are fully spanned by traded securities. With this assumption, one can

then use the insight of Cox and Huang (1989) that the optimal consumption policy and portfolio

rules can be determined in two distinct steps: �rst, consumption can be identi�ed by solving a

static optimization problem, and then the optimal portfolio rules can be obtained by solving a

linear di�erential equation. This approach has been adopted by Liu (1998) and Wachter (1998).5

In contrast to these papers, we will analyze economies where �nancial markets are not complete.

A third approach, developed by Campbell (1993), has been to allow for intermediate con-

sumption and incomplete �nancial markets, but to make appropriate approximations in order to

overcome the non-linearity of the problem. In this approach, for models set in discrete time one

needs to log-linearize the budget equation and �rst order condition, and for models set in continuous

time one needs to log-linearize the Hamilton-Jacobi-Bellman equation. Using the approximation

4See Brandt (1999) for a very di�erent approach to this problem, where instead of specifying the stochastic
processes for the state variables, one estimates the �rst-order conditions directly from the data.

5In Wachter (1998), the assumption of complete �nancial markets is made by specifying that there is perfect
correlation between returns on the risky asset and the process driving variation in expected returns. A more general
description of this approach is contained in Schroder and Skiadas (1998) and Fisher and Gilles (1999).
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for discrete-time models, Campbell and Viceira (1998, 1999) examine the e�ect of a stochastic

short-term interest rate and a stochastic risk premium, respectively.6 In a continuous time setting,

Chacko and Viceira (1999) study the implications of stochastic volatility.7 Our work is closest

in spirit, and complementary to, these papers. Relative to these papers, our contribution is to

consider a more general speci�cation for the changes in the investment opportunity set, including

the case where there is more than one factor driving changes in investment opportunities,8 to allow

for constraints on portfolio positions even when the portfolio weights are time-varying, to nest

this speci�cation in general equilibrium, and to show how this can be extended to economies with

multiple agents who di�er in risk aversion. A detailed comparison of the method we use and the

log-linear approximation approach developed in Campbell (1993) is provided in Section 3.3.

Single agent analysis with portfolio constraints

Another direction in which Merton's work on portfolio selection has been extended is to consider

the e�ect of shortselling and borrowing constraints on the optimal portfolio. Some of the papers in

this area include Cvitanic and Karatzas (1992), Grossman and Vila (1992), He and Pages (1993),

He and Pearson (1991a, b), Karatzas, Lehoczky, Shreve and Xu (1991), Shreve and Xu (1992),

Tepla (1998), Vila and Zariphopoulou (1994) and Zariphopoulou (1989). These papers typically

focus on economies with a single agent; moreover, it is very diÆcult to obtain an explicit char-

acterization of the optimal portfolio policies when the investment opportunity set is time-varying

and markets are incomplete. Our model extends this strand of the literature by providing explicit

analytic expressions for the optimal portfolio policies in the presence of constraints on portfolio

weights for both single-agent and multiagent general-equilibrium economies.

6Campbell and Koo (1997) and Fisher and Gilles (1999) study the range of parameter values over which the
approximation works well.

7Viceira (1999) uses the same kind of approximations to explore the e�ect of stochastic labor income on portfolio
choice.

8Numerical analysis of such problem is considered in Campbell, Chan and Viceira (1999), and the e�ect of
transactions costs in this setting is considered in Balduzzi and Lynch (1999). See Brennan, Schwartz and Lagnado
(1997) for a discussion of the computational problems entailed in solving such problems.
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Multiagent economies without portfolio constraints

Unconstrained multiagent economies have been studied in Merton (1973), Constantinides (1982)

and Karatzas, Lehoczky and Shreve (1990). The focus of these papers is on the equilibrium pricing

of assets (CAPM) and existence of equilibrium, rather than on providing an explicit characterization

of portfolio decisions and the equilibrium riskless rate. The analysis of equilibrium behavior and

interest rates in a multiagent economy where agents di�er in risk aversion has been examined in

Dumas (1989) for a production economy, and Wang (1996) for an exchange economy. Both these

papers assume that �nancial markets are complete; moreover, Dumas has to resort to numerical

methods to study the model, while Wang can solve the model in closed form only for particular

values of the risk aversion parameter. We extend these models to allow for incomplete markets and

borrowing constraints, and we do not need to rely on numerical methods to analyze the problem.

Multiagent economies with portfolio constraints

General equilibrium economies with portfolio constraints have been studied in a number of papers.

In addition to Cuoco (1997), and Detemple and Murthy (1997), where the focus is on equilibrium

pricing rather than the characterization of optimal policies, Sellin and Werner (1993) examine the

e�ect of capital market segmentation in a a two-country international economy with each coun-

try populated by investors having logarithmic utility.9 Saito (1996) studies a production economy

where some agents face restrictions on the markets in which they can participate. Again, he stud-

ies economies in which all agents have logarithmic utility functions, and even for this case only a

numerical solution is provided. In contrast to these papers, in our model agents can di�er in their

degree of risk aversion and we can analyze the model without having to rely on numerical methods.

Compared to Basak and Cuoco (1998), who evaluate the equity risk premium in an exchange econ-

omy with two agents with di�erent risk aversion and di�erent access to capital markets, our focus

is on portfolio decisions, and our formulation allows for a more general speci�cation of constraints

than the ones considered by Basak and Cuoco. Moreover, Basak and Cuoco provide an explicit

characterization only for the case where both agents have log utility.

9Cuoco (1997) analyzes the e�ect of very general portfolio constraints that include restrictions on short selling
and borrowing and also market incompleteness arising from stochastic endowment income that cannot be hedged
perfectly.
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On the methodological front, identifying the equilibrium in multiagent economies with incom-

plete �nancial markets is a diÆcult problem and to date the literature does not have an explicit

characterization in terms of exogenous variables.10 Cuoco and He (1994a,b) show that with incom-

plete markets one can still construct a representative agent, but in this case the weights assigned to

individual agents in this aggregation evolve stochastically. However, their characterization of equi-

librium is in terms of endogenous variables and is not very useful as a solution method. Until such

a method is developed, our approach can be viewed as a convenient way of analyzing economies

where �nancial markets are incomplete and agents di�er in their degree of risk aversion.

We would like to alert the reader to two caveats. While the method we propose can be applied in

a wide variety of settings, it may not apply in all settings, and in the course of our discussion we will

describe how to identify economies where this method works well and others where it is less likely

to fare as well. Also, we need to emphasize that while the method allows for exact comparative

statics results around the case of log utility, it provides only approximations to the value function

and portfolio rules. In some cases it will be possible to demonstrate that the approximation is

good, and again, we will do this in what follows; however, general results on the convergence of the

approximate solution to the true solution are currently not available.11

The rest of the paper is arranged as follows. In Section 2, we explain our approach for analyzing

portfolio decisions in the context of a general vector process driving investment opportunities. In

this analysis, we allow for constraints on portfolio positions. In Section 3, we apply our method

to examine portfolio choice in a partial equilibrium setting. In Section 4, we examine the optimal

portfolios in a constant-returns-to-scale, general equilibrium, production economy, where the inter-

est rate process is determined endogenously. In Section 5, we study an exchange economy where,

in addition to the endogenous interest rate, the volatility and expected return of the stock are also

determined endogenously; moreover, �nancial markets are incomplete. We conclude in Section 6.

In order to make it easy to identify the main results, in each section the optimal portfolio

and consumption policies, along with the value function of the log investor, are highlighted in

propositions. The proofs for all propositions are collected in the appendix.

10For example, Telmer (1993) and Heaton and Lucas (1996) use numerical methods to solve for the equilibrium in
such economies.

11See Judd (1996) for a discussion of issues related to convergence.
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2 Optimal portfolio policies: A general approach

In this section, we undertake an asymptotic analysis of a partial equilibrium model of optimal

consumption and portfolio selection with a stochastic investment opportunity set, when the agent

derives utility from intermediate consumption and bequest, and faces constraints on her portfolio

position. We show that one can obtain an explicit asymptotic expression for the solution of the

intertemporal consumption-portfolio problem, as long as the solution of the analogous problem for

the agent with logarithmic preferences is known in closed form.

The section is structured as follows. We start by describing an economy with an arbitrary

stochastic vector process for the state variables that drives changes in the investment opportunity

set. Then, we derive the optimal consumption and portfolio rules in the absence of constraints. We

conclude by considering the e�ect of constraints on portfolio positions.

2.1 The economy

Preferences

The utility function of the agent is time-separable and is given by

B � E0

�Z T

0

e��t
1


(C


t � 1) dt

�
+ (1�B) � e��TE0

�
1



�
W


T � 1

��
;

where � is the constant subjective time discount rate, Ct is the ow of consumption, and  is the

parameter dictating the agent's degree of risk aversion. The preference parameter B controls the

relative weight of intermediate consumption and the end-of-period wealth (bequest) in the agent's

utility function. With this speci�cation, the agent's relative risk aversion is given by 1 � . For

agents with unit risk aversion ( = 0), utility is given by the logarithmic function:

B � E0

�Z T

0

e��t logCt dt

�
+ (1�B) � e��TE0 [logWT ] :
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Financial Assets

The agent can allocate her wealth among two assets: a short-term riskless asset (bond) with rate

of return rt, and a stock (paying zero dividend). The price of the stock, Pt, evolves according to

dPt

Pt
= �Pt dt+ �Pt dZPt; (1)

where �Pt is the instantaneous expected return and �Pt is the volatility. Our convention is to

denote stochastic variables with a subscript \t"; thus, in the above speci�cation, the riskless rate,

rt, the expected return on the stock, �Pt, and the volatility of stock returns, �Pt, are permitted to

be stochastic.

The Investment Opportunity Set

The investment opportunity set is described by the vector of state variables, Xt. The state vector

is assumed to change over time according to

dXt = �X (Xt) dt+ �0X (Xt) � dZXt; (2)

where

cov

�
dPt

Pt
; dXt

�
=

�
�2P (Xt) �0PX (Xt)

�PX (Xt) �X (Xt)

�
dt:

With the above speci�cation, the riskless rate and the expected rate of return and volatility of the

risky asset may depend on the state vector:

rt = r (Xt) ; �Pt = � (Xt) ; �Pt = � (Xt) ;

implying that the instantaneous Sharpe ratio is also stochastic:

�t = � (Xt) � (�Pt � rt) =�Pt:

At this stage, our objective is to see what we can say about portfolio decisions without having

to specify exactly either the elements of the vector Xt or the stochastic process for these elements.

