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Two of the most widely used statistical techniques for analyzing discrete
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burposes of parameter estimation, logit has been shown toc be more robust than
DA. However, under certain distributional assumptions both procedures yield
consistent estimates and the DA estimator is asymptotically efficient. This
suggests a natural Hausman specification test of these distributional
assumptions by comparing the two estimators. In this paper, such a test is
proposed and an empirical example is provided. The finite-gample properties
of the test statistic are also explored through some sampling experiments.
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1. Introduction

Two of the most widely used statistical procedures in empirical studies
of discrete economic phenomena are discriminant analysis (DA} and logit
analysis. Although distinct, these two methods are closely related as
McFadden (1976) has shown. 1In particular, if ¥ 1s a discrete variable and X
is a vector of "explanatory" continuous variables, logit and DA are alternate
means of characterizing the joint distribution of (v, X). DA focuses on the
distribution of the X variates conditional on ¥ and, in practice, it is almost
always assumed that the distribution of X Y is normal with a common covariance
matrix across the y's. In contrast to DA, leogit analysis involves the
distribution of y conditicnal on the X's which is assumed to be logistic.

In addition to the essential distinction between causal and conjoint
models which McFadden (1976) pointed out, logit and DA are distinguished by
another characteristic: logit is more robust than DA. More specifically, it
is easily demonstrated that logit analysis is applicable for a wider class of
distributions of (y, X) than is normal DA. However, Efron's (1975) study
indicates that if the normality of le does obtain, then DA is considerably
more efficient than logit. Indeed, since the normal DA procedure is in fact
maximum likelihood estimation when le is normally distributed, it is
asymptotically efficient in this case. Nevertheless if normality does not
obtain, then the normal DA estimator is inconsistent in general whereas the
logit estimator maintains its consistency under a wide class of alternative
distributions of (y, X). In a related study, Amemiya and Powell (1983) show
that, for purposes of classification, DA does quite well even if the X's are
binary {(in which case, X|y is clearly not normally distributed). However,
they conclude that this may be more likely to hold for discrete X's than for

continuous X's which are conditionally nonnormal. Therefore, an important

-1=



consideration in choosing between logit and DA estimation is whether or not
the assumption of conditional normality obtains.

In this paper, a simple Hausman-type specification test for such
departures from normality based on the logit and DA estimators is proposed.
Under the null hypothesis that the explanatory variables are conditionally
normal, the logit and DA estimators should be numerically close. Under the
alternative joint hypothesis that X|y is not normal and y|X is logistic, the
two estimators should differ since logit is consistent and DA is not. Due to
the asymptotic efficiency of the DA estimator, the usual Hausman (1978)
specification test is applicable.

Since it seems that the normality of X y is at issue, why not apply the
more standard tests of normality such as the Shapiro-Wilks, skewness, or
kurtosis tests? The primary reason is that a rejection of normality on the
basis of such tests does not leave the econometrician with a clear alternate
method of analysis. Although discriminant analysis may in principle be
performed for distributions of X|y other than the normal, this has little
practical value due to the intractibility of alternative multivariate
distributions. It will be shown in Section 2, however, that logit analysis is
appropriate for any distribution of X|y which is a member of the exponential
family. Therefore if normality is rejected, logit analysis is the natural
alternative. Since a rejection of normality will usually entail the
estimation of the logit model anyway, it may be more convenient to estimate
the logit model first and use those estimates to test for normality rather
than perform an additional test. Furthermore, the proposed Hausman test does
not involve additional manipulation of the data as do the normality tests

mentioned above, but requires only the parameter estimates from logit and DA.



In Section 2 the relation between logit and DA is reviewed and the
parameters of interest are defined. The test statistic is derived in Section
3. In Section 4 an empirical example involving corporate bankruptcies is
Presented for which the proposed test is performed. For illustrative
purposes, two simple sets of sampling experiments were performed and the
results are reported in Sections 5 and 6. The first set considers the finite-
sample properties of the test under the null hypothesis that X]y is normally
distributed, and the second set studies the finite~sample power of the test

under the alternative hypothesis that the distribution of X,y is gamma. We

conclude in Section 7.

2, The Relation between Logit and Discriminant Analysis

For simplicity, only the bivariate case is considered here although the
results extend readily to the general multivariate case. Let y denote a
discrete dichotomous random variable which takes the values 0 or 1 and let X
be a (k x 1}-vector of related continuous random variables. Denote by F(y, X)
the joint distribution function of {y, X).

