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1+ Introduction.

Since Black and Scholes (1973) and Merton (1973, 1976) introduced their
now famous option-pricing models, their methodology has been applied to the
pricing of a variety of other assets whose payoffs are contingent upon the
value of some other underlying or "fundamental®™ asset. By assuming that the
fundamental asset price process is of the Itaﬂtype and that trading takes
Place continuocusly in time, the price'of a contingent c¢laim can often be
derived by using the hedging and no-arbitrage arguments of Black-Scholes and
Merton. Since the deduced pricing formulas are almost always functions of
unknown parameters of the fundamental asset price processes, any empirical
application of contingent-claims analysis must first consider the statistical
estimation of fundamental asset price parameters. In addition, since
parameter-estimates are ultimately employed in the pricing formulas in place
of the true but unknown parameters, the sampling variation of parameter-
estimates will of course induce sampling variation in the estimated
contingent-claims prices about their true values. The practical value of
contingent claims analysis then depends critically on how parameter-estimation
errors affect the accuracy of the resulting contingent-claims price
estimator. Furthermore, some measure of the induced estimation error is
required if the model is to be empirically tested. Indeed, although a number
of papers have studied the discrepancies between estimated and observed prices
for particular contingent claims, to date tnere have been few direct
statistical tests of these models.! 1In a spirit similar to Gibbons' (1982)
examination of the capital-asset pricing model, this paper proposes a new
framework in which tests of contingent-claims asset pricing models may be
performed and in which the accuracy of contingent-claims price estimates may

be quantified statistically.



This new approach seems particularly fruitful for several reasons.
Although it is introduced in the context of the Black-Scholes call=-option
pricing model, later sections show that the suggested methodology can be
applied to any contingent claim for which the associated fundamental asset
price parameters may be estimated. Few additional assumptions heyond those
common to all contingent claims models are required in order to apply the
proposed methods. In addition, the results derived in this paper are
computationally quite simple to implement. Furthermore, such a framework is
well-suited to the standard tools of statistical inference, estimation, and
forecasting. 1In fact, since the distribution of the contingent-claims
estimator is derived in closed form, all the usual hypothesis testing and
forecasting techniques may be applied to contingent claims analysis. This is
achieved through the use of large-sample or asymptotic statistical theory
which, essentially, consists of applying laws of large numbers and central
limit theorems tc otherwise intractable estimation and inference problems. By
appealing to large-sample arguments, it is possible to derive explicitly the
limiting distribution of highly nonlinear functions {such as the Black-Scholes
formula) of fundamental parameter estimates. In fact, it will be shown that
even if a closed-form solution does not exist for the contingent claim's
price, the limiting distribution may still be calculated using numerical
methods.

Of course, exact small-sample properties are always preferable to their
large-sample counterparts when available. However, due to the nconlinear
nature of most contingent claims price estimators, their exact distributions
usually do not exist in closed form. The use of asymptotic distributions as
approximations is a natural alternative. Moreover, because financial

econometricians actually have at their disposal relatively "large samples,"



applications of asymptotic approximations may yield guite accurate results.
In order to demonstrate the practical value of this new methodology and also
to clarify the particular econometric issues at hand, Section 2 derives the
large~sample properties of the Black-Scholes (BS) call-option price
estimator. The derived asymptotic statistics are then caleculated using data
for options written on three specific stocks and some simple hypothesis tests
are performed. To explore the accuracy of the proposed estimators, some
simulation evidence is presented in Section 3. In Section 4 the methodology

is developed in its most general form, and we conclude in Section 5.

2. Estimation and Inference for the BS Call Option Pricing Model.

Let S(t) denote the price of a stock at time t and let
F(s, E, r, 1, 02) be the price of a corresponding call-option at time t with
exercise price E and time-to-maturity 1, where r is the interest rate on a
default-free pure discount bond with time-to-maturity t and 02 ig the variance
rate of the underlying stock price process S(t). Under the assumptions of the

BS model, F is determined by the well-known formula:
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where ¢ is the standard normal cumulative distribution function. Although the
stock price, exercise price, time-to-maturity, and interest rate are in
principle observable without error, the variance &2 of the underlying stock is
unknown. Recent studies by Whaley (1982) and Bhattacharya (1983) have used
variances implied by call option prices in performing various tests of the BS

model. Indeed, Latane and Rendleman's (1976) empirical results seem to



indicate that these implied wvolatilities may be better forecasts of future
volatility than estimates derived from historical data. However, because such
an approach assumes that the BS model obtains, actual tests of the model
itself are difficult to construct in such a framework. In contrast to this
approach, the following analysis takes as its starting point the assumption
that the stock price process $(t) is the usual lognermal diffusion process
given by:

das
5 = pdt + ogdw (2)

The BS model is not assumed to obtain, but instead forms the null hypothesis

~

which is to be tested. Since an estimate 02 of 02 may be obtained by using
historical data, evaluating F at ;2 yields an estimate of the corresponding
option price. Although the resulting option estimator is clearly not
unbiased, it is consistent if the variance estimator is consistent.
Consistency is a particularly desirable property since by definition a
consistent estimator approaches the true value with probability one as the
sample sizZe grows. This is distinct from an unbiased estimator which,
although is correct on average, may fluctuate considerably about its true
value even in very large samples.2

Given a consistent estimator of the option price, a direct statistical
test of the BS model can be constructed by comparing this estimate with the
actual market price. Since the estimated price is subject to sampling
variation, a measure of its "spread" is needed in order to perform a
meaningful comparison. More formally, a test of whether or not the estimated
option price differs significantly from the actual market price requires the
calculation of the standard error about the estimated option price and the

estimator's sampling distribution. In this section, the asymptotic



distribution of the option brice estimator is derived and is used to compare

actual market prices with their BS estimates.

2.1. Estimation and Asymptotic Distribution of Call Opticon Prices.

Estimation of the stock price dynamics is considered first. Suppose that
n+1 equally spaced observations of S(t) are taken in the time interval
{0,T]. Letting h = T/n, Rosenfeld (1980) has shown that the maximum

likelihood (ML) estimator of 02 is given by:

2
3
xj) (3)

where xk is the log of the Price~relative 2(T211)h « Under mild regularity

conditions, it is well-known that the general ML estimator i1s consistent,

asymptotically normally distributed, and efficient in the class of all

consistent and uniformly asymptotically normal (CUAN) estimators.3 In

addition, the ML estimator of any well-behaved nonlinear function of a given
parameter is simply the nonlinear function of the ML estimator of that
parameter. That is, the ML estimator FML of the option price F may be

. , ~2 , » . . .
obtained by evaluating F at Oyp,* Since FML 1s a true ML estimator, it also

exhibits the usual maximum likelihood Properties cited above.

depends on the estimator 02 the

Since the option estimator F ML’

ML

asymptotic distribution of FML is related to the asymptotic distribution of

cﬁL. It may easily be shown that oﬁL has the following asymptotic
distribution:4

—_~ " 2, A 4
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Now consider the estimator FML as a function of ciL, holding all other
A A2

arguments fixed, i.e., FML = F(UHL)' The asymptotic distribution of FML may
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then be derived by applying standard statistical limit theorems to the Taylor
series expansion of F(oﬁL) about the true parameter 02, yielding the desired
result (see Rao (1973)):

2
- F) A N (o, 204G§E£§_l)2) .
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/o (F

ML, (3)

That is, for a sufficiently large number n of observations,5 the sampling

distribution of FML is approximately normal with mean F and variance

25 3F(%)

—:%— Q———§~—) = VF' Given the BS pricing formula (1), the quantity Vp may be
a0

calculated explicitly as:

1 22 2
Vp =3 STttt a) (6)

where ¢ is the standard normal density function.6

2.2, Historical Versus Implied Variance Estimators.