In Section 3, we will study portfolio decisions for particular speci�cations of Xt, and in the general

equilibrium economies of Sections 4 and 5, the evolution of Xt will be determined endogenously.
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2.2 Optimal policies in the absence of portfolio constraints

In the above economy, denoting by �t the proportion of the agent's wealth invested in the risky

asset, the wealth of the agent evolves according to

dWt =
�
(rt + �t�t�Pt)Wt �Ct

�
dt+ �t�PtWt dZPt : (3)

The value function J (W;X; t) of the optimal control problem is de�ned by

J (Wt;Xt; t) = sup
fCs;�sg

B � Et
�Z T

t

e��(s�t)
1


(C

s � 1) ds

�
+ (1�B) � e��(T�t)Et

�
1



�
W


T � 1

��
;

(4)

subject to equations (1), (2), and (3). De�ning the consumption-wealth ratio c � C
W , the function

J (W;X; t), satis�es the Hamilton-Jacobi-Bellman equation

0 = max
c;�

�
B
 ((Wc) � 1) + Jt � �J + (r + ���P � c) JWW + 1

2
�2W 2JWW�2P

+ �0
X
� JX + 1

2
�0
X
� JXX � �X + �W�0PX � JWX

�
: (5)

Given the homogeneity of the utility function, the solution to this equation has the following

functional form:

J (W;X; t) =
A(t)



��
eg(X;t)W

�
� 1
�
; (6)

where

A(t) =

�
1�B

1 + �

�

�
e��(T�t) +

B

�
:

The exact solution for the optimal consumption policy and portfolio weight can be obtained from

the �rst-order condition implied by the Hamilton-Jacobi-Bellman equation:

c(X; t) =

�
1

B
A(t) e g(X;t)

�1=(�1)
; (7)

�(X; t) = �
JW

WJWW

�(X)

�P (X)
�

JW

WJWW

JWX

JW

�0PX(X)

�2P (X)

=
1

1� 

�(X)

�P (X)
+



1� 

�0PX(X)

�2P (X)

@g(X; t)

@X
; (8)

where the second line is obtained by using (6).
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In general, the unknown function g (X; t) cannot be computed in closed form. Our approach is

to obtain an asymptotic approximation to g (X; t), where the expansion is with respect to the risk

aversion parameter . That is, we look for g (X; t) as a power series in :

g (X; t) = g0 (X; t) + g1 (X; t) +O
�
2
�
; (9)

where g0 (X; t) is obtained from the value function of an agent with logarithmic utility ( = 0):

J (W;X; t) = A(t)
�
log(W (t)) + g0(X; t)

�
: (10)

Note that the �rst-order asymptotic expansions are suÆcient to obtain exact local compara-

tive statics results for the dependence of the optimal policies on the risk aversion parameter. The

asymptotic expansions will also approximate the optimal consumption and portfolio policies rea-

sonably well when the risk aversion parameter  is suÆciently close to zero. Even for the case

where  is not close to zero, we will see that the optimal policies are well-approximated by the

asymptotic solution.12

We now derive the asymptotic expansions for the consumption-portfolio problem (by substitut-

ing (9) into (8)) and explain how one can obtain the function g0 (X; t). Following this, we examine

the comparative statics properties of the optimal policies.

Proposition 2.1 The �rst-order asymptotic expansions for the optimal consumption and portfolio

choice are

c (X; t) =
B

A(t)
� 

B

A(t)

�
g0 (X; t) + log (A(t))

�
+O

�
2
�
; (11)

� (X; t) =
1

1� 

�(X)

�P (X)
+



1� 

�0PX(X)

�2P (X)

@g0(X; t)

@X
+O

�
2
�
: (12)

An asymptotically equivalent expression for the portfolio choice is given by

� (X; t) =
�(X)

�P (X)
+ 

�
�(X)

�P (X)
+
�0PX(X)

�2P (X)

@g0(X; t)

@X

�
+O

�
2
�
: (13)

The two expressions for the portfolio weight, (12) and (13), are equally easy to manipulate.

However, the role of the risk aversion coeÆcient is more apparent in (13), while (12) provides a

12One can further improve the approximation by considering higher-order terms of the expansion.
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better non-local approximation to the portfolio policy (see Section 4.4). We will use both expressions

in the rest of the paper.

Comparing the asymptotic weight in (12) to the exact one in (8), we see that the only di�erence

is that under the standard approach one needs to identify the unknown function g(X; t), while in our

approach one needs to identify only g0(X; t), the value function for the log investor. Typically, it is

much easier to solve for the value function of the log investor. The intuition for this is well-known:13

the substitution e�ect and the income e�ect arising from a change in the investment opportunity set

are of exactly the same magnitude and opposite sign for an investor with log utility. Consequently,

this investor has zero demand for hedging future changes in the investment opportunity set, and

so her portfolio coincides with the myopic portfolio. Similarly, log-utility investors do not adjust

their consumption-wealth ratio for changes in the investment opportunity set, and so it is easy to

identify this ratio as a deterministic function of time, A(t).

The function g0 (X; t) can be obtained by substituting the optimal consumption and portfolio

policies in (11) and (12), with  = 0, into the value function for the log investor.

Proposition 2.2 The function g0 (X; t) is given by

g0 (X; t) =B log(B)
1� e��(T�t)

�A(t)
�BA�1(t)

Z T

t

e��(s�t) log(A(s)) ds

+A�1(t)Et

"Z T

t

�
A(t)�

B

�

�
1� e��(s�t)

�� 
�

B

A(s)
+ r (Xs) +

� (Xs)
2

2

!
ds

#
: (14)

As along as this function is known in closed form, one can obtain explicit �rst-order asymptotic

expressions for the optimal consumption and portfolio policies. For example, the class of aÆne

processes will yield close-form solutions. In Section 3, we compute this function for particular

exogenous speci�cations of the state process, Xt, and in Sections 4 and 5 we repeat this exercise

for the case where the state process is determined endogenously in equilibrium.

Analyzing the consumption-portfolio rules given in Proposition 2.1, we see that:

� The zero-order components of these expansions correspond to the well-known solution for the

13Early results on the properties of the log utility function are in Leland (1968) and Mossin (1968). These results
were developed further in Hakansson (1971) and Merton (1971).
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case where the agent has a logarithmic utility function ( = 0): the optimal consumption-

wealth ratio, c � C=W , is given by the deterministic function A�1(t), and the optimal

portfolio policy is myopic and independent of changes in the investment opportunity set.

� The �rst-order terms capture the e�ect of risk aversion when the coeÆcient of relative risk

aversion deviates from one ( deviates from zero). In particular, one can interpret the ex-

pression for the optimal portfolio in (12) as

� (X; t) =
1

1� 

� (X)

�P| {z }
myopic
demand

+


1� 

�
1

�2P
�0PX �

@g0 (X; t)

@X

�
| {z }

hedging
demand

+O
�
2
�
;

where the �rst bracketed term represents the portfolio weights under constant investment

opportunity set, the myopic demand, and the second term characterizes the demand arising

from the desire to hedge against changes in the investment opportunity set.

The equation above allows one to obtain the familiar comparative static results: the hedging

demand is asymptotically proportional to the risk aversion parameter and vanishes as  approaches

zero. The hedging demand is also proportional to the scalar product of the vector of \betas" of the

state variables with respect to the risky asset, ��2P �0PX, and the \delta" of the function g0 (X; t)

with respect to the state vector, @g0 (X; t) =@X. Finally, the equation shows that the hedging

demand is zero when the shocks to the state variables are uncorrelated with the returns on the

stock (�PX = 0).

The asymptotic expansions (11) and (12) approximate the optimal consumption and portfolio

policies when the risk aversion parameter  is suÆciently close to zero. They also provide exact

local comparative statics results for the dependence of the optimal policies on the risk aversion

parameter:

@c (X; t)

@

����
=0

= �
1

A(t)

�
g0 (X; t) + log (A(t))

�
;

@� (X; t)

@

����
=0

=
� (X)

�P (X)
+

1

�2P (X)
�0PX (X) �

@g0 (X; t)

@X
: (15)

Equation (15) indicates that the optimal position in the risky asset can either increase or decrease
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with the risk aversion coeÆcient, depending on the magnitude of the second term in equation (15),

which is the sensitivity of the hedging demand with respect to the parameter .

Motivated by papers such as Canner, Mankiw and Weil (1997), the comparative static in equa-

tion (15) has been the focus of several recent papers on portfolio choice. Because our approach

allows us to express g0(X; t) explicitly in terms of the primitive parameters, we will be able to

determine the sign of this partial derivative in a setting where there is intermediate consumption

and �nancial markets are incomplete.

In�nite-Horizon Economies

In�nite-horizon economies are a special case of the general formulation of the previous section.

Because of the importance of such problems, we formulate the corresponding results below as

separate propositions. The solution to the in�nite-horizon problem can be obtained from the general

formulation by setting B = 1 and taking a limit of T !1. Taking these limits in Propositions 2.1

and 2.2 gives the following results.

Proposition 2.3 The �rst-order asymptotic expansions for the optimal consumption and portfolio

choice are

c (X) = �� �
�
g0 (X)� log (�)

�
+O

�
2
�
; (16)

� (X) =
1

1� 

�(X)

�P (X)
+



1� 

�0PX(X)

�2P (X)

@g0(X)

@X
+O

�
2
�
: (17)

An asymptotically equivalent expression for the portfolio choice is given by

� (X) =
�(X)

�P (X)
+ 

�
�(X)

�P (X)
+
�0PX(X)

�2P (X)

@g0(X)

@X

�
+O

�
2
�
: (18)

Proposition 2.4 The function g0 (X) is given by

g0 (X) = log(�)� 1 + E

"Z 1

0

e��t
 
r (Xt) +

� (Xt)
2

2

!
dt

�����X0 = X

#
: (19)
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2.3 Optimal policies in the presence of portfolio constraints

Up to this point, it had been assumed that the agent's consumption-portfolio choice was uncon-

strained. We now extend the analysis to allow for constraints on the portfolio weights. To simplify

the exposition, we analyze only the in�nite-horizon problem explicitly. It should be clear from our

presentation how the solution of the �nite-horizon problem in Propositions 2.1 and 2.2 must be

modi�ed to account for constraints.

We consider constraints of the form that restrict the portfolio weight on the risky asset to lie

between a lower and an upper bound:

� (X) � � (X) � � (X) ;

where these bounds, are allowed to depend on the state of the economy.14

The value function of the agent's constrained optimization problem now satis�es

0 = max
c;�2[�(X);�(X)]

� 1
 ((Wc) � 1)� �J + (r + ���P � c)JWW + 1

2
�2W 2JWW�2P

+ �0
X
� JX + 1

2
�0
X
� JXX � �X + �W�0PX � JWX

�
:

Proposition 2.5 In the presence of constraints, the optimal portfolio choice is given by

� (X) =

8>><>>:
e� (X) ; � (X) � e� (X) � � (X) ;

� (X) ; e� (X) < � (X) ;

� (X) ; e� (X) > � (X) ;

where

e� � � (X)

�P (X)
+ 

�
� (X)

�P (X)
+

1

�2P (X)
�0PX (X) �

@gc0 (X)

@X

�
+O

�
2
�
: (20)

and the optimal consumption policy is given by

c (X) = �� � (gc0 (X)� log (�)) +O
�
2
�
:

The function gc0 (X) in (20), where the superscript \c" indicates the presence of constraints,

is the counterpart of the function g0 (X) in (17): it de�nes the value function of the log-utility

14For a more general speci�cation of constraints on portfolio positions, see Cuoco (1997).
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maximizer subject to the same portfolio constraints and the same investment opportunity set as

the investor with (non-log) power utility function.