Although the joint distribution F contains all available information
concerning the relation between y and X, it is often more convenient to focus
on the conditional distribution of X Y+ This is the case, for example, when
dealing with the standard statistical problem of classification: Given an
observation x of attributes X which is generated by one of two probability
models indexed by y, decide in an optimal fashion which population x bhelongs
to. The standard DA procedure assumes that the conditional distribution of
X’y is multivariate normal with mean uy and common covariance T. More
formally, let Fho(X|y) denote the conditional distribution function of X|y and

let fD(X,y) be the corresponding density function. Then normal DA requires



that:

- 1 -
£ x|y) = 2025 ]T 2exp[- Yy (x - u prThx - )] (1)

Under these conditions, the solution of the general classification problem
takes the particularly simple form based on the well-known iinear discriminant
function.

The DA procedure may be related to logit analysis through a simple
application of Bayes' formula. Let fX(X) denote the marginal density function

of X and let

= . 2
L [ £ (XP(y[x)aX (2)

Hy is simply the marginal distribution of y or, in DA terminology, “y is the_g
priori probability of being a member of population y. Letting FL(Y X) denote
the conditional distribution function of y‘X and applying Bayes' formula

yields:

£ (X|y)n

. (3)
fX(X)

FL(y X)

Since fX(X) =z wny(le), equation (3) may be rewritten as:
Y

£.(X[y=1)m 1
P ly=1]0) = = - y (4)

gl 0

m
1 £ (X]y=1)

Substituting the conditional densities of (1) into equation (4) and

simplifying then yields:

1
- - (5a)
FL(Y 11X) a

1+ exp[-(a + B'x)]

-1 "o
o= Yo luy - u)e (u0+u1)—ln-“-1— (5b)
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B =12 (u -wuy) e (3e)

Equation (5) demonstrates that the required assumptions for normal DA insure
that the conditional distribution of Y|X is logistic. Because the converse is
not true, logit analysis is a more robust procedure. 1In fact, as Efron (1975)
observes logit analysis is appropriate under general exponential family

assumptions on FD(X]y). Specifically, let
£ (X|y) = g(8_, n)h(X, n)exp{6'x] (6)
o v ;
where n is an arbitrary nuisance parameter. Note that (1) is a special case
of (6). The conditional density of y'X under (6) is then given by:

F (y]x) = ! (7a)

1 + exp[-(a + B'X)]

g(81l n} 'ITO
a = 1ln —"('é'——)- ~ ln — (7b)
g 0’ T'] "1

Since logit analysis is appropriate for a wider class of distributions
than normal DA, a natural test of the normality assumption against other
distributions of the exponential family is a comparison of the logit and DA
estimators of (a, R) using {(5b) and (5¢). 1In particular, the null and

alternative hypotheses may be stated explicitly as:

HO: fD(XIy) is multivariate normal with parameters ”y' L.

H,: fD(x,y) is of the exponential family with parameters ey, MNe

Such a specification test is developed explicitly in the next section.



3. A Specification Test ~

Suppose we have T i.i.d observations [y1, X(y1)], soay [YT' X(YT)] where

X(yi) denotes the vector of attributes associated with the response variable

T
yi» Define T1 ‘51 yi and T0 =T - Ty and the index sets I0 = {i,yi = 0}
}+ Then under Hy the joint log-likelihood function of y and

it

d I = {i
an : {1,yi
X is given by the sum of the conditional and marginal log-likelihood

functions:

T -
Ly, X) = K, =< Infz| - ¥ [m%)-%yz1hwg-ud-
isIO
(8)

~-1
Vi % [X(yi) - u1]'2 [X(Yi) - u1] + Tylom + T,in(1 - no) .
isI1

In this case, the DA estimators coincide with the full information maximum

likelihood estimators and are given by:

Ly

Ho

1
L X(Yi) My =T b X(yi) (9a)

i 1 iel
0 1810 1g 1

ela

) 1 N ~ ~ -~ '
=g [ [xtyp -wgllxtyp = wglr + T [xty) - ][xyy) = wg]t] 9w
1310 1511

T . T
™ = 3 - . {9c)
T T

By the principle of invariance, the maximum likelihood estimators of (a, B)

under Hy may be obtained from substituting the estimators (9) into equations

~

{5b, ¢). Denoting such estimators by a__  and BDA' where the subscript

DA

indicates that they were obtained from DA estimators, we have:



