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I. Introduction

Portfolio insurance has always had an intuitive appeal to investors,

particularly if the cost is not too great. What could be better than the
possibility of making substantial sums of money with no chance of loss?
Responding to this appeal, commercial organizations began selling insurance
against investment loss in the United Kingdom in 1956 and in the United
States in 1971. Gatto, Geske, Litzenberger, and Sosin {1980} provide an
excellent and insightful analysis of the specific insurance plans that were
offered to individuals by Harleysville Mutual Insurance Coﬁpany and Pruden-
tial Insurance Company of America. Nowadays, several firms are marketing to
institutions portfolio "insurance" techniques under such names as "Dynamic
Asset Allocation/Protector Portfolio Management," "Portfolio Insulation,”
and "Portfolio Risk Control."

There are a number of ways to define portfolic insurance. Leland
{1980) proposes one such definition in the context of a two-date world.
Most of the analysis in this paper is consistent with his definition. At
the first date, the investor has some wealth to invest so as to maximize his
expected utility at the second date. An insured strategy is one in which
the investor places part of his wealth in a portfolio of risky assets and
uses his remaining wealth to buy an European put on that portfolio. 1If the
value of the portfolico on the second date is less than the striking price of
the put, he exercises the put; otherwise, he lets the put expire. Thus, he
has insured his portfolio at the striking price of the put.

The purpose of this paper is to explore conditions under which an
investor would utilize portfolio insurance as part of an overall strateqgy.
Whether an investor would utilize portfolio insurance hinges, among other

things, upon the completeness of the market. 1In the complete markets that



Black and Scholes postulate in deriving their option pricing model, the
utility function that an investor would need would have such bizarre charac-
teristics that it is highly unlikely that any investor would purchase
insurance. However, in some types of less complete markets, investors with
plausible utility functions may find it desirable to buy insurance. The
desirability of insurance thus hinges upon the way in which incompleteness
is introduced into the markets of Black and Scholes. The paper concludes
with an examination of an alternative definition of portfolio insurance in a
multi-date world that appears similar to the usual insurance problem but is

quite different in reality.

II. Portfolio Insurance in a Two-Date Model

The development of the Black-Scholes option pricing model assumes that
the returns on risky assets conform to Weiner processes and that there is
continuous trading. Under their assumptions, there exists a trading
strategy by which an investor can create an asset whose value will be
indistinguishable from that of an European put. The investor can then use
this so-called pseudo-put to insure a risky portfolio.

In the first part of the section, we define the required notation and
show how to insure a portfolio. 1In the second part, we develop some
propositions as to the investment strateqy implicit in an insured port-
folio. 1In the final part, we utilize these propositions to infer some
characteristics of the von Neumann-Morgenstern utility function that would

result in an investor insuring his risky portfolio.

A. Constructing the Two-Date Portfolio Insurance Pcalicy‘|
As already pointed out, an investor can insure a portfolio of risky

assets by purchasing a put on that portfolio with a striking price equal to



the desired insurance level, Specifically, if the investor at time 0 has
wealth LY he could insure his portfolic at K by using part of his wealth
to purchase stock and the remainder to purchase an European put with
gtriking price XK. Let S0 represent the investment in thelétock, and
L the price of the put. 1In conformity with Black-Scholes, assume that the
ghare price follows a Wiener process with expected return o and standard
deviation o0, the risk-free rate is fixed at r, there are no dividends, and
trading can take placé continuously.

it is well known that a put can be replicated through the continuous
revision of a portfolio with a long position in the risk-free asset and a
ghort position in the stock. More specifically, the put.can be duplicated

by holding, for any 0 < t <1,

Pt + N(—h)ét of a risk~-free discount bond maturing at t =1,

~N(-h)St of the stock,

where

-r(1-t}

h = log(s, /Ke y/od 15t + 1pofiat

N(*) is the standard cumulative normal distribution

P, = -[s,n(-n) - xe T /7€ - m] .

This portfolio is "self-financing" and exactly replicates the value of the
put over time.