Proposition 2.6 The value function of the log investor in the presence of constraints is

gc0 (X) = log(�)� 1 (21)

+ E

�Z 1

0

e��t
�
r (Xt) + �0 (Xt)�P (Xt)� (Xt)�

1

2
�20 (Xt)�

2
P (Xt)

�
dt

����X0 = X

�
;

where

�0 (Xt) =

8>><>>:
� (Xt) =�P (Xt) ; � (Xt) � � (Xt) =�P (Xt) � � (Xt) ;

� (Xt) ; � (Xt) =�P (Xt) < � (Xt) ;

� (Xt) ; � (Xt) =�P (Xt) > � (Xt) :

(22)

As in the unconstrained case, an explicit asymptotic expression for the optimal consumption

and portfolio policies is available as long as the solution of the analogous problem for the agent

with the logarithmic utility function is known in closed form. We will provide some examples of

this in the sections that follow.

An important qualitative implication of Proposition 2.6 is that the e�ect of constraints is separa-

ble across time. When portfolio constraints are not binding today, the e�ect of constraints imposed

over future non-overlapping time intervals is additive. This follows from the integral representation

of the function gc0 in (21).

The results of this section can be used as building blocks in the analysis of fairly complicated

models. In particular, they allow one to obtain asymptotic expressions for the prices of assets in

equilibrium economies that otherwise can only be studied numerically. Successful application of

our results is possible as long as it is possible to obtain explicit solutions for agents with logarithmic

utility functions. In that case, the asymptotic demand functions, equations (11) and (12) for the

�nite-horizon case or (16) and (17) for the in�nite-horizon case, are known in closed form and

for equilibrium models the asset prices can be determined from the market clearing conditions.

In the next section, we use our approach to examine portfolio decisions when the process for the

investment opportunity set is given exogenously, and in the two sections that follow we analyze

equilibrium models with heterogeneous agents, portfolio constraints and incomplete markets.
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3 Portfolio decisions in partial equilibrium economies

The objective of this section is to illustrate the application of the method developed above to the

consumption-portfolio choice problem for a particular speci�cation for the state process, Xt. We

consider the case where the short rate and the risk premium on the stock are stochastic. The

results for the case where only the interest rate is stochastic or only the risk premium is stochastic

can be obtained as special cases of this multivariate speci�cation.15 We study both the case where

portfolio positions are unconstrained and the case with constraints. Following this, we compare

our approach to the log-linearization approach developed in Campbell (1993); this comparison is

undertaken by considering a setting where the volatility of stock returns is stochastic.

3.1 Portfolio choice with a stochastic interest rate and predictable returns

We assume that the agent has an in�nite horizon: B = 1, T = 1 and lives in an economy where

the interest rate and/or the risk premium follow a particular stochastic process, while volatility is

assumed to be constant.

In particular, we assume that

Xt =

�
X1t

X2t

�
;

where X1 is the process driving interest rates and X2 is the process driving the risk premium:

rt = r (X1t) � �r +X1t; (23)

�t = � (X2t) � �� +X2t: (24)

The processes we specify for X1 and X2 are

dXjt = ��Xj
Xjt dt+ �Xj

dZXj t; j = f1; 2g

implying that

Xjt = Xj0 e
��Xj t +

Z t

0

e
��Xj (t�s)�Xj

dZXjs j = f1; 2g; (25)

15The behavior of portfolio policies when expected returns on the risky asset are predictable can be obtained from
studying the case where the risk premium is stochastic but the interest rate and volatility are constant.
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with the covariance structure

cov (dPt; dX1t; dX2t) =

0@ �2P �PX1
�PX2

�PX1
�2X1

�X1X2

�PX2
�X1X2

�2X2

1A dt:

Given this speci�cation for the evolution of the investment opportunity set, the value function

of the log-utility maximizer can be obtained in closed form by evaluating the integral in (19), after

substituting from equations (23) and (24) the expressions for rt and �t.

Proposition 3.1 The function g0 (X1;X2) is:

g0 (X1;X2) = a0 + a1X1 + a2X2 +
1

2
a22X

2
2 ; (26)

with

a0 = �1 +
�r + �2�=2

�
+

�2X2

2� (2�X2
+ �)

+ log(�)

a1 =
1

(�X1
+ �)

; a2 =
��

(�X2
+ �)

; a22 =
1

(2�X2
+ �)

:

We can now obtain an explicit expression for the portfolio policy.

Proposition 3.2 The optimal portfolio composition is given by

� (X) =
1

1� 

� (X2)

�P
+



1� 
�r;P

1

�X1
+ �

(27)

+


1� 
��;P

�
��

�X2
+ �

+
� (X2)� ��

2�X2
+ �

�
+O

�
2
�
;

where

�r;P �
�PX1

�2P
; ��;P �

�PX2

�2P
;

are the \betas" of the processes for the interest rate and the Sharpe ratio with respect to the stock-

return process.

From (27), one sees that the demand for the risky asset can be increasing in risk aversion

(decreasing in ) as long as one of the \betas" is suÆciently large in absolute value and negative.
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In particular, the hedging demand is proportional to the \betas" of the state variables. The hedging

demand induced by uncertainty about future interest rates equals (1� )�1�r;P = (�X1
+ �), while

that induced by uncertainty about future values of the Sharpe ratio, �t, equals



1� 
��;P

�
��

�X2
+ �

+
�(X2)� ��

2�X2
+ �

�
:

When the \betas" are suÆciently large in absolute value and negative, the increase in hedging

demand,



1� 

�
�r;P

1

�X1
+ �

+ ��;P

�
��

�X2
+ �

+
�(X2)� ��

2�X2
+ �

��
;

o�sets the myopic reduction in holdings of the risky asset,

�(X2)

�P

���� 

1� 

���� ;
due to an increase in risk aversion and leads to a net increase in holdings of the risky asset. For

example, when �r;P = 0 and the value of the Sharpe ratio equals its long-run mean, i.e., when

X2t = 0, a suÆcient condition for the position in the risky asset to increase with the degree of risk

aversion is that ��;P < � (�X2
+ �) =�P .

Also, observe that the strength of hedging demand is independent of the current level of the

interest rate, while it is a linear function of the Sharpe ratio.

3.2 Portfolio choice with position constraints

In this section we extend the results of Section 3.1 to incorporate constraints on the portfolio

position. To simplify the exposition, we consider only a single constraint

� (X) � 1 + L:

One can think of this constraint as a restriction on borrowing: the agent is prohibited from bor-

rowing more than a fraction L of her wealth.

The optimal portfolio strategy in the presence of portfolio constraints is given by Proposition 2.6.

To understand the e�ect of portfolio constraints, we compare the portfolio policy of Proposition 2.6
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to the one in Proposition 2.4. In particular, we study the di�erences between functions @gc0 (X) =@X

and @g0 (X) =@X.

Given the results in equations (19) and (21),

gc0 (X)� g0 (X) = �
1

2
E

�Z 1

0

e��t
�
� (Xt)� �

�2
1[�(Xt)��]dt

����X0 = X

�
;

and

@gc0 (X)

@X
�
@g0 (X)

@X
=

�E
�Z 1

0

e��t
�
� (Xt)� �

�
1[�(Xt)��]

��
@�(Xt)

@Xt

�0
�
@Xt

@X0

�
dt

����X0 = X

�
;

where @Xt=@X0 denotes the derivative of the process Xt with respect to the initial conditions and

� is de�ned by

� = (1 + L)�P :

Functions gc0 (X) and g0 (X) are de�ned through the value functions of the logarithmic agent. The

portfolio constraint is binding for the logarithmic agent when � (Xt) � �. Otherwise, her portfolio

position is exactly the same as in the unconstrained case.

According to the de�nition of the function � (X) and the process Xt in 25,

@�

@X1
= 0;

@�

@X2
= 1;

@X2t

@X20
= e��X2

t:

Thus,

�
@�(Xt)

@Xt

�0
�
@Xt

@X0
� e��X2

t;

and

@gc0 (X)

@X
�
@g0 (X)

@X
= �

Z 1

0

e�(�X2
+�)tH (X; t) dt � 0;

where

H (X; t) � E
h�
� (Xt)� �

�
1[�(Xt)��]

���X0 = X
i
:
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The functionH (X; t) is a conditional expectation of a monotonically increasing and convex function

of � (Xt). Therefore, it is increased if the process � (Xt) is increased or if the latter is changed by

superposition of a mean-preserving spread (this follows from the well-known results on �rst-order

and second-order stochastic dominance).

The following proposition summarizes comparative statics results for the di�erence @gc0 (X) =@X�

@g0 (X) =@X and provides an explicit expression for this di�erence.

Proposition 3.3 The di�erence @gc0 (X) =@X � @g0 (X) =@X is negative and is (i) decreasing in

�0; (ii) decreasing in ��; (iii) decreasing in �X2
; (iv) increasing in �X2

; (v) increasing in �;

(vi) increasing in L; and, (vii) given explicitly by

@gc0 (X)

@X
�
@g0 (X)

@X
= �

Z 1

0

e�(�X2
+�)tH (X; t) dt;

H (X; t) =
�
m (t)� �

� 1 + erf
�
m(t)��p

2s(t)

�
2

+
1

p
2�

s (t) e
� (m(t)��)2

2s(t)2 ; (28)

m (t) = �� + (�0 � ��) e
��X2

t;

s (t) =
�X2p
2�X2

�
1� e�2�X2

t
�1=2

:

When the agent is not myopic (has a non-logarithmic utility function), her optimal portfolio

holdings are a�ected by position constraints even when these constraints are not binding at the

current time. This is because such constraints change the future investment opportunity sets.

Proposition 3.3 demonstrates that position constraints can either increase or decrease the hedg-

ing demand of the agent, depending on the sign of  and the correlation between the state variable

X2t and stock returns. The impact of the constraint on the hedging demand is proportional to

 � �PX2
; in particular, the demand is increased if  � �PX2

< 0. The proposition also shows that,

intuitively, the impact of the constraint is stronger for smaller values of L (tighter constraints)

and when the constraint is closer to be binding, i.e., the magnitude of the impact is increasing in

�0. The magnitude of the constraint-induced hedging demand is increasing in �� and �X2
, and

decreasing in �X2
and �.
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3.3 Comparison with the log-linearization technique

In this section, we discuss the similarities and di�erences between our methodology and the log-

linearization technique developed in Campbell (1993) that has been used in Campbell and Viceira

(1998, 1999), Chacko and Viceira (1999), and Viceira (1999). For making this comparison clear,

we consider the speci�c problem of optimal portfolio choice in the presence of stochastic volatility,

which is the same problem studied in Chacko and Viceira (1999).