A

~ n

Gpa = (uo - u1)'2 (uo + uT) + 1n — (10a}
T
0
~ _ 5_1(1\ A ) (10b)
Bpa = Hy 7 Hy! -

Although Gpa and BDA are consistent and asymptotically efficient under

Hy, they are generally inconsistent under the alternative hypothesis H A

1°
Hausman-type specification test of HO may then be constructed by taking the
difference of the DA estimator and an alternative estimator which is
consistent under both hypotheses. One such estimator may be obtained by

maximizing the conditional logistic log~likelihood function of y conditioned

on X:

-(a+X£B)
[ o + X18)(y, = 1) - 1n[1 - e 1] (11)

Denote these estimators a and BL' For analytic convenience, we choose to
ignore the intercept term a in the remaining analysis and base our test only
on B. Let VDA and VL be the estimated asymptotic covariance matrices of the R

estimators from DA and logit respectively. Following Hausman (1978), we let

G =8 -8 2 -
q4 = B, = Bp,s and form the y“ statistic:
= ' - ~ .
J=Tq'lV pal T~ X (12)

A consistent estimator of the asymptotic covariance matrix for BL may be

obtained from the estimated Hessian of the likelihood function in the usual
way. A consistent estimator of VDA may be constructed by first calculating
the asymptotic covariance matrix of EDA' This is done in Appendix 1 and is

given by the formula:

Voa = 8L +2' B DT e D OROE 8 DORET @5 e 1) (13)

1

"0."1

where y

u1 - “0' § = , and R and Q are standard selection matrices as
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defined in Richard (1975) (see Appendix 1}. A consistent estimator VDA is

A A A A

then obtained by substituting consistent estimators (u, I, Tor v1), of

(u, %, "0' n1) into equation (13). Note that once the DA estimators

of y and [ are computed, the computation of GDA using (13) involves only
simple matrix multiplications requiring few additional steps in standard
econcmetric software packages such as RATS or TSP, In addition, since the
estimate %L is standard output in most maximum likelihood and logit computer
programs, the proposed specification test (12) is in practice quite easy to
construct. Of course, the power of this test against H1 will differ across
different members of the exponential family. To illustrate the practical

value of this test, the next section considers an empirical example involving

an analysis of corporate bankruptcies.

4. Empirical Analysis of Corporate Bankruptcies.

In this section, we apply the proposed specification test for logit
versus DA estimation of corporate bankruptcies. Previcus empirical studies of
business failures using DA are too numerous to cite and the reader is referred
to Scott (1981) for an excellent review and critique of the empirical
literature. Logit analysis however has only recently been applied to the
study of default and, to this author's knowledge, Martin {1977}, Ohlson (1980)
and Zavgren (1980) have been the only studies.

Because there is no single canonical source of data for bankrupt firms,
the procedure for compiling the sample of failed firms requires some

explanation. An initial sample of 184 firms was extracted from Standard and

Poor's COMPUSTAT Industrial Research File using the bankruptcy deletion code

'02' as the extraction criterion.6 From this sample, firms in the financial

industries (SIC code 6000 to 6999) were excluded leaving 168 firms. This
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subset was then reduced to 77 firms by including only those firms for which
some data was available between the years 1975 and 1983 inclusively. The
firms in this subset were then checked for the type of bankruptcy proceedings

filed using the Wall Street Journal Index (WSJI) and the Directory of Ohsolete

Securities (DOS) and only those firms which explicitly filed under Chapter X
or XI were included, yielding the final sample of 38 bankrupt firms. The
actual year of bankruptcy filing was tabulated for each firm at this point
using the WSJI and DOS. The final set of financial rations for each firm was
then constructed by using data at least one year and at most three years prior
to the actual year of bankruptcy.7

Most DA studies of bankruptcy use samples composed of pairs of bankrupt
and non-bhankrupt firms matched by industry and year of failure. This
Procedure clearly introduces much sample-selection bias (for example, the
maximum likelihood estimate of the unconditional probability of bankruptcy ;1
will always be U@ for a matched sample) and is discussed at greater length in
Martin (1977) and Zavgren (1980). This method of constructing the sample is
followed so as to render the results more readily comparable to the existing
literature. A matching sample of 38 non-bankrupt firms was extracted from the
COMPUSTAT Industrial Annual File where firms were matched by year of
observation, industry and, when possible, total sales. The final sample thus
consists of 38 bankrupt firms and 38 solvent firms vielding 76 data points in
all. Tables 1 and 2 list these firms, the year in which the data was drawn,

and the year of bankruptey. Appendix 2 provides summary statistics.
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TABLE 1. SAMPLE OF BANKRUPT FIRMS