In contrast to estimating variances with historical data, several studies
have indicated that variances implicit in options prices seem to be better
estimators in several ways. Loosely speaking, this may be because historical
estimates are "retrospective" whereas implicit estimates are “prospective."”
That is, since option prices are determined daily, all current information
atfecting (among other tnings) tne volatility of the underlying stock price
will be impounded in those prices. For example, new information which changes
the current expectation of future volatilities will, in an efficient market,
be reflected in observed option prices but will obviously not be evident from
historical estimates.

Implicit in those studies are two critical assumptions. First, a
specific option pricing model must be known to obtain. Second, the options

markets must be known to be efficient. Under these two assumptions, implicit
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estimators are clearly preferred. However, the approach taken in this paper
is fundamentally different. The only assumption required in order to apply
the general methodology proposed in this baper involves the stochastic
specification of the underlying asset price. In particular, it is assumed {in
the general case of Section 4) that the price process may be described by a
first-order nonlinear stochastic differential equation driven by both standard
white noise and a Poisson component, i.e., general Ita Processes. This, of
course, is a special case of more general processes described by higher-order
stochastic differential equations, which again may be considered special cases
of still more general processes. But because empirically, asset-prices seen
to be well represented by the class of Itg processes, assuming this particular
form of dynamics may be justified to some extent. This paper then suggests a
method of testing models based on this assumption. However, in computing
implicit variances, a specific model has already been assumed to obtain.
Therefore, using implicit variances in this study is inappropriate.7 More
specifically, a test of the BS model based on implied variances which

presuppose that the BS model obtains will almost always confirm the model.

2.3. Analysis of the Asymptotic Variance Ve

The expression for Ve in equation (6) is of interest for several
reasons. In addition to providing a measure of option price estimators'
dispersion in large samples, the analytic formula for Vp may also be used to
examine how changes in the underlying parameters affect the option
estimates. As an example, consider the systematic biases of the BS prices
noted in several empirical studies. Macbeth and Merville {(1979) observe that
in-the-money call options are under-priced by the BS formula and vice-versa
for out-of-the money calls, and that the degree of mispricing is aggravated by

the spread between stock and exercise price for most options. Black (1975),



Merton (1976), and Gultekin, Rogalski, and Tinic (1982) observe essentially
the opposite biases. To see whether such biases may be explained merely by
sampling variation, consider the derivatives of Vg with respect to the stock

and exercise prices and the time-to-maturity:
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The following inequalities are then easily established:
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Although obtaining a similar pair of equivalent inequalities for-s;— does not

seem possible, a useful sufficient condition for the monotonicity of the

derivative can be derived:

— >0  if %(k or%)k ) (8c)



In Table 1, values of kq, ky, and k3, have been tabulated for various times-
to-maturity measured in weeks, given an (annualized) interest rate of 10 per

cent and an (annualized) standard deviation of 50 per cent.

TABLE 1 GOES HERE

Several observations may be made from the values in Table 1. Since the
interval [kz, k3] is fairly concentrated about 1.0, an increase in the time-
to-maturity will increase the variance about the option price estimate unless
the option is very nearly at the money. For example, if the stock price is
§40 then options which are either in or out of the money by $5 or more are
more precisely estimated as the time-to-maturity declines. This may well
explain Macbeth and Merville's (1979) finding that biases of in and out of tihe
money options decrease as the time to expiration decreases. This would also
support Gultekin, Rogalski and Tinic's (1982) observation that "In general,
the [BS] formula gives much less accurate estimates for long-1lived options."
Another property of the option price estimator implied by the values in
Table 1 is that, loosely speaking, if an option is deep in the money (S/E > 1)
then as the exercise price increases, so will the variance about the option
price estimate. If an option is deep out of the money {S8/E << 1) .nen
decreasing the exercise price increases the variance of the estimated option
price. 1In other words, option price estimates exhibit more variation for
either deep in or out of the money options as the exercise price shifts closer
to the prevailing stock price. Of course, these statements may be made
precise by computing the specific values of ki, k,, and k4 for particular

options of interest.



2.4. Statistical Tests of the BS Option Pricing Model.
The most direct application of the quantity Vp is in statistically
testing the BS model. In particular, consider the null hypothesis that the BS

model obtains. Letting F denote the observed market option price, this null

hypothesis may be stated as:

2 —
HO. Flg) =F . (9)

This hypothesis may then be tested by computing the statistic:

A2 -
Flg,) - F
gz —2 (10)

JVF

Since Vi depends upon the unknown parameter 02, a corresponding "t--statistic"8
Z may be calculated by using a consistent estimator GF =V (;2 )

in place of Vg in equation (10). Note that the resulting statistic is still
asymptotically standard normal. The test is then performed by rejecting Hy if
z lies outside an acceptable range of 0 and accepting otherwise, where the
range of acceptability is determined by the desired size of the test. For
example, if z falls ocutside the interval [-1.96, 1.96] then Hy may be rejected
at the 5% level. 1In addition, the usual forms of conditicnal forecasting and

confidence interval calculations may be performed given the estimated

variance.

2.5. An Empirical Example.

Because the expression for Vp is analytically quite simple, computing
standard errors for option price estimates requires little calculation beyond
the estimation of the stock price volatility. Por illustrative purposes,
standard errors and the associated z statistics have been computed in Tables

3a-c for traded options on Litton, National Semiconductor, and Tandy stocks
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for January 12, 1979. These three stocks were chosen from a subset of five
non-dividend paying stocks for which Rosenfeld (1980) estimated drift and
variance coefficients according to the dynamics given by (2). 1In addition to
their no-dividends property, Litton, National Semiconductor, and Tandy were
chosen because they were trading in distinct cycles (March, February, January
respectively). This was done merely to provide a complete cross-section of
times-to-maturity. The estimates of the stocks' variances were obtained from
Rosenfeld” (1980}. They were estimated using 312 weekly observations from the
period January 1973 to December 1978. The interest rate used was the (annual)
26-week Treasury-bill rate quoted on January 15, 1979 in the Wall Street

Journal (9.443%).
TABLES 2, 3a-c GO HERE

in Table 2, the estimated wvalues of ki, ko, and kg for various times-to-
maturity are presented for the three stocks. It is clear that since the
estimates of k, and k; are both quite close to 1.0, inequality (8c) obtains
for almost all options on the three securities. Note that, holding the
exercise price constant, the standard error of every estimated cption price in
Tables 3a-c increases with an increased time-to-maturity. Also, whether or
not an option is in or out of the money does not seem to be systematically
related to whether it is underpriced or not. Of course, previous empirical
studies have used a much larger set of options than the few considered here,
so the lack of discernible patterns in Tables 3a-c is not conclusive.