Portfolio choice with stochastic volatility of returns

The investment opportunity set in this economy is stochastic and is characterized by a single state

variable,

Xt = Xt;

whereXt is the stochastic process driving the volatility of returns. As in Chacko and Viceira (1999),

we set16

�P (Xt) =
1

p
Xt

and assume that the state variable Xt is driven by the stochastic process

dXt = ��X
�
Xt �X

�
dt+ �X

p
Xt dZXt; (29)

where

0 < 2�XX � �2X ;

cov (dPt; dXt) =

�
X�1
t �PX

�PX �2XXt

�
dt:

Reasons for modeling the inverse of volatility, �P (Xt) =
1p
Xt
, and assuming the particular speci�-

cation of Xt in (29), will become clear below.

Given this speci�cation for the evolution of the investment opportunity set, the value function

of the log-utility maximizer can be obtained in closed form by evaluating the integral in (19).

16We choose this speci�cation to facilitate comparison with Chacko and Viceira (1999); one could just as well have
modeled volatility, rather than its inverse, as a standard square-root process.
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Proposition 3.4 The value function of the agent with log utility is given by

1

�

�
logW + g0 (X)

�
;

where the function g0 (X) is given by

g0 (X) = a0 + a1X; (30)

with

a0 =
�X (�� r)2X

2� (�X + �)
+

�
r

�
� 1 + log (�)

�
; a1 =

(�� r)2

2 (�X + �)
:

We can now use (30) in (17) to obtain an explicit expression for the portfolio policy.

Proposition 3.5 The optimal portfolio weight is given by

� (X) =
1

1� 
(�� r)X| {z }

myopic demand

+


1� 
(�� r)2

�PX

2(�X + �)
X| {z }

hedging demand

+O
�
2
�
:

The various comparative statics results for the optimal portfolio weight based on Proposition 3.5

are similar to the ones derived in Proposition 2 of Chacko and Viceira (1999). For instance, the

optimal position in the risky asset is a linear function of the state variable. The magnitude of the

hedging demand,



1� 
(�� r)2

�PX

2(�X + �)
X;

is proportional to the covariance between the state variable and stock returns and depends on the

strength of mean-reversion in the state variable and the subjective discount rate. When the state

variable is strongly mean-reverting or when the subjective discount rate is high, demand for hedging

is small. In the former case, there is not much reason to hedge changes in the state variable, since

it is expected to revert back to its long-run mean soon; in the latter case, agents discount future

consumption suÆciently that they are unwilling to hedge changes in investment opportunity set.

Also, the ratio of the hedging demand to the myopic demand component is independent of the

current level of volatility.
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The optimal position in the risky asset can be either increasing or decreasing in the risk aversion

coeÆcient. Speci�cally,

@�(X)

@

����
=0

= X

�
�� r + (�� r)2

�PX

2(�X + �)

�
:

Thus, the optimal position in the stock can increase in individual risk aversion (1 � ) only when

the process for volatility is suÆciently negatively correlated with expected returns, i.e., when

�PX < �
2(�X + �)

�� r
:

Empirically, changes in conditional volatility are often found to be negatively correlated with

stock returns (such behavior is often referred to as the leverage e�ect). Therefore, since the state

variable X is the inverse of conditional volatility, �PX tends to be positive. As a result, both the

the total and the hedging component of demand for the risky asset decrease with risk aversion. In

fact, hedging demand is negative for agents with relative risk aversion higher than one ( < 0).

The the log-linearization technique and its relation to our approach

The Hamilton-Jacobi-Bellman equation for the portfolio choice problem with stochastic volatility

results in the nonlinear second-order ordinary di�erential equation analogous to (5) for the unknown

function g (X), which is de�ned in (6):

0 =  ( � 1) �2XXg00 (X) + 2
�
�X ( � 1)

�
X �X

�
+  (�� r)�PXX

�
g0 (X) (31)

+ 2
�
�2X ( � 1) + �2PX

� �
g0 (X)

�2
+ 2 ( � 1)2 c (X) +  (�� r)2X + 2 ( � 1) (�� r) ;

where c (X) is the optimal consumption-wealth ratio given by

c (X) = �
1

1� e


�1
g(X)

:

Application of the log-linearization technique in continuous time requires approximating c (X)

around the long-run mean of the log-consumption-wealth ratio. Speci�cally, let

ec (X) � log (c (X)) =
1

1� 
log (�) +



 � 1
g (X) ;

� � lim
t!1

E0 [ec (X)] :
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Then, considering a �rst-order expansion

c (X) = exp (ec (X)) � exp (�) (1 + ec (X)� �)

= exp (�)

�
1 +

1

1� 
log (�) +



 � 1
g (X)� �

�
: (32)

Replacing the consumption-wealth ratio in equation (31) with this approximate expression leads

to a somewhat simpler equation, in which the only nonlinear term is proportional to (g0 (X))
2
.

In general, such an equation does not have a closed-from solution. However, given the particular

parameterization of the process for stochastic volatility in (29), this equation has an explicit solution

of the form

g (X) = A0 +A1X;

where the unknown coeÆcients A0 and A1 satisfy

0 = (�� r)2 + 2
�
e� ( � 1) + �X ( � 1) +  (�� r)�PX

�
A1 (33)

+ 
�
�2X (1� ) + �2PX

�
A2
1;

0 = �XXA1 + e�
�
1 + log (�)� �+  (�� 1)

�
+ (r � �)� e�A0: (34)

Given a value for �, equations (33) and (34) lead to two pairs of solutions for (A0; A1). Chacko

and Viceira (1999) show that one must select the pair (A0; A1) corresponding to the negative root

of the discriminant in (33). Finally, the value of the endogenous variable � must be determined.

By de�nition,

� = lim
t!1

E0

�
1

1� 
log (�) +



 � 1

�
A0 +A1Xt

��
=

1

1� 
log (�) +



 � 1

�
A0 +A1X

�
;

because limt!1 E0 [Xt] = X: This yields a nonlinear algebraic equation for �:

� =
1

1� 
log (�) +



 � 1

�
A0 (�) +A1 (�)X

�
;

in which we express explicitly the dependence of the solution of (33) and (34) on �. This equation

must be solved numerically.
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As one can see, the log-linearization procedure does not lead to an explicit solution. Instead, in

this context it reduces the original problem to a single nonlinear algebraic equation which must be

solved numerically. When the investment opportunity set is driven by a vector of state variables one

has to solve a system of such equations, which is a nontrivial computational problem. Moreover,

generally speaking, one cannot be sure that such a system (or even a single equation as in this

section) has a unique solution.

The �rst step of the log-linearization procedure resembles the asymptotic expansions of this

paper, as it replaces the nonlinear term of the Hamilton-Jacobi-Bellman equation with a linear

�rst-order expansion (32). However, unlike our explicit expansions, this one involves an endogenous

variable �, de�ned as the unconditional mean of the optimal (to be determined) log-consumption-

wealth ratio. This is the �rst major di�erence between the two approaches: we make an explicit

assumption about the \model" | that the preferences of the agent are close to logarithmic. This

assumption allows one to build the expansions around the log-case solution, in powers of the risk

aversion parameter. At the same time, our assumption guarantees that the consumption-wealth

ratio is close to being constant and thus justi�es the log-linearization. The original log-linearization

technique does not make such explicit assumptions about the exogenous parameters of the model;

instead, it imposes a \higher-level" assumption | directly on the endogenous variable, the optimal

consumption-wealth ratio. As a result, one does not know a priori how the \point of expansion" is

related to the exogenous model parameters and is forced to solve for an endogenous parameter �.

Another di�erence between the two procedures can be seen from the comparison of the log-

linearized equation (31) with our characterization of the function g0 (X) in (19), which is equivalent

to a linear Kolmogorov backwards equation. The equation obtained by log-linearization is still

nonlinear, as it involves the square of the derivative of g (X), and it can be solved only because

of the special form assumed for the inverse of volatility in (29). This is an important limitation

of the log-linearization technique | in general equilibrium economies the investment opportunity

set is determined endogenously and one cannot expect the resulting nonlinear equation to lead

to a closed-form solution. Thus, the log-linearization method is inherently partial-equilibrium in

nature. In contrast, our asymptotic technique can be successfully applied to a variety of general

equilibrium models, as illustrated in Sections 4 and 5.
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Other di�erences between the two methods include their ability to handle �nite-horizon prob-

lems (log-linearization relies on stationarity) and constrained portfolio optimization problems with

a stochastic investment opportunity set (in which case the log-linearized Hamilton-Jacobi-Bellman

equation is likely to be intractable).

We conclude this section by comparing numerically our asymptotic solution and the solution

obtained using the log-linearization method with the \exact" numerical solution of the problem

(using �nite-di�erence methods) for a set of parameter values used in Chacko and Viceira (1999).17

Our results are presented in Figure 1. The �gure compares the accuracy of the asymptotic portfolio

policy and the policy obtained by log-linearization. The �rst panel plots the percentage error of

the approximate solutions: (approximate policy � true policy) / (true policy), where the \true"

policy is based on the �nite-di�erence solution of the original problem. The �gure shows that

the solution based on the log-linearization is more accurate than the asymptotic solution | the

solution from log-linearization is practically indistinguishable from the numerical solution. However,

the relative error of the asymptotic solution is small | less than 0.02 percent. The second panel

of the �gure compares the ratio of the hedging demand to the myopic demand, as given by the

approximate policies and the numerical solution. The absolute magnitude of the hedging demand

is approximately two percent of the myopic demand; the asymptotic solution yields approximately

four percent for this ratio.

Thus, the advantage of the log-linearization method over our approach is that the latter has

the potential to deliver better quality of approximation, at least when compared to the �rst-order

asymptotic expansions. Formally, this can be expected, because the log-linearization preserves all

but one of the original terms in the Hamilton-Jacobi-Bellman equation. A more fundamental reason

is that log-linearization should be accurate whenever the consumption-wealth ratio is approximately

constant, which can be true even when values of the risk aversion parameter are not close to zero.18

Thus, one can view the log-linearization technique as being positioned somewhere between our

method and solving the original problem exactly, both in terms of e�ectiveness in producing an

explicit solution and the accuracy of the approximation.

17The parameter values are: r = 0:015, ��r = 0.0799, �X = 0:3413, X = 27:7088, �X = 0:6512, �PX = 0:5355�X ,
� = 0:06 and  = �1.

18When the investment opportunity set is almost constant, the log-linearized solution would be accurate for large
values of , while our asymptotic solution may not be as accurate.
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4 Portfolio choice in a general equilibrium production economy

In the previous section, the stochastic process for the state variables driving investment opportu-

nities was speci�ed exogenously. In this section, we examine a general equilibrium model in which

the instantaneously riskless rate is endogenous, while the mean and volatility of stock returns is

constant; in the next section, we consider a model where all three are stochastic.