Firm Industry Year of Data Year of Bankruptcy
Frigitemp 1700 1976 1978
Tobin Packing 2010 1980 1981
CS Group 2300 1980 1982
Garland 2300 1979 1980
Lynnwear 2300 1979 1981
Nelly Don 2300 1977 1978
Poloron Products 2450 i979 1981
Brody (B.) Seating 2510 1979 1981
Saxon Industries 2600 1980 1982
Supronics 2844 1975 1977
Acme-Hamilton Mfqg. 3069 1977 1978
FPrier Industries 3140 1975 1978
Maule Industries 3270 1975 1976
Universal Containers 3410 1976 1978
Randal Data Systems 3573 1979 1980
Advent 3651 1979 1981
GRT 3652 1977 1979
Allied Technology 3662 1979 1980
Gladding 3662 1976 1977
Hy-Gain Electronics 3662 1977 1278
Multronics 3662 1979 1980
DAIG 3693 1980 1981
Medcor 3693 1980 1981
Allied Artists Industries 3716 1977 1979
Reinell Industries 3730 1976 1979
Gruen Industries 3870 1975 1977
Mego Industries 3940 1980 1982
Miner Industries 3940 1975 1977
Auto-Train 4013 1979 1980
Cooper-Jarrett 4210 1981 1982
Nelson Resource 4210 1978 1981
Pacific Far East Line 4400 1977 1978
Shulman Transport Enterprise 4700 1977 1978
Fireco Sales 5099 1980 1982
Gilman Services 5120 1980 1982
Ormont Drug & Chemical 5120 1975 1977
Filigree Foods 5140 1975 1976
Research Fuels 5199 1978 1979
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TRBLE 2. MATCHING SAMPLE OF SOLVENT FIRMS

Southwest Forest Industries Industry
Amelco 1700
Sunstar Foods 2010
Wolf (Howard B} 2300
Movie Star 2300
Beeline 2300
Madison Industries 2300
De Rose Industries 2450
Jensen Industries 2510
Southwest Forest Industries 2600
Roffler Industries 2844
Mark IV Industries 3069
Lama (Tony) 3140
Florida Rock Industries 3270
Plan Industries 3410
Access 3570
Esquire Radio & Electron 3651
Electrosound Group 3652
Alarm Products Intl. 3662
Communications Industries 3662
AEL Industries 3662
Watkins-Johnson 3662
Staodynamics 3693
Healthdyne 3693
Executive Industries 3716
Uniflite 3730
Talley Industries 3870
Ohic Art 3940
Empire of Carolina 3940
Falls City Industries 4210
Eazor Express 4210
Arnold Industries 4210
Overseas Shipholding Group 4400
Dereco 4700
Ronco Teleproducts 5099
Napco Industries 5120
Krelitz Industries 5120
Distribuco 5140

Nolex 5199
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In addition to a constant term, six explanatory variables were included

in the logit estimation and are defined in T hle 3.

Variable Names and Definitions

Variable Definition
SI2E Log{Total Assets GNP price deflator)®
CLTA Current Debt Liabilities divided by Total Assets
OLTA Other Debt Liahilities divided by Total Assets
CATA Current Assets divided by Total Assets
NITA Net Income divided by Total Assets
BANK Bankruptcy Index suggested by Lo {(1984)
Table 3.

The first five variables were chosen because of the frequency wit! which they
appear in other empirical studies of bankruptcy.9 The sixth variable included
was suggested by the theoretical model developed in Lo (1984) in which the key
determinant of bankruptcy was whether or not the value of cash y plus the

value of intangible assets or goodwill G exceeded the current debt obligations
cs The BANK variable is essentially the ratio of cash plus intangibles to

current debt liabilities

G+y 10
—c L ]
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Maximum likelihood logit estimation was performed on the 76 data points
with the likelihood function given in equation (10) using the MLOGIT computer
package developed by Bronwyn H, Hall,!! The corresponding DA estimates and
test statistic were computed using FORTRAN software written by the author..'2
Due to MLOGIT constraints, the dependent variable indicating the status of
solvency was defined to be 1 if bankrupt and 2 if solvent and solvency was the
normalized alternative. The logit and DA estimation results are reported in
Table 4 with asymptotic standard errors enclosed in parentheses. Table 4
indicates that the same three variables are significant at the 5% level or
better for both logit and DA; OLTA, NITA, and BANK., In contrast to Ohlsen's
{198B0) estimated SIZE coefficient, which is significant at the 1% level, the
SIZE coefficient estimated here is insignificant. This may be due to the fact
that larger firms are often acquired or reorganized when faced with financial
distress and do not file for bankruptcy whereas smaller firms are not included
in the COMPUSTAT database, leaving the sample of bankrupt and solvent Firms
with little systematic variation in sIZE,!3 That the ratio of current assets
to total assets CATA is insignificant does not contradict the model presented
in Lo (1984) since in that framework the Probability of default is determined