The z-statistics seem to indicate that the data are inconsistent with the
null hypothesis Hy that the BS model obtains. For example, out of the eleven
options written on Litton stock, only two estimates had standard errors

outside the %-critical region and only one estimate had its standard error
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outside the 5%-critical region. However, caution must be exercised in
interpreting this since for each stock, the tests are certainly not
independent. Nevertheless, a simultaneous test of H; for all Litton options
with a nine-week time-to-maturity results in rejection at the 5% level of

significance.10

It is important to note that the above test of HO is in fact a joint test
of the BS option pricing model and of the associated stock-price dynamics.
Rejecting HO in this case may not necessarily imply that the BS model does not
obtain. However, because the BS formula is so closely related to the
particular form of the stock-price dynamics it is difficult to imagine a
situation in which (1) obtains but (2) does not. In fact, Rosenfeld {1980)
has tested the hypothesis that these three stocks follow the process (2) and
rejects in favor of a combined lognormal diffusion and jump process. But in
this situation, the model outlined in (1) does not obtain and must be modified
along the lines Merton (1976) develops. In addition to the possibility of
jumps, Rosenfeld (1980) and Marsh and Rosenfeld (1983) consider several other
alternatives which may support the results in Tables 3a~c. Although it is not
pursued in this paper, tests of such alternative hypotheses are readily

constructed in the framework proposed here.

3. Simulation Evidence.

Although the empirical evidence presented in Section 2 is of interest in
its own right, it also illustrates the practical relevance of asymptotic
statistical theory to the estimation of general contingent claims prices.
Section 4 demonstrates formally that this methodology may in fact be applied
to any other contingent claim provided that its corresponding underlying
fundamental asset price process may be estimated. However, an important isue

which determines the usefulness of large-sample results is the number of
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observations required for those results to obtain. Unfortunately, no general
guidelines exist so this issue must be resolved for each application
individually. Nevertheless the increasing sophistication of statistical
software coupled with the rapid decline of computer costs allow researchers to
determine what constitutes a large sample for a particular estimator

relatively easily.

3.1+ Design of Experiments.

In this section, a simple simulation study is conducted for the call-
option price estimators proposed in Section 2. Each Monte Carlo experiment
involves generating a time series for the stock Price process with a given
drift and variance rate using a random number generator, and then computing
price estimates and corresponding asymptotic standard deviation estimates for
hypothetical options written on that stock.!' The estimated option price and
asymptotic standard deviation may then be compared with their true values.
This procedure is repeated 1000 times in order to deduce the finite sampling
properties of the estimators. By varying the length of the stock price series
generated for the 1000 replications and noting its effect upon the estimators'
sampling behavior, it is possible to deduce the minimum number of observations
required to insure that the associated asymptotic statistics are adequate
approximations. By varying other parameters, it is also possible to study how
the asymptotic approximation to finite-sample properties may be related to the
terms of an option contract such as the time-to-maturity or the stock-
price/exercise-price spread. Throughout the simulations, the following

barameter values were assumed and held constant:

-13-



S = $40
2
g = 0.5200 {(annual)
r = 0.1000 (annual)

The simulations were carried out at the weekly frequency for which r and 02

were adjusted appropriately.

3.2 Simulation Results.
Tables 4 and 5 summarize the finite-sampling properties of the option
Price and asymptotic variance estimators across the 1000 replications for

various options and stock-price sample sizes.
TABLES 4a, b AND 5a, b GU HERE

Each table corresponds to experiments with hypothetical options of thne same
time-to-maturity TAU. Tables 4a, b report simulation results for hypothetical
options which are at the money and in and out of the money by $5 for
maturities 1 and 13 respectively. Tables Sa, b display simulation results for
options which are in and out of the money by $15 with respectively 1 and 13
weeks to go. Experiments with options of intermediate exercise prices, times-
to-maturity other than 1 and 13, and assorted stock Price/interest rate/stock-
price-variance combinations were also conducted but since the results depicted
in Tables 4 and 5 are generally confirmed in these other experiments, in the
interest of brevity those results are not reported here.12

Within each table, every row corresponds to a separate and independent
experiment. That is, each experiment is based completely on newly generated
data and uses no data generated in other experiments. Each experiment

involves simulating a time series of stock prices of a given lengtn (sample
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size), computing the estimators F VF' and test-statistic z for a particular

ML’
hypothetical option, repeating this 1000 times, tabulating the subsequent
sampling distribution for the estimators and z, and finally testing the
standard normality of z. Although the estimators §ML and GF may also be
checked for normality, for purposes of hypothesis testing and constructing
confidence intervals the standard normality of the statistic z is more
relevant. Of the many tests for departures from normality, only two are
considered here. The first is the usual xz—test of goodness-of-fit which
measures the "distance" between the hypothesized distribution function
(normal) and the empirical distribution function. The second is the
studentized range test which is more sensitive to departures from normality in
the tails of the distribution. Since the primary use of z is in the testing
of hypotheses, departures from normality in the tail areas are of more concern
than differences in the center of the distribution. For this reason, the
results of the studentized range test may be of more conseguence than

the xz—test. Both tests are performed and the results are given in the last
two columns of each row.

Consider the entries in Table 4a. The first five rows comprise the
simulation evidence for a call option with exercise price $35 and one week to
maturity. The second five rows correspond to the experiment of a call option
with exercise price $40 also maturing in one week, and the last five rows are
results for a call with exercise price $45 and one week to go. The first
column indicates the length of the stock-price series generated by the random
number generator. The second, third, and fourth columns display respectively
the true or population value of the option, the mean of the option estimator

across the 1000 replications, and the bias in percentage terms. The standard

deviation of the option estimate across the replications is given in
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parentheses under the option estimate. The fifth, sixth, and seventh columns
L
present the true value, estimated value, and percentage bias of the asymptotic
variance Ve respectively. The eighth column provides the mean and standard
deviations of the z-statistic over all the replications. In the last three
columns, statistics which indicate how close z is to a standard normal variate
are displayed. The first is the xz-test with the p-value given in parentheses
below the test-statistic. The next column displays the skewness coefficient
of z across the replications and the last column bresents the studentized
range of z.

As Boyle and Ananthanarayanan (1977} have shown, for an at-the-money
call-option few observations are required in order to trivialize the bias of
the option price estimator. The largest absolute price bias observed in
Tables 4a, b where options are either at the money or in or out of the money
by $5 is 0.64%. In addition, in Tables da, b the bias in estimating the
asymptotic variance is also quite small, the largest being =-1.95%. For most
cases, both estimates were well within 1% of the true value. Note that,
although on average the bias for both estimators decreases as the length of
the stock-price series increases, the decrease is not monotonic. This is to
be expected since each experiment is random and independent of the others and
is subject to the usual sampling variation, '3

The biases for deep in or cut of the money options, however, are quite
large when the time-to-maturity is one week. Table 5a displays price biases
of up to -31.41% and asymptotic variance biases of over -2200.0%. This
suggests that caution must be exercised in using these estimators for deep in
or out of the money options just about to expire. However, the percentage
bias is misleading in this case since the asymptotic variances are essentially

zero and the estimator is virtually nonstochastic. Intuitively, this is
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simply due to the fact that the value of deep in or out of the money call
options with short times-to-maturity do not d+«nend significaatly on the
variance of the stock price process if the Process is a pure diffusion. Since
the simulated stock prices are constructed as lognormal diffusions, it is nc-
surprising that with one week to go, the estimator for deep in and out of tihe
money options has little asymptotic variation. 1In this case, a minute
absolute difference between the theoretical and finite sample asymptotic
variance can yield an extraordinary percentage bias.'? Table 50 shows that as
the time-to-maturity increases, tne bias declines dramatically, the largest

price bias being 0.46% and the largest variance bias being -2.08%.