The economy analyzed in this section is an extension of Dumas (1989), where the model studied

is of a production economy with two agents who di�er in risk aversion. The features of this economy

are described below, with the extension relative to Dumas being the introduction of a constraint on

borrowing.19 Also, in contrast to the analysis in Dumas, which is based on numerical methods, we

will examine the model using analytic methods. In addition to the aesthetic appeal of closed-form

results, this allows us to get additional insights that are not transparent from a numerical analysis

of the problem.

This section is structured as follows. We �rst describe the model, then analyze the unconstrained

version of the model, and then examine the e�ect of borrowing constraints on equilibrium. We

conclude by comparing the asymptotic solution with the \exact" (but numerical) solution developed

by Dumas (1989). In the course of comparing the asymptotic solution to the solution in Dumas,

we also discuss the non-local properties of the asymptotic solution.

4.1 The production economy

Following Dumas (1989), the economy is populated with two types of investors, with in�nite hori-

zons, the same subjective discount rate, but di�erent risk aversion parameters. The �rst type of

agent maximizes

E0

�Z 1

0

e��t log (C�
t ) dt

�
;

19We also study the case where agents have time-nonseparable recursive utility functions of the type described in
DuÆe and Epstein (1992), Epstein and Zin (1989), Kreps and Porteus (1978) and Weil (1989). The details of the
analysis with recursive utility are not included in this draft.
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while the second type of investor, who may be less or more risk averse than the log-utility investor

( > 0 or  < 0) maximizes

E0

�Z 1

0

e��t
1


(C


t � 1)dt

�
:

We will adopt the convention of using \ � " to indicate all quantities associated with the agent of

the �rst type (who has log utility).

There is a single constant-returns-to-scale production technology available to agents in this

economy, which leads to the following dynamics for the aggregate capital stock:

dSt = (�St � Ct � C�
t ) dt+ �St dZt;

There are two assets available for trading in the economy. The �rst asset is the stock on the

production technology, generating the cumulative return process

dRt = �Rt dt+ �RtdZt:

The number of shares of stock available in the economy is equal to the aggregate capital stock. The

second asset is a short-term risk-free bond, available in zero net supply, which pays the interest

rate rt that will be determined in equilibrium.

4.2 Equilibrium in the economy without constraints

The equilibrium in this economy is de�ned by the aggregate capital stock process, St, the interest

rate process rt, the portfolio policies f��t ; �tg and the consumption processes fC�
t ; Ctg, such that

(1) given the price processes for �nancial assets, the consumption and portfolio choices are optimal

for the agents, (2) the markets for the stock and the bond clear.

Investment opportunity sets

Let W �
t and Wt denote the individual wealth processes for the two types of agents. Following

Dumas (1989), we de�ne the state variable ! =W= (W � +W ) that summarizes the cross-sectional

distribution of wealth in the economy. Since ! is the only state variable in the economy, the
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correspondence with the general formulation in Section 2 is that X = f!g.20 In equilibrium, !

characterizes completely the investment opportunity set faced by the agents: rt = r (!t). The

evolution of !t is given by

d!t = �!t dt+ �!t dZt; (35)

where the drift and di�usion coeÆcients are functions of the state: �!t = �! (!t), �!t = �! (!t).

If  were equal to zero, then both types of agents would have logarithmic preferences. As a

result, they would hold the same portfolios and their wealth would be perfectly correlated; in this

case, the cross-sectional distribution of wealth in the economy would not change over time and !t

would be constant.

Individual consumption-portfolio choice

Based on the general asymptotic expression for the optimal consumption-portfolio choice in equa-

tions (16) and (18), we can characterize individual behavior in this economy. The optimal con-

sumption and portfolio positions of the two types of investors are given by:

c� (!) = �; (36)

c (!) = �� � (g0 (!)� log (�)) +O
�
2
�
; (37)

��(!) =
�� r(!)

�2
; (38)

�(!) =
�� r(!)

�2
+ 

�
�� r(!)

�2
+

1

�2
�P!

@g0 (!)

@!

�
+O

�
2
�
: (39)

To get a complete characterization of the above policies in terms of exogenous variables, we need

to determine g0 (!) and r(!).

As discussed in Section 2, the function g0 (!) characterizes the value function of the logarithmic

agent in the economy. Since the returns on �nancial assets are determined endogenously in equilib-

rium, this function now depends implicitly on the parameter . In particular, it can be represented

asymptotically as

g0 (!; ) = g0;0 + g0;1 (!) +O
�
2
�
: (40)

20In the unconstrained economy, because there is only one source of shocks, ! is perfectly correlated with the
aggregate capital stock and markets are complete.
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The leading term, g0;0, de�nes the value function of the agent with log utility in the economy

populated entirely with the logarithmic agents, which would be the case if  was equal to zero.

Since the investment opportunity set in such an economy is constant, g0;0 is a constant as well.

According to (19), it is given by

g0;0 = log (�) +
�� �2=2� �

�
: (41)

The higher-order terms in (40) capture the indirect e�ect of  on the welfare of the logarithmic

agents through its e�ect on equilibrium prices. We can safely ignore these higher-order terms when

evaluating (38) and (39), because they do not a�ect the �rst-order asymptotic expansions of the

individual consumption-portfolio strategies, which are:

c (!) = �� 
�
�� �2=2� �

�
+O

�
2
�

� (!) = (1 + )
�� r (!)

�2
+O

�
2
�
: (42)

Market clearing

In this economy, it is suÆcient to impose explicitly only the market clearing condition for one of

the two markets, since the other market will clear automatically. We will use the market clearing

condition in the stock market, which is

�! + �� (1� !) = 1: (43)

The short-term interest rate, rt = r (!t) ; is the only price-process determined endogenously in

equilibrium. It is derived by substituting the individual portfolio choices (38) and (42) into the

market-clearing condition (43), which then allows us to provide the following asymptotic charac-

terization of the competitive equilibrium.

Proposition 4.1 In the production economy described in this section,

(i) The equilibrium interest rate is given by

r(!) = �� �2 + �2! +O
�
2
�
; (44)
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(ii) The optimal consumption and portfolio positions of the two types of investors are given by

c� (!) = �;

c (!) = �� 
�
�� �2=2� �

�
+O

�
2
�
;

��(!) = 1� ! +O
�
2
�
; (45)

�(!) = 1 + (1� !) +O
�
2
�
; (46)

(iii) The cross-sectional wealth distribution evolves according to

d!t = !t (1� !t)
�
�� �2=2� �

�
dt+ !t (1� !t)� dZt +O

�
2
�
; (47)

(iv) The aggregate capital stock evolves according to

dSt

St
=
�
�� �+ 

�
�� �2=2� �

�
!t
�
dt+ � dZt +O

�
2
�
:

The analysis of the equilibrium relies on the fact that the consumption and portfolio policies

can be characterized explicitly. In particular, our characterization of these policies can be viewed

as an outcome of the following two-step procedure:

1. Solve for the equilibrium in the homogeneous-agent economy, populated only by logarithmic

agents, and determine the value function for these agents, (given by g0;0);

2. Use g0;0 in place of g0 in equations (38) and (39) to evaluate the equilibrium consumption

and portfolio policies.

Once again, just as in the analysis of partial-equilibrium economies in Section 3, the ability to

derive closed-form expressions for the consumption and portfolio policies depends on the ability to

characterize explicitly the value function of logarithmic investors in an economy where all investors

have logarithmic preferences. This test allows one to identify the models that can be analyzed

using our approach.

Properties of the equilibrium and comparison with Dumas (1989)

We now discuss our asymptotic results, compare them with the numerical and analytical results in

Dumas (1989), and also describe the additional insights available from the asymptotic analysis.



Risk aversion and optimal portfolio policies 32

Studying the portfolio policies in equations (45) and (46), we see that the size of each investor's

relative position in the stock market depends on her degree of relative risk aversion. The less risk

averse agent always borrows at the risk-free rate to invest in the stock, which is Proposition 15 in

Dumas (1989). Observe also that that the equilibrium portfolio holdings are asymptotically myopic,

since the standard deviation of the state variable !t is of order O () in equilibrium, implying that

the hedging demand is of order O
�
2
�
.

In addition to these insights, the asymptotic analysis also allows us to interpret the portfolio

weights of the two investors as the ratio of the individual's risk tolerance to the average risk

tolerance. Risk tolerance for an individual is the inverse of the agent's risk aversion. Thus, the

risk tolerance of the log investor is unity, while that for the non-log investor is 1=(1 � ). The

wealth-weighted average of the individual risk tolerances is:

! �
1

(1� )
+ (1� !) � 1:

Taking the �rst-order expansion of the ratio of risk tolerance for each individual to the average risk

tolerance gives us the expressions for the portfolio weights in equations (45) and (46).

The open interest in the bond market (as a fraction of the aggregate wealth) is given by

OIt �
1

2

�
j1� �tj! + j1� ��t j (1� !)

�
=  !t (1� !t) ;

i.e., one type of investors lends this amount and another type borrows. Thus, the open interest

achieves its maximum when ! = 1=2, i.e., when the aggregate wealth is evenly distributed among

the agents.

According to (44), the short-term interest rate in this production economy is asymptotically

proportional to the state variable. This is consistent with the qualitative result in Dumas (1989,

Proposition 17): r (!) is increasing when  > 0 and decreasing otherwise.

Dumas (1989, Proposition 17 and equation (12)) states that the interest rate in a heterogeneous-

agent economy is bounded by the interest rates in the corresponding homogeneous economies,

each populated by one of the two types. Another interpretation of the asymptotic expression for

r (!), which relies on the explicit solution and sharpens the corresponding result in Dumas, is the

following: the interest rate is the wealth-weighted average of interest rates in two economies, each
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populated exclusively by logarithmic and non-logarithmic agents, respectively.21 Also, as in the

case of the portfolio weights, the interest rate can be interpreted in terms of average risk tolerance:

r(!) = �� [average risk aversion] � �2;

where average risk aversion is de�ned as the inverse of average risk tolerance. This, of course,

corresponds to the expression for the interest rate in a representative-agent economy; the only

di�erence is that in our case the average risk aversion is endogenous: it changes with !.

The volatility of the interest rate is proportional to the volatility of the cross-sectional wealth

distribution, !, because of its linear dependence on the state variable. According to (47), the

instantaneous standard deviation of the state variable equals !t (1� !t). Thus, the standard

deviation of the interest rate is of order O
�
2
�
and is a symmetric quadratic function of the cross-

sectional wealth distribution !, achieving its highest value when the wealth in the economy is evenly

distributed among the agents:

�rt = 2�3!t (1� !t) :

This observation, illustrated in Figure 2, is consistent with the numerical results in Dumas (1989)

and his Figures 5 and 6. Also, in equilibrium the standard deviation of the interest rate is propor-

tional to the open interest in the bond market. As Dumas notes, the process for the interest rate

that emerges from equilibrium is quite di�erent from that assumed in partial-equilibrium settings.