Thus, even if there is no traded put on the stock, there exists a
portfolio that replicates the put and thus provides the desired insurance

policy. At any time t, the composition of an insured portfolio will be



St(1 - N(—h)) of the stock,

Pt + N(-h)st of the riskfree agset.

The proportion of the investor's wealth held in the risky asset at time
t, mt, is given hy
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. B« The Two-Date Model: The Implicit Portfolio Strateqgy

The only decision variable in this problem is the proportion of wealth
to be placed in the.risky asset, wt. Thus, the relationship of wt to time
and wealth characterizes the implicit investment strategy, and the following
remarks address this relationship., Proofs, where not obvious, are included
in footnotes.

First, if an investor wishes to insure a portfolio at the striking
price K, his initial wealth must be no less than the discounted value of K
or Xe Y. If it were less than Ke™ T, the investor would be assured of a
minimum rate of retﬁrn in excegss of the riskfree rate, creating an arbitrage
opportunity that is inconsistent wiht the Black-Scholes model. Moreover,
for any t, 0 <t < 1, the investor's wealth can never be less than
Ke—r(1—t)_

Thus, for any feasible investment strategy, the investor's

wealth must always be on or above the line in Figure 1 that portrays the



striking price K, discounted at the riskfree rate.

Second, if the investor's wealth at any time t is equal to Ke'r(1—t).
the only feasible insurance strategy is to invest everything in the
riskfree asset in order to be certain of receiving K. Thus, in this
case, wt = 0.

Third, at any time t, the proportion invested in thé rigky asset w,
increases with increases in wealth.2 Thus, in Figure 1, portfolio B would
have a greater proportion in risky assets than portfolio A. Morever, it can
be shown that, whenever S, > K, mt >1/2 3

Fourth, as t approaches one, the proportion invested in risky assets
will with probability one approach either zero or one.4 Intuitively, if the
stock price is greater than K, the "smoothness" of the assumed Wiener process
implies that the probability that the stock price will ever fall below K
approaches zero as t approaches one, so that the investor can allow
mt to approach one and be assured of always obtaining K. The intuitive
reason that wt approaches zero if the stock price is less than X is less
clear, but is undoubtedly related to the fact above that as the investor's
wealth approaches the discounted value of the insurance level, the investor
must place a greater proportion of his assets in the riskfree asset to be

assured of obtaining K.

C. The Implied Characteristics of the Investor's Utility Function

Whether the insurance policy analyzed above is optimal depends, of
course, upcon the investor's utility function. The purpose of this subsection
is to determine what characteristics of the investor's utility function would
dictate an insurance strategy. The logic will be to assume that an investor
has solved the usual expected utility maximization problem and that the

solution is an insurance strategy. We shall then ask what properties



the original utility function must have had for an insurance strategy to
have been optimal.

Consider an investor who at each time t, O < t < 1, chooses a portfolio
composed of a proportion mt of a single risky asset and a proportion
1 - w, of a riskless asset with return r > 0 so as to maximize his
expected utility of end-of-period wealth. The investor's utility maximiza-

tion problem may be written:

mag EU[w1]
s.t.
Woo> 0, 0<t< ,
W, o= Wo > 0
aw = Wt{ [w (@ - £) + rlat + mto(t)dz} .

where d7 is a Weiner process. We make the usual assumptions that
U* >0 and U" < 0.
Merton (1969), Friend and Blume (1975), and Ross (1975) show that an

investor's coefficient of relative risk aversion Cy in an optimal strategqy

mast satisfy

w - la-T 1 . (2)

This relationship shows how the coefficient of relative risk aversion of an
investor who chooses the two-date portfolio insurance strategy will vary
over time and as a function of wealth. Namely, the coefficient of relative

risk aversion will be given by
- _ —r(1—t) f_—_ _
i (aer) 5, (1-N(-n)) + ke N(oY1-t - h)

c, = — = . - (3)
t w2 stL1—N(-h)J 2
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Since the proportion invested in risky assets varies both as a function
of time and wealth, one-period insurance strategies can in general be opti-
mal only for utility maximizers whose utility functions display non-constant
coefficients of relative risk aversion. 1In the limit the coefficient of
relative risk aversion will approach infinity when as t + 1, 5, < XK. More
generally, for given K, t < 1, and other parameters, C, decreases with
increases in wealth. Thus, an investor must have decreasing proportional
risk aversion function up to the exercise date of the put. This argument

can be summarized as follows:

Theorem 1: Under the assumptions made in the Black-Scholes model, the
investor's utility function must have an unbounded coefficient of propor-
tional risk aversion at some level of wealth if the investor finds it
optimal to insure his total portfolio at some positive level and decreasing

proportional risk aversion above that level.