3.3. Finite Sample Properties of the z-statistic.

Consider now the asymptotic behavior of the statistic z. Under the null
hypothesis that z is standar: normal, the xz-test is performed for the 1000
replications of each experiment with 50 equiprobable categories yielding 49
degrees of freedom. From Tables 4 and 5, it seems that with a sample size of
100 weekly observations for stock-prices, the standard ormality of z may be
rejected at almost any level of significance. However, in most cases the null
hypothesis of normality may be accepted at levels of 5% or smaller with 300 or
more weekly obsexrvations of stock-price data. Nevertheless, it may be noted
that the means of 2 are negative for almost all experiments. For the purposes
of detecting skewness departures from normality, the skewness coefficient may
yield a more powerful test than the xz-test. Under the null hypothesis that =z
is standard normal, the distribution of the sample skewness coefficient has
been tabulated15 and, for 1000 replications, the 90%-confidence interval is
[-0.127, 0.127] and the 98%-confia.nce interval is [-0.180, 0.180]. It is
clear that even in cases where the xz-test does not reject the null hypothesis

of standard normality, the skewness coefficient is often outside the 98%-
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confidence interval. This indicates that the finite-sampling distribution of
Zz is skewed (to the left). However, if the "tail-behavior" of z is close to
that of the standard normal, then the hypothesis tests based on z suggested in
Section 2 are in fact appropriate. To measure possible departures from
standard normality in the tails of the finite sample distribution of z, tne
studentized range for each experiment may be compared with its tabulated
distribution under the null hypothesis.16 For 1000 replications, the 90%-
confidence interval of the studentized range with 5% in each tail is given by
(5.79, 7.33) and the 95%-confidence interval with 2.5% in each tail is [5.68,
7.54]. For the hypothetical options in Tables 4a, b, only in one case does
the computed studentized range fall outside the 90%-interval. This suggests
that, although the finite sample distribution of z may be skewed, its tail-
probabilities match the standard normal's fairly closely. For purposes of
testing the BS model as specified by (1), the results seem to support the use
of the z-statistic as described in the previous section for options not too
deep in or out of the money. Table 5a shows that for deep in the money
options with 1 week to go, not even a sample size of 500 is sufficient to
produce the asymptotic results for z; both the studentizea range and
the xz-tests reject normality at practically any level of significance.
However, for deep out of the money options with 1 week to go, sample sizes of
500 or more seem to be sufficient to render the tail behavior of z close to
the standard normal's as measured by the studentized range. The results in
Table 5b however shows that once the time to maturity increases to 13 weeks,
the tail behavior of the z-statistic matches that of the standard normal even
for deep in or out of the money options.

From the simulation evidence provided above, it may be concluded that if

the call option pricing model (1) obtains, then for options which are not too
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deep in or out of the money and for deep in or out of the money options which
are not just about to expire, using its asymptotic distribution for purposes

of testing and inference may well be jJustified.

4. The General Methodology.

Although the above analysis involved the BS option pricing model, this
section demonstrates that the Previously outlined methodology may be applied
to virtually all contingent claims models. 1In fact, it will become clear that
even if the contingent claims Pricing function cannot be derived in closed-
form, its asymptotic distribution is S$till normal witn a limiting variance

which may be estimated numerically.

4.1 Estimation of Ita Processes.

Since almost all contingent claims models assume that fundamental asset
Prices follow Ita-processes, it is first necessary to consider the estimation
problem for this class of stochastie processes., For expositional clarity we
only consider the estimation problem for Ita Processes with single jump and
diffusion components. The extension to multiple jump and diffusion terms and
vector Its Processes poses no conceptual difficulties but is notationally more
cumbersome. Let X(t) be an Ito process with domain @ C R satisfying the

following stochastic differential equation:
dX = £(X, t; a)dt + g(X, t; B)AW + h(X, t; y)dN t g [0, w (11}

where dW is the standardized Wiener process and dN is a Poisson counter (jump
magnitude = 1}, independent of dW, with intensity X. There is clearly no loss
of generality in assuming that the jump magnitude is unity since this is

, o . 7
merely a normalizaticn which may be subsumed by the coefficient functien n.1
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In addition to assuming those conditions which insure the existence and
uniqueness of the solution to (11)'8 we make the following additicnal

assumptions:

(A1) Coefficient functions f, g, and h are known up to parameter
vectors a, B, y, A respectively. The true but unknown parameters
- BO' Y, and )  lie in the interior of the compact parameter
spaces A, B, T and A respectively. Let 6. = (a', 86. Yhs 10)' and
let § A xB x T x A. The functions f, g, and h are twice

continuously differentiable in (X, t) and three times continuocusly
differentiable in g.

{A2) n observations of X(t) are taken at times t R
necessarily equally spaced apart, where 0 < t
X = (x1, X2, Ceny Xn)', where xi = x(ti), i=

ey tn not
. e & < tn.
1, 4as; Ne

t
%r
1

0 XO is known.

We may now state the estimation problem as: Given the observations X and the
brocess dynamics (11), find the optimal estimator a of the true
pParameters 60. By restricting consideration to the class of consistent and
uniformly asymptotically normal (CUAN) estimators, it has been shown that the
ML estimator is optimal in the sense that it has the smallest variance of all
other CUAN estimators. For this reason, ML estimation is the preferred
approach. The ML estimator is obtained by considering the joint density
function of the random sample X as a function of the unknown parameters and
then finding that value BML which maximizes the joint density in g§. We now
proceed to derive this joint density function which, when considered a
function of the parameters § given the data X, is called the joint-likelihood
function.

Let p(X1, eoey Xn) denote the joint-density function of the random sample
X, where the dependence of p on the unknown parameters 6§ and on
t1, cery tn have been suppressed for notational simplicity. The density p may

always be written as the following product of conditional densities:

-20=-



p(x1, “easy xn) = p1(x1)92(X2 X1)p3(x3’X2, X1) s0a pn(xn X LR X1) - (12)

n-1*

However, since X(t) is a Markov process19 equation (12) reduces to:

X F wsa = ss e . )
plX, o Xp) = o (X )0y (Xy X ) p (X, (X,) P (X 1¥02y) (13

If in addition, X(t) is time-homogeneous then the functional form of the
transition density Py only depends upon the time index k in terms of the time

increment tk - tk—1 and not on tk itself. 1In this case, the nota-ion Py

should be interpreted as

"t L] (14)

X t X =
pk( k* S lXp_q tk-1) p(xk, Atk Xk-1J where Atx tk K1

1f, for example, observations were then taken at equally spaced intervals of
length h, then the pk'S are identical across time except for the starting
values X .1+ Of course, one of the greatest advaitages of estimating

continucus-time models is precisely that equally-spaced observations are not

necessary. Unless stated otherwise, we do not assume equally-spaced
observations. For compactness of notation, we will write p(Xk’ tijk_1, tyq)
?s Py

Given the functions £, g, and h, the joint density function p(X) of the
random sample X may be derived by solving the Fokker~Planck or forward
equation for the transition densities Py subject to any boundary conditions
which may apply. For the Ité process (11) the forward equation is derived in
the appendix. Although the functional partial differential eguation given in
the appendix characterizes the transition densities (hence the conditional
likelihood functions), obtaining a closed form solution for the pk'S is
generally quite difficult. However, by restricting the functional forms of f,
g, and h, it is often possible to derive the transition densities

explicitly. For example, if h = 0 {pure diffusion) and f and g satisfy a
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certain "reducibility"” condition, it may be shown?9 that there exists a
transformed process Z(t) of X(t) for which the coefficient functions are
independent of 2(t). That is, for some suitable change of variables

T[X(t)] = 2(t), an application of Ito's lemma will yield:

dZ = p(t; 8)at + q(t; §)dw (15

In this case the transition density function for the transformed data is

readily derived as:

t

(z - Zy g - | pdt)2
b2 - V2 Fk-1
P (2, t) = [2n tf q-d1] exp[ - - ] . (16)
k-1 2 [ g%
Fm1

The well-known lognormal diffusion process (2) is an example, for which the

transformation T(x) is just 1nX and P =1y --% 02. g = 0.