by the ratio of cash plus intangibles to current liabilities and is unaffected

by the cash to intangibles plus cash ratio. The fact that CLTA is also
insignificant may seem inconsistent with our theoretical framework since
current liabilities directly affects the default trigger. However, because
the data were collected one to three years prior to bankruptcy, this result
may be reasonable. This is also supported by the fact that the ratio of other
debt liabilities to total assets OLTA is significant since "other liabilitieg™

includes debt obligations maturing in the actual year of bankruptcey.
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TABLE 4. LOGIT AND DA ESTIMATION RESULTS.

LOGIT ESTIMATE DA ESTIMATE
VARIABLE
(STD. ERROR) {STD. ERROR)
CONSTANT 1.2140 -
(2.5162) « - )
SIZE -0.0441 -0.0418
(0.2977) (0.2811)
CLTA 0.1074 -2.3803
(2.4177) (2.0231)
OLTA -3.3258 -2.6131
{1.8103) (1.5159)
CATA ~1.2321 -0.6597
{1.9827) {1.7085)
NITA 10.7971 5.1616
{4.8249) {2.2561)
BANK 4.1642 1.0686
(2.2755} (0.6245)

CONVERGENCE CRITERION ON EACH PARAMETER = 0.001000
CONVERGENCE CRITERION ON SUMS OF SQUARES = 0.000100
VALUE OF LOG-LIKELIHOOD AT CONVERGENCE = -30.662786
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Since the solvent alternative was normalized, positive coefficients imply
that higher values for the associated variable correspond to larger
probabilities of solvency. In terms of the significant variables, we infer
that:

(i) A larger non-current debt to total assets ratio increases the
brobability of defanlt.

(i1) A larger net income to total assets ratio decreases the
probability of default.

(1ii) A larger cash plus intangibles to current debt ratio decreases the

Probability of default.
Implication (1) has heen discussed above. Implications (ii) and (iii) seem to
support Lo's (1984) multi-period model of bankruptcy.

Of course, all interpretations of these results in terms of the
theoretical model should be seen as suggestive at best since no structural
stochastic specification of bankruptcy has been made. In some cases, it may
be possible to derive a logistic specification from economic behavior but this
has not been considered in this study.14 In addition, the accounting
variables used may only loosely correspond to their theoretical quantities if
at all. There is also the timing problem mentioned above.

Given the estimated parameters from the DA and logit analysis estimation,
the Hausman test statistic is easily computed to be 6,2105 which is X2 with 7
degrees of freedom and has a corresponding p-value of 0.515, Since Hy cannot
be rejected at any level better than 49% it seems that the data support the
normality of X|y against other distributions of the exponential class. This
suggests that DA is the preferred method of estimation since it is
asymptotically more efficient. In fact, Efron's {1975} calculations relate

the asymptotic relative efficiency (ARE) of the two procedures to the square
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root of the Mahalancbis distance A = [(u1 - UO)E—1(U1 - UO)fAZ implying that a
value of 4 for A yields an ARE of 0.343. The estimated value of A for the
data set used here is 1.5248 which, according to (1.12) in Efron (1975),
corresponds roughly to an ARE of 0.968. Although the Hausman test supports

the appropriateness of DA, the estimated loss in efficiency of logit under Hj

is less than 4%.

5. Finite Sample Properties of the Specification Test.

In this section, we present the results of several sampling experiments
which explore the finite-sample properties of the specification test statistic
J proposed in Section 3 under the null hypothesis that X|y is normally
distributed. Since these simulations involve only a single X (in addition to
the constant term)} and consider only one of several interesting alternative
hypotheses, these simulation results are meant only to be suggestive.