Finally, according to (47), the cross-sectional wealth distribution is non-stationary: over time,

the less risk averse agent tends to accumulate wealth at a higher rate and eventually dominates

the economy. This is consistent with the results in Dumas (1989, Section 5.1). According to a set

of criteria presented there, the wealth distribution is always non-stationary when the risk aversion

parameter of the non-logarithmic agent is suÆciently close to zero.

Dumas (1989, Section 5.1) also demonstrates that under a certain set of conditions the wealth

distribution is stationary. Our results indicate that this stationarity cannot be captured without

including higher-order terms in the asymptotic expansions.

21See Detemple and Murthy (1997) for a similar result in a di�erent setting.
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4.3 Equilibrium and optimal portfolio policies with constraints

We now study the economy described above, but with a constraint limiting the ability of agents to

use leverage. Speci�cally, the positions of the two agents are constrained to satisfy

1� � � �L;

1� �� � �L;

where L � 0 is a constant that limits the proportion of wealth that investors can borrow. In

equilibrium it is the less risk-averse agent who is the borrower; hence, it is this agent's constraint

that ends up being binding in equilibrium.

One can consider two distinct cases: Case 1, where the non-log agent is less risk averse than the

log agent; and, Case 2, where the non-log agent is more risk averse than the log agent. We analyze

Case 1 below; the analysis for Case 2 is similar, and the details are not included.

Under Case 1, the non-log agent is less risk averse than log agent, which implies that the

risk aversion of the non-log agent is less than one, i.e.,  > 0: As long as L � 1, the solution

of the unconstrained problem, as given in Proposition 4.1, is feasible and therefore describes the

equilibrium in the constrained economy. Therefore, we focus on the situation where L < 1.

To compute the equilibrium prices and allocations, one has to repeat the steps of Section 4.2

taking into account that the individual portfolio demands are now given by Proposition 2.5, instead

of Proposition 2.3. Doing this, we �nd that the equilibrium of the constrained economy can be

naturally described in terms of two regions of the state space. In the �rst region,

! > 1� L;

the leverage constraint is not binding and the solution in this region (indicated henceforth by

superscript \u") is identical to the one in the unconstrained case, as given in the Proposition 4.1.

Note that even if the borrowing constraint does not bind today, it is possible that it might

be binding in the future; it turns out, however, that in equilibrium prices respond suÆciently so

that the e�ect of the constraint binding on a future date is of higher order and does not a�ect the

�rst-order asymptotic solution.
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In the second region,

! � 1� L;

the leverage constraint is binding today and has a direct e�ect on individual portfolio choices and

equilibrium asset prices (we indicate the solution in this region by superscript \c").

Our results are summarized in the following proposition.

Proposition 4.2 In the region ! > 1�L, the equilibrium in the constrained economy coincides with

the equilibrium of the unconstrained economy described in Proposition 4.1. In the region ! � 1�L,

the borrowing constraint is binding and:

(i) The equilibrium interest rate is given by

rc (!) = �� �2 + �2L
!

1� !
+O

�
2
�
;

(ii) The optimal consumption and portfolio positions of the two types of investors are given by

c�c (!) = �;

cc (!) = �� 
�
�� �2=2� �

�
+O

�
2
�
;

��c (!) = 1� 
L!

1� !
+O(2);

�c (!) = 1 + L+O(2);

(iii) The cross-sectional wealth distribution evolves according to

d!t = !t (1� !t)
�
�� �2=2� �

�
dt+ !tL�dZt +O

�
2
�
:

(iv) The aggregate capital stock evolves according to

dSt

St
=
�
�� �+ 

�
�� �2=2� �

�
!t
�
dt+ � dZt +O

�
2
�
:

Comparison with the unconstrained economy

We now evaluate the impact of the leverage constraint on the behavior of endogenous variables in

the economy. First, consider the evolution of the cross-sectional distribution of wealth !t. While



Risk aversion and optimal portfolio policies 36

the drift of this state variable is not a�ected by the constraint, its volatility is. In particular,

�c! (!) = �u! (!)
L

1� !
+O

�
2
�
. �u! (!) :

Thus, the the conditional volatility of the state variable is lower than in the unconstrained economy.

This result can be understood in terms of the extreme case: L = 0. In this case, leverage is not

allowed. Therefore, both agents invest only in the risky asset and their wealth is perfectly correlated.

As a result, the volatility of the state variable, ! =W=(W +W �), is equal to zero.

Next, consider the risk-free rate in the constrained economy. It is lower than in the corresponding

unconstrained economy:

rc (!) = ru (!)� �2
! ((1� L)� !)

1� !
+O

�
2
�
. ru (!) :

Due to the presence of the constraint, the demand for borrowing by the non-log agent, as a function

of the spot interest rate, is reduced, while the supply by the log agent remains the same. Thus, the

interest rate is reduced.

The e�ect of the leverage constraint on the conditional volatility of the interest rate is more

complicated. The conditional volatility is

�crt = �cr (!) = 2�3
L2!

(1� !)2
+O

�
3
�
;

which can be higher or lower than in the unconstrained case. Speci�cally, the volatility is higher

in the region ! 2
�
1� L2=3; 1� L

�
and lower in the region ! 2

�
0; 1� L2=3

�
: In addition, the

volatility experiences a jump as a function of the state variable at ! = 1� L:

�cr (1� L) > �ur (1� L) :

The behavior of the interest rate and its volatility is illustrated in Figure 2.

Finally, the conditional volatility of the spot interest rate is an increasing function of L. Thus,

if the leverage constraint were to be unexpectedly relaxed through a small increase in L, the short-

term interest rate would become more volatile.
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4.4 Comparison of asymptotic approximation with exact solution

In this section, we compare our asymptotic solution to the exact solution in Dumas (1989) for

the unconstrained problem, which is obtained by solving the Hamilton-Jacobi-Bellman equation

characterizing the problem of the non-log investor. Given that this is a non-linear partial di�erential

equation, the \exact" solution can only be obtained using numerical methods.22

The Bellman equation for the non-log investor can be obtained by using the standard dynamic

programming approach and substituting the optimal consumption and portfolio policies using the

�rst order conditions for these variables. Because the details of this derivation are given in Du-

mas (1989, equation (24)), we state only the �nal equation, with the observation that that the

function I(!) in Dumas corresponds to (1=�) exp(g(!)) in our model:23

0 = ��= +
(1� )



 
e g(!)

�

!1=(�1)
+

�
�� �2h(!)�

1

2
( � 1) (��(!)h(!))2

�
(48)

+ g0(!)!(1� !)

24�� !�2
��
�(!)� 1

�
h(!)

�2 � e g(!)
�

!1=(�1)35
+
1

2

h
 g0(!)2 + g00(!)

i h
!(1� !)�

�
�(!)� 1

�
h(!)

i
;

with boundary conditions at ! = 0 and ! = 1:

g(0) =
1


log

24�
0@ 1� 

�� 
�
�� �2 + �2

2 (1�)
�
1A1�35 ;

g(1) =
1


log

24�
0@ 1� 

�� 
�
�� (1�) �2

2

�
1A1�35 ;

where

�(!) �
1� !(1� !) g0(!)

1�  � !(1� !) g0(!)
; h(!) �

1

!�(!) + 1� !
:

22Bernard Dumas kindly provided to us the solution to this di�erential equation for the parameter values that he
considered in his paper. His solution was obtained using a �nite-di�erence scheme to solve the di�erential equation.
We then wrote computer code also based on the �nite-di�erence method, and veri�ed it by comparing it to the
solution provided; the di�erence between our numerical values and the ones provided by Dumas was never more than
10�5, and is typically of the order 10�7.

23The de�nition of �(!) corresponds to that in Dumas (1989); it should not be confused with the drift of !, �!.
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To study the properties of the asymptotic solution for levels of risk aversion di�erent from

unity ( di�erent from zero), we compare the portfolio policies and the interest rate obtained

from the exact solution of the Bellman equation in (48) to that obtained using our approach.

For the non-local analysis of the asymptotic solution, we derive the portfolio results based on

equation (17) rather than equation (18). While these two equations give portfolio weights that are

asymptotically equivalent, the �rst expression performs much better when  is signi�cantly di�erent

from 0. The portfolio weights based on (17) can be interpreted as the ones obtained by substituting

the asymptotic solution for the value function into the exact expression for the portfolio weights.

The expressions for the optimal portfolio weights|based on (17), and asymptotically equivalent to

the ones in (45) and (46)|are:

��(!) = 1�
1� 

1�  (1� !)
+O

�
2
�
;

�(!) = 1 +
1

1�  (1� !)
+O

�
2
�
:

Using the market-clearing condition in (43) with these weights gives the following expression for

the interest rate, which again is asymptotically equivalent to the interest rate in (44) :

r(!) = �� �2 + �2
 !

1�  (1� !)
+O

�
2
�
:

In Figure 3, we plot the portfolio weight for the non-log investor based on the exact solution

(solid line) and that based on the asymptotic solution of order 1 (circles) for relative risk aversion of

0.5, 2 and 3. In all three plots, we see that the portfolio weights from the exact and the asymptotic

solution are virtually the same. In Figure 4, we repeat this experiment for the interest rate. Again,

we see that the interest rate obtained from from the exact solution (solid line) and the asymptotic

solution of order 1 (circles) are very close to each other.

These results indicate that the non-local properties of the asymptotic approximation can be

quite good for economic quantities such as consumption-portfolio policies and prices.24

24In general, the non-local properties of the asymptotic solution can be further improved in at least two ways.
First, one can include higher-order terms, along with methods to accelerate the rate of convergence of a series; one
such method is given in Press, Teukolsky, Vetterling and Flannery (1992, p. 166). A second approach is to use a Pad�e
approximation, the details of which are in Judd (1996, p. 516).
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5 Portfolio choice in a general equilibrium exchange economy

In the production economy described in the previous section, the assumption of constant-returns-

to-scale implies that the expected return on the risky stock and the volatility of the return is

constant, with only the return on the riskless asset being stochastic. In this section, we consider an

exchange economy where the equilibrium interest rate process and also the expected return on the

risky asset and the return volatility are endogenous. A second di�erence with the economy studied

in the previous section is that now �nancial markets are incomplete.

5.1 The exchange economy

The preferences of agents in this economy and the structure of securities markets is identical to

those in Section 4.1. The stock is a claim on the aggregate endowment, which is given by

det = Xtet dt+ �eet dZet; (49)

with

dXt = ��X
�
Xt �X

�| {z }
�X(Xt)

dt+ �X dZXt; (50)

[dZet; dZXt] = �eXdt; (51)

where �e, �X , �X and �eX are constant parameters. The process for the state variable Xt dictates

the instantaneous expected growth rate of the aggregate endowment process.25

5.2 Equilibrium in the exchange economy

The equilibrium in this economy is de�ned by the stock price process, Pt, the interest rate process

rt, the portfolio policies f��t ; �tg and the consumption processes fC�
t ; Ctg, such that (1) given

the price processes for �nancial assets, the consumption and portfolio choices are optimal for the

agents, (2) the goods market and the markets for the stock and the bond clear. Our analysis of the

equilibrium follows the same logic as in Section 4.2.