Given the transition densities P the joint-likelihood and log-

likelihood functions of the randem sample X are given by:

L(g: X) =

ALY telX_yo 6 s 0 (17a)

[ =]

1

G(e; X)=
k

[ =]

fal
; oo (Xer ty [Xy o St B)Ek£1 X lx v 0 (17b)

Under assumptions (A) and mild regularity conditions, the ML estimator BML

of BO exists, is consistent, and is asymptotically efficient in the class of

all CUAN estimators. That is,

plim 6ML = 60 (1Ba}

n>w
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T

a -1
/no(e, - 8p) ~ N(0, 17 (0,)) (18b)

where the asymptotic covariance matrix 1'1(90) ig the inerse of the
information matrix I(BO):
2
1 2°2(x, |x . 8,

It
= «jim — . 19
I(8,) lim — ki1 E[ ~550" ] (19)

4.2. Two Examples.

For illustrative Purposes, the likelihood functions of two particular

processes are presented below.

Example 1. (Ornstein-Uhlenbeck Process)
As an illustration of a general equilibrium characterization of the term

structure of interest rates, Vasicek (1977) considers the specific process:
dX = a(y - X)dt + 84w (20)

which is an Ornstein-~Uhlenbeck bProcess with steady-state mean Y. Because the
increments of such a process are normally distributed, the conditional

likelihood is particularly easy to derive and is given by:

-uAtk uAtk 5
1

2
8 -20.Atk 1 alX =X e +y[1-e
I S - /2 _ k k-1
e )T e e
B(1 - e )

p(X

x, Bk ¥k, Teat?

Example 2. (Diffusion with absorbing barrier)21

Although Black and Cox (1976) and Ho and Singer (1982) have derived
valuation formulas for risky debt with various indenture provisions, to date
they have not been empirically implemented. 2s a simple example of how
corporate bankruptcy might be modelled and estimated, let X(t) represent a
firm's equity price at time t and suppose X(0) > 0 and that X(t) follows

arithmetic Brownian motion:

-23-
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dX = adt + Bdw {22)

Furthermore, let X = 0 be an absorbing state so that if X(t)} reaches 0, it
stays in that state thereafter, i.e., bankruptcy occurs. Now suppose that n

6bservations of X are taken and that X1 > 0 o o o4 Xp-1 > 0, X, = 0 so that

bankruptcy occurs in this sample some time between t__, and t,« Then the
likelihood-function for this sample would be the product of the conditional

densities for observations X, to X,_, where:

2
(Xk- xk—T_ aﬁtk)

=1
o g lx ot =[m8%ae )T 2exp| - ], k=1, «eu, n-1 (23)

2
2B Atk
multiplied by the distribution function of the first-passage time for
chservation Xn' Following Cox and Miller's (1973) derivation for the first-
passage time distribution of a process with an absorbing barrier at X = g > 0,

the distribution for the barrier at X = 0 may be calculated to be:

-X -aAt 20X -X +aAt
- - -1
P(Absorption in [t,_,, t,)) = 8| n-1 I ]+ exp| - 2 ! Te[ L n] (24)
Biﬁtn 8 BVAtn

where ¢ is the standard normal distribution function., Note that although X(t}
may have been absorbed at any time between tn__1 and tos knowing that X(t) has
been absorbed by time t, is sufficient for computing ML estimates of the
unknown parameters. Given ML estimates of o« and B, it is then possible to
obtain estimates of the Probability of bankruptey within any given time
interval for firms which are similar to the one which generated the original
sample X. For example, it may be plausible to make inferences ahout the
probability of default for a specific small savings and loan association using

estimates based on data for a representative cross-section of small banks. Of
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course, the reliability of such bankruptcy forecasts depends on the relative
impact of industry-effects versus idiosyncratic effects in triggering default

and is an empirical gquestion.

4.3. The Asymptotic Distribution of General Contingent Claims Estimators.
Let F be the price of an arbitrary asset which is contingent upon the
fundamental asset X(t)., In particular, suppose for now that F may be

determined by the following known asset-pricing formula:
F = F(X, t, n;: BO) R F continuously differentiable in 8 (25)

where 1 is a vector of observables (esg., interest rates, time to maturity,
etc.} and 90 is the unknown true parameter vector associated with the
fundamental asset price process X{t}.

Given assumptions (A), the well-known "principle of invariance"™ states

that the ML estimator of the contingent claims price F is simply

~ A

FML = F(X, t, n; BML) (26)

-~

where eML maximizes (17). Since FML is a true ML estimator of F, it is also
consistent and asymptotically efficient in the class of all CUAN estimators of

F. In addition, the asymptotic distribution of the estimator F

ML may be
easily derived and is given by:
Ya (F.. - F) B n(o, v.) (27a)
ML "o
T
aF(SO) -1 BF(GO)
z —_— — 27b
V0 H 5 I (80) 30 ( )

Using (27), the usual forms of statistical inference may then be applied

to the estimated contingent claims price. In particular, the model~-
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specification test, confidence intervals, price forecasts, and other forms of
Statistical inference which were suggested in Section 2 for the BS call option
pricing model may also be applied to any other type of contingent claims model
in a similar fashion. 1In fact, even if it is not possible to solve in closed
form the partial differential equation which yields the contingent claims

pricing formula F, it may still be possible to calculate F and its

- ML
BF(SNL) 22
derivatives ———53——-numerically. The asymptotic distribution is then

completely determined and the usual forms of statistical inference once again
obtain., This is an example of a situation in which large-sample theory is the
only practical form of statistical inference available since, in this case
attempting to deduce the finite-sample distribution of the contingent claims

estimator along the lines of Boyle and Ananthanarayanan (1977) would be

prohibitively expensive.

5. Conclusion
o2kl on

In this paper we have provided a general methodology for the estimation
and testing of general contingent claims asset-pricing models by appealing to
asymptotic statistical theory. Given the large-sample distribution of any
contingent claims price estimator, the financial economist may bring to bear a
considerable collection of statistical tools upon a variety of problems in
model-specification testing and forecasting. Since what constitutes a "large
sample” depends upon the particular estimator of interest, Monte Carlo studies
must be performed on a case by case basis in order to determine the practical
relevance of the proposed methods. The simulation results reported in Section
3 for the Black-Scholes call option pricing model suggest that for most call
options, a large sample consists of between 300 and 500 observations.

Moreover, the costs of performing these simulation studies are quite small,
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certainly relative to their payoff but also in absolute magnitude. As an
example, the costs of performing the simulations in Tables 4 and 5 d4id not
exceed $25,00.

In addition to cost-effectiveness, another advantage of such large-sample
results is tractability. The numerical estimation of the fundamental asset's
parameters is a straightforward application of now standard maximum likelihood
software packages. 1In addition, part of the standard output of such packages
is a consistent estimate of the inverse of the information matrix I~ '. Given
this estimate, the asymptotic distribution of any corresponding contingent
claim may then be derived by computing the derivative of its pricing formula
with respect to the unknown parameters. For those contingent claims with
tractable pricing formulas, expressions for their asymptotic distributions
will also be tractable. The applicability of the proposed methods thus
extends to virtually all contingent claims models which are of theoretical
interest since those are often ones for which pricing formulas may be
determined either explicitly or numerically. Although this approach seems
quite promising, whether or not the application of these results to other
contingent claims models will yield new insights can only be determined by

further empirical investigations.
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Appendix - Derivation of the Forward Equation
Let X(t) solve the following stochastic differential equation:
dX = £(X, t; a)dt + g{X, t; B)AW + h(X, t; y)aN (a1)

where dW is the standard Brownian motion and dN is a Pdisson counter with
intensity A and is independent of dW. Let p{X} be an arbitrary c” function.