Under the null hypothesis Hy, X|Y is normal with mean Uy and variance
02, where ¥y takes on the values 0 or 1. The unconditional probabilities L
and m, are assumed to be D@ throughout the simulations. Given numerical
values for Bor Wqr and 02, a random sample of observations (y1, x1, cess Ymr
Xp) of size T is generated in the following manner: y. is first generated as
an outcome of a Bernoulli random variate with p = Ub ; then X, is generated
as an outcome of a normal variate with mean UY and variance 02, and so on for
chservations 2 to T. The logit and DA estimators EL and EDA' their estimated
asymptotic variances GL and GbA' and the test statistic J are then computed
for the sample. The following parameter values were assumed and held constant

throughout all experiments:

u, = 0.20 ¢ = 0.01 .
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Experiments were then performed for sample sizes of 50, 100, 200, and 300, and
for various values of the parameter u1. More specifically, because Efron
(1975) has shown that the asymptotic relative efficiency of logit versus DA is
related to the square root of the Mahalanobis distance, successive values for
u? were chosen to vary the Mahalanobis distance from 5.0 to 9.0 in unit
increments. Asymptotic relative efficiency is particularly relevant for the
specification test of Section 3 because as the ARE approaches unity, the
matrix difference [%L - %DA] is more likely to be non-positive-definite in
finite samples even though the logit estimator is asymptotically less
efficient than DA. Although performing the Hausman test in such situations is
problematic, Newey (1983) has developed a general method of constraining the
difference of the two covariance matrices to be positive definite. However,
the use of Newey's approach involves deriving both the consistent and
efficient estimators as generalized method of moments estimators and,
unfortunately in the case of logit and DA, this would sacrifice much of the
computational simplicity of the proposed test. In these experiments, samples
which yield negative variance differences were simply discarded and
replications continued until 1000 samples with positive variance differences
were obtained. This procedure obviously introduces serious biases into our
simulations when the logit estimator is "close" to the DA estimator in
efficiency and when the sample size is small. Indeed, the fraction of the
1000 replications with a non-positive variance difference often exceeded 20
percent for experiments with Mahalanobis distances less than 5.0 and are not
reported here due to their unreliability.15 However, for larger values of the
Mahalanobis distance and for sample sizes above 100, the simulation results
are more reliable. As an indication of the seriousness of the nonpositive

variance difference problem in each experiment, the number of samples with
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negative differences as a percentage of the total number of replications
performed is reported. Tables 5a-d summarize the results of the

simulations. Each row in Tables 5 corresponds to a separate independent
experiment. The first column indicates the sample size T and, in parentheses,
the percentage of the replications which were discarded (and replaced) because
of a non-positive variance difference in the J-statistic. The second and
third columns indicate the theoretical values for the Mahalanobis distance and
B respectively. The fourth and fifth columns report the mean and standard
errors of the DA and logit estimates of B respectively. Column six gives the
theoretical value for the asymptotic variance of the DA estimator and column
seven reports the mean and standard error of the estimated asymptotic

variance. Since the J-statistic is XZ

with one degree of freedom under the
null, it may be transformed into a N(0O, 1) random variable t. The mean of the
r-statistic across the 1000 replications is reported in column eight with
asymptotic t-statistics for the hypothesis that the true wmean is zero given in
parentheses. In column nine, the standard error of 1 over the replications is
given with asymptotic t-statistics for the hypothesis that the true standard
deviation is unity given in parentheses. The last three columns report
estimated 1, 5, and 10 percent tail probabilities respectively. Asymptotic t-
statistics for the hypotheses that the true tail probabilities are 1, 5, and
10 percent respectively are reported in parentheses.

Tables 5a-d are largely self-explanatory. It is clear from the tables
that the difference of the variances in the J-statistic is nonpositive for a
significant fraction the replications when the Mahalanobis distance is
small. For example, Table 5a reports that for sample sizes of 50 and a

Mahalanobis distance of 5.0, 1148 replications were required, with close to 13

percent of the replications having negative variance differences. However,
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Tables 5¢ and d indicate that with sample sizes of 200 or more the number of
replications with negative variance differences declines considerahly, and
declines monotonically as the Mahalanobis distance increases.

The majority of the experiments yielded means of the T=statistic which
were insignificantly different from zero. However, for almost all the
experiments the hypothesis that the true standard deviation is unity can be
rejected. Nevertheless, the estimated size of a 5%-test for sample sizes of
100 or more are not statistically different from 0.05. Although the S5s$-test
seems well-behaved, tests at the 1% and 10% level have estimated sizes which
do differ significantly from 0.01 and 0.10 respectively, the 1%-test rejecting

too frequently and the 10%-test rejecting less often than it should.