25With a constant expected growth rate, this model reduces to the complete-market economy studied in
Wang (1996).
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Investment opportunity sets

The state of the economy is now given by

Xt =

�
Xt

!t

�
;

where, as before, !t = Wt= (W
�
t +Wt). The �rst component of the state vector, Xt, is de�ned by

equation (50). The evolution of !t is given by

d!t = �!t dt+ �!X;t dZXt + �!e;t dZet; (52)

where the drift and the di�usion coeÆcients are functions of the state: �!t = �! (Xt), �!X;t =

�!X (Xt), and �!e;t = �!e (Xt). Expanding the coeÆcients in (52) in powers of  gives:

�! (X) = �!;0 (X) + �!;1 (X) +O
�
2
�
;

�!X (X) = �!X;0 (X) + �!X;1 (X) +O
�
2
�
;

�!e (X) = �!e;0 (X) + �!e;1 (X) +O
�
2
�
;

where the functions �!;0 (X), �!;1 (X), �!X;0 (X), �!X;1 (X), �!e;0 (X) and �!e;1 (X) are determined

endogenously in equilibrium. When  = 0, both types of agents have logarithmic preferences. As

a result, the cross-sectional distribution of wealth in the economy does not change over time and

!t is constant, which implies that �!;0 (X) = 0; �!X;0 (X) = 0; �!e;0 (X) = 0:

Individual consumption-portfolio choice

Based on the general asymptotic expression for the optimal consumption-portfolio choice (16) and

(18), the optimal consumption and portfolio positions of the two types of investors are given by:

c� (X;!) = �; (53)

c (X;!) = �� � (g0 (X;!) � log �) +O
�
2
�
; (54)

��(X;!) =
�R(X;!)� r(X;!)

�2P (X;!)
; (55)

�(X;!) = (1 + )
�R(X;!) � r(X;!)

�2P (X;!)
(56)

+ 

 
1

�2P (X;!)

"�
�PX(X;!)

�P!(X;!)

�0
�

 
@g0(X;!)

@X
@g0(X;!)

@!

!#!
+O

�
2
�
; (57)
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where �R(X;!) is the expected cumulative rate of return on the stock (taking into account both

capital gains and the dividend process), �P (X;!) is the di�usion coeÆcient of stock returns and

�PX(X;!), �P!(X;!) are the covariances of stock returns with changes in the state variables X

and !. Asymptotically, the function g0(X;!) can be expanded as

g0 (X;!; ) = g0;0 (X) + g0;1 (X;!) +O
�
2
�
;

where g0;0 corresponds to the value function of the logarithmic investor in a homogeneous-agent

economy in which all investors have logarithmic preferences. The precise form of g0;0 (X) is given

in the following proposition.

Proposition 5.1 The function g0;0 is

g0;0 (X0) = a+ bX0 + log �; (58)

where the constants a and b are:

a = �
�2e
2�

+
�XX

� (�+ �X)
; b =

1

�+ �X
:

Market clearing

In equilibrium, the market-clearing condition in the stock market that determines the equilibrium

price processes is

1 = !� + (1� !) ��:

Using the market clearing condition, and the expression for g00 in (58), one obtains the following

characterization of the equilibrium in this economy.

Proposition 5.2 In the exchange economy of Section 5.1,

(i) The equilibrium stock price process is given by

Pt = p (Xt; !t) et;

p (X;!) �
1

�
[1 + ! (a+ bX)] +O

�
2
�
;

dPt + et dt

Pt
=

�
Xt + �� !t

�
Xt �

�2e
2
�
�eX�e�X

�+ �X

��
dt (59)

+ �edZet + b�X!t dZXt +O
�
2
�
;
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(ii) The equilibrium interest rate is given by

rt = Xt � �2e + �� !t

�
Xt �

3

2
�2e

�
+O

�
2
�
;

(iii) The optimal consumption and portfolio positions of the two types of investors are given by

c� (X;!) = �;

c (X;!) = (�� � (a+ bX � log �)) +O
�
2
�
;

�� (X;!) = 1� !

�
1 +

�eX�X

�e (�+ �X)

�
+O

�
2
�
;

� (X;!) = 1 +  (1� !)

�
1 +

�eX�X

�e (�+ �X)

�
;

where a and b are de�ned in Proposition 5.1.

(iv) The cross-sectional wealth distribution evolves according to

d!t = !t (1� !t) (a+ bXt) dt+ !t (1� !t)�e

�
1 +

�eX�X

�e
b

�
dZet +O

�
2
�
:

Properties of optimal portfolios

There is an important di�erence between the equilibrium portfolio policies in this exchange economy

and the portfolio policies in the production economy of Section 4. While in the model of Section 4

the less risk averse agent always borrows to invest in the stock market, here it is possible for the

less risk averse agent to be a lender. This would be the case if

�eX�X

�e (�+ �X)
< �1: (60)

These results are driven by the hedging demand of the non-logarithmic agent, who hedges the

changes in the risk-free rate (the Sharpe ratio in this economy is asymptotically constant). In

equilibrium, this demand can be suÆciently large to cause the more risk averse agent to borrow

from the less risk averse. Hedging demand has an impact on the equilibrium price processes as

well. In particular, it a�ects the expected rate of return on the stock in (59).

Also, as the risk aversion of the non-logarithmic agent increases, her position in the stock can

increase, as long as (60) is satis�ed. This result is a general-equilibrium counterpart of the partial-

equilibrium results of Section 3. It holds because the non-logarithmic agent hedges the changes
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in the risk-free rate and her hedging demand can be more sensitive to the risk aversion coeÆcient

than her myopic demand.

As in the case of the production economy considered in the previous section, the instantaneously

riskless rate, rt, is the wealth-weighted average of the interest rates in two economies, each populated

exclusively by logarithmic and non-logarithmic agents, respectively. This is now true also for the

cumulative return on the stock.

6 Conclusion

In this article, we have provided an asymptotic analysis of the optimal consumption and portfolio

decisions of an investor who has preferences over intermediate consumption and faces an economic

environment with stochastic investment opportunities and incomplete �nancial markets. Our re-

sults include comparative statics results for optimal portfolios, and analytic expressions for the

asymptotic value function and decision rules of an individual investor.

Following the analysis of the portfolio policy of a single agent, we have shown how the portfolio-

choice problem in the presence of a stochastic investment opportunity set can be embedded in a

general equilibrium exchange or production economy, with multiple investors who di�er in their

degree of risk aversion, when they face constraints on their portfolio positions, and �nancial markets

are incomplete.

Our analysis relies on asymptotic expansions. This allows us to obtain local comparative static

results that are exact. When the preferences of agents being studied are close to those of a log-

utility maximizer, by construction the consumption and portfolio policies are close to the exact

policies. However, even when the utility function of the agent under consideration is not close to

logarithmic, the asymptotic solution can yield very good approximations for the decision rules. An

example of this is provided in the context of a general equilibrium production economy with two

agents who di�er in their degree of risk aversion.

The general model developed here is for an economy with a single risky asset. The extension

to multiple risky assets is straightforward. Also, we have assumed that agents have time-additive

power utility rather than the more general recursive preferences described in DuÆe and Epstein
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(1992), Epstein and Zin (1989), Kreps and Porteus (1978), and Weil (1989). Given that log utility

is a special case also of the Kreps-Porteus speci�cation of recursive utility, it is possible to extend

the asymptotic method to the case of recursive preferences. Chan and Kogan (2000) demonstrate

how the method developed here can also be applied to an economy where agents exhibit habit-

persistence.

One limitation of the analysis we have presented is that it applies only to those situations where

there exists a closed-form solution for an investor with logarithmic utility. However, even when an

explicit solution does not exist for the log investor, one may apply asymptotic analysis, but with

the perturbation now being around a parameter di�erent from that governing risk aversion. Also,

in this paper we have not discussed results on evaluating the approximation error. However, there

exist a number of methods to evaluate the quality of the approximate solution (for instance, see

Den Haan and Marcet, 1994, and Judd, 1996 and 1998) which can also be applied to the portfolio

problems considered here.
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A Proofs for all propositions

Proof of Proposition 2.1

The result follows by substituting (9) into (8). First- and higher-order terms in the expansion

of g(X) do not a�ect the �rst-order asymptotic expansion of the optimal consumption-portfolio

policy. The equivalent asymptotic expression (13) is obtained by expanding (12) in powers of 

and eliminating terms of order two and higher.

Proof of Proposition 2.2

Using the de�nition of the value function of the log-utility maximizer, with optimal consumption

c(Xt; t) = B=A(t) substituted in,

J(Wt;Xt; t) = BEt

�Z T

t

e��(s�t) log
�
Ws

A(s)

�
ds

�
+ (1�B)e��(T�t)Et [log(WT )] ; (A1)

where the wealth process Wt evolves according to

dWt

Wt
=

�
�

B

A(t)
+ r(Xt) + �(Xt; t)�P (Xt)�(Xt)

�
dt+ �(Xt; t)�P (Xt) dZPt:

Thus,

log(Ws) = log(Wt) +

Z s

t

�
B

A(u)
+ r(Xu) +

�(Xu)
2

2
du+

Z s

t

�(Xu) dZPu;

where we have used the expression for the optimal portfolio policy: �(Xt; t) = �(Xt)=�P (Xt).

Substituting this into (A1) yields

J(Wt;Xt; t) =

BEt

�Z T

t

e��(s�t)
�
log(B)� log(A(s)) +

�
log(Wt) +

Z s

t

�
B

A(u)
+ r(Xu) +

�(Xu)
2

2
du

��
ds

�

+ (1�B)e��(T�t)Et

��
log(Wt) +

Z T

t

�
B

A(u)
+ r(Xu) +

�(Xu)
2

2
du

��
:

Integration by parts completes the proof of the proposition.
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Proof of Proposition 2.3 and Proposition 2.4

The results follow by setting B = 1 and taking a limit of T !1 for the corresponding expressions

in Propositions 2.1 and 2.2, while noting that in the limit, A(t) = ��1.

Proof of Proposition 2.5

As in Proposition 2.3, this result follows by replacing the function g(X) in the expression for the

optimal consumption-portfolio policy with its asymptotic expansion. Only the leading term in

the expansion must be retained, which corresponds to the solution of the log-utility maximizer's

problem.

Proof of Proposition 2.6

The wealth process of the log-investor evolves according

dWt

Wt
=

�
��+ r(Xt) + �0(Xt)�P (Xt)�(Xt)

�
dt+ �0(Xt)�P (Xt) dZPt;

where �0(Xt) is the optimal portfolio policy of the log-utility maximizer, given by (22). Repeating

the steps of the proof of Proposition 2.4, we obtain the desired result.

Proof of Proposition 3.1

The proof is similar to that for Proposition 3.4 below.

Proof of Proposition 3.2

The result follows by using (26) in (17).