By Ito's Lemm323 we have:

dy = [y £+ wxxgzjdt + Y, 9 + [P(X + h) = y(X) dN . (a2)
where
2
.. 8p o =3V
¥« T xx =2

Define Dp | to be the Dynkin operator at time tys i.e., D
r

4
P,k - dt t

K
Applying it to y yields:
D [9) = E_ [y f+ lpy g2]+AE [¢(x+h)-w(x)] . (A3)
P,k £ X 2 ¥xx £,
Given assumption (A3), we may express DP k[w] as the following integral:
2
Dy R [¥] = J ARt + Yoy, + Alyx +n) - ¥(X) ]}p (X, t)ax (Ada)

Q

2
= f |~v %; (fpk) + t@ w-QTE (gzpk) - wx]dx + A j pix + h)pkdx - (AdD)
Q oX Q

Let ¥ = B(x, t; v)

X + h{(X, t; y) be an onto map of § to @ for all (t, v}

and suppose that |[o— (8) + 1] # 0 for all (t, y) and X ¢ 2. Then the Inverse

ok
3 o1 . ~—1
Function Theorem guarantees the existence of h such that X =h (Y, t; v).

Using the change of wvariables formula, we have:

J vx + n)g (X, ©)ax = | w(y)pk(h"'1(y, t; y))| % (B’"(y, t; y))|ay (A5a)
Q Q
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= [ vxp, (B %, 5 ) L (E e owop)jax . (ase)
2

We then conclude that

2
a ] 9 2 ~ 3 ~1
Dp L] ~s{ {=3x (Ep) + 1/2; (g%p ) = Ap, | X B | hp(x) ax «  (as)

Assuming that w(X)pk(X, t) is continuous on § x [0, =), DP k[w} may be
r

calculated alternatively as

=4 = 2
DP’k[¢] alrs Etk[wl = é p(X) v [pk(x, t)]ax . (a7)

Equating (A7) and (A6) and noting that the equality obtains for arbitrary

smooth functions y allow us to conclude that:

2
3 I 1,8 2 . ~ Bt ,
3t [pk] 5% [fpk] + '/ ax2 {g pk) }\pk + )\pkl Y i {Ata)
where !
A(x, t; y) = X + hi(X, t; v) , B(R™', ti y) 2 X (ABD)
'Bk = pk(rT_1, t) (Asc)
pk(x: tk_.l xk-1’ tk_1) = G(X - XK"1) . (Add)

and §{xX - xk) is the Dirac-delta generalized function centered at xx_1-24
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editor René Stulz, the referee Jay Shanken, and an additional anonymous
referee. I would also like to thank Roger Brockett, Jerry Hausman, Craig
Mackinlay, Whitney Newey, Nancy Ng, George Pennacchi and Krishna Ramaswamy for
many helpful discussions and Bulent Gultekin, Don Keim, Jay Ritter, Mark
Watson, and the participants of the Finance Seminars at New York University
and the University of Pennsylvania for comments on an earlier version of this
paper. 1 am grateful to Stephanie Hogue, Gillian Speeth, and Madhavi
Vinjamuri for preparing the manuscript and the Alfred ¢. Sloan Foundation for
financial support. Any errors are of course my ownh.

1Papers by Black and Scheles (1972}, Merton (1973), Black (1975), Macbeth
and Merville (1979), and Gultekin, Rogalski, and Tinic (1982) have noted
systematic differences between observed market prices of call options and
brices obtained from tne Black-Scholes formula but did not formally test
whether such departures were statistically significant. Gultekin et. al. does
consider how such biases change with the time-to-maturity although no formal
explanation of their findings was proposed. However, several studies have
considered testing the efficiency of options markets. In particular, Black
and Scholes (1972), Galai (1977), and Finnerty (1978) have explored the
possibility of excess returns resulting from observed options prices deviating
from the Black-Scholes prices. Chiras and Manaster (1978) study possible
excess returns generated by using implied standard deviations in the pricing
formula. Whaley (1982) uses implied standard deviations in examining various
pricing formulas for calls on stocks with known dividends. Violations ot
certain boundary conditions by observed market prices have alsoc been

investigated by Galai ({1978) and Bhattacharya (1983). Although many of these
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empirical findings are quite striking, without some guidelines as to the
statistical sig ficance of observed deviations, hypothesis tests cannot
formally be constructed. Even in Whaley's (1982) six regression tests of
option valuation, since the linear regression eguations are not determined by
theoretical considerations there is no guarantee that the subsequent test
statistics have a particular sampling distribution.

2As an extreme example, consider a coin which has an unknown probability
p of coming up "Heads" when tossed, where p is known to be between E@ and
3/4. Toss the coin once and consider the estimator 5 which egquals 1 if the
coin comes up "Heads" and 0 if it comes up "Tails." Althougn this estimator
is incorrect with probability one, it is in fact unbiased. This rather
contrived example illustrates the inadeguacy of using unbiasedness as the sole
criterion for choosing an estimator; its variance must also be considered.

3For perhaps the weakest set of regularity conditions whicn insure
consistency and asymptotic efficiency of maximum-likelihood estimators, see
Huber (1967).

45ee Kendall and Stuart, (1973).

5It is assumed that h is constant as n increases so that T also
increases. I, instead, T is Kept constant while n increases and h decreases,
one of the regularity conditions will be violated. Ln this case, the
estimator need not approach the true parameter as n increases. For example,
in estimating the parameters of a lognormal diffusion process, Merton (1980)
and Rosenfeld (1980) observe that the accuracy of the drift rate estimator (as
measured by its variance) does not increase with more frequent observations if
T is fixed. This seeming contradiction to the asserted consistency of the ML
estimators is resolved by observing that when T is fixed and n increases

without bound, the regularity condition which requires that information matrix
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approach a nonsingular matrix {see Rao (1973)) is violated. This, however,
does not imply that ML is not applicable but rather that its asymptotic
properties have been misinterpreted. Specifically, the asymptotic resuits
used in proving the consistency of ML require that n increases without bound

ceteris paribus, i.e., holding other parameters (u, 02, h) constant. Note

that if these parameters were in fact held constant, increasing n will indeed
increase the accuracy of the drift estimator. This example thus illustrates
the importance of checking the reqularity conditions when applying asymptotic
results to nonstandard situations, such as taking more frequent observations
in a fixed time interval.

Onote that since Boyle and Ananthanarayanan (1977) have numerically
determined finite-sample confidence intervals for option prices induced by
corresponding confidence intervals for the variance estimator, the application
of asymptotic theory to the BS model here is partly ror expositional
purposes. Nevertheless, several aspects of the large-sample approach may
render it more useful than numerical determination of finite-sample properties
even in this case. One significant advantage of asymptotic theory is that it
is possible to derive analytic expressions for the limiting distribution witn
which general comparative static issues may be examined, as in Sectiocn 2.3.

However, the most obvious benefit of appealing to asymptotics is
tractability. As an example, consider performing a two-sided hypothesis test
for a particular option. In order to construct a finite-sample test, critical
values for the distribution of the option price estimator must be determined
by numerical integraticn. In contrast, an asymptotic test relies on the
standard normal critical values. Furthermore, in situations where a
contingent claim price function cannot be derived in closed frorm, numerically

determining the finite-sample distribution may be computationally infeasible
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whereas the corresponding asymptotic distribution may still be derived with
little difficulty.