I1I. Less Complete Markets

Under the assumptions of the Black-Scholes model, the end-of-period
utility function of an investor who insured his portfolio at some level
would have to exhibit an unbounded coefficient of relative risk aversion
below the insurance level and decreasing relative risk aversion above that
level, The available empirical evidence is not consistent with this type of
utility function, but rather points towards constant relative risk aversion
over wide ranges of wealth.5 Moreover, most of the empirical evidence
suggests a minimum value of the coefficient of relative risk aversion of
around two. If all of the Black-Scholes assumptions are made, an investor
with a utility function displaying constant relative risk aversion would not

insure a portfolio. However, in a world that is less complete than that of
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Black-Scholes, an investor might decide to insure a portfolio.

A. An Extreme Example

In this section, we examine this possibiiity. Throughout we assume
that markets are segmented in the following way: One set of investors have
available to them the Black-Scholes markets and can avail themselves of
continuous trading opportunities. These investors price the assets in the
market and specifically set the prices of puts according to the Black-
Scholes formula. Another group of investors can trade only at the beginning
of the time period and face an incomplete market. We shall further assume
that a typical investor in this latter group has a utility function
displaying constant proportional risk aversion.

Let us begin with an extremely incomplete market. For the moment,
assume that the investor is prohibited, perhaps for some institutional
reason, from investing in riskfree assets and that there is only one risky
asset available to the investor. Although the investor cannot invest in
riskfree assets, he is permitted to purchase a put on the risky asset with
any striking price that he sets.

In this highly stylized world, the only decision that fhe investor
faces is the striking price of the put, and this decision must be made at
the start of the period. Subsequently, we shall consider more realistic
scenarios.

If the investor's initial wealth and the price of one share are each
one dollar, he could buy one share of the risky asset with no insurance.
Alternatively, he _could buy a fraction of a share and a put on that asset
with striking price K. 1If the price of a put on one share with striking
price K is P, the investor would buy 1/(1 + P) share and the same

fraction of the put. Thus, the investor's wealth at the end of the period,



Wys will be

W, = max(Sl, X)/(1 + P) ' | (4)

where 8, is the value of one share at the end of the period.
Now, assume that the investor's utility function is of the constant

relative risk aversion form

U(W1) = W (5)

1 -y 1

with the coefficient of relative risk aversion Y taking on the values of 2,
4, 8, and 16. For any specific set of return assumptions, it is possible to
determine numerically the optimal striking price for any coefficient of
relative risk aversion.

We use two sets of assumptions for the underlying parameters. The
first set assumes that the Weiner process for the risky asset has a drift
term of 0.15 and a Qtandafd deviation of 0.20. Together, the;e imply that
the expected one-period return is 18.5 percent.6 The drift term, or
equivalently the continuously compounded rate of return, for the risk-free
asset is 0.10 for an effective rate of 10.5 percent.

The second set assumes for the risky asset a drift term of 0.04 and a
standard deviation of 0.20 for an expected one-period return of 6.2 percent.
The continuously compounded rate of return for the risk-free asset is .01
for an effective rate of just over 1 percent. Some might view the first set
as roughly approximating the nominal rates of today, and the second set as
roughly approximatinq the real rates since the turn of the century.7

Using the first set of assumptions, an investor with a relative risk
coefficient of 2.0 would realize his highest level of expected utility by

purchasing a put with a striking price of 0.70 dollars.® Since the
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investor's total wealth is one dollar, the same as the price of one share of
the risky asset, and since the investor must pay a premium for the put, he
can only buy a fraction of a full share. 1In this case, his optimal strategy
is to buy 99.9 percent of a share of stock and 99.9 percent of a put with an
exercise price of 0.70 dollars. Since the investor purchases less than a
full put, the insurance level is somewhat less than 0.70 dollars.