Proof of Proposition 3.3

By �rst- and second-order stochastic dominance, function H (X; t) increases in a particular param-

eter if such a parameter either increases the process � (t) or adds a mean-preserving spread to it.
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Since the process � (Xt) satis�es

d� (Xt) = ��X2
(� (Xt)� ��) dt+ �X2

dZX2t; (A2)

it can be characterized as

� (t) = �� + (�0 � ��) e
��X2

t +

Z t

0

�X2
e��X2

(t�s) dZX2s:

This explicit expression for � (t) leads to the following results:

(i) @� (t) =@�0 = exp (��X2
t) > 0, therefore � (t) increases in �0;

(ii) @� (t) =@�� = (1� exp (��X2
t)) > 0, therefore � (t) increases in ��;

(iii) The conditional distribution of � (t) is Gaussian with mean m (t) and variance s2 (t). The

mean m (t) is independent of �X2
, while s2 (t) is increasing in �X2

. Therefore, increasing �X2

adds a mean-preserving spread to the distribution of � (t);

(iv) The mean m (t) is independent of �X2
, while s2 (t) is decreasing in �X2

. Therefore, reducing

�X2
adds a mean-preserving spread to the distribution of � (t) and increases H (X; t). Thus,

H (X; t) is decreasing in �X2
, and so is the product exp [� (�X2

+ �) t]H (X; t).

(v) H (X; t) is independent of �, while exp [� (�X2
+ �) t] is decreasing in it;

(vi) The function
�
� (Xt)� �

�
1[�(Xt)��] is decreasing in � and therefore decreasing in L, and so

is H (X; t);

(vii) By Fubini theorem,

H (X; t) = E

�Z 1

0

�
� (Xt)� �

�
1[�(Xt)��]

����X0 = X

�
:

Because the conditional distribution of � (t) is Gaussian with mean m (t) and variance s2 (t),

the expectation can be computed explicitly, yielding (28).

Proof of Proposition 3.4

The Sharpe ratio of stock returns equals

� (Xt) = (�� r)
p
Xt:



Risk aversion and optimal portfolio policies 48

Thus, according to (19),

g0 (X) = �E

"Z 1

0

e��t
 
log (�) +

Z t

0

 
r +

(�� r)2Xt

2
� �

!
ds

!
dt

�����X0 = X

#
:

Since the conditional mean of the process Xt equals

E [XtjX0 = X] = X +
�
X �X

�
e��X t;

we �nd

g0 (X) =

Z 1

0

e��t
 
log (�) +

Z t

0

 
r +

(�� r)2
�
X +

�
X �X

�
e��X t

�
2

� �

!
ds

!
dt

= a0 + a1X;

where a0 and a1 are given in Proposition 3.4.

Proof of Proposition 3.5

Substituting (30) in (17) gives the portfolio policy in the proposition.

Proof of Proposition 4.1

Substituting the individual portfolio choices (38) and (39) into the market-clearing condition (43),

gives r(!). Substituting the equilibrium interest rate and equation (41) into the expressions for

the optimal consumption and portfolio policies in equations (36) to (39) gives the results in the

proposition.

Proof of Proposition 4.2

If the constraint is not binding, then the optimal policies are the same as in Proposition 4.1. If

the constraint is binding, then the solution for the optimal policies can be obtained by applying

Proposition 2.5.
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Proof of Proposition 5.1

The value function of the log-utility representative agent equals

1

�
(logW0 + g0;0 (X0)) = E0

�Z 1

0

e��t log (et) dt
�
:

A straightforward calculation shows that the expectation on the right-hand side equals log e0+a+

bX0. At the same time, W0 is the aggregate wealth in the economy, which is equal to the price of

the stock, ��1e0. Thus, g0;0 (X0) = a+ bX0 + log �.

Proof of Proposition 5.2

Because the aggregate �nancial wealth in the economy equals the total value of the stock market,

it follows that

W = !P;

W � = (1� !)P:

Using these relations along with (53) and (54), we relate the stock price to the aggregate endowment

and to the cross-sectional distribution of wealth:

Pt = p (Xt; !t) et;

p (X;!) �
1

�
[1 + ! (g0;0 (X)� log �)] +O

�
2
�
:

By Itô's lemma,

dPt

Pt
= X t dt+ �e dZet +

p!

p
d!t +

pX

p
dXt

+
1

2

p!!

p
[d!t; d!t] +

1

2

pXX

p
[dXt; dXt] +

pX!

p
[dXt; d!t]

+
pX

p � e
[dXt; det] +

p!

p � e
[d!t; det] :

Given the dynamics of the state variable !t in (52), stock returns satisfy

dPt

Pt
=
h
Xt + �b (�X (Xt) + �eX�e�X)!t

i
dt+ �edZet + �b�X!tdZXt

=
h
Xt + b (�X (Xt) + �eX�e�X)!t

i
dt+ �edZet + b�X!t dZXt +O

�
2
�
: (A3)
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The cumulative expected return equals

dPt + et dt

Pt
=

h
Xt + b (�X (Xt) + �eX�e�X)!t + � [1� !t (a+ bXt)]

i
dt

+ �edZet + b�X!t dZXt

=

�
Xt + �� !t

�
Xt �

�2e
2
�
�eX�e�X

�+ �X

��
dt+ �edZet + b�X!t dZXt +O

�
2
�
:

The dynamics of the state variable !t follows from the individual-wealth dynamics:

d!t = !t (1� !t)
��
(�t � ��t )

�
�Pt � �2Pt � rt

�
� ct + c�t

�
dt+ (�t � ��t )�Pt dZPt

�
:

Using (A3), we �nd that

d!t = !t (1� !t) (a+ bXt) dt+ !t (1� !t)�e

�
1 +

�eX�X

�e
b

�
dZet +O

�
2
�
:

To determine the equilibrium interest rate, we impose the market-clearing condition in the stock

market (which implies clearing of the bond market). This condition leads to

rt = �Pt � �2Pt + !t
�
�2Pt + �eX�X�Ptb

�
=

�
Xt + �� !t

�
Xt �

�2e
2
�
�eX�e�X

�+ �X

��
�
�
�2e + 2b�eX�e�X!t

�
+ !t

�
�2Pt + �eX�X�Ptb

�
+O

�
2
�

= Xt � �2e + �� !t

�
Xt �

3

2
�2e

�
+O

�
2
�
;

which is the expression in the proposition.
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B Determining higher-order terms of the asymptotic solution for

the production economy

As in (9), we wish to identify the unknown function

g0(!) =

NX
n=0

ng0;n(!) +O(N+1); (B1)

so that it solves the Hamilton-Jacobi-Bellman equation for the non-log investor ( 6= 0).

In order to identify (B1), we start by determining the �rst term of the expansion, g0;0(!). To

do this, we consider the zero-order power series expansion of (B1)

g(!) = g0;0(!) +O(); (B2)

substitute this into the (48), and expand the resulting equation around the point  = 0 upto zero

order.26 Solving this expansion for the unknown function gives the expression in (41). Observe

that this solution is independent of !, and thus, constant.27

To obtain a solution accurate to the �rst order, we substitute the �rst-order expansion of

equation (B1),

g0(!) = g0;0(!) +  g0;1(!) +O(2); (B3)

into (48), and expand this around the point  = 0 to the �rst order. Into this expansion, we

substitute g0;0(!) that was identi�ed in the previous step, which then leaves us with a single

equation that we can solve for g0;1(!):

g0;1(!) =
4 (�� �)2 � 4 (�� 2 �) �2 + �4

8 �2
:

Substituting this and the solution for g0;0 into (B3) gives the asymptotic solution of order one.

Observe that this, too, is independent of !. The solution for the second and higher orders, however,

does depend on !.

Having obtained the solution for order n� 1, the solution upto the nth-order can be obtained

following the same procedure:
26Computer algebra software such as Mathematica makes this a signi�cantly less unpleasant exercise. One can also

use the results in Proposition 2.4 to �nd g0;0:
27A quick and easy way to check for errors at each step of the expansion is to examine if the solution satis�es the

the boundary conditions, expanded to the same order.
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1. Start with the n-order expansion of (B1);

2. Substitute this into the Bellman equation (48), and expand this in  upto the nth order;

3. Substitute the previously identi�ed expressions for g0;0(!); : : : ; g0;n�1(!), and solve the equa-

tion one gets for the unknown function g0;n(!);

4. Construct the asymptotic solution by substituting into (B1) the expressions for g0;0(!); : : : ; g0;n(!).
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Figure 1: Comparison with the log-linearization method

The �gure compares the accuracy of the asymptotic portfolio policy and the policy
obtained by log-linearization. The �rst panel plots the proportional error of the
approximate solutions: (approximate policy � true policy) / (true policy), where
the \true" policy is based on the �nite-di�erence solution of the original problem.
The second panel compares the ratio of the hedging demand to the myopic demand
as given by the approximate policies and the numerical solution. The solid line
corresponds to the numerical solution, the dashed-line represents the asymptotic
solution and circles represent the log-linearization-based solution. The �gure shows
that the solution based on log-linearization is more accurate than the asymptotic
solution | it is practically indistinguishable from the numerical solution. The
relative error of the asymptotic solution is less than 0.02. The absolute magnitude
of the hedging demand is approximately two percent of the myopic demand; the
asymptotic solution yields approximately four percent for this ratio. The parameter
values for this �gure are taken from Chacko and Viceira (1999): r = 0:015, �� r =

0.0799, �X = 0:3413, X = 27:7088, �X = 0:6512, �PX = 0:5355�X , � = 0:06 and
 = �1.
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Figure 2: The interest rate and its volatility

The �rst panel plots, as a function of the state variable, the risk-free interest
rate (scaled so that it is independent of the model parameters), while the second
panel plots the instantaneous standard deviation of the interest rate. The solid
line corresponds to the unconstrained economy, the dashed line corresponds to the
economy with borrowing constraints. The borrowing constraint is set to L = 1=3.
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Figure 3: Asymptotic and exact portfolio weight

The �gure shows the portfolio weight, �(!), based on the exact solution (solid
line), and that obtained from the asymptotic solution of the �rst order (circles) for
di�erent degrees of relative risk aversion (RRA). In the �rst panel, RRA = 0.5, in
the second it is 2 and in the third panel it is 3. From the �gure we see that the
asymptotic portfolio weight from the �rst-order approximation is quite close to the
optimal portfolio weight. The other parameter values are chosen to match those in
Dumas (1989): � = 0:106, � = 0:11, � = 0:10:
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Figure 4: Asymptotic and exact interest rate

The �gure shows the interest rate, r(!), based on the exact solution (solid line),
and that obtained from the asymptotic solution for the �rst order (circles) for
di�erent levels of relative risk aversion. In the �rst panel, RRA = 0.5, in the second
it is 2 and in the third panel it is 3. From the �gure we see that the asymptotic
interest rate from the �rst-order approximation is quite close to the true value
of the interest rate. The other parameter values are chosen to match those in
Dumas (1989): � = 0:106, � = 0:11, � = 0:10:
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