6. Power of the Specification Test.,

In this section we investigate the power of the proposed specification
test against the alternative hypothesis that the distribution of X|y is gamma
with parameters (q, Ay) where the density function is given by:

n-1
t{X|y) =

exp| -~ —;c—] . (14)
Agr (n) y

Since the gamma distribution approaches the normal distribution as n
approaches infinity, we may examine the power of the test as the alternative
hypothesis becomes "closer”™ to the null by simply increasing n.

Note that, given the density function in (14), the parameter in {7c) is

now given by:

R {15)
In these simulations, it is also assumed throughout that the unconditional
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probabilities T :d L of the dichotomous population indicator y are both
Ub. As before, the construction of the random samples ir olve first an
outcome of a Bernoulli trial with p = 3@ for vy, and then a draw from a gamma
distribution with parameters (n, Ay). The parameters AO and A1 are held at
2,0 and 4.0 respectively for all experiments. Experiments were conducted for
sample sizes of 50, 100, 200, and 300, and for values of n from 1.0 to 16,0 in
unit increments. Tables 6a-d summarize the results of these simulations.

The first column of Tables 6 indicate the sample size T and, in
parentheses, the percentage of negative-variance difference draws. The second
and third columns displav the theoretical values of n and B respectively.
Columns four and five report the means and standard errors of the DA and logit
estimates of § respectively. In column six the mean and standard error of the
r-statistic estimates are reported and the last three columns display
respectively the estimated power and associated standard errors of 10, 5, and
1 percent tests.

As in the null simulations for sample sizes of 50, the results for the
alternative simulations in Table 6a may be unreliable due to the large
proportion of negative variance-difference draws. However, for sample sizes
of 100, the largest fraction of bad draws is only 6.2 percent and only 0.6
percent for 300-chservation samples. By and large, the tests seem to perform
well for sample sizes of 100 or larger. For example, Table 64 shows that the
power of the 5 percent test at n = 2.0 is 0.48 and reaches a peak of 0.74 for
n = 6.0. As 1 increases beyond 6.0, the power declines as expected since the
alternative distribution is moving closer to -~ rmality. This pattern is
characteristic of all the simulations; the test power increases monotonically
as n increases to 6.0 and generally declines monotonically with increases in n

thereafter.
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The results of Sections 5 and 6 seem to indicate that for sample sizes
larger than 100, the proposed specification test performs well and has power
against a gamma alternative in the univariate case. Of course, simulations
for multivariate null and alternative distributions are required before any
general conclusions concerning the test's performance may be drawn. However,
it does seem that for sample sizes less than 100, the negative variance-

difference problem is significant and the proposed test may not be viable in

such cases.

7. Conclusion.
A e on

In this paper, we have presented a specification test for the conditional
normality of the attributes X and hence a test for the appropriateness of
applying normal discriminant analysis under the maintained hypothesis of
logistic conditional response probabilities. The specification test was
performed for the analysis of corporate failures and it was concluded that the
null hypothesis that DA and logit are equivalent may not be rejected.

In view of the distinction between causal and conjoint probability models
which McFadden {1976) points ocut, the above test may be particularly useful
when the estimated parameters have "structural™ interpretations or if they are
to be used to forecast impacts of policy changes. For example DA is often
used to forecast future bankruptcies conditional on various macroeconomic
scenarios. The result of the specification test for the data set used in this
paper seems to support the use of DA. The standard hypothesis tests of the
structural parameters may then be performed since the data do not reject
normality in favor of some other member of the exponential family.

For purposes of classification, nonnormality may be less problematic as
Amemiya and Powell's (1983) study suggests. Their calculations indicate that

the use of normal DA when the X's are in fact binary does not appreciably
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increase the rate of misclassification. In this case, the proposed
specification test may not have much power. However, the simulations in
Section & indicate that the test does have power against a gamma

alternative. Other alternative simulations should be performed on a case-by-

case basis.
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FOOTNOTES

1Discrimination analysis may, in principle, be performed for any
distribution. Since the most common distribution employed is the multivariate
normai, this will be the only case considered here.

In this context, efficiency is in terms of ARE.

In this case, efficiency is defined as minimum-variance in the class of
CUAN estimators.

4See also Amemiya (1981) and Amemiya and Powell (1983).
5See McFadden (1976), Martin (1977), and Zavgren (1980).

6The Industrial Research File is composed of data for firms deleted from
the Industrial Annual File because of

Code 01

Acquisition or Merger
Code 02 - Bankruptcy

Code 03

Liguidation

Code 04

Other (no longer files with S.E.C., etc.).