In deriving these numbers, the computer program only considered
striking prices in the range of zero to one dollar. The theoretical results
from the previous section indicate that it is possible to insure a portfolio
at a somewhat greater amount than the investor's current wealth, providing
the riskfree rate is positive. Nonetheless, the assumption that the maximum
exercise price for a put can never exceed one dollar is a reasonable one for
our purposes, First, purchasing some fraction of a put with a maximom
striking price of one dollar is always feasible for any positive rigk-free
rate. Second, it seems in the spirit of an insurance policy not to insure
one's wealth for more than its current value.

Thus, an investor in this form of an incomplete market would choose to
buy a put. An important question, especially for public policy, is how
valuable is the availability of such a put to an investor. A measure of how
valuable the put is to the investor is the amount that the investor would be
willing to pay to have such a put available.

Following Goldman {(1974), an answer to this question is obtainable ag
follows: Let E{U(W1)} be the expected utility of the end of period wealth
associated with some arbitrary and generally non-optimal policy. For the
moment, let this policy be an investment without insurance. I1f puts are
valuable to an investor, an investor would be willing to pay some fraction

of his end of period wealth to be able to purchase a put, Let 7 be the
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fraction of his wealth that he would pay. After paying the proportion T,
the investor's expected utility with a put having an optimal striking price
is E{U*[(1 - H)W1]}, where the superscript "#*" indicates an optimal
strategy. The value of w that equates the expected utility without a put
to that with an optimal put is the maximum that an investor would pay to
have the option of buying the put.

Egquating these two expected utilities yields

lus[ (1 - u)w1]} = E{U(W1)}
or
E{TJ:7{ (1 - u)w1]1'7} = E{1——1—T— w:'Y} (6)
(1 - 17)1_YE[U*(W1)] = E[U(W1)]

Finally solving for 7 gives the desired formula:

1
slum )} | Ty
T = % o |— . (9)
H{ue(w,)}

An investor with a coefficient of relative risk aversion of 2.0 and
facing the set of return assumptions corresponding roughly to today's
nominal interest rates would be willing to pay up to 0.001 percent of his
wealth in order to be able to buy an optimal put. Table 1 contains the
results of these and similar calculations for values of the coefficient of
relative risk ranging from two to sixteen for both sets of assumed return
characteristics. With a coefficient of relative risk aversion of two, an

investor would not find puts very valuable, but, as his coefficient of

relative rigsk aversion increases to four and beyond, the investor would find
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puts increasingly valuable.

B. A More Complete World

In the incomplete market assumed above, an investor with a reasonable
utility function and under plausible return assumptions would want to buy a
put. Let us now examine what happens in a somewhat more éomplete world.
Specifically, assume that the investor can, in addition to buving a put,
lend money at the risk-free rate. BAs before, the investor cannot trade
after the start of the period. The investor's decisions are what fraction
of his wealth to invest in risk-free assets, the striking price of any put
that he buys, and the proportion of his wealth to place in the risky asset.

Table 2 contains the optimal investment strategies for the various
utility functions and for the two sets of return assumptions.9 None of
these optimal strategies involves the purchase of a put. The investor can
achieve an optimal investment strategy using just the risky and risk-free
asset, In fact, if he could, the investor would like to short the put.10

Moreover, given a choice as between adding a put or a risk-free invest-
ment, an investor would prefer the addition of the risk-free asset. From
Table 1, an investor with a coefficient of relative risk aversion of 4 and
facing the higher return assumptions would be willing to pay up to 1.47
percent of his wealth to have a put included in the market place, but 2.49
percent to have a risk-free asset included. The same qualitative conclusion
applies to the lower return assumptions.