Finally, the approach that Boyle and Ananthanarayanan propose does not
extend readily to multi-parameter situations nor to cases in which the finite-
sampling distribution of the fundamental asset-price parameter is unknown.

For example, consider estimating the term structure of interest rates in
Vazicek's (1977) model for the specific case in which the spot rate follows an
Oristein-Unhlenbeck process (20). Vasicek derives a closed-form expression for
bond prices as a function of the parameters 6 = (a, Y, B), hence estimates for
bond prices may be computed by inserting the estimators é = (;, ;, é) in the
pricing formula. To deduce the finite-sample distribution of bond prices
then, the finite-sample distribution of the estimators is reguired. To this
author's knowledge, there do not exist estimators a in this case for which the
finite-sampling distribution is known. However, these parameters are easily
estimated via maximum-~likelihood and therefore have well-defined asymptoti
distributions. The limiting distribution for bond price estimates is then
readily determined as outlined in Section 4.

7An alternate explanation of why implied variances seem to perform better
tnan historical estimates does have some implications for the proposed
methodology. This involves the possibility of a nonstationary variance
parameter. Suppose, for example, that the variance rate oI a given stock
grows linearly with calendar time, l.€., 52 = g + Bt.e Assuming that the BS
model obtains, computing the implied wariance using current option prices will

2 whereas computing historical estimates of 02

yield accurate estimates of ¢
assuming it is constant will yield biased and inconsistent estimates. Thus if

the BS model obtains, then the fact that implied variances are better

predictors of future variances may indicate that the volatility is
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nonstationary. This, however, does not vitiate the usefulness of asymptotic
methods tor statistical inference but simply suggests that there may exist a
better stochastic specification for asset-price dynamics such as Cox's
constant elasticity of variance process (for which the variance is related to
the stock price lewvel) or perhaps a process with a variance rate parametrized
as above (in which case it is related to time). The appropriate specification
for asset-price dynamics is an important issue in itself and will be addressed
in future research. Indeed, asymptotic results are also useful for
constructing specification tests for problems such as nonstaticnarity.
However, the present study assumes that this issue has already been resolved
and proceeds from there.

8Of course, the distribution of z is not the Student's t since the
numerator and denominator are not statistically independent. However,
asymptotically it is normally distributed.

91 am grateful to Eric Rosenfeld for providing me witil the variance
estimates for these stocks.

10Specifically, using the Bonferroni correction for the simultaneous
testing of five hypotheses at the 5% level, the appropriate critical values

for a two-sided test is $2.58 (corresponding to a tail probability of slightly

245
5

less than %. For all five opticns, the associated z-statistic falls
within the critical region hence the simultaneous hypothesis may be rejected
at the 5% level.

Trne random number generator used was the subroutine GGNQF in the IMSL
software package. All computations were done in double Precision FORTRAN on a
Digital VAX 11/780,

Verhe actual proportions of the z-statistics in the 5 and 10 percent tail

regions (i.e., the actual size of 5 and 10 percent tests) were also tabulated
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and generally agreed with the results in Tables 4 and 5. That is, in those
experiments for which the studentized range test did not reject normality, the
actual tail regions were not statistically different from the theoretical 5
and 10 percent values. The complete set of simulation results are available

from the author upon request,

13 . . . . . .
To see this, consider several independent simulations for a sample size

of 100. The bias of the estimators from each experiment will not be identical
since the experiments are random. Indeed, the bias itself is a random viable
and the actual value of the bias for a particular experiment is a realization
of that random variable. Because the estimators are consistent, as the number
of observations increase the bias approaches zero. That is, the distribution
of the bias approaches a degenerate distribution (a Dirac delta-function}
centered about zero. However, as n increases from say 100 to 300, the
distribution of the bias still has some dispersion about zero (but less than
the dispersion at n = 100). Therefore, it is possible that a particular
realization of the bias at n = 300 is greater than the realization of the bias
at n = 100. The same line of reasoning applies also to the xz-statistic
which, on average, decreases with the sample size but does not do so
menotonically due to sampling variation.

14, am grateful to Jay Shanken for raising this point.

15See Pearson and Hartley (1970), Table 34B.

16See Fama (1976), Table 1.9, p. 40.

17Suppose, however, the jump magnitude is stochastic. More generally,
suppose that certain "parameters" in f, g, and h are in fact random

variables. Without further information, there is of course little that can be

done. If however it is posited that these random parameters are distributed

according to a particular parametrizable probability law which is
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statistically independent of dW and dN, then the estimation pProcedure

described in this section may still be applied. 'Fér example, if it is assumed
that the jump magnitude is lognormally distributed with unknown parameters and
is independent of dW and dN, these parameters may be estimated along witn the

other unknown parameters of t, g, and h as well.

18See Arnold (1974) chapter 6.
19
See Kushner (1967).
2OSee Schuss (1980) chapter 4 for a statement of the reducibility
condition.
23

For perhaps its first application in the econometrics literature, see

Hausman and Wise (1983).

2zspecifically, if the solution to the fundamental partial differential

equation determining F exists, the ML estimate F is obtained by numerically

ML

solving the p.d.e. with estimates of the parameters substituted into its

coefficients ag, for example, in Brennan and Schwartz (1980, 1982). The
BF(BML)

ae

derivative may be evaluated by perturbing the value of QML slightly,

re~-solving for FML numerically, and then computing the ratio of the change

.ooon . F o~ . i X
in FML’ l.e., %E ~-§% + The asymptotic variance is then readily computed. I

an grateful to an anonymous referee for suggesting that this issue be
explored.

23See Merton (1971) or Brockett (1984).

24See Gel'fand and Shilov (1964) for the theory of generalized
functions. As a simple example, consider the pure jump process dX = dN which

is simply a Poisson process with rate A. Using the delta-function, the

transition density of X may be expressed as:

8

e M)k

Py §(X - k)

[0 (X! t) =
X K

I e

0
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In this case the forward equation given by (18} reduces to:

a —
ot [px] = A[px(x -1, t) - px(x, t)] .

which may be verified by taking the derivative of p, with respect to time t:

w -At x w -3t k-1
otpg = op 2O x4 p MO8 g - k)
k=0 k=1
@ At k [ =it 14
=-ar I gxak ey ¢ 22T gx - 1- k)
k=0 ) k=0 :

= Alpx(x -1, t) - pX(X, ti] .
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Table 1

Values of k,, k2, k3 for various times to maturity T (measured in weeks) where
an annual irterest rate of 10% and an annual standard deviation of 50% are
assumed, corresponding to weekly values of r = 0.00183 and ¢ = 0.06934

-(r- % 02)1 ={r+ —;-02)1 _ (r+ % 02)1'
T k1E e k2§ e k3= e
1.00 1.00057 0.99577 1.00425
5.00 1.00286 0.97904 1.02141
9.00 1.00515 0.96259 1.03887
13.00 1.00745 0.94641 1.05662

26.00 1.01496 0.89570 1.11645




Table 2

Estimated values of L9 kz, k3 for Litton, National Semiconductor, and Tandy stocks. The (annual) interest
rate used is 9.443%, the average return on 26-week Treasury bills quoted in the January 15, 1979 Hall Street

Journal.
- R 7 -
- -(r=- %—Gz)t - -(r+ % 02)1 - (r+ 3 cz)r
Stock T2 k= e k.2 e k= e
1 2 3