Most empirical studies of bankruptcy use data one year pricr to
default. The COMPUSTAT database did not, however, always have data for firms
one Year prior to failure. In such cases, the firm was included in our sample
if data were available within three years of default and rejected otherwise.

8The GNP price deflator was taken from the 1984 Economic Report of the
President (Table B-3) and normalized to 1.00 in 1972,

Linear combinations of these variables are also often included in other
empirical studies. For example, Chlson (1980) includes the ratio of working
capital to total assets in his estimation, but this is simply CATA - CLTA. We
exclude them to preserve degrees of freedom and to avoid problems of
multicollinearity.

1ONote that the correspondence of this ratio to the ratio of accounting
data used is almost certainly inexact. Therefore the results of our

estimation should not be interpreted as conclusively supporting or rejecting
any structural model of default.

11All software was implemented on a Digital VAX 11-780 in single-
precision due to MLOGIT software constraints.

12Available from author upon request.
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13Since the COMPUSTAT database only cont:.ns data for firms which are
listed on the major exchanges, smaller privately held firms are excluded.

14See Palepu (1983) for an example.

Fi
The complete set of simulation results are available from the author
upon reguest.

15
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Appendix 1 - The Asymptotic Distribution of BDA

A A

Let py = LR PN and y = My = M, where Mo and W, are given by (%a). We

seek the asymptotic distribution of /Efu - u) first. Recall that

~

[

1 ——— ~
My = ——-.z X, = /Tofuo - “o) N(O, ©) (A1a)
0 iegI
0
L= => V7. ( A (A1b)
By =7 _E Xi => 1(u1 - u1) ~ N(0O, 1)
1 igI

1

-~

and Ko and p_ are independent. By definition, we have

1

~ ~ -~

- = - - - 2
R e U PR T (g = ug) (A2)
and thus —_ .
— A JT —_— A T — ~
T =) = 2=V - - T (- ) (a3)
/T— 1 '/_T_ 070
1 0
where T = Ty + Ty« BSince E;_converges in probability to — i=20,1,
/Ti Yr.
we conclude that 1
—_ 1
/Tlu - u) A N0, (— + l—qz) (Ada)
™ kil
0 1
or R A
YT(u - p) ~ N(O, §I) (Adb)

1

where § = T.n_ =+ Following Richard's (1975) notation, let ¢ denote the
01

yék(k + 1) vector of distinct elements

)' and let R be the

Of E; i.e., g = (0'1 s ( r O

1 k1’ %22 k2" " Oxx

Uék(k + 1) x k2 selection matrix such that R'c = vec(I). Define Q' as the

Moore-Penrose inverse of R, so that RQ' = I. By Richard {1975) we have:
— H 3} a 6z 0
/T | - ] ~nx (o, ) - (A5)
g o 0 2Q(Z ®» £)Q"
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'

Pre-multiplying (p' o')' by diag(Ik, R'), where Iy is the kth order identity,
then yields:
— H L A
/T ( - ) ~ w(o, v.) (A6a)
vec (I) vec (L)
ST 0
where vV = . (A6b)
Y 0 2R'Q(L = L)Q'R

~

Let vy = [u', vec(Z)')' and define y similarly. Define the function £ as

fly) = Z-1u =8 (A7)

and let Jf = %g-denote the Jacobian matrix of f. Applying the delta-method to

f then yields:

/T (BDA - B) 2 n(o, AT (28)

To evaluate Jf explicitly, observe that

of of
=8 _9°r 5 . A9
Jf [Bu avec(Z)] (A9)
But 2L = 7! ang
Ju -1 -1
avec(Z) Jvec(I) avec(l)
-1
alp' =& Ik)vec(z )
= {210b)
avec(I)
Bvec(2-1)
= Lr=-he 7 10
(u'e Ik) avec(t) (A10¢)
af -1 -1
—_————— = =y '’ . (A104)
3vec (D) {u'e Ik)(z a &I )

Substituting (A10) into (A%) results in the relation
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-1 -1 -1
I, = [z ~(u'e I e )] . (aA11)

Using {(A11) and simplifying yields the desired result

—_— A
YT (BDA - B} ~ N(O, VDA) (Aa12)

-1 -1 -1 -1 -1
Yoa = IgV\IE =6 420 8 1) GT m 2T ORO(Z 8 DORIZ 8 1)y I)
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