The intuition behind these results is something like the following: 1In
the Black-Scholes world of Weiner processes and continuous trading, an
investor with an utility function displaying constant proportional risk
aversion would continuously rebalance his portfolio to maintain a constant

proportion in the risky asset. Denied continuous trading, the investor may
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still desire to invest in the riskfree asset, but the proportion at risk
would drift over time according to the relative realized returns on risky
and riskfree assets. If the expected returns on risky aésets were greater
than the riskfree rate, the proportion invested in risky assets would tend
to increase over time. Selling a put would help to reverse this tendency
for the proportion in the risky asset to increase over time, although it
could not replicate the result from continuous trading.

Denied both continuous trading and a riskfree rate, the investor might
purchase a put as an indirect way of including a position in a riskfree
asset. Since the proportion in the risky asset would tend to increase even
more with a put than with a direct holding of the riskfree asset, the pur-

chase of a put is inferior to the direct purchase of a riskfree asset.'!

IV. Psuedo Insurance

One major corporation known to the authors has set as one of its
objectives in managing its pension fund that in the next ten years there
gshould be virtually no possibility that the total return on the fund be less
than zero. The rationale given for this objective stems from the Chairman's
view that it is imprudent to spend principal. At the end of each year, the
objective is redefined in terms of the next ten years. There are undoubtedly
other investors who think in similar terms.

Put more formally and in a somewhat more general fo?m, the investor has
a horizon of a fixed number of years at the end of which he wants to insure
against any losses in excess of ¢wo. As time marches on, the investor
continually revises his insurance so as to keep his horizon constant at a
fixed number of years and the level of insurance constant at a proportion

¢ of his then current level of wealth, On the surface, this strategy may
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appear to be similar to the insurance strategy that was examined in the
prior two sections, However, this moving horizon problém turns out not to
involve an insurance strategy at all.

In this moving horizon problem, the proportion invested in risky assets
at the beginning of each period will remain.unchanged over time since the
length of the horizon is constant. Specifically, if T represents the
horizon, Equation (1) can be written ag

s (1 - v(-m)

st[1 - N(-H)) + ke TIN(oV/T - H)

where
_rT f— 1 —
H = log(s, /ke ) /o/T + VpolT

The use of H denotes the fact that the only time dependence in this model
is caused by the change in the stock price. Note also that in the moving
horizon case, the put portfolic is no longer necessarily self-financing--it
may produce a profit or a loss.

If the insurance level at time t is a constant proportion of the then
current wealth, the implied utility function exhibits constant proportional
risk aversion. Thus, an investor with such a utility function can always be
viewed as facing a dynamic portfoelio insurance strategy, but in an almost
trivial sense. Note that the actual portfolio implications for this case
are diametrically opposite of those in the one-period model: In an
insurance strateqgy, the proportion of assets invested in the risky asset
increases as the price of that asset increases; in the moving horizon case
where the insurance level is a constant fraction of current wealth, the
proportion of assets invested in the risky asset does not change with

changes in the price of that asset.
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V. Conclusion

The optimality of an insurance strategy in a portfolio-choice context
depends on the completeness of markets. 1In complete markets with continuous
rebalancing of portfolios, the characteristics of the implied utility func-
tions are so peculiar that it is doubtful that any investor would want to
follow a two-date insurance strategy. Insurance strategies may, however, be
optimal in some types of‘incomplete markets. However, under at least one
set of reasonable assumptions, the paper showed that an investor having the
option of investing in the risk-free asset would not ﬁurchase a put. 1In
addition, the paper illustrated a technigque to measure qdantitatively the
value to an investor of héving the markets more complete.

Interestingly, an inéurance strateqy with a finite moving horizon was
consistent with a constant proportional risk aversion function. Put another
way, an investor who has a constant proportional risk aversion function in a
continuous time framework with a finite moving horizon can be viewed as
facing a type of insurance problem, but it is quite a different insurance

problem from the usual two-period problem involving the purchase of a put.
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FOOTNOTES

The problem discussed in this sub-section resembles that of pricing an
equity-linked life insurance policy (see Brennan and Schwartz, 1976).

As the stock price increases, the value of the put decreases and
N{-h) decreases. Thus, from (1), w, increases.