1.00 1.00038 0.996157 1.00386

Litten 5.00 1.00190 0.980931 1.01944
(a?= 0.00423 9.00 1.00343 0.965938 1.03526
weekly) 13.00 1.00495 0.951174 1.05133
26.00 1.00993 0.904732 1.10530

National 1.00 1.00200 0.994549 1.00548
Semiconductor 5.00 1.01003 0.973040 1.02771
fazz 0.00746 9,00 1.01812 0.951996 1.05042
weekly) 13,00 1,02628 0.931407 1.07364
26.00 1.05325 0.B67520 1.1527M

1.00 1.00054 0.995994 1.00402

Tandy 5.00 1.00272 0.980130 1.02027
(ozz 0.004586 9.00 1.00490 0.964518 1.03679
weekly) 13.00 1.00709 0.949155 1.05357
26.00 1.01423 0.500895 1.110M

a

Times-to-maturity T are measured in weeks,



TABLE 3a

Haximum-likelihood estimates of prices (F) and asymptotic standard
deviations (/V )} of Litton call options traded on January 12, 1979, and
estimates of the corresponding z—statiatics (z Z {F - F)//V vhere P

is the observed market price of the option). The maximum-~-likelihood estimate
for the variance of Litton stock is taken from Rosanfeld's (1980} study which
use? 312 weekly observations from January 1973 to December 1978, and is given
by 02 = 0.00254. The stock prices §, exercige prices B, and option prices F
were obtained directly from the January 15, 1979 issue of the Wall Street
Journal. The interest rate used was the average return on 26-;§EE“Treasury
bills for which the gsame issue of the Wall Street Journal reported an annual

rate of 9.443%.

s E 78 T }HL /l\;x 100 ;bs f::E‘
(2=-STAT} /VF
21.500 24.375 9.00 1.000 0.791 6.0120 -3.484
21,500 15.000 3.00 7.000 6.768 0.8666 -2.68
21,500 20.000 9.00 3.000 2.665 5.7653 -5.81
21,500 25.000 9.00 C.813 0.647 5.6121 -2.96
21.500 30.000 9.00 0,188 C.107 2.0796 -3.89
21.500 24.375 22.00 d = emmmmme | mmmmmae | mmmemae-
21.500 15.000 22.00 B8.125 7.302 3.6421 -22.06
21,500 20.000 22.00 4.125 3,754 9.1758 -4.04
21.500 25.000 ' 22.00 1.875 1,665 10.2324 -2.05
21.500 30.000 22.90 0.688 0.669 7.5195 -0.25
21.500 24.375 29.00 d R —————— ewmm——— —m——ae=
21.500 15.000 29.00 e mmmmeee | mmmmm—— | sss=———
21,500 20.000 29,00 4.625 4.226 10.4769 -3.81
21.500 25.000 29,00 2.375 2.1238 11.9523 -1.58
21,500 30.000 29.00 d = =m————m=  essm—ae e—=———-

Arime to maturity is measured in weeks.

bUnder the joint null hypothesis that the Black-Scholes-Merton options pricing
model obtains and that the stock price follows a lognormal diffusion, the

;-atatistlc igs asymptotically standard normal. Therefore, the null hypothesis
may be rejected at the 5% level if the estimated ;—statistic falls outside the

interval [~1.96, 1.96].

CNot traded.

dﬂo option offered.



TABLE 3b

Maximum-likeliﬂpod estimates of prices (F) and asymptotic standard
deviations ((V?) of National Semiconductor call options traded on January 12,

1979, and estimates of the corresponding z-statistics (z £ (F - i'")/'f\"'l.,,

where F is the observed market price of the option). The maximum-likelihood
estimate for the variance of National Semiconductor stock is taken from
Rogenfeld's (1930) study which used 312 weekly observations from January 1973

to December 1978, and is given by 62 = 0.00746. The stock prices §, exercisge

prices E, and option prices F were obtained directly from the January 15,
1979 isaue of the Wall Street Journal. The interest rate used was the average
return on 26-week Treasury bills for which the same issue of the Wall Street

Journal reported an annual rate of 9.443x.

s E T F ¥ /Zx 100 L F;:E_:

IvP

23.37% 15.000 5.00 8.750 8.516 0.3690 -64.41
23.375 20.000 5.00 3.750 4.002 4.5971 5.48
23.375 25.000 5.00 1.063 1.232 7.4585 2.3%
23.375 30.000 5.00 0.125 0,258 3.7205 3.57

23.1375 35.000 5.00 L e
23,375 15.000 18.00 9.375 9,143 4.5831 ~5.06
23,375 20.000 18.00 4,625 5.494 10.7533 8.08
23.375 25.000 18.00 2.438 3.049 13.6316 4.48
23,375 30.000 18.00 1.000 1.608 12.5656 4.84
23.375 35.000 18.00 0.375 ¢.825 9.6800 4.65
23,375 15.000 25.00 9,500 92.518 6.7539 0.27
23,375 23,000 25.00 5,625 6.120 12.8174 3.86
23.375 25.000 25.00 3.375 3.769 15.9162 2.48

23.375 30.000 25.00 L

23.375 35.000  25.00 4 memeeee meeeen

q7ime to maturity is measured in weeks.

bUnder the jeint null hypothesis that the Black-Scho;es-Merton options pricing

model obtains and that the stock price follows a lognormal diffusion, the

-

z-statistic is asymptotically standard normal. Therefore, the null hypothesis
@may be rejected at the 5% level if the estimated z-gtatistic falls ocutside the
interval [-1.96, 1,96).

“Not traded.

dNo option offered.



TABLE 3c

-

Maximum-likelihood estimates of prices (F) and asymptotic standard deviations

{fvp) of Tandy call options traded on Jaqggry 12, 1979, and estimates of the

corresponding z-statistics {z

the option).

January 1973 to December 1978, and is given by 02

(P = PNV where F is the observed market price of
The maximum-likelihood estimate for the variance of Tandy stock is
taken from Rosenfeld's (1980) study which used 312 weekly observations from

= 0.00456.

The stock prices §,

exercise prices E, and cption prices F were obtained directly from the January 15,

1979 igsue of the Wall Street Journal.

The interest rate used was the average
return on 26-week Treasury bills for which the same issue of the Wall Street Journal
reported an annual rate of 9,443y, -

s E a F AF /Z x 100 ;b z f;':F.f
JVF
28.500 22.500 1.00 5.750 6.039 5.4202% 1077 5,33x 1073
28.500 25.000 1.00 3.250 3.560 0.4156 7.46
28.500 30.000 1.00 0.313 0,266 2.4046 -1,95
28.500 35.00 1.00 € memmme= mcmccee mmmmmm-
28,500 22.500 14.00 d = emmmmae | ccemmm= mmemae—e
28.500 25.000 14.00 5.000 5.192 8.7259 2.20
28.500 30.000 14.00 2.500 2.530 11.4952 0.26
28.500 35.000 14.00 1.000 1.089 39,6560 0.92
28,500 22.500 21.00 d eseeees ammemme memeemen
28.500 25.000 21.00 6.250 5.888 11.0523 -3.28
28.500 30.000 21.00 3.500 3.321 14.0015 -1.28
28.500 35,000 21.00 d ——————— e e

ATime to maturity is measured in weeks.

bUnder the joint null hypothesis that the Black-Scholes-Merton opticns pricing model

obtains and that the stock price follows a lognormal diffusion, the z-statistic is

asymptotically standard normal. Therefore, the null hypothesis may be rejected at

the 5% level if the estimated z-statistic falls outside the interval [-1.96, 1.96].

“Not traded.

d

No option offered.
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