From (1),
u]t - — 1 — r
;o Koot N holt - r/t1/0 - log(s/x) /oY1)
N{140/T + ©/T/0 + log(S/K)/av/T)
where T = 1-t and the index on S5 has been dropped. Now, consider

the fraction which appears in the denominator. As long as K < 5,
1ha/tT - /T/0 - log(s/K)/fo¥T <'Ho/T + o/T/0 + log(S/K)forT .

Since in this case the whole denominator is less than 2, W, >l . It is
tempting to hypothesize that when X > S, wy < 1&;. A simple
continuity argument shows, however, that this need not be true. Since

W is continuous in X and S, a small increase in K/5 will still

leave w, o > 1@ .

We may use equation (1) to calculate the limiting insurance portfolio
proportions as T + 0, where t = 1-t. To do this, write

log(St/K)
h = s
o't

e 1&;/?

Qjfrt

As T * 0, we may differentiate among three cases:

Case 1: S, = K. In this case h+ 0 as T + 0, and

N(h) = N(~h)} + 5.

Case 2: St > Ko« In this case h + e« as 1t + 0, and

N(h) + 1, N(-h) + 0.

Case 3: S; < K. 1In this case h + «® as 1 + ¢, and

N(h) *+ 0, N(-h) *+ 1.
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FOOTNOTES {(cont.)

The proof of the proposition now follows from (1). The probability of

Case 1 is zero, so that with probability one, W, + 0 or 1.

Cf. Friend and Blume (1975) for evidence in the U.S. and Morin and
Suarez (1983) for evidence in Canada.

The end of period return is log normal. Therefore, one plus the

expected one-period return is exp(0.15 + .5 X .04), where exp is the
exponential function.

Cf., Stocks, Bonds, Bills and Inflation Yearbook (1926-19831).

In calculating the expected utility for any specific strategy, the
integral was evaluated from the drift term of the risky asset minus 5
standard deviations to the drift term plus five standard deviations.

The interval from minus 5 to plus 5 standard deviations was divided into
100 eqgual subintervals. Increasing the number of subintervals to 500
produced no change in the expected utility wvalues up to six places, The
function to be integrated (the utility function times the density) was
evaluated at the midpoint of each subinterval and then multiplied by the
length of the subhinterval, To minimize rounding errors, these resulting
products were summed alternately from the extremes, first using the

smallest area on the left and then the smallest area on the right and so
on.

If the strike price was more than 5 standard deviations below the
drift term, the integral was calculated as if the strike price was
zero. Thus, in the tables, any strike price of zero should really be
interpreted as a strike price of more than 5 standard deviations below
the drift term. Using any striking price between these two extremes
would produce virtually the same expected utility and the same portfolio
allocations up to the precision shown in the tables. Finally, a
gradient procedure was used to determine the optimal strike price.

The optimal policy was determined by a gradient search.

As an example, under the lower return assumptions, an investor with a
coefficient of relative risk aversion of 2.0 who was permitted to sell a
put would have achieved a maximum expected utility with the following
portfolio: 38% in the risk-free asset, 62.002% in the risky asset, and a
short sale of .62 of one put with exercise price of .59. The results
were similar for other parameters.
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FOOTROTES {(cont.)}

Brennan and Solanki (1981) contains an alternative approach to the
optimality of portfolio insurance in segmented markets. As in the
analysis of this section, Brennan and Solanki assume that puts are
priced in accordance to the Black-Scholes formula, and that the
individual purchasing the portfolio insurance maximizes the expected
utility of terminal wealth in a two-date framework. They prove that
portfolio insurance is optimal only if the utility function is linear
below the insurance level and the stock purchased has a zero risk
premium -- highly unrealistic conditions.
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PIGURE 1

Characteristics of Insured Strategy

Wealth

Ke™

Time

Characteristics:
Total wealth must always be on or above curved line

Portfolio B has a greater proportion in risky assets than Portfelio A

As wealth approaches Ke'r(1_t). the proportion in risky assets
approaches zero.

1 if St > K
As t approaches zero, plim =
t .
0 if St < K
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